47c7a302fd031983badf976c832c925e5ff71ce3
[muen/linux.git] / arch / powerpc / kvm / powerpc.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42
43 #include "timing.h"
44 #include "irq.h"
45 #include "../mm/mmu_decl.h"
46
47 #define CREATE_TRACE_POINTS
48 #include "trace.h"
49
50 struct kvmppc_ops *kvmppc_hv_ops;
51 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
52 struct kvmppc_ops *kvmppc_pr_ops;
53 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
54
55
56 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
57 {
58         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
59 }
60
61 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
62 {
63         return false;
64 }
65
66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68         return 1;
69 }
70
71 /*
72  * Common checks before entering the guest world.  Call with interrupts
73  * disabled.
74  *
75  * returns:
76  *
77  * == 1 if we're ready to go into guest state
78  * <= 0 if we need to go back to the host with return value
79  */
80 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
81 {
82         int r;
83
84         WARN_ON(irqs_disabled());
85         hard_irq_disable();
86
87         while (true) {
88                 if (need_resched()) {
89                         local_irq_enable();
90                         cond_resched();
91                         hard_irq_disable();
92                         continue;
93                 }
94
95                 if (signal_pending(current)) {
96                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
97                         vcpu->run->exit_reason = KVM_EXIT_INTR;
98                         r = -EINTR;
99                         break;
100                 }
101
102                 vcpu->mode = IN_GUEST_MODE;
103
104                 /*
105                  * Reading vcpu->requests must happen after setting vcpu->mode,
106                  * so we don't miss a request because the requester sees
107                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
108                  * before next entering the guest (and thus doesn't IPI).
109                  * This also orders the write to mode from any reads
110                  * to the page tables done while the VCPU is running.
111                  * Please see the comment in kvm_flush_remote_tlbs.
112                  */
113                 smp_mb();
114
115                 if (kvm_request_pending(vcpu)) {
116                         /* Make sure we process requests preemptable */
117                         local_irq_enable();
118                         trace_kvm_check_requests(vcpu);
119                         r = kvmppc_core_check_requests(vcpu);
120                         hard_irq_disable();
121                         if (r > 0)
122                                 continue;
123                         break;
124                 }
125
126                 if (kvmppc_core_prepare_to_enter(vcpu)) {
127                         /* interrupts got enabled in between, so we
128                            are back at square 1 */
129                         continue;
130                 }
131
132                 guest_enter_irqoff();
133                 return 1;
134         }
135
136         /* return to host */
137         local_irq_enable();
138         return r;
139 }
140 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
141
142 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
143 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
144 {
145         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
146         int i;
147
148         shared->sprg0 = swab64(shared->sprg0);
149         shared->sprg1 = swab64(shared->sprg1);
150         shared->sprg2 = swab64(shared->sprg2);
151         shared->sprg3 = swab64(shared->sprg3);
152         shared->srr0 = swab64(shared->srr0);
153         shared->srr1 = swab64(shared->srr1);
154         shared->dar = swab64(shared->dar);
155         shared->msr = swab64(shared->msr);
156         shared->dsisr = swab32(shared->dsisr);
157         shared->int_pending = swab32(shared->int_pending);
158         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
159                 shared->sr[i] = swab32(shared->sr[i]);
160 }
161 #endif
162
163 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
164 {
165         int nr = kvmppc_get_gpr(vcpu, 11);
166         int r;
167         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
168         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
169         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
170         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
171         unsigned long r2 = 0;
172
173         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
174                 /* 32 bit mode */
175                 param1 &= 0xffffffff;
176                 param2 &= 0xffffffff;
177                 param3 &= 0xffffffff;
178                 param4 &= 0xffffffff;
179         }
180
181         switch (nr) {
182         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
183         {
184 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
185                 /* Book3S can be little endian, find it out here */
186                 int shared_big_endian = true;
187                 if (vcpu->arch.intr_msr & MSR_LE)
188                         shared_big_endian = false;
189                 if (shared_big_endian != vcpu->arch.shared_big_endian)
190                         kvmppc_swab_shared(vcpu);
191                 vcpu->arch.shared_big_endian = shared_big_endian;
192 #endif
193
194                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
195                         /*
196                          * Older versions of the Linux magic page code had
197                          * a bug where they would map their trampoline code
198                          * NX. If that's the case, remove !PR NX capability.
199                          */
200                         vcpu->arch.disable_kernel_nx = true;
201                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
202                 }
203
204                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
205                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
206
207 #ifdef CONFIG_PPC_64K_PAGES
208                 /*
209                  * Make sure our 4k magic page is in the same window of a 64k
210                  * page within the guest and within the host's page.
211                  */
212                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
213                     ((ulong)vcpu->arch.shared & 0xf000)) {
214                         void *old_shared = vcpu->arch.shared;
215                         ulong shared = (ulong)vcpu->arch.shared;
216                         void *new_shared;
217
218                         shared &= PAGE_MASK;
219                         shared |= vcpu->arch.magic_page_pa & 0xf000;
220                         new_shared = (void*)shared;
221                         memcpy(new_shared, old_shared, 0x1000);
222                         vcpu->arch.shared = new_shared;
223                 }
224 #endif
225
226                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
227
228                 r = EV_SUCCESS;
229                 break;
230         }
231         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
232                 r = EV_SUCCESS;
233 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
234                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
235 #endif
236
237                 /* Second return value is in r4 */
238                 break;
239         case EV_HCALL_TOKEN(EV_IDLE):
240                 r = EV_SUCCESS;
241                 kvm_vcpu_block(vcpu);
242                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
243                 break;
244         default:
245                 r = EV_UNIMPLEMENTED;
246                 break;
247         }
248
249         kvmppc_set_gpr(vcpu, 4, r2);
250
251         return r;
252 }
253 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
254
255 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
256 {
257         int r = false;
258
259         /* We have to know what CPU to virtualize */
260         if (!vcpu->arch.pvr)
261                 goto out;
262
263         /* PAPR only works with book3s_64 */
264         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
265                 goto out;
266
267         /* HV KVM can only do PAPR mode for now */
268         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
269                 goto out;
270
271 #ifdef CONFIG_KVM_BOOKE_HV
272         if (!cpu_has_feature(CPU_FTR_EMB_HV))
273                 goto out;
274 #endif
275
276         r = true;
277
278 out:
279         vcpu->arch.sane = r;
280         return r ? 0 : -EINVAL;
281 }
282 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
283
284 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
285 {
286         enum emulation_result er;
287         int r;
288
289         er = kvmppc_emulate_loadstore(vcpu);
290         switch (er) {
291         case EMULATE_DONE:
292                 /* Future optimization: only reload non-volatiles if they were
293                  * actually modified. */
294                 r = RESUME_GUEST_NV;
295                 break;
296         case EMULATE_AGAIN:
297                 r = RESUME_GUEST;
298                 break;
299         case EMULATE_DO_MMIO:
300                 run->exit_reason = KVM_EXIT_MMIO;
301                 /* We must reload nonvolatiles because "update" load/store
302                  * instructions modify register state. */
303                 /* Future optimization: only reload non-volatiles if they were
304                  * actually modified. */
305                 r = RESUME_HOST_NV;
306                 break;
307         case EMULATE_FAIL:
308         {
309                 u32 last_inst;
310
311                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
312                 /* XXX Deliver Program interrupt to guest. */
313                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
314                 r = RESUME_HOST;
315                 break;
316         }
317         default:
318                 WARN_ON(1);
319                 r = RESUME_GUEST;
320         }
321
322         return r;
323 }
324 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
325
326 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
327               bool data)
328 {
329         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
330         struct kvmppc_pte pte;
331         int r;
332
333         vcpu->stat.st++;
334
335         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
336                          XLATE_WRITE, &pte);
337         if (r < 0)
338                 return r;
339
340         *eaddr = pte.raddr;
341
342         if (!pte.may_write)
343                 return -EPERM;
344
345         /* Magic page override */
346         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
347             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
348             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
349                 void *magic = vcpu->arch.shared;
350                 magic += pte.eaddr & 0xfff;
351                 memcpy(magic, ptr, size);
352                 return EMULATE_DONE;
353         }
354
355         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
356                 return EMULATE_DO_MMIO;
357
358         return EMULATE_DONE;
359 }
360 EXPORT_SYMBOL_GPL(kvmppc_st);
361
362 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
363                       bool data)
364 {
365         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
366         struct kvmppc_pte pte;
367         int rc;
368
369         vcpu->stat.ld++;
370
371         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
372                           XLATE_READ, &pte);
373         if (rc)
374                 return rc;
375
376         *eaddr = pte.raddr;
377
378         if (!pte.may_read)
379                 return -EPERM;
380
381         if (!data && !pte.may_execute)
382                 return -ENOEXEC;
383
384         /* Magic page override */
385         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
386             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
387             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
388                 void *magic = vcpu->arch.shared;
389                 magic += pte.eaddr & 0xfff;
390                 memcpy(ptr, magic, size);
391                 return EMULATE_DONE;
392         }
393
394         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
395                 return EMULATE_DO_MMIO;
396
397         return EMULATE_DONE;
398 }
399 EXPORT_SYMBOL_GPL(kvmppc_ld);
400
401 int kvm_arch_hardware_enable(void)
402 {
403         return 0;
404 }
405
406 int kvm_arch_hardware_setup(void)
407 {
408         return 0;
409 }
410
411 void kvm_arch_check_processor_compat(void *rtn)
412 {
413         *(int *)rtn = kvmppc_core_check_processor_compat();
414 }
415
416 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
417 {
418         struct kvmppc_ops *kvm_ops = NULL;
419         /*
420          * if we have both HV and PR enabled, default is HV
421          */
422         if (type == 0) {
423                 if (kvmppc_hv_ops)
424                         kvm_ops = kvmppc_hv_ops;
425                 else
426                         kvm_ops = kvmppc_pr_ops;
427                 if (!kvm_ops)
428                         goto err_out;
429         } else  if (type == KVM_VM_PPC_HV) {
430                 if (!kvmppc_hv_ops)
431                         goto err_out;
432                 kvm_ops = kvmppc_hv_ops;
433         } else if (type == KVM_VM_PPC_PR) {
434                 if (!kvmppc_pr_ops)
435                         goto err_out;
436                 kvm_ops = kvmppc_pr_ops;
437         } else
438                 goto err_out;
439
440         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
441                 return -ENOENT;
442
443         kvm->arch.kvm_ops = kvm_ops;
444         return kvmppc_core_init_vm(kvm);
445 err_out:
446         return -EINVAL;
447 }
448
449 bool kvm_arch_has_vcpu_debugfs(void)
450 {
451         return false;
452 }
453
454 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
455 {
456         return 0;
457 }
458
459 void kvm_arch_destroy_vm(struct kvm *kvm)
460 {
461         unsigned int i;
462         struct kvm_vcpu *vcpu;
463
464 #ifdef CONFIG_KVM_XICS
465         /*
466          * We call kick_all_cpus_sync() to ensure that all
467          * CPUs have executed any pending IPIs before we
468          * continue and free VCPUs structures below.
469          */
470         if (is_kvmppc_hv_enabled(kvm))
471                 kick_all_cpus_sync();
472 #endif
473
474         kvm_for_each_vcpu(i, vcpu, kvm)
475                 kvm_arch_vcpu_free(vcpu);
476
477         mutex_lock(&kvm->lock);
478         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
479                 kvm->vcpus[i] = NULL;
480
481         atomic_set(&kvm->online_vcpus, 0);
482
483         kvmppc_core_destroy_vm(kvm);
484
485         mutex_unlock(&kvm->lock);
486
487         /* drop the module reference */
488         module_put(kvm->arch.kvm_ops->owner);
489 }
490
491 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
492 {
493         int r;
494         /* Assume we're using HV mode when the HV module is loaded */
495         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
496
497         if (kvm) {
498                 /*
499                  * Hooray - we know which VM type we're running on. Depend on
500                  * that rather than the guess above.
501                  */
502                 hv_enabled = is_kvmppc_hv_enabled(kvm);
503         }
504
505         switch (ext) {
506 #ifdef CONFIG_BOOKE
507         case KVM_CAP_PPC_BOOKE_SREGS:
508         case KVM_CAP_PPC_BOOKE_WATCHDOG:
509         case KVM_CAP_PPC_EPR:
510 #else
511         case KVM_CAP_PPC_SEGSTATE:
512         case KVM_CAP_PPC_HIOR:
513         case KVM_CAP_PPC_PAPR:
514 #endif
515         case KVM_CAP_PPC_UNSET_IRQ:
516         case KVM_CAP_PPC_IRQ_LEVEL:
517         case KVM_CAP_ENABLE_CAP:
518         case KVM_CAP_ENABLE_CAP_VM:
519         case KVM_CAP_ONE_REG:
520         case KVM_CAP_IOEVENTFD:
521         case KVM_CAP_DEVICE_CTRL:
522         case KVM_CAP_IMMEDIATE_EXIT:
523                 r = 1;
524                 break;
525         case KVM_CAP_PPC_PAIRED_SINGLES:
526         case KVM_CAP_PPC_OSI:
527         case KVM_CAP_PPC_GET_PVINFO:
528 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
529         case KVM_CAP_SW_TLB:
530 #endif
531                 /* We support this only for PR */
532                 r = !hv_enabled;
533                 break;
534 #ifdef CONFIG_KVM_MPIC
535         case KVM_CAP_IRQ_MPIC:
536                 r = 1;
537                 break;
538 #endif
539
540 #ifdef CONFIG_PPC_BOOK3S_64
541         case KVM_CAP_SPAPR_TCE:
542         case KVM_CAP_SPAPR_TCE_64:
543                 /* fallthrough */
544         case KVM_CAP_SPAPR_TCE_VFIO:
545         case KVM_CAP_PPC_RTAS:
546         case KVM_CAP_PPC_FIXUP_HCALL:
547         case KVM_CAP_PPC_ENABLE_HCALL:
548 #ifdef CONFIG_KVM_XICS
549         case KVM_CAP_IRQ_XICS:
550 #endif
551                 r = 1;
552                 break;
553
554         case KVM_CAP_PPC_ALLOC_HTAB:
555                 r = hv_enabled;
556                 break;
557 #endif /* CONFIG_PPC_BOOK3S_64 */
558 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
559         case KVM_CAP_PPC_SMT:
560                 r = 0;
561                 if (kvm) {
562                         if (kvm->arch.emul_smt_mode > 1)
563                                 r = kvm->arch.emul_smt_mode;
564                         else
565                                 r = kvm->arch.smt_mode;
566                 } else if (hv_enabled) {
567                         if (cpu_has_feature(CPU_FTR_ARCH_300))
568                                 r = 1;
569                         else
570                                 r = threads_per_subcore;
571                 }
572                 break;
573         case KVM_CAP_PPC_SMT_POSSIBLE:
574                 r = 1;
575                 if (hv_enabled) {
576                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
577                                 r = ((threads_per_subcore << 1) - 1);
578                         else
579                                 /* P9 can emulate dbells, so allow any mode */
580                                 r = 8 | 4 | 2 | 1;
581                 }
582                 break;
583         case KVM_CAP_PPC_RMA:
584                 r = 0;
585                 break;
586         case KVM_CAP_PPC_HWRNG:
587                 r = kvmppc_hwrng_present();
588                 break;
589         case KVM_CAP_PPC_MMU_RADIX:
590                 r = !!(hv_enabled && radix_enabled());
591                 break;
592         case KVM_CAP_PPC_MMU_HASH_V3:
593                 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
594                 break;
595 #endif
596         case KVM_CAP_SYNC_MMU:
597 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
598                 r = hv_enabled;
599 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
600                 r = 1;
601 #else
602                 r = 0;
603 #endif
604                 break;
605 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
606         case KVM_CAP_PPC_HTAB_FD:
607                 r = hv_enabled;
608                 break;
609 #endif
610         case KVM_CAP_NR_VCPUS:
611                 /*
612                  * Recommending a number of CPUs is somewhat arbitrary; we
613                  * return the number of present CPUs for -HV (since a host
614                  * will have secondary threads "offline"), and for other KVM
615                  * implementations just count online CPUs.
616                  */
617                 if (hv_enabled)
618                         r = num_present_cpus();
619                 else
620                         r = num_online_cpus();
621                 break;
622         case KVM_CAP_NR_MEMSLOTS:
623                 r = KVM_USER_MEM_SLOTS;
624                 break;
625         case KVM_CAP_MAX_VCPUS:
626                 r = KVM_MAX_VCPUS;
627                 break;
628 #ifdef CONFIG_PPC_BOOK3S_64
629         case KVM_CAP_PPC_GET_SMMU_INFO:
630                 r = 1;
631                 break;
632         case KVM_CAP_SPAPR_MULTITCE:
633                 r = 1;
634                 break;
635         case KVM_CAP_SPAPR_RESIZE_HPT:
636                 r = !!hv_enabled;
637                 break;
638 #endif
639 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
640         case KVM_CAP_PPC_FWNMI:
641                 r = hv_enabled;
642                 break;
643 #endif
644         case KVM_CAP_PPC_HTM:
645                 r = hv_enabled &&
646                     (cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM_COMP);
647                 break;
648         default:
649                 r = 0;
650                 break;
651         }
652         return r;
653
654 }
655
656 long kvm_arch_dev_ioctl(struct file *filp,
657                         unsigned int ioctl, unsigned long arg)
658 {
659         return -EINVAL;
660 }
661
662 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
663                            struct kvm_memory_slot *dont)
664 {
665         kvmppc_core_free_memslot(kvm, free, dont);
666 }
667
668 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
669                             unsigned long npages)
670 {
671         return kvmppc_core_create_memslot(kvm, slot, npages);
672 }
673
674 int kvm_arch_prepare_memory_region(struct kvm *kvm,
675                                    struct kvm_memory_slot *memslot,
676                                    const struct kvm_userspace_memory_region *mem,
677                                    enum kvm_mr_change change)
678 {
679         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
680 }
681
682 void kvm_arch_commit_memory_region(struct kvm *kvm,
683                                    const struct kvm_userspace_memory_region *mem,
684                                    const struct kvm_memory_slot *old,
685                                    const struct kvm_memory_slot *new,
686                                    enum kvm_mr_change change)
687 {
688         kvmppc_core_commit_memory_region(kvm, mem, old, new);
689 }
690
691 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
692                                    struct kvm_memory_slot *slot)
693 {
694         kvmppc_core_flush_memslot(kvm, slot);
695 }
696
697 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
698 {
699         struct kvm_vcpu *vcpu;
700         vcpu = kvmppc_core_vcpu_create(kvm, id);
701         if (!IS_ERR(vcpu)) {
702                 vcpu->arch.wqp = &vcpu->wq;
703                 kvmppc_create_vcpu_debugfs(vcpu, id);
704         }
705         return vcpu;
706 }
707
708 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
709 {
710 }
711
712 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
713 {
714         /* Make sure we're not using the vcpu anymore */
715         hrtimer_cancel(&vcpu->arch.dec_timer);
716
717         kvmppc_remove_vcpu_debugfs(vcpu);
718
719         switch (vcpu->arch.irq_type) {
720         case KVMPPC_IRQ_MPIC:
721                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
722                 break;
723         case KVMPPC_IRQ_XICS:
724                 if (xive_enabled())
725                         kvmppc_xive_cleanup_vcpu(vcpu);
726                 else
727                         kvmppc_xics_free_icp(vcpu);
728                 break;
729         }
730
731         kvmppc_core_vcpu_free(vcpu);
732 }
733
734 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
735 {
736         kvm_arch_vcpu_free(vcpu);
737 }
738
739 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
740 {
741         return kvmppc_core_pending_dec(vcpu);
742 }
743
744 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
745 {
746         struct kvm_vcpu *vcpu;
747
748         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
749         kvmppc_decrementer_func(vcpu);
750
751         return HRTIMER_NORESTART;
752 }
753
754 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
755 {
756         int ret;
757
758         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
759         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
760         vcpu->arch.dec_expires = get_tb();
761
762 #ifdef CONFIG_KVM_EXIT_TIMING
763         mutex_init(&vcpu->arch.exit_timing_lock);
764 #endif
765         ret = kvmppc_subarch_vcpu_init(vcpu);
766         return ret;
767 }
768
769 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
770 {
771         kvmppc_mmu_destroy(vcpu);
772         kvmppc_subarch_vcpu_uninit(vcpu);
773 }
774
775 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
776 {
777 #ifdef CONFIG_BOOKE
778         /*
779          * vrsave (formerly usprg0) isn't used by Linux, but may
780          * be used by the guest.
781          *
782          * On non-booke this is associated with Altivec and
783          * is handled by code in book3s.c.
784          */
785         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
786 #endif
787         kvmppc_core_vcpu_load(vcpu, cpu);
788 }
789
790 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
791 {
792         kvmppc_core_vcpu_put(vcpu);
793 #ifdef CONFIG_BOOKE
794         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
795 #endif
796 }
797
798 /*
799  * irq_bypass_add_producer and irq_bypass_del_producer are only
800  * useful if the architecture supports PCI passthrough.
801  * irq_bypass_stop and irq_bypass_start are not needed and so
802  * kvm_ops are not defined for them.
803  */
804 bool kvm_arch_has_irq_bypass(void)
805 {
806         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
807                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
808 }
809
810 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
811                                      struct irq_bypass_producer *prod)
812 {
813         struct kvm_kernel_irqfd *irqfd =
814                 container_of(cons, struct kvm_kernel_irqfd, consumer);
815         struct kvm *kvm = irqfd->kvm;
816
817         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
818                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
819
820         return 0;
821 }
822
823 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
824                                       struct irq_bypass_producer *prod)
825 {
826         struct kvm_kernel_irqfd *irqfd =
827                 container_of(cons, struct kvm_kernel_irqfd, consumer);
828         struct kvm *kvm = irqfd->kvm;
829
830         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
831                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
832 }
833
834 #ifdef CONFIG_VSX
835 static inline int kvmppc_get_vsr_dword_offset(int index)
836 {
837         int offset;
838
839         if ((index != 0) && (index != 1))
840                 return -1;
841
842 #ifdef __BIG_ENDIAN
843         offset =  index;
844 #else
845         offset = 1 - index;
846 #endif
847
848         return offset;
849 }
850
851 static inline int kvmppc_get_vsr_word_offset(int index)
852 {
853         int offset;
854
855         if ((index > 3) || (index < 0))
856                 return -1;
857
858 #ifdef __BIG_ENDIAN
859         offset = index;
860 #else
861         offset = 3 - index;
862 #endif
863         return offset;
864 }
865
866 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
867         u64 gpr)
868 {
869         union kvmppc_one_reg val;
870         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
871         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
872
873         if (offset == -1)
874                 return;
875
876         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
877                 val.vval = VCPU_VSX_VR(vcpu, index);
878                 val.vsxval[offset] = gpr;
879                 VCPU_VSX_VR(vcpu, index) = val.vval;
880         } else {
881                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
882         }
883 }
884
885 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
886         u64 gpr)
887 {
888         union kvmppc_one_reg val;
889         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
890
891         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
892                 val.vval = VCPU_VSX_VR(vcpu, index);
893                 val.vsxval[0] = gpr;
894                 val.vsxval[1] = gpr;
895                 VCPU_VSX_VR(vcpu, index) = val.vval;
896         } else {
897                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
898                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
899         }
900 }
901
902 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
903         u32 gpr32)
904 {
905         union kvmppc_one_reg val;
906         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
907         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
908         int dword_offset, word_offset;
909
910         if (offset == -1)
911                 return;
912
913         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
914                 val.vval = VCPU_VSX_VR(vcpu, index);
915                 val.vsx32val[offset] = gpr32;
916                 VCPU_VSX_VR(vcpu, index) = val.vval;
917         } else {
918                 dword_offset = offset / 2;
919                 word_offset = offset % 2;
920                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
921                 val.vsx32val[word_offset] = gpr32;
922                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
923         }
924 }
925 #endif /* CONFIG_VSX */
926
927 #ifdef CONFIG_ALTIVEC
928 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
929                 u64 gpr)
930 {
931         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
932         u32 hi, lo;
933         u32 di;
934
935 #ifdef __BIG_ENDIAN
936         hi = gpr >> 32;
937         lo = gpr & 0xffffffff;
938 #else
939         lo = gpr >> 32;
940         hi = gpr & 0xffffffff;
941 #endif
942
943         di = 2 - vcpu->arch.mmio_vmx_copy_nums;         /* doubleword index */
944         if (di > 1)
945                 return;
946
947         if (vcpu->arch.mmio_host_swabbed)
948                 di = 1 - di;
949
950         VCPU_VSX_VR(vcpu, index).u[di * 2] = hi;
951         VCPU_VSX_VR(vcpu, index).u[di * 2 + 1] = lo;
952 }
953 #endif /* CONFIG_ALTIVEC */
954
955 #ifdef CONFIG_PPC_FPU
956 static inline u64 sp_to_dp(u32 fprs)
957 {
958         u64 fprd;
959
960         preempt_disable();
961         enable_kernel_fp();
962         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
963              : "fr0");
964         preempt_enable();
965         return fprd;
966 }
967
968 static inline u32 dp_to_sp(u64 fprd)
969 {
970         u32 fprs;
971
972         preempt_disable();
973         enable_kernel_fp();
974         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
975              : "fr0");
976         preempt_enable();
977         return fprs;
978 }
979
980 #else
981 #define sp_to_dp(x)     (x)
982 #define dp_to_sp(x)     (x)
983 #endif /* CONFIG_PPC_FPU */
984
985 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
986                                       struct kvm_run *run)
987 {
988         u64 uninitialized_var(gpr);
989
990         if (run->mmio.len > sizeof(gpr)) {
991                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
992                 return;
993         }
994
995         if (!vcpu->arch.mmio_host_swabbed) {
996                 switch (run->mmio.len) {
997                 case 8: gpr = *(u64 *)run->mmio.data; break;
998                 case 4: gpr = *(u32 *)run->mmio.data; break;
999                 case 2: gpr = *(u16 *)run->mmio.data; break;
1000                 case 1: gpr = *(u8 *)run->mmio.data; break;
1001                 }
1002         } else {
1003                 switch (run->mmio.len) {
1004                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1005                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1006                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1007                 case 1: gpr = *(u8 *)run->mmio.data; break;
1008                 }
1009         }
1010
1011         /* conversion between single and double precision */
1012         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1013                 gpr = sp_to_dp(gpr);
1014
1015         if (vcpu->arch.mmio_sign_extend) {
1016                 switch (run->mmio.len) {
1017 #ifdef CONFIG_PPC64
1018                 case 4:
1019                         gpr = (s64)(s32)gpr;
1020                         break;
1021 #endif
1022                 case 2:
1023                         gpr = (s64)(s16)gpr;
1024                         break;
1025                 case 1:
1026                         gpr = (s64)(s8)gpr;
1027                         break;
1028                 }
1029         }
1030
1031         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1032         case KVM_MMIO_REG_GPR:
1033                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1034                 break;
1035         case KVM_MMIO_REG_FPR:
1036                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1037                 break;
1038 #ifdef CONFIG_PPC_BOOK3S
1039         case KVM_MMIO_REG_QPR:
1040                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1041                 break;
1042         case KVM_MMIO_REG_FQPR:
1043                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1044                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1045                 break;
1046 #endif
1047 #ifdef CONFIG_VSX
1048         case KVM_MMIO_REG_VSX:
1049                 if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1050                         kvmppc_set_vsr_dword(vcpu, gpr);
1051                 else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1052                         kvmppc_set_vsr_word(vcpu, gpr);
1053                 else if (vcpu->arch.mmio_vsx_copy_type ==
1054                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1055                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1056                 break;
1057 #endif
1058 #ifdef CONFIG_ALTIVEC
1059         case KVM_MMIO_REG_VMX:
1060                 kvmppc_set_vmx_dword(vcpu, gpr);
1061                 break;
1062 #endif
1063         default:
1064                 BUG();
1065         }
1066 }
1067
1068 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1069                                 unsigned int rt, unsigned int bytes,
1070                                 int is_default_endian, int sign_extend)
1071 {
1072         int idx, ret;
1073         bool host_swabbed;
1074
1075         /* Pity C doesn't have a logical XOR operator */
1076         if (kvmppc_need_byteswap(vcpu)) {
1077                 host_swabbed = is_default_endian;
1078         } else {
1079                 host_swabbed = !is_default_endian;
1080         }
1081
1082         if (bytes > sizeof(run->mmio.data)) {
1083                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1084                        run->mmio.len);
1085         }
1086
1087         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1088         run->mmio.len = bytes;
1089         run->mmio.is_write = 0;
1090
1091         vcpu->arch.io_gpr = rt;
1092         vcpu->arch.mmio_host_swabbed = host_swabbed;
1093         vcpu->mmio_needed = 1;
1094         vcpu->mmio_is_write = 0;
1095         vcpu->arch.mmio_sign_extend = sign_extend;
1096
1097         idx = srcu_read_lock(&vcpu->kvm->srcu);
1098
1099         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1100                               bytes, &run->mmio.data);
1101
1102         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1103
1104         if (!ret) {
1105                 kvmppc_complete_mmio_load(vcpu, run);
1106                 vcpu->mmio_needed = 0;
1107                 return EMULATE_DONE;
1108         }
1109
1110         return EMULATE_DO_MMIO;
1111 }
1112
1113 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1114                        unsigned int rt, unsigned int bytes,
1115                        int is_default_endian)
1116 {
1117         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1118 }
1119 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1120
1121 /* Same as above, but sign extends */
1122 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1123                         unsigned int rt, unsigned int bytes,
1124                         int is_default_endian)
1125 {
1126         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1127 }
1128
1129 #ifdef CONFIG_VSX
1130 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1131                         unsigned int rt, unsigned int bytes,
1132                         int is_default_endian, int mmio_sign_extend)
1133 {
1134         enum emulation_result emulated = EMULATE_DONE;
1135
1136         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1137         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1138                 return EMULATE_FAIL;
1139
1140         while (vcpu->arch.mmio_vsx_copy_nums) {
1141                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1142                         is_default_endian, mmio_sign_extend);
1143
1144                 if (emulated != EMULATE_DONE)
1145                         break;
1146
1147                 vcpu->arch.paddr_accessed += run->mmio.len;
1148
1149                 vcpu->arch.mmio_vsx_copy_nums--;
1150                 vcpu->arch.mmio_vsx_offset++;
1151         }
1152         return emulated;
1153 }
1154 #endif /* CONFIG_VSX */
1155
1156 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1157                         u64 val, unsigned int bytes, int is_default_endian)
1158 {
1159         void *data = run->mmio.data;
1160         int idx, ret;
1161         bool host_swabbed;
1162
1163         /* Pity C doesn't have a logical XOR operator */
1164         if (kvmppc_need_byteswap(vcpu)) {
1165                 host_swabbed = is_default_endian;
1166         } else {
1167                 host_swabbed = !is_default_endian;
1168         }
1169
1170         if (bytes > sizeof(run->mmio.data)) {
1171                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1172                        run->mmio.len);
1173         }
1174
1175         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1176         run->mmio.len = bytes;
1177         run->mmio.is_write = 1;
1178         vcpu->mmio_needed = 1;
1179         vcpu->mmio_is_write = 1;
1180
1181         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1182                 val = dp_to_sp(val);
1183
1184         /* Store the value at the lowest bytes in 'data'. */
1185         if (!host_swabbed) {
1186                 switch (bytes) {
1187                 case 8: *(u64 *)data = val; break;
1188                 case 4: *(u32 *)data = val; break;
1189                 case 2: *(u16 *)data = val; break;
1190                 case 1: *(u8  *)data = val; break;
1191                 }
1192         } else {
1193                 switch (bytes) {
1194                 case 8: *(u64 *)data = swab64(val); break;
1195                 case 4: *(u32 *)data = swab32(val); break;
1196                 case 2: *(u16 *)data = swab16(val); break;
1197                 case 1: *(u8  *)data = val; break;
1198                 }
1199         }
1200
1201         idx = srcu_read_lock(&vcpu->kvm->srcu);
1202
1203         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1204                                bytes, &run->mmio.data);
1205
1206         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1207
1208         if (!ret) {
1209                 vcpu->mmio_needed = 0;
1210                 return EMULATE_DONE;
1211         }
1212
1213         return EMULATE_DO_MMIO;
1214 }
1215 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1216
1217 #ifdef CONFIG_VSX
1218 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1219 {
1220         u32 dword_offset, word_offset;
1221         union kvmppc_one_reg reg;
1222         int vsx_offset = 0;
1223         int copy_type = vcpu->arch.mmio_vsx_copy_type;
1224         int result = 0;
1225
1226         switch (copy_type) {
1227         case KVMPPC_VSX_COPY_DWORD:
1228                 vsx_offset =
1229                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1230
1231                 if (vsx_offset == -1) {
1232                         result = -1;
1233                         break;
1234                 }
1235
1236                 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1237                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1238                 } else {
1239                         reg.vval = VCPU_VSX_VR(vcpu, rs);
1240                         *val = reg.vsxval[vsx_offset];
1241                 }
1242                 break;
1243
1244         case KVMPPC_VSX_COPY_WORD:
1245                 vsx_offset =
1246                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1247
1248                 if (vsx_offset == -1) {
1249                         result = -1;
1250                         break;
1251                 }
1252
1253                 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1254                         dword_offset = vsx_offset / 2;
1255                         word_offset = vsx_offset % 2;
1256                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1257                         *val = reg.vsx32val[word_offset];
1258                 } else {
1259                         reg.vval = VCPU_VSX_VR(vcpu, rs);
1260                         *val = reg.vsx32val[vsx_offset];
1261                 }
1262                 break;
1263
1264         default:
1265                 result = -1;
1266                 break;
1267         }
1268
1269         return result;
1270 }
1271
1272 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1273                         int rs, unsigned int bytes, int is_default_endian)
1274 {
1275         u64 val;
1276         enum emulation_result emulated = EMULATE_DONE;
1277
1278         vcpu->arch.io_gpr = rs;
1279
1280         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1281         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1282                 return EMULATE_FAIL;
1283
1284         while (vcpu->arch.mmio_vsx_copy_nums) {
1285                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1286                         return EMULATE_FAIL;
1287
1288                 emulated = kvmppc_handle_store(run, vcpu,
1289                          val, bytes, is_default_endian);
1290
1291                 if (emulated != EMULATE_DONE)
1292                         break;
1293
1294                 vcpu->arch.paddr_accessed += run->mmio.len;
1295
1296                 vcpu->arch.mmio_vsx_copy_nums--;
1297                 vcpu->arch.mmio_vsx_offset++;
1298         }
1299
1300         return emulated;
1301 }
1302
1303 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1304                         struct kvm_run *run)
1305 {
1306         enum emulation_result emulated = EMULATE_FAIL;
1307         int r;
1308
1309         vcpu->arch.paddr_accessed += run->mmio.len;
1310
1311         if (!vcpu->mmio_is_write) {
1312                 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1313                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1314         } else {
1315                 emulated = kvmppc_handle_vsx_store(run, vcpu,
1316                          vcpu->arch.io_gpr, run->mmio.len, 1);
1317         }
1318
1319         switch (emulated) {
1320         case EMULATE_DO_MMIO:
1321                 run->exit_reason = KVM_EXIT_MMIO;
1322                 r = RESUME_HOST;
1323                 break;
1324         case EMULATE_FAIL:
1325                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1326                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1327                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1328                 r = RESUME_HOST;
1329                 break;
1330         default:
1331                 r = RESUME_GUEST;
1332                 break;
1333         }
1334         return r;
1335 }
1336 #endif /* CONFIG_VSX */
1337
1338 #ifdef CONFIG_ALTIVEC
1339 /* handle quadword load access in two halves */
1340 int kvmppc_handle_load128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu,
1341                 unsigned int rt, int is_default_endian)
1342 {
1343         enum emulation_result emulated;
1344
1345         while (vcpu->arch.mmio_vmx_copy_nums) {
1346                 emulated = __kvmppc_handle_load(run, vcpu, rt, 8,
1347                                 is_default_endian, 0);
1348
1349                 if (emulated != EMULATE_DONE)
1350                         break;
1351
1352                 vcpu->arch.paddr_accessed += run->mmio.len;
1353                 vcpu->arch.mmio_vmx_copy_nums--;
1354         }
1355
1356         return emulated;
1357 }
1358
1359 static inline int kvmppc_get_vmx_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1360 {
1361         vector128 vrs = VCPU_VSX_VR(vcpu, rs);
1362         u32 di;
1363         u64 w0, w1;
1364
1365         di = 2 - vcpu->arch.mmio_vmx_copy_nums;         /* doubleword index */
1366         if (di > 1)
1367                 return -1;
1368
1369         if (vcpu->arch.mmio_host_swabbed)
1370                 di = 1 - di;
1371
1372         w0 = vrs.u[di * 2];
1373         w1 = vrs.u[di * 2 + 1];
1374
1375 #ifdef __BIG_ENDIAN
1376         *val = (w0 << 32) | w1;
1377 #else
1378         *val = (w1 << 32) | w0;
1379 #endif
1380         return 0;
1381 }
1382
1383 /* handle quadword store in two halves */
1384 int kvmppc_handle_store128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu,
1385                 unsigned int rs, int is_default_endian)
1386 {
1387         u64 val = 0;
1388         enum emulation_result emulated = EMULATE_DONE;
1389
1390         vcpu->arch.io_gpr = rs;
1391
1392         while (vcpu->arch.mmio_vmx_copy_nums) {
1393                 if (kvmppc_get_vmx_data(vcpu, rs, &val) == -1)
1394                         return EMULATE_FAIL;
1395
1396                 emulated = kvmppc_handle_store(run, vcpu, val, 8,
1397                                 is_default_endian);
1398                 if (emulated != EMULATE_DONE)
1399                         break;
1400
1401                 vcpu->arch.paddr_accessed += run->mmio.len;
1402                 vcpu->arch.mmio_vmx_copy_nums--;
1403         }
1404
1405         return emulated;
1406 }
1407
1408 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1409                 struct kvm_run *run)
1410 {
1411         enum emulation_result emulated = EMULATE_FAIL;
1412         int r;
1413
1414         vcpu->arch.paddr_accessed += run->mmio.len;
1415
1416         if (!vcpu->mmio_is_write) {
1417                 emulated = kvmppc_handle_load128_by2x64(run, vcpu,
1418                                 vcpu->arch.io_gpr, 1);
1419         } else {
1420                 emulated = kvmppc_handle_store128_by2x64(run, vcpu,
1421                                 vcpu->arch.io_gpr, 1);
1422         }
1423
1424         switch (emulated) {
1425         case EMULATE_DO_MMIO:
1426                 run->exit_reason = KVM_EXIT_MMIO;
1427                 r = RESUME_HOST;
1428                 break;
1429         case EMULATE_FAIL:
1430                 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1431                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1432                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1433                 r = RESUME_HOST;
1434                 break;
1435         default:
1436                 r = RESUME_GUEST;
1437                 break;
1438         }
1439         return r;
1440 }
1441 #endif /* CONFIG_ALTIVEC */
1442
1443 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1444 {
1445         int r = 0;
1446         union kvmppc_one_reg val;
1447         int size;
1448
1449         size = one_reg_size(reg->id);
1450         if (size > sizeof(val))
1451                 return -EINVAL;
1452
1453         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1454         if (r == -EINVAL) {
1455                 r = 0;
1456                 switch (reg->id) {
1457 #ifdef CONFIG_ALTIVEC
1458                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1459                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1460                                 r = -ENXIO;
1461                                 break;
1462                         }
1463                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1464                         break;
1465                 case KVM_REG_PPC_VSCR:
1466                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1467                                 r = -ENXIO;
1468                                 break;
1469                         }
1470                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1471                         break;
1472                 case KVM_REG_PPC_VRSAVE:
1473                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1474                         break;
1475 #endif /* CONFIG_ALTIVEC */
1476                 default:
1477                         r = -EINVAL;
1478                         break;
1479                 }
1480         }
1481
1482         if (r)
1483                 return r;
1484
1485         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1486                 r = -EFAULT;
1487
1488         return r;
1489 }
1490
1491 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1492 {
1493         int r;
1494         union kvmppc_one_reg val;
1495         int size;
1496
1497         size = one_reg_size(reg->id);
1498         if (size > sizeof(val))
1499                 return -EINVAL;
1500
1501         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1502                 return -EFAULT;
1503
1504         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1505         if (r == -EINVAL) {
1506                 r = 0;
1507                 switch (reg->id) {
1508 #ifdef CONFIG_ALTIVEC
1509                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1510                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1511                                 r = -ENXIO;
1512                                 break;
1513                         }
1514                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1515                         break;
1516                 case KVM_REG_PPC_VSCR:
1517                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1518                                 r = -ENXIO;
1519                                 break;
1520                         }
1521                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1522                         break;
1523                 case KVM_REG_PPC_VRSAVE:
1524                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1525                                 r = -ENXIO;
1526                                 break;
1527                         }
1528                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1529                         break;
1530 #endif /* CONFIG_ALTIVEC */
1531                 default:
1532                         r = -EINVAL;
1533                         break;
1534                 }
1535         }
1536
1537         return r;
1538 }
1539
1540 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1541 {
1542         int r;
1543
1544         if (vcpu->mmio_needed) {
1545                 vcpu->mmio_needed = 0;
1546                 if (!vcpu->mmio_is_write)
1547                         kvmppc_complete_mmio_load(vcpu, run);
1548 #ifdef CONFIG_VSX
1549                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1550                         vcpu->arch.mmio_vsx_copy_nums--;
1551                         vcpu->arch.mmio_vsx_offset++;
1552                 }
1553
1554                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1555                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1556                         if (r == RESUME_HOST) {
1557                                 vcpu->mmio_needed = 1;
1558                                 return r;
1559                         }
1560                 }
1561 #endif
1562 #ifdef CONFIG_ALTIVEC
1563                 if (vcpu->arch.mmio_vmx_copy_nums > 0)
1564                         vcpu->arch.mmio_vmx_copy_nums--;
1565
1566                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1567                         r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1568                         if (r == RESUME_HOST) {
1569                                 vcpu->mmio_needed = 1;
1570                                 return r;
1571                         }
1572                 }
1573 #endif
1574         } else if (vcpu->arch.osi_needed) {
1575                 u64 *gprs = run->osi.gprs;
1576                 int i;
1577
1578                 for (i = 0; i < 32; i++)
1579                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1580                 vcpu->arch.osi_needed = 0;
1581         } else if (vcpu->arch.hcall_needed) {
1582                 int i;
1583
1584                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1585                 for (i = 0; i < 9; ++i)
1586                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1587                 vcpu->arch.hcall_needed = 0;
1588 #ifdef CONFIG_BOOKE
1589         } else if (vcpu->arch.epr_needed) {
1590                 kvmppc_set_epr(vcpu, run->epr.epr);
1591                 vcpu->arch.epr_needed = 0;
1592 #endif
1593         }
1594
1595         kvm_sigset_activate(vcpu);
1596
1597         if (run->immediate_exit)
1598                 r = -EINTR;
1599         else
1600                 r = kvmppc_vcpu_run(run, vcpu);
1601
1602         kvm_sigset_deactivate(vcpu);
1603
1604         return r;
1605 }
1606
1607 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1608 {
1609         if (irq->irq == KVM_INTERRUPT_UNSET) {
1610                 kvmppc_core_dequeue_external(vcpu);
1611                 return 0;
1612         }
1613
1614         kvmppc_core_queue_external(vcpu, irq);
1615
1616         kvm_vcpu_kick(vcpu);
1617
1618         return 0;
1619 }
1620
1621 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1622                                      struct kvm_enable_cap *cap)
1623 {
1624         int r;
1625
1626         if (cap->flags)
1627                 return -EINVAL;
1628
1629         switch (cap->cap) {
1630         case KVM_CAP_PPC_OSI:
1631                 r = 0;
1632                 vcpu->arch.osi_enabled = true;
1633                 break;
1634         case KVM_CAP_PPC_PAPR:
1635                 r = 0;
1636                 vcpu->arch.papr_enabled = true;
1637                 break;
1638         case KVM_CAP_PPC_EPR:
1639                 r = 0;
1640                 if (cap->args[0])
1641                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1642                 else
1643                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1644                 break;
1645 #ifdef CONFIG_BOOKE
1646         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1647                 r = 0;
1648                 vcpu->arch.watchdog_enabled = true;
1649                 break;
1650 #endif
1651 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1652         case KVM_CAP_SW_TLB: {
1653                 struct kvm_config_tlb cfg;
1654                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1655
1656                 r = -EFAULT;
1657                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1658                         break;
1659
1660                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1661                 break;
1662         }
1663 #endif
1664 #ifdef CONFIG_KVM_MPIC
1665         case KVM_CAP_IRQ_MPIC: {
1666                 struct fd f;
1667                 struct kvm_device *dev;
1668
1669                 r = -EBADF;
1670                 f = fdget(cap->args[0]);
1671                 if (!f.file)
1672                         break;
1673
1674                 r = -EPERM;
1675                 dev = kvm_device_from_filp(f.file);
1676                 if (dev)
1677                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1678
1679                 fdput(f);
1680                 break;
1681         }
1682 #endif
1683 #ifdef CONFIG_KVM_XICS
1684         case KVM_CAP_IRQ_XICS: {
1685                 struct fd f;
1686                 struct kvm_device *dev;
1687
1688                 r = -EBADF;
1689                 f = fdget(cap->args[0]);
1690                 if (!f.file)
1691                         break;
1692
1693                 r = -EPERM;
1694                 dev = kvm_device_from_filp(f.file);
1695                 if (dev) {
1696                         if (xive_enabled())
1697                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1698                         else
1699                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1700                 }
1701
1702                 fdput(f);
1703                 break;
1704         }
1705 #endif /* CONFIG_KVM_XICS */
1706 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1707         case KVM_CAP_PPC_FWNMI:
1708                 r = -EINVAL;
1709                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1710                         break;
1711                 r = 0;
1712                 vcpu->kvm->arch.fwnmi_enabled = true;
1713                 break;
1714 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1715         default:
1716                 r = -EINVAL;
1717                 break;
1718         }
1719
1720         if (!r)
1721                 r = kvmppc_sanity_check(vcpu);
1722
1723         return r;
1724 }
1725
1726 bool kvm_arch_intc_initialized(struct kvm *kvm)
1727 {
1728 #ifdef CONFIG_KVM_MPIC
1729         if (kvm->arch.mpic)
1730                 return true;
1731 #endif
1732 #ifdef CONFIG_KVM_XICS
1733         if (kvm->arch.xics || kvm->arch.xive)
1734                 return true;
1735 #endif
1736         return false;
1737 }
1738
1739 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1740                                     struct kvm_mp_state *mp_state)
1741 {
1742         return -EINVAL;
1743 }
1744
1745 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1746                                     struct kvm_mp_state *mp_state)
1747 {
1748         return -EINVAL;
1749 }
1750
1751 long kvm_arch_vcpu_ioctl(struct file *filp,
1752                          unsigned int ioctl, unsigned long arg)
1753 {
1754         struct kvm_vcpu *vcpu = filp->private_data;
1755         void __user *argp = (void __user *)arg;
1756         long r;
1757
1758         switch (ioctl) {
1759         case KVM_INTERRUPT: {
1760                 struct kvm_interrupt irq;
1761                 r = -EFAULT;
1762                 if (copy_from_user(&irq, argp, sizeof(irq)))
1763                         goto out;
1764                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1765                 goto out;
1766         }
1767
1768         case KVM_ENABLE_CAP:
1769         {
1770                 struct kvm_enable_cap cap;
1771                 r = -EFAULT;
1772                 if (copy_from_user(&cap, argp, sizeof(cap)))
1773                         goto out;
1774                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1775                 break;
1776         }
1777
1778         case KVM_SET_ONE_REG:
1779         case KVM_GET_ONE_REG:
1780         {
1781                 struct kvm_one_reg reg;
1782                 r = -EFAULT;
1783                 if (copy_from_user(&reg, argp, sizeof(reg)))
1784                         goto out;
1785                 if (ioctl == KVM_SET_ONE_REG)
1786                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1787                 else
1788                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1789                 break;
1790         }
1791
1792 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1793         case KVM_DIRTY_TLB: {
1794                 struct kvm_dirty_tlb dirty;
1795                 r = -EFAULT;
1796                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1797                         goto out;
1798                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1799                 break;
1800         }
1801 #endif
1802         default:
1803                 r = -EINVAL;
1804         }
1805
1806 out:
1807         return r;
1808 }
1809
1810 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1811 {
1812         return VM_FAULT_SIGBUS;
1813 }
1814
1815 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1816 {
1817         u32 inst_nop = 0x60000000;
1818 #ifdef CONFIG_KVM_BOOKE_HV
1819         u32 inst_sc1 = 0x44000022;
1820         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1821         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1822         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1823         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1824 #else
1825         u32 inst_lis = 0x3c000000;
1826         u32 inst_ori = 0x60000000;
1827         u32 inst_sc = 0x44000002;
1828         u32 inst_imm_mask = 0xffff;
1829
1830         /*
1831          * The hypercall to get into KVM from within guest context is as
1832          * follows:
1833          *
1834          *    lis r0, r0, KVM_SC_MAGIC_R0@h
1835          *    ori r0, KVM_SC_MAGIC_R0@l
1836          *    sc
1837          *    nop
1838          */
1839         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1840         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1841         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1842         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1843 #endif
1844
1845         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1846
1847         return 0;
1848 }
1849
1850 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1851                           bool line_status)
1852 {
1853         if (!irqchip_in_kernel(kvm))
1854                 return -ENXIO;
1855
1856         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1857                                         irq_event->irq, irq_event->level,
1858                                         line_status);
1859         return 0;
1860 }
1861
1862
1863 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1864                                    struct kvm_enable_cap *cap)
1865 {
1866         int r;
1867
1868         if (cap->flags)
1869                 return -EINVAL;
1870
1871         switch (cap->cap) {
1872 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1873         case KVM_CAP_PPC_ENABLE_HCALL: {
1874                 unsigned long hcall = cap->args[0];
1875
1876                 r = -EINVAL;
1877                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1878                     cap->args[1] > 1)
1879                         break;
1880                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1881                         break;
1882                 if (cap->args[1])
1883                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1884                 else
1885                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1886                 r = 0;
1887                 break;
1888         }
1889         case KVM_CAP_PPC_SMT: {
1890                 unsigned long mode = cap->args[0];
1891                 unsigned long flags = cap->args[1];
1892
1893                 r = -EINVAL;
1894                 if (kvm->arch.kvm_ops->set_smt_mode)
1895                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
1896                 break;
1897         }
1898 #endif
1899         default:
1900                 r = -EINVAL;
1901                 break;
1902         }
1903
1904         return r;
1905 }
1906
1907 long kvm_arch_vm_ioctl(struct file *filp,
1908                        unsigned int ioctl, unsigned long arg)
1909 {
1910         struct kvm *kvm __maybe_unused = filp->private_data;
1911         void __user *argp = (void __user *)arg;
1912         long r;
1913
1914         switch (ioctl) {
1915         case KVM_PPC_GET_PVINFO: {
1916                 struct kvm_ppc_pvinfo pvinfo;
1917                 memset(&pvinfo, 0, sizeof(pvinfo));
1918                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1919                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1920                         r = -EFAULT;
1921                         goto out;
1922                 }
1923
1924                 break;
1925         }
1926         case KVM_ENABLE_CAP:
1927         {
1928                 struct kvm_enable_cap cap;
1929                 r = -EFAULT;
1930                 if (copy_from_user(&cap, argp, sizeof(cap)))
1931                         goto out;
1932                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1933                 break;
1934         }
1935 #ifdef CONFIG_SPAPR_TCE_IOMMU
1936         case KVM_CREATE_SPAPR_TCE_64: {
1937                 struct kvm_create_spapr_tce_64 create_tce_64;
1938
1939                 r = -EFAULT;
1940                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1941                         goto out;
1942                 if (create_tce_64.flags) {
1943                         r = -EINVAL;
1944                         goto out;
1945                 }
1946                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1947                 goto out;
1948         }
1949         case KVM_CREATE_SPAPR_TCE: {
1950                 struct kvm_create_spapr_tce create_tce;
1951                 struct kvm_create_spapr_tce_64 create_tce_64;
1952
1953                 r = -EFAULT;
1954                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1955                         goto out;
1956
1957                 create_tce_64.liobn = create_tce.liobn;
1958                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1959                 create_tce_64.offset = 0;
1960                 create_tce_64.size = create_tce.window_size >>
1961                                 IOMMU_PAGE_SHIFT_4K;
1962                 create_tce_64.flags = 0;
1963                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1964                 goto out;
1965         }
1966 #endif
1967 #ifdef CONFIG_PPC_BOOK3S_64
1968         case KVM_PPC_GET_SMMU_INFO: {
1969                 struct kvm_ppc_smmu_info info;
1970                 struct kvm *kvm = filp->private_data;
1971
1972                 memset(&info, 0, sizeof(info));
1973                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1974                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1975                         r = -EFAULT;
1976                 break;
1977         }
1978         case KVM_PPC_RTAS_DEFINE_TOKEN: {
1979                 struct kvm *kvm = filp->private_data;
1980
1981                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1982                 break;
1983         }
1984         case KVM_PPC_CONFIGURE_V3_MMU: {
1985                 struct kvm *kvm = filp->private_data;
1986                 struct kvm_ppc_mmuv3_cfg cfg;
1987
1988                 r = -EINVAL;
1989                 if (!kvm->arch.kvm_ops->configure_mmu)
1990                         goto out;
1991                 r = -EFAULT;
1992                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
1993                         goto out;
1994                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1995                 break;
1996         }
1997         case KVM_PPC_GET_RMMU_INFO: {
1998                 struct kvm *kvm = filp->private_data;
1999                 struct kvm_ppc_rmmu_info info;
2000
2001                 r = -EINVAL;
2002                 if (!kvm->arch.kvm_ops->get_rmmu_info)
2003                         goto out;
2004                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2005                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2006                         r = -EFAULT;
2007                 break;
2008         }
2009         default: {
2010                 struct kvm *kvm = filp->private_data;
2011                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2012         }
2013 #else /* CONFIG_PPC_BOOK3S_64 */
2014         default:
2015                 r = -ENOTTY;
2016 #endif
2017         }
2018 out:
2019         return r;
2020 }
2021
2022 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2023 static unsigned long nr_lpids;
2024
2025 long kvmppc_alloc_lpid(void)
2026 {
2027         long lpid;
2028
2029         do {
2030                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2031                 if (lpid >= nr_lpids) {
2032                         pr_err("%s: No LPIDs free\n", __func__);
2033                         return -ENOMEM;
2034                 }
2035         } while (test_and_set_bit(lpid, lpid_inuse));
2036
2037         return lpid;
2038 }
2039 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2040
2041 void kvmppc_claim_lpid(long lpid)
2042 {
2043         set_bit(lpid, lpid_inuse);
2044 }
2045 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2046
2047 void kvmppc_free_lpid(long lpid)
2048 {
2049         clear_bit(lpid, lpid_inuse);
2050 }
2051 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2052
2053 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2054 {
2055         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2056         memset(lpid_inuse, 0, sizeof(lpid_inuse));
2057 }
2058 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2059
2060 int kvm_arch_init(void *opaque)
2061 {
2062         return 0;
2063 }
2064
2065 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);