hexagon: drop the unused variable zero_page_mask
[muen/linux.git] / arch / hexagon / mm / init.c
1 /*
2  * Memory subsystem initialization for Hexagon
3  *
4  * Copyright (c) 2010-2013, The Linux Foundation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18  * 02110-1301, USA.
19  */
20
21 #include <linux/init.h>
22 #include <linux/mm.h>
23 #include <linux/bootmem.h>
24 #include <asm/atomic.h>
25 #include <linux/highmem.h>
26 #include <asm/tlb.h>
27 #include <asm/sections.h>
28 #include <asm/vm_mmu.h>
29
30 /*
31  * Define a startpg just past the end of the kernel image and a lastpg
32  * that corresponds to the end of real or simulated platform memory.
33  */
34 #define bootmem_startpg (PFN_UP(((unsigned long) _end) - PAGE_OFFSET + PHYS_OFFSET))
35
36 unsigned long bootmem_lastpg;   /*  Should be set by platform code  */
37 unsigned long __phys_offset;    /*  physical kernel offset >> 12  */
38
39 /*  Set as variable to limit PMD copies  */
40 int max_kernel_seg = 0x303;
41
42 /*  indicate pfn's of high memory  */
43 unsigned long highstart_pfn, highend_pfn;
44
45 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
46
47 /* Default cache attribute for newly created page tables */
48 unsigned long _dflt_cache_att = CACHEDEF;
49
50 /*
51  * The current "generation" of kernel map, which should not roll
52  * over until Hell freezes over.  Actual bound in years needs to be
53  * calculated to confirm.
54  */
55 DEFINE_SPINLOCK(kmap_gen_lock);
56
57 /*  checkpatch says don't init this to 0.  */
58 unsigned long long kmap_generation;
59
60 /*
61  * mem_init - initializes memory
62  *
63  * Frees up bootmem
64  * Fixes up more stuff for HIGHMEM
65  * Calculates and displays memory available/used
66  */
67 void __init mem_init(void)
68 {
69         /*  No idea where this is actually declared.  Seems to evade LXR.  */
70         free_all_bootmem();
71         mem_init_print_info(NULL);
72
73         /*
74          *  To-Do:  someone somewhere should wipe out the bootmem map
75          *  after we're done?
76          */
77
78         /*
79          * This can be moved to some more virtual-memory-specific
80          * initialization hook at some point.  Set the init_mm
81          * descriptors "context" value to point to the initial
82          * kernel segment table's physical address.
83          */
84         init_mm.context.ptbase = __pa(init_mm.pgd);
85 }
86
87 /*
88  * free_initmem - frees memory used by stuff declared with __init
89  *
90  * Todo:  free pages between __init_begin and __init_end; possibly
91  * some devtree related stuff as well.
92  */
93 void __ref free_initmem(void)
94 {
95 }
96
97 /*
98  * free_initrd_mem - frees...  initrd memory.
99  * @start - start of init memory
100  * @end - end of init memory
101  *
102  * Apparently has to be passed the address of the initrd memory.
103  *
104  * Wrapped by #ifdef CONFIG_BLKDEV_INITRD
105  */
106 void free_initrd_mem(unsigned long start, unsigned long end)
107 {
108 }
109
110 void sync_icache_dcache(pte_t pte)
111 {
112         unsigned long addr;
113         struct page *page;
114
115         page = pte_page(pte);
116         addr = (unsigned long) page_address(page);
117
118         __vmcache_idsync(addr, PAGE_SIZE);
119 }
120
121 /*
122  * In order to set up page allocator "nodes",
123  * somebody has to call free_area_init() for UMA.
124  *
125  * In this mode, we only have one pg_data_t
126  * structure: contig_mem_data.
127  */
128 void __init paging_init(void)
129 {
130         unsigned long zones_sizes[MAX_NR_ZONES] = {0, };
131
132         /*
133          *  This is not particularly well documented anywhere, but
134          *  give ZONE_NORMAL all the memory, including the big holes
135          *  left by the kernel+bootmem_map which are already left as reserved
136          *  in the bootmem_map; free_area_init should see those bits and
137          *  adjust accordingly.
138          */
139
140         zones_sizes[ZONE_NORMAL] = max_low_pfn;
141
142         free_area_init(zones_sizes);  /*  sets up the zonelists and mem_map  */
143
144         /*
145          * Start of high memory area.  Will probably need something more
146          * fancy if we...  get more fancy.
147          */
148         high_memory = (void *)((bootmem_lastpg + 1) << PAGE_SHIFT);
149 }
150
151 #ifndef DMA_RESERVE
152 #define DMA_RESERVE             (4)
153 #endif
154
155 #define DMA_CHUNKSIZE           (1<<22)
156 #define DMA_RESERVED_BYTES      (DMA_RESERVE * DMA_CHUNKSIZE)
157
158 /*
159  * Pick out the memory size.  We look for mem=size,
160  * where size is "size[KkMm]"
161  */
162 static int __init early_mem(char *p)
163 {
164         unsigned long size;
165         char *endp;
166
167         size = memparse(p, &endp);
168
169         bootmem_lastpg = PFN_DOWN(size);
170
171         return 0;
172 }
173 early_param("mem", early_mem);
174
175 size_t hexagon_coherent_pool_size = (size_t) (DMA_RESERVE << 22);
176
177 void __init setup_arch_memory(void)
178 {
179         int bootmap_size;
180         /*  XXX Todo: this probably should be cleaned up  */
181         u32 *segtable = (u32 *) &swapper_pg_dir[0];
182         u32 *segtable_end;
183
184         /*
185          * Set up boot memory allocator
186          *
187          * The Gorman book also talks about these functions.
188          * This needs to change for highmem setups.
189          */
190
191         /*  Prior to this, bootmem_lastpg is actually mem size  */
192         bootmem_lastpg += ARCH_PFN_OFFSET;
193
194         /* Memory size needs to be a multiple of 16M */
195         bootmem_lastpg = PFN_DOWN((bootmem_lastpg << PAGE_SHIFT) &
196                 ~((BIG_KERNEL_PAGE_SIZE) - 1));
197
198         /*
199          * Reserve the top DMA_RESERVE bytes of RAM for DMA (uncached)
200          * memory allocation
201          */
202
203         max_low_pfn = bootmem_lastpg - PFN_DOWN(DMA_RESERVED_BYTES);
204         min_low_pfn = ARCH_PFN_OFFSET;
205         bootmap_size =  init_bootmem_node(NODE_DATA(0), bootmem_startpg, min_low_pfn, max_low_pfn);
206
207         printk(KERN_INFO "bootmem_startpg:  0x%08lx\n", bootmem_startpg);
208         printk(KERN_INFO "bootmem_lastpg:  0x%08lx\n", bootmem_lastpg);
209         printk(KERN_INFO "bootmap_size:  %d\n", bootmap_size);
210         printk(KERN_INFO "min_low_pfn:  0x%08lx\n", min_low_pfn);
211         printk(KERN_INFO "max_low_pfn:  0x%08lx\n", max_low_pfn);
212
213         /*
214          * The default VM page tables (will be) populated with
215          * VA=PA+PAGE_OFFSET mapping.  We go in and invalidate entries
216          * higher than what we have memory for.
217          */
218
219         /*  this is pointer arithmetic; each entry covers 4MB  */
220         segtable = segtable + (PAGE_OFFSET >> 22);
221
222         /*  this actually only goes to the end of the first gig  */
223         segtable_end = segtable + (1<<(30-22));
224
225         /*
226          * Move forward to the start of empty pages; take into account
227          * phys_offset shift.
228          */
229
230         segtable += (bootmem_lastpg-ARCH_PFN_OFFSET)>>(22-PAGE_SHIFT);
231         {
232                 int i;
233
234                 for (i = 1 ; i <= DMA_RESERVE ; i++)
235                         segtable[-i] = ((segtable[-i] & __HVM_PTE_PGMASK_4MB)
236                                 | __HVM_PTE_R | __HVM_PTE_W | __HVM_PTE_X
237                                 | __HEXAGON_C_UNC << 6
238                                 | __HVM_PDE_S_4MB);
239         }
240
241         printk(KERN_INFO "clearing segtable from %p to %p\n", segtable,
242                 segtable_end);
243         while (segtable < (segtable_end-8))
244                 *(segtable++) = __HVM_PDE_S_INVALID;
245         /* stop the pointer at the device I/O 4MB page  */
246
247         printk(KERN_INFO "segtable = %p (should be equal to _K_io_map)\n",
248                 segtable);
249
250 #if 0
251         /*  Other half of the early device table from vm_init_segtable. */
252         printk(KERN_INFO "&_K_init_devicetable = 0x%08x\n",
253                 (unsigned long) _K_init_devicetable-PAGE_OFFSET);
254         *segtable = ((u32) (unsigned long) _K_init_devicetable-PAGE_OFFSET) |
255                 __HVM_PDE_S_4KB;
256         printk(KERN_INFO "*segtable = 0x%08x\n", *segtable);
257 #endif
258
259         /*
260          * Free all the memory that wasn't taken up by the bootmap, the DMA
261          * reserve, or kernel itself.
262          */
263         free_bootmem(PFN_PHYS(bootmem_startpg) + bootmap_size,
264                      PFN_PHYS(bootmem_lastpg - bootmem_startpg) - bootmap_size -
265                      DMA_RESERVED_BYTES);
266
267         /*
268          *  The bootmem allocator seemingly just lives to feed memory
269          *  to the paging system
270          */
271         printk(KERN_INFO "PAGE_SIZE=%lu\n", PAGE_SIZE);
272         paging_init();  /*  See Gorman Book, 2.3  */
273
274         /*
275          *  At this point, the page allocator is kind of initialized, but
276          *  apparently no pages are available (just like with the bootmem
277          *  allocator), and need to be freed themselves via mem_init(),
278          *  which is called by start_kernel() later on in the process
279          */
280 }