2a2486526d1fc2a6c2ae84ada6601396758360ba
[muen/linux.git] / arch / powerpc / include / asm / book3s / 64 / pgtable.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4
5 #include <asm-generic/5level-fixup.h>
6
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #endif
11
12 /*
13  * Common bits between hash and Radix page table
14  */
15 #define _PAGE_BIT_SWAP_TYPE     0
16
17 #define _PAGE_NA                0
18 #define _PAGE_RO                0
19 #define _PAGE_USER              0
20
21 #define _PAGE_EXEC              0x00001 /* execute permission */
22 #define _PAGE_WRITE             0x00002 /* write access allowed */
23 #define _PAGE_READ              0x00004 /* read access allowed */
24 #define _PAGE_RW                (_PAGE_READ | _PAGE_WRITE)
25 #define _PAGE_RWX               (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
26 #define _PAGE_PRIVILEGED        0x00008 /* kernel access only */
27 #define _PAGE_SAO               0x00010 /* Strong access order */
28 #define _PAGE_NON_IDEMPOTENT    0x00020 /* non idempotent memory */
29 #define _PAGE_TOLERANT          0x00030 /* tolerant memory, cache inhibited */
30 #define _PAGE_DIRTY             0x00080 /* C: page changed */
31 #define _PAGE_ACCESSED          0x00100 /* R: page referenced */
32 /*
33  * Software bits
34  */
35 #define _RPAGE_SW0              0x2000000000000000UL
36 #define _RPAGE_SW1              0x00800
37 #define _RPAGE_SW2              0x00400
38 #define _RPAGE_SW3              0x00200
39 #define _RPAGE_RSV1             0x1000000000000000UL
40 #define _RPAGE_RSV2             0x0800000000000000UL
41 #define _RPAGE_RSV3             0x0400000000000000UL
42 #define _RPAGE_RSV4             0x0200000000000000UL
43 #define _RPAGE_RSV5             0x00040UL
44
45 #define _PAGE_PTE               0x4000000000000000UL    /* distinguishes PTEs from pointers */
46 #define _PAGE_PRESENT           0x8000000000000000UL    /* pte contains a translation */
47 /*
48  * We need to mark a pmd pte invalid while splitting. We can do that by clearing
49  * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
50  * differentiate between two use a SW field when invalidating.
51  *
52  * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
53  *
54  * This is used only when _PAGE_PRESENT is cleared.
55  */
56 #define _PAGE_INVALID           _RPAGE_SW0
57
58 /*
59  * Top and bottom bits of RPN which can be used by hash
60  * translation mode, because we expect them to be zero
61  * otherwise.
62  */
63 #define _RPAGE_RPN0             0x01000
64 #define _RPAGE_RPN1             0x02000
65 #define _RPAGE_RPN44            0x0100000000000000UL
66 #define _RPAGE_RPN43            0x0080000000000000UL
67 #define _RPAGE_RPN42            0x0040000000000000UL
68 #define _RPAGE_RPN41            0x0020000000000000UL
69
70 /* Max physical address bit as per radix table */
71 #define _RPAGE_PA_MAX           57
72
73 /*
74  * Max physical address bit we will use for now.
75  *
76  * This is mostly a hardware limitation and for now Power9 has
77  * a 51 bit limit.
78  *
79  * This is different from the number of physical bit required to address
80  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
81  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
82  * number of sections we can support (SECTIONS_SHIFT).
83  *
84  * This is different from Radix page table limitation above and
85  * should always be less than that. The limit is done such that
86  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
87  * for hash linux page table specific bits.
88  *
89  * In order to be compatible with future hardware generations we keep
90  * some offsets and limit this for now to 53
91  */
92 #define _PAGE_PA_MAX            53
93
94 #define _PAGE_SOFT_DIRTY        _RPAGE_SW3 /* software: software dirty tracking */
95 #define _PAGE_SPECIAL           _RPAGE_SW2 /* software: special page */
96 #define _PAGE_DEVMAP            _RPAGE_SW1 /* software: ZONE_DEVICE page */
97 #define __HAVE_ARCH_PTE_DEVMAP
98
99 /*
100  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
101  * Instead of fixing all of them, add an alternate define which
102  * maps CI pte mapping.
103  */
104 #define _PAGE_NO_CACHE          _PAGE_TOLERANT
105 /*
106  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
107  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
108  * and every thing below PAGE_SHIFT;
109  */
110 #define PTE_RPN_MASK    (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
111 /*
112  * set of bits not changed in pmd_modify. Even though we have hash specific bits
113  * in here, on radix we expect them to be zero.
114  */
115 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
116                          _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
117                          _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
118 /*
119  * user access blocked by key
120  */
121 #define _PAGE_KERNEL_RW         (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
122 #define _PAGE_KERNEL_RO          (_PAGE_PRIVILEGED | _PAGE_READ)
123 #define _PAGE_KERNEL_RWX        (_PAGE_PRIVILEGED | _PAGE_DIRTY |       \
124                                  _PAGE_RW | _PAGE_EXEC)
125 /*
126  * No page size encoding in the linux PTE
127  */
128 #define _PAGE_PSIZE             0
129 /*
130  * _PAGE_CHG_MASK masks of bits that are to be preserved across
131  * pgprot changes
132  */
133 #define _PAGE_CHG_MASK  (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
134                          _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |   \
135                          _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
136
137 #define H_PTE_PKEY  (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
138                      H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
139 /*
140  * Mask of bits returned by pte_pgprot()
141  */
142 #define PAGE_PROT_BITS  (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
143                          H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
144                          _PAGE_READ | _PAGE_WRITE |  _PAGE_DIRTY | _PAGE_EXEC | \
145                          _PAGE_SOFT_DIRTY | H_PTE_PKEY)
146 /*
147  * We define 2 sets of base prot bits, one for basic pages (ie,
148  * cacheable kernel and user pages) and one for non cacheable
149  * pages. We always set _PAGE_COHERENT when SMP is enabled or
150  * the processor might need it for DMA coherency.
151  */
152 #define _PAGE_BASE_NC   (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
153 #define _PAGE_BASE      (_PAGE_BASE_NC)
154
155 /* Permission masks used to generate the __P and __S table,
156  *
157  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
158  *
159  * Write permissions imply read permissions for now (we could make write-only
160  * pages on BookE but we don't bother for now). Execute permission control is
161  * possible on platforms that define _PAGE_EXEC
162  *
163  * Note due to the way vm flags are laid out, the bits are XWR
164  */
165 #define PAGE_NONE       __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
166 #define PAGE_SHARED     __pgprot(_PAGE_BASE | _PAGE_RW)
167 #define PAGE_SHARED_X   __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
168 #define PAGE_COPY       __pgprot(_PAGE_BASE | _PAGE_READ)
169 #define PAGE_COPY_X     __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
170 #define PAGE_READONLY   __pgprot(_PAGE_BASE | _PAGE_READ)
171 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
172
173 #define __P000  PAGE_NONE
174 #define __P001  PAGE_READONLY
175 #define __P010  PAGE_COPY
176 #define __P011  PAGE_COPY
177 #define __P100  PAGE_READONLY_X
178 #define __P101  PAGE_READONLY_X
179 #define __P110  PAGE_COPY_X
180 #define __P111  PAGE_COPY_X
181
182 #define __S000  PAGE_NONE
183 #define __S001  PAGE_READONLY
184 #define __S010  PAGE_SHARED
185 #define __S011  PAGE_SHARED
186 #define __S100  PAGE_READONLY_X
187 #define __S101  PAGE_READONLY_X
188 #define __S110  PAGE_SHARED_X
189 #define __S111  PAGE_SHARED_X
190
191 /* Permission masks used for kernel mappings */
192 #define PAGE_KERNEL     __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
193 #define PAGE_KERNEL_NC  __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
194                                  _PAGE_TOLERANT)
195 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
196                                  _PAGE_NON_IDEMPOTENT)
197 #define PAGE_KERNEL_X   __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
198 #define PAGE_KERNEL_RO  __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
199 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
200
201 /*
202  * Protection used for kernel text. We want the debuggers to be able to
203  * set breakpoints anywhere, so don't write protect the kernel text
204  * on platforms where such control is possible.
205  */
206 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
207         defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
208 #define PAGE_KERNEL_TEXT        PAGE_KERNEL_X
209 #else
210 #define PAGE_KERNEL_TEXT        PAGE_KERNEL_ROX
211 #endif
212
213 /* Make modules code happy. We don't set RO yet */
214 #define PAGE_KERNEL_EXEC        PAGE_KERNEL_X
215 #define PAGE_AGP                (PAGE_KERNEL_NC)
216
217 #ifndef __ASSEMBLY__
218 /*
219  * page table defines
220  */
221 extern unsigned long __pte_index_size;
222 extern unsigned long __pmd_index_size;
223 extern unsigned long __pud_index_size;
224 extern unsigned long __pgd_index_size;
225 extern unsigned long __pud_cache_index;
226 #define PTE_INDEX_SIZE  __pte_index_size
227 #define PMD_INDEX_SIZE  __pmd_index_size
228 #define PUD_INDEX_SIZE  __pud_index_size
229 #define PGD_INDEX_SIZE  __pgd_index_size
230 /* pmd table use page table fragments */
231 #define PMD_CACHE_INDEX  0
232 #define PUD_CACHE_INDEX __pud_cache_index
233 /*
234  * Because of use of pte fragments and THP, size of page table
235  * are not always derived out of index size above.
236  */
237 extern unsigned long __pte_table_size;
238 extern unsigned long __pmd_table_size;
239 extern unsigned long __pud_table_size;
240 extern unsigned long __pgd_table_size;
241 #define PTE_TABLE_SIZE  __pte_table_size
242 #define PMD_TABLE_SIZE  __pmd_table_size
243 #define PUD_TABLE_SIZE  __pud_table_size
244 #define PGD_TABLE_SIZE  __pgd_table_size
245
246 extern unsigned long __pmd_val_bits;
247 extern unsigned long __pud_val_bits;
248 extern unsigned long __pgd_val_bits;
249 #define PMD_VAL_BITS    __pmd_val_bits
250 #define PUD_VAL_BITS    __pud_val_bits
251 #define PGD_VAL_BITS    __pgd_val_bits
252
253 extern unsigned long __pte_frag_nr;
254 #define PTE_FRAG_NR __pte_frag_nr
255 extern unsigned long __pte_frag_size_shift;
256 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
257 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
258
259 extern unsigned long __pmd_frag_nr;
260 #define PMD_FRAG_NR __pmd_frag_nr
261 extern unsigned long __pmd_frag_size_shift;
262 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
263 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
264
265 #define PTRS_PER_PTE    (1 << PTE_INDEX_SIZE)
266 #define PTRS_PER_PMD    (1 << PMD_INDEX_SIZE)
267 #define PTRS_PER_PUD    (1 << PUD_INDEX_SIZE)
268 #define PTRS_PER_PGD    (1 << PGD_INDEX_SIZE)
269
270 /* PMD_SHIFT determines what a second-level page table entry can map */
271 #define PMD_SHIFT       (PAGE_SHIFT + PTE_INDEX_SIZE)
272 #define PMD_SIZE        (1UL << PMD_SHIFT)
273 #define PMD_MASK        (~(PMD_SIZE-1))
274
275 /* PUD_SHIFT determines what a third-level page table entry can map */
276 #define PUD_SHIFT       (PMD_SHIFT + PMD_INDEX_SIZE)
277 #define PUD_SIZE        (1UL << PUD_SHIFT)
278 #define PUD_MASK        (~(PUD_SIZE-1))
279
280 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
281 #define PGDIR_SHIFT     (PUD_SHIFT + PUD_INDEX_SIZE)
282 #define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
283 #define PGDIR_MASK      (~(PGDIR_SIZE-1))
284
285 /* Bits to mask out from a PMD to get to the PTE page */
286 #define PMD_MASKED_BITS         0xc0000000000000ffUL
287 /* Bits to mask out from a PUD to get to the PMD page */
288 #define PUD_MASKED_BITS         0xc0000000000000ffUL
289 /* Bits to mask out from a PGD to get to the PUD page */
290 #define PGD_MASKED_BITS         0xc0000000000000ffUL
291
292 /*
293  * Used as an indicator for rcu callback functions
294  */
295 enum pgtable_index {
296         PTE_INDEX = 0,
297         PMD_INDEX,
298         PUD_INDEX,
299         PGD_INDEX,
300         /*
301          * Below are used with 4k page size and hugetlb
302          */
303         HTLB_16M_INDEX,
304         HTLB_16G_INDEX,
305 };
306
307 extern unsigned long __vmalloc_start;
308 extern unsigned long __vmalloc_end;
309 #define VMALLOC_START   __vmalloc_start
310 #define VMALLOC_END     __vmalloc_end
311
312 extern unsigned long __kernel_virt_start;
313 extern unsigned long __kernel_virt_size;
314 extern unsigned long __kernel_io_start;
315 #define KERN_VIRT_START __kernel_virt_start
316 #define KERN_VIRT_SIZE  __kernel_virt_size
317 #define KERN_IO_START  __kernel_io_start
318 extern struct page *vmemmap;
319 extern unsigned long ioremap_bot;
320 extern unsigned long pci_io_base;
321 #endif /* __ASSEMBLY__ */
322
323 #include <asm/book3s/64/hash.h>
324 #include <asm/book3s/64/radix.h>
325
326 #ifdef CONFIG_PPC_64K_PAGES
327 #include <asm/book3s/64/pgtable-64k.h>
328 #else
329 #include <asm/book3s/64/pgtable-4k.h>
330 #endif
331
332 #include <asm/barrier.h>
333 /*
334  * The second half of the kernel virtual space is used for IO mappings,
335  * it's itself carved into the PIO region (ISA and PHB IO space) and
336  * the ioremap space
337  *
338  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
339  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
340  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
341  */
342 #define FULL_IO_SIZE    0x80000000ul
343 #define  ISA_IO_BASE    (KERN_IO_START)
344 #define  ISA_IO_END     (KERN_IO_START + 0x10000ul)
345 #define  PHB_IO_BASE    (ISA_IO_END)
346 #define  PHB_IO_END     (KERN_IO_START + FULL_IO_SIZE)
347 #define IOREMAP_BASE    (PHB_IO_END)
348 #define IOREMAP_END     (KERN_VIRT_START + KERN_VIRT_SIZE)
349
350 /* Advertise special mapping type for AGP */
351 #define HAVE_PAGE_AGP
352
353 #ifndef __ASSEMBLY__
354
355 /*
356  * This is the default implementation of various PTE accessors, it's
357  * used in all cases except Book3S with 64K pages where we have a
358  * concept of sub-pages
359  */
360 #ifndef __real_pte
361
362 #define __real_pte(e, p, o)             ((real_pte_t){(e)})
363 #define __rpte_to_pte(r)        ((r).pte)
364 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
365
366 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
367         do {                                                             \
368                 index = 0;                                               \
369                 shift = mmu_psize_defs[psize].shift;                     \
370
371 #define pte_iterate_hashed_end() } while(0)
372
373 /*
374  * We expect this to be called only for user addresses or kernel virtual
375  * addresses other than the linear mapping.
376  */
377 #define pte_pagesize_index(mm, addr, pte)       MMU_PAGE_4K
378
379 #endif /* __real_pte */
380
381 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
382                                        pte_t *ptep, unsigned long clr,
383                                        unsigned long set, int huge)
384 {
385         if (radix_enabled())
386                 return radix__pte_update(mm, addr, ptep, clr, set, huge);
387         return hash__pte_update(mm, addr, ptep, clr, set, huge);
388 }
389 /*
390  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
391  * We currently remove entries from the hashtable regardless of whether
392  * the entry was young or dirty.
393  *
394  * We should be more intelligent about this but for the moment we override
395  * these functions and force a tlb flush unconditionally
396  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
397  * function for both hash and radix.
398  */
399 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
400                                               unsigned long addr, pte_t *ptep)
401 {
402         unsigned long old;
403
404         if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
405                 return 0;
406         old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
407         return (old & _PAGE_ACCESSED) != 0;
408 }
409
410 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
411 #define ptep_test_and_clear_young(__vma, __addr, __ptep)        \
412 ({                                                              \
413         int __r;                                                \
414         __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
415         __r;                                                    \
416 })
417
418 static inline int __pte_write(pte_t pte)
419 {
420         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
421 }
422
423 #ifdef CONFIG_NUMA_BALANCING
424 #define pte_savedwrite pte_savedwrite
425 static inline bool pte_savedwrite(pte_t pte)
426 {
427         /*
428          * Saved write ptes are prot none ptes that doesn't have
429          * privileged bit sit. We mark prot none as one which has
430          * present and pviliged bit set and RWX cleared. To mark
431          * protnone which used to have _PAGE_WRITE set we clear
432          * the privileged bit.
433          */
434         return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
435 }
436 #else
437 #define pte_savedwrite pte_savedwrite
438 static inline bool pte_savedwrite(pte_t pte)
439 {
440         return false;
441 }
442 #endif
443
444 static inline int pte_write(pte_t pte)
445 {
446         return __pte_write(pte) || pte_savedwrite(pte);
447 }
448
449 static inline int pte_read(pte_t pte)
450 {
451         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
452 }
453
454 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
455 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
456                                       pte_t *ptep)
457 {
458         if (__pte_write(*ptep))
459                 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
460         else if (unlikely(pte_savedwrite(*ptep)))
461                 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
462 }
463
464 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
465                                            unsigned long addr, pte_t *ptep)
466 {
467         /*
468          * We should not find protnone for hugetlb, but this complete the
469          * interface.
470          */
471         if (__pte_write(*ptep))
472                 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
473         else if (unlikely(pte_savedwrite(*ptep)))
474                 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
475 }
476
477 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
478 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
479                                        unsigned long addr, pte_t *ptep)
480 {
481         unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
482         return __pte(old);
483 }
484
485 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
486 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
487                                             unsigned long addr,
488                                             pte_t *ptep, int full)
489 {
490         if (full && radix_enabled()) {
491                 /*
492                  * We know that this is a full mm pte clear and
493                  * hence can be sure there is no parallel set_pte.
494                  */
495                 return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
496         }
497         return ptep_get_and_clear(mm, addr, ptep);
498 }
499
500
501 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
502                              pte_t * ptep)
503 {
504         pte_update(mm, addr, ptep, ~0UL, 0, 0);
505 }
506
507 static inline int pte_dirty(pte_t pte)
508 {
509         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
510 }
511
512 static inline int pte_young(pte_t pte)
513 {
514         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
515 }
516
517 static inline int pte_special(pte_t pte)
518 {
519         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
520 }
521
522 static inline pgprot_t pte_pgprot(pte_t pte)    { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
523
524 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
525 static inline bool pte_soft_dirty(pte_t pte)
526 {
527         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
528 }
529
530 static inline pte_t pte_mksoft_dirty(pte_t pte)
531 {
532         return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
533 }
534
535 static inline pte_t pte_clear_soft_dirty(pte_t pte)
536 {
537         return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
538 }
539 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
540
541 #ifdef CONFIG_NUMA_BALANCING
542 static inline int pte_protnone(pte_t pte)
543 {
544         return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
545                 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
546 }
547
548 #define pte_mk_savedwrite pte_mk_savedwrite
549 static inline pte_t pte_mk_savedwrite(pte_t pte)
550 {
551         /*
552          * Used by Autonuma subsystem to preserve the write bit
553          * while marking the pte PROT_NONE. Only allow this
554          * on PROT_NONE pte
555          */
556         VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
557                   cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
558         return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
559 }
560
561 #define pte_clear_savedwrite pte_clear_savedwrite
562 static inline pte_t pte_clear_savedwrite(pte_t pte)
563 {
564         /*
565          * Used by KSM subsystem to make a protnone pte readonly.
566          */
567         VM_BUG_ON(!pte_protnone(pte));
568         return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
569 }
570 #else
571 #define pte_clear_savedwrite pte_clear_savedwrite
572 static inline pte_t pte_clear_savedwrite(pte_t pte)
573 {
574         VM_WARN_ON(1);
575         return __pte(pte_val(pte) & ~_PAGE_WRITE);
576 }
577 #endif /* CONFIG_NUMA_BALANCING */
578
579 static inline int pte_present(pte_t pte)
580 {
581         /*
582          * A pte is considerent present if _PAGE_PRESENT is set.
583          * We also need to consider the pte present which is marked
584          * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
585          * if we find _PAGE_PRESENT cleared.
586          */
587         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID));
588 }
589
590 #ifdef CONFIG_PPC_MEM_KEYS
591 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
592 #else
593 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
594 {
595         return true;
596 }
597 #endif /* CONFIG_PPC_MEM_KEYS */
598
599 #define pte_access_permitted pte_access_permitted
600 static inline bool pte_access_permitted(pte_t pte, bool write)
601 {
602         unsigned long pteval = pte_val(pte);
603         /* Also check for pte_user */
604         unsigned long clear_pte_bits = _PAGE_PRIVILEGED;
605         /*
606          * _PAGE_READ is needed for any access and will be
607          * cleared for PROT_NONE
608          */
609         unsigned long need_pte_bits = _PAGE_PRESENT | _PAGE_READ;
610
611         if (write)
612                 need_pte_bits |= _PAGE_WRITE;
613
614         if ((pteval & need_pte_bits) != need_pte_bits)
615                 return false;
616
617         if ((pteval & clear_pte_bits) == clear_pte_bits)
618                 return false;
619
620         return arch_pte_access_permitted(pte_val(pte), write, 0);
621 }
622
623 /*
624  * Conversion functions: convert a page and protection to a page entry,
625  * and a page entry and page directory to the page they refer to.
626  *
627  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
628  * long for now.
629  */
630 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
631 {
632         return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
633                      pgprot_val(pgprot));
634 }
635
636 static inline unsigned long pte_pfn(pte_t pte)
637 {
638         return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
639 }
640
641 /* Generic modifiers for PTE bits */
642 static inline pte_t pte_wrprotect(pte_t pte)
643 {
644         if (unlikely(pte_savedwrite(pte)))
645                 return pte_clear_savedwrite(pte);
646         return __pte(pte_val(pte) & ~_PAGE_WRITE);
647 }
648
649 static inline pte_t pte_mkclean(pte_t pte)
650 {
651         return __pte(pte_val(pte) & ~_PAGE_DIRTY);
652 }
653
654 static inline pte_t pte_mkold(pte_t pte)
655 {
656         return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
657 }
658
659 static inline pte_t pte_mkwrite(pte_t pte)
660 {
661         /*
662          * write implies read, hence set both
663          */
664         return __pte(pte_val(pte) | _PAGE_RW);
665 }
666
667 static inline pte_t pte_mkdirty(pte_t pte)
668 {
669         return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
670 }
671
672 static inline pte_t pte_mkyoung(pte_t pte)
673 {
674         return __pte(pte_val(pte) | _PAGE_ACCESSED);
675 }
676
677 static inline pte_t pte_mkspecial(pte_t pte)
678 {
679         return __pte(pte_val(pte) | _PAGE_SPECIAL);
680 }
681
682 static inline pte_t pte_mkhuge(pte_t pte)
683 {
684         return pte;
685 }
686
687 static inline pte_t pte_mkdevmap(pte_t pte)
688 {
689         return __pte(pte_val(pte) | _PAGE_SPECIAL|_PAGE_DEVMAP);
690 }
691
692 /*
693  * This is potentially called with a pmd as the argument, in which case it's not
694  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
695  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
696  * use in page directory entries (ie. non-ptes).
697  */
698 static inline int pte_devmap(pte_t pte)
699 {
700         u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
701
702         return (pte_raw(pte) & mask) == mask;
703 }
704
705 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
706 {
707         /* FIXME!! check whether this need to be a conditional */
708         return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
709 }
710
711 static inline bool pte_user(pte_t pte)
712 {
713         return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
714 }
715
716 /* Encode and de-code a swap entry */
717 #define MAX_SWAPFILES_CHECK() do { \
718         BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
719         /*                                                      \
720          * Don't have overlapping bits with _PAGE_HPTEFLAGS     \
721          * We filter HPTEFLAGS on set_pte.                      \
722          */                                                     \
723         BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
724         BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);   \
725         } while (0)
726 /*
727  * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
728  */
729 #define SWP_TYPE_BITS 5
730 #define __swp_type(x)           (((x).val >> _PAGE_BIT_SWAP_TYPE) \
731                                 & ((1UL << SWP_TYPE_BITS) - 1))
732 #define __swp_offset(x)         (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
733 #define __swp_entry(type, offset)       ((swp_entry_t) { \
734                                 ((type) << _PAGE_BIT_SWAP_TYPE) \
735                                 | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
736 /*
737  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
738  * swap type and offset we get from swap and convert that to pte to find a
739  * matching pte in linux page table.
740  * Clear bits not found in swap entries here.
741  */
742 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
743 #define __swp_entry_to_pte(x)   __pte((x).val | _PAGE_PTE)
744
745 #ifdef CONFIG_MEM_SOFT_DIRTY
746 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
747 #else
748 #define _PAGE_SWP_SOFT_DIRTY    0UL
749 #endif /* CONFIG_MEM_SOFT_DIRTY */
750
751 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
752 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
753 {
754         return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
755 }
756
757 static inline bool pte_swp_soft_dirty(pte_t pte)
758 {
759         return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
760 }
761
762 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
763 {
764         return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
765 }
766 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
767
768 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
769 {
770         /*
771          * This check for _PAGE_RWX and _PAGE_PRESENT bits
772          */
773         if (access & ~ptev)
774                 return false;
775         /*
776          * This check for access to privilege space
777          */
778         if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
779                 return false;
780
781         return true;
782 }
783 /*
784  * Generic functions with hash/radix callbacks
785  */
786
787 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
788                                            pte_t *ptep, pte_t entry,
789                                            unsigned long address,
790                                            int psize)
791 {
792         if (radix_enabled())
793                 return radix__ptep_set_access_flags(vma, ptep, entry,
794                                                     address, psize);
795         return hash__ptep_set_access_flags(ptep, entry);
796 }
797
798 #define __HAVE_ARCH_PTE_SAME
799 static inline int pte_same(pte_t pte_a, pte_t pte_b)
800 {
801         if (radix_enabled())
802                 return radix__pte_same(pte_a, pte_b);
803         return hash__pte_same(pte_a, pte_b);
804 }
805
806 static inline int pte_none(pte_t pte)
807 {
808         if (radix_enabled())
809                 return radix__pte_none(pte);
810         return hash__pte_none(pte);
811 }
812
813 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
814                                 pte_t *ptep, pte_t pte, int percpu)
815 {
816         if (radix_enabled())
817                 return radix__set_pte_at(mm, addr, ptep, pte, percpu);
818         return hash__set_pte_at(mm, addr, ptep, pte, percpu);
819 }
820
821 #define _PAGE_CACHE_CTL (_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
822
823 #define pgprot_noncached pgprot_noncached
824 static inline pgprot_t pgprot_noncached(pgprot_t prot)
825 {
826         return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
827                         _PAGE_NON_IDEMPOTENT);
828 }
829
830 #define pgprot_noncached_wc pgprot_noncached_wc
831 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
832 {
833         return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
834                         _PAGE_TOLERANT);
835 }
836
837 #define pgprot_cached pgprot_cached
838 static inline pgprot_t pgprot_cached(pgprot_t prot)
839 {
840         return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
841 }
842
843 #define pgprot_writecombine pgprot_writecombine
844 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
845 {
846         return pgprot_noncached_wc(prot);
847 }
848 /*
849  * check a pte mapping have cache inhibited property
850  */
851 static inline bool pte_ci(pte_t pte)
852 {
853         unsigned long pte_v = pte_val(pte);
854
855         if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
856             ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
857                 return true;
858         return false;
859 }
860
861 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
862 {
863         *pmdp = __pmd(val);
864 }
865
866 static inline void pmd_clear(pmd_t *pmdp)
867 {
868         *pmdp = __pmd(0);
869 }
870
871 static inline int pmd_none(pmd_t pmd)
872 {
873         return !pmd_raw(pmd);
874 }
875
876 static inline int pmd_present(pmd_t pmd)
877 {
878
879         return !pmd_none(pmd);
880 }
881
882 static inline int pmd_bad(pmd_t pmd)
883 {
884         if (radix_enabled())
885                 return radix__pmd_bad(pmd);
886         return hash__pmd_bad(pmd);
887 }
888
889 static inline void pud_set(pud_t *pudp, unsigned long val)
890 {
891         *pudp = __pud(val);
892 }
893
894 static inline void pud_clear(pud_t *pudp)
895 {
896         *pudp = __pud(0);
897 }
898
899 static inline int pud_none(pud_t pud)
900 {
901         return !pud_raw(pud);
902 }
903
904 static inline int pud_present(pud_t pud)
905 {
906         return !pud_none(pud);
907 }
908
909 extern struct page *pud_page(pud_t pud);
910 extern struct page *pmd_page(pmd_t pmd);
911 static inline pte_t pud_pte(pud_t pud)
912 {
913         return __pte_raw(pud_raw(pud));
914 }
915
916 static inline pud_t pte_pud(pte_t pte)
917 {
918         return __pud_raw(pte_raw(pte));
919 }
920 #define pud_write(pud)          pte_write(pud_pte(pud))
921
922 static inline int pud_bad(pud_t pud)
923 {
924         if (radix_enabled())
925                 return radix__pud_bad(pud);
926         return hash__pud_bad(pud);
927 }
928
929 #define pud_access_permitted pud_access_permitted
930 static inline bool pud_access_permitted(pud_t pud, bool write)
931 {
932         return pte_access_permitted(pud_pte(pud), write);
933 }
934
935 #define pgd_write(pgd)          pte_write(pgd_pte(pgd))
936 static inline void pgd_set(pgd_t *pgdp, unsigned long val)
937 {
938         *pgdp = __pgd(val);
939 }
940
941 static inline void pgd_clear(pgd_t *pgdp)
942 {
943         *pgdp = __pgd(0);
944 }
945
946 static inline int pgd_none(pgd_t pgd)
947 {
948         return !pgd_raw(pgd);
949 }
950
951 static inline int pgd_present(pgd_t pgd)
952 {
953         return !pgd_none(pgd);
954 }
955
956 static inline pte_t pgd_pte(pgd_t pgd)
957 {
958         return __pte_raw(pgd_raw(pgd));
959 }
960
961 static inline pgd_t pte_pgd(pte_t pte)
962 {
963         return __pgd_raw(pte_raw(pte));
964 }
965
966 static inline int pgd_bad(pgd_t pgd)
967 {
968         if (radix_enabled())
969                 return radix__pgd_bad(pgd);
970         return hash__pgd_bad(pgd);
971 }
972
973 #define pgd_access_permitted pgd_access_permitted
974 static inline bool pgd_access_permitted(pgd_t pgd, bool write)
975 {
976         return pte_access_permitted(pgd_pte(pgd), write);
977 }
978
979 extern struct page *pgd_page(pgd_t pgd);
980
981 /* Pointers in the page table tree are physical addresses */
982 #define __pgtable_ptr_val(ptr)  __pa(ptr)
983
984 #define pmd_page_vaddr(pmd)     __va(pmd_val(pmd) & ~PMD_MASKED_BITS)
985 #define pud_page_vaddr(pud)     __va(pud_val(pud) & ~PUD_MASKED_BITS)
986 #define pgd_page_vaddr(pgd)     __va(pgd_val(pgd) & ~PGD_MASKED_BITS)
987
988 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
989 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
990 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
991 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
992
993 /*
994  * Find an entry in a page-table-directory.  We combine the address region
995  * (the high order N bits) and the pgd portion of the address.
996  */
997
998 #define pgd_offset(mm, address)  ((mm)->pgd + pgd_index(address))
999
1000 #define pud_offset(pgdp, addr)  \
1001         (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
1002 #define pmd_offset(pudp,addr) \
1003         (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
1004 #define pte_offset_kernel(dir,addr) \
1005         (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
1006
1007 #define pte_offset_map(dir,addr)        pte_offset_kernel((dir), (addr))
1008 #define pte_unmap(pte)                  do { } while(0)
1009
1010 /* to find an entry in a kernel page-table-directory */
1011 /* This now only contains the vmalloc pages */
1012 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1013
1014 #define pte_ERROR(e) \
1015         pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1016 #define pmd_ERROR(e) \
1017         pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1018 #define pud_ERROR(e) \
1019         pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1020 #define pgd_ERROR(e) \
1021         pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1022
1023 static inline int map_kernel_page(unsigned long ea, unsigned long pa,
1024                                   unsigned long flags)
1025 {
1026         if (radix_enabled()) {
1027 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1028                 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1029                 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1030 #endif
1031                 return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
1032         }
1033         return hash__map_kernel_page(ea, pa, flags);
1034 }
1035
1036 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1037                                                    unsigned long page_size,
1038                                                    unsigned long phys)
1039 {
1040         if (radix_enabled())
1041                 return radix__vmemmap_create_mapping(start, page_size, phys);
1042         return hash__vmemmap_create_mapping(start, page_size, phys);
1043 }
1044
1045 #ifdef CONFIG_MEMORY_HOTPLUG
1046 static inline void vmemmap_remove_mapping(unsigned long start,
1047                                           unsigned long page_size)
1048 {
1049         if (radix_enabled())
1050                 return radix__vmemmap_remove_mapping(start, page_size);
1051         return hash__vmemmap_remove_mapping(start, page_size);
1052 }
1053 #endif
1054
1055 static inline pte_t pmd_pte(pmd_t pmd)
1056 {
1057         return __pte_raw(pmd_raw(pmd));
1058 }
1059
1060 static inline pmd_t pte_pmd(pte_t pte)
1061 {
1062         return __pmd_raw(pte_raw(pte));
1063 }
1064
1065 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1066 {
1067         return (pte_t *)pmd;
1068 }
1069 #define pmd_pfn(pmd)            pte_pfn(pmd_pte(pmd))
1070 #define pmd_dirty(pmd)          pte_dirty(pmd_pte(pmd))
1071 #define pmd_young(pmd)          pte_young(pmd_pte(pmd))
1072 #define pmd_mkold(pmd)          pte_pmd(pte_mkold(pmd_pte(pmd)))
1073 #define pmd_wrprotect(pmd)      pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1074 #define pmd_mkdirty(pmd)        pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1075 #define pmd_mkclean(pmd)        pte_pmd(pte_mkclean(pmd_pte(pmd)))
1076 #define pmd_mkyoung(pmd)        pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1077 #define pmd_mkwrite(pmd)        pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1078 #define pmd_mk_savedwrite(pmd)  pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1079 #define pmd_clear_savedwrite(pmd)       pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1080
1081 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1082 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1083 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1084 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1085 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1086
1087 #ifdef CONFIG_NUMA_BALANCING
1088 static inline int pmd_protnone(pmd_t pmd)
1089 {
1090         return pte_protnone(pmd_pte(pmd));
1091 }
1092 #endif /* CONFIG_NUMA_BALANCING */
1093
1094 #define pmd_write(pmd)          pte_write(pmd_pte(pmd))
1095 #define __pmd_write(pmd)        __pte_write(pmd_pte(pmd))
1096 #define pmd_savedwrite(pmd)     pte_savedwrite(pmd_pte(pmd))
1097
1098 #define pmd_access_permitted pmd_access_permitted
1099 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1100 {
1101         return pte_access_permitted(pmd_pte(pmd), write);
1102 }
1103
1104 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1105 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1106 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1107 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1108 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1109                        pmd_t *pmdp, pmd_t pmd);
1110 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
1111                                  pmd_t *pmd);
1112 extern int hash__has_transparent_hugepage(void);
1113 static inline int has_transparent_hugepage(void)
1114 {
1115         if (radix_enabled())
1116                 return radix__has_transparent_hugepage();
1117         return hash__has_transparent_hugepage();
1118 }
1119 #define has_transparent_hugepage has_transparent_hugepage
1120
1121 static inline unsigned long
1122 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1123                     unsigned long clr, unsigned long set)
1124 {
1125         if (radix_enabled())
1126                 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1127         return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1128 }
1129
1130 static inline int pmd_large(pmd_t pmd)
1131 {
1132         return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1133 }
1134
1135 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1136 {
1137         return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1138 }
1139 /*
1140  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1141  * the below will work for radix too
1142  */
1143 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1144                                               unsigned long addr, pmd_t *pmdp)
1145 {
1146         unsigned long old;
1147
1148         if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1149                 return 0;
1150         old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1151         return ((old & _PAGE_ACCESSED) != 0);
1152 }
1153
1154 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1155 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1156                                       pmd_t *pmdp)
1157 {
1158         if (__pmd_write((*pmdp)))
1159                 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1160         else if (unlikely(pmd_savedwrite(*pmdp)))
1161                 pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1162 }
1163
1164 static inline int pmd_trans_huge(pmd_t pmd)
1165 {
1166         if (radix_enabled())
1167                 return radix__pmd_trans_huge(pmd);
1168         return hash__pmd_trans_huge(pmd);
1169 }
1170
1171 #define __HAVE_ARCH_PMD_SAME
1172 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1173 {
1174         if (radix_enabled())
1175                 return radix__pmd_same(pmd_a, pmd_b);
1176         return hash__pmd_same(pmd_a, pmd_b);
1177 }
1178
1179 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1180 {
1181         if (radix_enabled())
1182                 return radix__pmd_mkhuge(pmd);
1183         return hash__pmd_mkhuge(pmd);
1184 }
1185
1186 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1187 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1188                                  unsigned long address, pmd_t *pmdp,
1189                                  pmd_t entry, int dirty);
1190
1191 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1192 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1193                                      unsigned long address, pmd_t *pmdp);
1194
1195 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1196 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1197                                             unsigned long addr, pmd_t *pmdp)
1198 {
1199         if (radix_enabled())
1200                 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1201         return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1202 }
1203
1204 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1205                                         unsigned long address, pmd_t *pmdp)
1206 {
1207         if (radix_enabled())
1208                 return radix__pmdp_collapse_flush(vma, address, pmdp);
1209         return hash__pmdp_collapse_flush(vma, address, pmdp);
1210 }
1211 #define pmdp_collapse_flush pmdp_collapse_flush
1212
1213 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1214 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1215                                               pmd_t *pmdp, pgtable_t pgtable)
1216 {
1217         if (radix_enabled())
1218                 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1219         return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1220 }
1221
1222 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1223 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1224                                                     pmd_t *pmdp)
1225 {
1226         if (radix_enabled())
1227                 return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1228         return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1229 }
1230
1231 #define __HAVE_ARCH_PMDP_INVALIDATE
1232 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1233                              pmd_t *pmdp);
1234
1235 #define pmd_move_must_withdraw pmd_move_must_withdraw
1236 struct spinlock;
1237 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1238                                          struct spinlock *old_pmd_ptl,
1239                                          struct vm_area_struct *vma)
1240 {
1241         if (radix_enabled())
1242                 return false;
1243         /*
1244          * Archs like ppc64 use pgtable to store per pmd
1245          * specific information. So when we switch the pmd,
1246          * we should also withdraw and deposit the pgtable
1247          */
1248         return true;
1249 }
1250
1251
1252 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1253 static inline bool arch_needs_pgtable_deposit(void)
1254 {
1255         if (radix_enabled())
1256                 return false;
1257         return true;
1258 }
1259 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1260
1261
1262 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1263 {
1264         return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
1265 }
1266
1267 static inline int pmd_devmap(pmd_t pmd)
1268 {
1269         return pte_devmap(pmd_pte(pmd));
1270 }
1271
1272 static inline int pud_devmap(pud_t pud)
1273 {
1274         return 0;
1275 }
1276
1277 static inline int pgd_devmap(pgd_t pgd)
1278 {
1279         return 0;
1280 }
1281 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1282
1283 static inline const int pud_pfn(pud_t pud)
1284 {
1285         /*
1286          * Currently all calls to pud_pfn() are gated around a pud_devmap()
1287          * check so this should never be used. If it grows another user we
1288          * want to know about it.
1289          */
1290         BUILD_BUG();
1291         return 0;
1292 }
1293
1294 #endif /* __ASSEMBLY__ */
1295 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */