aef02f7ca8aaa26f020454b91d785b1614dbb060
[muen/linux.git] / arch / hexagon / include / asm / pgtable.h
1 /*
2  * Page table support for the Hexagon architecture
3  *
4  * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18  * 02110-1301, USA.
19  */
20
21 #ifndef _ASM_PGTABLE_H
22 #define _ASM_PGTABLE_H
23
24 /*
25  * Page table definitions for Qualcomm Hexagon processor.
26  */
27 #include <asm/page.h>
28 #define __ARCH_USE_5LEVEL_HACK
29 #include <asm-generic/pgtable-nopmd.h>
30
31 /* A handy thing to have if one has the RAM. Declared in head.S */
32 extern unsigned long empty_zero_page;
33 extern unsigned long zero_page_mask;
34
35 /*
36  * The PTE model described here is that of the Hexagon Virtual Machine,
37  * which autonomously walks 2-level page tables.  At a lower level, we
38  * also describe the RISCish software-loaded TLB entry structure of
39  * the underlying Hexagon processor. A kernel built to run on the
40  * virtual machine has no need to know about the underlying hardware.
41  */
42 #include <asm/vm_mmu.h>
43
44 /*
45  * To maximize the comfort level for the PTE manipulation macros,
46  * define the "well known" architecture-specific bits.
47  */
48 #define _PAGE_READ      __HVM_PTE_R
49 #define _PAGE_WRITE     __HVM_PTE_W
50 #define _PAGE_EXECUTE   __HVM_PTE_X
51 #define _PAGE_USER      __HVM_PTE_U
52
53 /*
54  * We have a total of 4 "soft" bits available in the abstract PTE.
55  * The two mandatory software bits are Dirty and Accessed.
56  * To make nonlinear swap work according to the more recent
57  * model, we want a low order "Present" bit to indicate whether
58  * the PTE describes MMU programming or swap space.
59  */
60 #define _PAGE_PRESENT   (1<<0)
61 #define _PAGE_DIRTY     (1<<1)
62 #define _PAGE_ACCESSED  (1<<2)
63
64 /*
65  * For now, let's say that Valid and Present are the same thing.
66  * Alternatively, we could say that it's the "or" of R, W, and X
67  * permissions.
68  */
69 #define _PAGE_VALID     _PAGE_PRESENT
70
71 /*
72  * We're not defining _PAGE_GLOBAL here, since there's no concept
73  * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
74  * and we want to use the same page table structures and macros in
75  * the native kernel as we do in the virtual machine kernel.
76  * So we'll put up with a bit of inefficiency for now...
77  */
78
79 /*
80  * Top "FOURTH" level (pgd), which for the Hexagon VM is really
81  * only the second from the bottom, pgd and pud both being collapsed.
82  * Each entry represents 4MB of virtual address space, 4K of table
83  * thus maps the full 4GB.
84  */
85 #define PGDIR_SHIFT 22
86 #define PTRS_PER_PGD 1024
87
88 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
89 #define PGDIR_MASK (~(PGDIR_SIZE-1))
90
91 #ifdef CONFIG_PAGE_SIZE_4KB
92 #define PTRS_PER_PTE 1024
93 #endif
94
95 #ifdef CONFIG_PAGE_SIZE_16KB
96 #define PTRS_PER_PTE 256
97 #endif
98
99 #ifdef CONFIG_PAGE_SIZE_64KB
100 #define PTRS_PER_PTE 64
101 #endif
102
103 #ifdef CONFIG_PAGE_SIZE_256KB
104 #define PTRS_PER_PTE 16
105 #endif
106
107 #ifdef CONFIG_PAGE_SIZE_1MB
108 #define PTRS_PER_PTE 4
109 #endif
110
111 /*  Any bigger and the PTE disappears.  */
112 #define pgd_ERROR(e) \
113         printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
114                 pgd_val(e))
115
116 /*
117  * Page Protection Constants. Includes (in this variant) cache attributes.
118  */
119 extern unsigned long _dflt_cache_att;
120
121 #define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_USER | \
122                                 _dflt_cache_att)
123 #define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_USER | \
124                                 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
125 #define PAGE_COPY       PAGE_READONLY
126 #define PAGE_EXEC       __pgprot(_PAGE_PRESENT | _PAGE_USER | \
127                                 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
128 #define PAGE_COPY_EXEC  PAGE_EXEC
129 #define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
130                                 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
131 #define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_READ | \
132                                 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
133
134
135 /*
136  * Aliases for mapping mmap() protection bits to page protections.
137  * These get used for static initialization, so using the _dflt_cache_att
138  * variable for the default cache attribute isn't workable. If the
139  * default gets changed at boot time, the boot option code has to
140  * update data structures like the protaction_map[] array.
141  */
142 #define CACHEDEF        (CACHE_DEFAULT << 6)
143
144 /* Private (copy-on-write) page protections. */
145 #define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
146 #define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
147 #define __P010 __P000   /* Write-only copy-on-write */
148 #define __P011 __P001   /* Read/Write copy-on-write */
149 #define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
150                         _PAGE_EXECUTE | CACHEDEF)
151 #define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
152                         _PAGE_READ | CACHEDEF)
153 #define __P110 __P100   /* Write/execute copy-on-write */
154 #define __P111 __P101   /* Read/Write/Execute, copy-on-write */
155
156 /* Shared page protections. */
157 #define __S000 __P000
158 #define __S001 __P001
159 #define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
160                         _PAGE_WRITE | CACHEDEF)
161 #define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
162                         _PAGE_WRITE | CACHEDEF)
163 #define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
164                         _PAGE_EXECUTE | CACHEDEF)
165 #define __S101 __P101
166 #define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
167                         _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
168 #define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
169                         _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
170
171 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];  /* located in head.S */
172
173 /* Seems to be zero even in architectures where the zero page is firewalled? */
174 #define FIRST_USER_ADDRESS 0UL
175 #define pte_special(pte)        0
176 #define pte_mkspecial(pte)      (pte)
177
178 /*  HUGETLB not working currently  */
179 #ifdef CONFIG_HUGETLB_PAGE
180 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
181 #endif
182
183 /*
184  * For now, assume that higher-level code will do TLB/MMU invalidations
185  * and don't insert that overhead into this low-level function.
186  */
187 extern void sync_icache_dcache(pte_t pte);
188
189 #define pte_present_exec_user(pte) \
190         ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
191         (_PAGE_EXECUTE | _PAGE_USER))
192
193 static inline void set_pte(pte_t *ptep, pte_t pteval)
194 {
195         /*  should really be using pte_exec, if it weren't declared later. */
196         if (pte_present_exec_user(pteval))
197                 sync_icache_dcache(pteval);
198
199         *ptep = pteval;
200 }
201
202 /*
203  * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
204  * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
205  * (Linux PTE), the key is to have bits 11..9 all zero.  We'd use 0x7
206  * as a universal null entry, but some of those least significant bits
207  * are interpreted by software.
208  */
209 #define _NULL_PMD       0x7
210 #define _NULL_PTE       0x0
211
212 static inline void pmd_clear(pmd_t *pmd_entry_ptr)
213 {
214          pmd_val(*pmd_entry_ptr) = _NULL_PMD;
215 }
216
217 /*
218  * Conveniently, a null PTE value is invalid.
219  */
220 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
221                                 pte_t *ptep)
222 {
223         pte_val(*ptep) = _NULL_PTE;
224 }
225
226 #ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL
227 /**
228  * pmd_index - returns the index of the entry in the PMD page
229  * which would control the given virtual address
230  */
231 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
232
233 #endif
234
235 /**
236  * pgd_index - returns the index of the entry in the PGD page
237  * which would control the given virtual address
238  *
239  * This returns the *index* for the address in the pgd_t
240  */
241 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
242
243 /*
244  * pgd_offset - find an offset in a page-table-directory
245  */
246 #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
247
248 /*
249  * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr
250  */
251 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
252
253 /**
254  * pmd_none - check if pmd_entry is mapped
255  * @pmd_entry:  pmd entry
256  *
257  * MIPS checks it against that "invalid pte table" thing.
258  */
259 static inline int pmd_none(pmd_t pmd)
260 {
261         return pmd_val(pmd) == _NULL_PMD;
262 }
263
264 /**
265  * pmd_present - is there a page table behind this?
266  * Essentially the inverse of pmd_none.  We maybe
267  * save an inline instruction by defining it this
268  * way, instead of simply "!pmd_none".
269  */
270 static inline int pmd_present(pmd_t pmd)
271 {
272         return pmd_val(pmd) != (unsigned long)_NULL_PMD;
273 }
274
275 /**
276  * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
277  * As we have no known cause of badness, it's null, as it is for many
278  * architectures.
279  */
280 static inline int pmd_bad(pmd_t pmd)
281 {
282         return 0;
283 }
284
285 /*
286  * pmd_page - converts a PMD entry to a page pointer
287  */
288 #define pmd_page(pmd)  (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
289 #define pmd_pgtable(pmd) pmd_page(pmd)
290
291 /**
292  * pte_none - check if pte is mapped
293  * @pte: pte_t entry
294  */
295 static inline int pte_none(pte_t pte)
296 {
297         return pte_val(pte) == _NULL_PTE;
298 };
299
300 /*
301  * pte_present - check if page is present
302  */
303 static inline int pte_present(pte_t pte)
304 {
305         return pte_val(pte) & _PAGE_PRESENT;
306 }
307
308 /* mk_pte - make a PTE out of a page pointer and protection bits */
309 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
310
311 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
312 #define pte_page(x) pfn_to_page(pte_pfn(x))
313
314 /* pte_mkold - mark PTE as not recently accessed */
315 static inline pte_t pte_mkold(pte_t pte)
316 {
317         pte_val(pte) &= ~_PAGE_ACCESSED;
318         return pte;
319 }
320
321 /* pte_mkyoung - mark PTE as recently accessed */
322 static inline pte_t pte_mkyoung(pte_t pte)
323 {
324         pte_val(pte) |= _PAGE_ACCESSED;
325         return pte;
326 }
327
328 /* pte_mkclean - mark page as in sync with backing store */
329 static inline pte_t pte_mkclean(pte_t pte)
330 {
331         pte_val(pte) &= ~_PAGE_DIRTY;
332         return pte;
333 }
334
335 /* pte_mkdirty - mark page as modified */
336 static inline pte_t pte_mkdirty(pte_t pte)
337 {
338         pte_val(pte) |= _PAGE_DIRTY;
339         return pte;
340 }
341
342 /* pte_young - "is PTE marked as accessed"? */
343 static inline int pte_young(pte_t pte)
344 {
345         return pte_val(pte) & _PAGE_ACCESSED;
346 }
347
348 /* pte_dirty - "is PTE dirty?" */
349 static inline int pte_dirty(pte_t pte)
350 {
351         return pte_val(pte) & _PAGE_DIRTY;
352 }
353
354 /* pte_modify - set protection bits on PTE */
355 static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
356 {
357         pte_val(pte) &= PAGE_MASK;
358         pte_val(pte) |= pgprot_val(prot);
359         return pte;
360 }
361
362 /* pte_wrprotect - mark page as not writable */
363 static inline pte_t pte_wrprotect(pte_t pte)
364 {
365         pte_val(pte) &= ~_PAGE_WRITE;
366         return pte;
367 }
368
369 /* pte_mkwrite - mark page as writable */
370 static inline pte_t pte_mkwrite(pte_t pte)
371 {
372         pte_val(pte) |= _PAGE_WRITE;
373         return pte;
374 }
375
376 /* pte_mkexec - mark PTE as executable */
377 static inline pte_t pte_mkexec(pte_t pte)
378 {
379         pte_val(pte) |= _PAGE_EXECUTE;
380         return pte;
381 }
382
383 /* pte_read - "is PTE marked as readable?" */
384 static inline int pte_read(pte_t pte)
385 {
386         return pte_val(pte) & _PAGE_READ;
387 }
388
389 /* pte_write - "is PTE marked as writable?" */
390 static inline int pte_write(pte_t pte)
391 {
392         return pte_val(pte) & _PAGE_WRITE;
393 }
394
395
396 /* pte_exec - "is PTE marked as executable?" */
397 static inline int pte_exec(pte_t pte)
398 {
399         return pte_val(pte) & _PAGE_EXECUTE;
400 }
401
402 /* __pte_to_swp_entry - extract swap entry from PTE */
403 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
404
405 /* __swp_entry_to_pte - extract PTE from swap entry */
406 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
407
408 /* pfn_pte - convert page number and protection value to page table entry */
409 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
410
411 /* pte_pfn - convert pte to page frame number */
412 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
413 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
414
415 /*
416  * set_pte_at - update page table and do whatever magic may be
417  * necessary to make the underlying hardware/firmware take note.
418  *
419  * VM may require a virtual instruction to alert the MMU.
420  */
421 #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
422
423 /*
424  * May need to invoke the virtual machine as well...
425  */
426 #define pte_unmap(pte)          do { } while (0)
427 #define pte_unmap_nested(pte)   do { } while (0)
428
429 /*
430  * pte_offset_map - returns the linear address of the page table entry
431  * corresponding to an address
432  */
433 #define pte_offset_map(dir, address)                                    \
434         ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
435
436 #define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr)
437
438 /* pte_offset_kernel - kernel version of pte_offset */
439 #define pte_offset_kernel(dir, address) \
440         ((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \
441                                 +  __pte_offset(address))
442
443 /* ZERO_PAGE - returns the globally shared zero page */
444 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
445
446 #define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
447
448 /*  I think this is in case we have page table caches; needed by init/main.c  */
449 #define pgtable_cache_init()    do { } while (0)
450
451 /*
452  * Swap/file PTE definitions.  If _PAGE_PRESENT is zero, the rest of the PTE is
453  * interpreted as swap information.  The remaining free bits are interpreted as
454  * swap type/offset tuple.  Rather than have the TLB fill handler test
455  * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
456  * all zeros for swap entries, which speeds up the miss handler at the cost of
457  * 3 bits of offset.  That trade-off can be revisited if necessary, but Hexagon
458  * processor architecture and target applications suggest a lot of TLB misses
459  * and not much swap space.
460  *
461  * Format of swap PTE:
462  *      bit     0:      Present (zero)
463  *      bits    1-5:    swap type (arch independent layer uses 5 bits max)
464  *      bits    6-9:    bits 3:0 of offset
465  *      bits    10-12:  effectively _PAGE_PROTNONE (all zero)
466  *      bits    13-31:  bits 22:4 of swap offset
467  *
468  * The split offset makes some of the following macros a little gnarly,
469  * but there's plenty of precedent for this sort of thing.
470  */
471
472 /* Used for swap PTEs */
473 #define __swp_type(swp_pte)             (((swp_pte).val >> 1) & 0x1f)
474
475 #define __swp_offset(swp_pte) \
476         ((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
477
478 #define __swp_entry(type, offset) \
479         ((swp_entry_t)  { \
480                 ((type << 1) | \
481                  ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })
482
483 /*  Oh boy.  There are a lot of possible arch overrides found in this file.  */
484 #include <asm-generic/pgtable.h>
485
486 #endif