Merge branch 'msr-bitmaps' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[muen/linux.git] / arch / powerpc / kvm / powerpc.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42 #ifdef CONFIG_PPC_PSERIES
43 #include <asm/hvcall.h>
44 #include <asm/plpar_wrappers.h>
45 #endif
46
47 #include "timing.h"
48 #include "irq.h"
49 #include "../mm/mmu_decl.h"
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 struct kvmppc_ops *kvmppc_hv_ops;
55 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
56 struct kvmppc_ops *kvmppc_pr_ops;
57 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
58
59
60 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
61 {
62         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
63 }
64
65 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
66 {
67         return false;
68 }
69
70 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
71 {
72         return 1;
73 }
74
75 /*
76  * Common checks before entering the guest world.  Call with interrupts
77  * disabled.
78  *
79  * returns:
80  *
81  * == 1 if we're ready to go into guest state
82  * <= 0 if we need to go back to the host with return value
83  */
84 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
85 {
86         int r;
87
88         WARN_ON(irqs_disabled());
89         hard_irq_disable();
90
91         while (true) {
92                 if (need_resched()) {
93                         local_irq_enable();
94                         cond_resched();
95                         hard_irq_disable();
96                         continue;
97                 }
98
99                 if (signal_pending(current)) {
100                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
101                         vcpu->run->exit_reason = KVM_EXIT_INTR;
102                         r = -EINTR;
103                         break;
104                 }
105
106                 vcpu->mode = IN_GUEST_MODE;
107
108                 /*
109                  * Reading vcpu->requests must happen after setting vcpu->mode,
110                  * so we don't miss a request because the requester sees
111                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
112                  * before next entering the guest (and thus doesn't IPI).
113                  * This also orders the write to mode from any reads
114                  * to the page tables done while the VCPU is running.
115                  * Please see the comment in kvm_flush_remote_tlbs.
116                  */
117                 smp_mb();
118
119                 if (kvm_request_pending(vcpu)) {
120                         /* Make sure we process requests preemptable */
121                         local_irq_enable();
122                         trace_kvm_check_requests(vcpu);
123                         r = kvmppc_core_check_requests(vcpu);
124                         hard_irq_disable();
125                         if (r > 0)
126                                 continue;
127                         break;
128                 }
129
130                 if (kvmppc_core_prepare_to_enter(vcpu)) {
131                         /* interrupts got enabled in between, so we
132                            are back at square 1 */
133                         continue;
134                 }
135
136                 guest_enter_irqoff();
137                 return 1;
138         }
139
140         /* return to host */
141         local_irq_enable();
142         return r;
143 }
144 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
145
146 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
147 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
148 {
149         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
150         int i;
151
152         shared->sprg0 = swab64(shared->sprg0);
153         shared->sprg1 = swab64(shared->sprg1);
154         shared->sprg2 = swab64(shared->sprg2);
155         shared->sprg3 = swab64(shared->sprg3);
156         shared->srr0 = swab64(shared->srr0);
157         shared->srr1 = swab64(shared->srr1);
158         shared->dar = swab64(shared->dar);
159         shared->msr = swab64(shared->msr);
160         shared->dsisr = swab32(shared->dsisr);
161         shared->int_pending = swab32(shared->int_pending);
162         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
163                 shared->sr[i] = swab32(shared->sr[i]);
164 }
165 #endif
166
167 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
168 {
169         int nr = kvmppc_get_gpr(vcpu, 11);
170         int r;
171         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
172         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
173         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
174         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
175         unsigned long r2 = 0;
176
177         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
178                 /* 32 bit mode */
179                 param1 &= 0xffffffff;
180                 param2 &= 0xffffffff;
181                 param3 &= 0xffffffff;
182                 param4 &= 0xffffffff;
183         }
184
185         switch (nr) {
186         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
187         {
188 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
189                 /* Book3S can be little endian, find it out here */
190                 int shared_big_endian = true;
191                 if (vcpu->arch.intr_msr & MSR_LE)
192                         shared_big_endian = false;
193                 if (shared_big_endian != vcpu->arch.shared_big_endian)
194                         kvmppc_swab_shared(vcpu);
195                 vcpu->arch.shared_big_endian = shared_big_endian;
196 #endif
197
198                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
199                         /*
200                          * Older versions of the Linux magic page code had
201                          * a bug where they would map their trampoline code
202                          * NX. If that's the case, remove !PR NX capability.
203                          */
204                         vcpu->arch.disable_kernel_nx = true;
205                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
206                 }
207
208                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
209                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
210
211 #ifdef CONFIG_PPC_64K_PAGES
212                 /*
213                  * Make sure our 4k magic page is in the same window of a 64k
214                  * page within the guest and within the host's page.
215                  */
216                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
217                     ((ulong)vcpu->arch.shared & 0xf000)) {
218                         void *old_shared = vcpu->arch.shared;
219                         ulong shared = (ulong)vcpu->arch.shared;
220                         void *new_shared;
221
222                         shared &= PAGE_MASK;
223                         shared |= vcpu->arch.magic_page_pa & 0xf000;
224                         new_shared = (void*)shared;
225                         memcpy(new_shared, old_shared, 0x1000);
226                         vcpu->arch.shared = new_shared;
227                 }
228 #endif
229
230                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
231
232                 r = EV_SUCCESS;
233                 break;
234         }
235         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
236                 r = EV_SUCCESS;
237 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
238                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
239 #endif
240
241                 /* Second return value is in r4 */
242                 break;
243         case EV_HCALL_TOKEN(EV_IDLE):
244                 r = EV_SUCCESS;
245                 kvm_vcpu_block(vcpu);
246                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
247                 break;
248         default:
249                 r = EV_UNIMPLEMENTED;
250                 break;
251         }
252
253         kvmppc_set_gpr(vcpu, 4, r2);
254
255         return r;
256 }
257 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
258
259 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
260 {
261         int r = false;
262
263         /* We have to know what CPU to virtualize */
264         if (!vcpu->arch.pvr)
265                 goto out;
266
267         /* PAPR only works with book3s_64 */
268         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
269                 goto out;
270
271         /* HV KVM can only do PAPR mode for now */
272         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
273                 goto out;
274
275 #ifdef CONFIG_KVM_BOOKE_HV
276         if (!cpu_has_feature(CPU_FTR_EMB_HV))
277                 goto out;
278 #endif
279
280         r = true;
281
282 out:
283         vcpu->arch.sane = r;
284         return r ? 0 : -EINVAL;
285 }
286 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
287
288 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
289 {
290         enum emulation_result er;
291         int r;
292
293         er = kvmppc_emulate_loadstore(vcpu);
294         switch (er) {
295         case EMULATE_DONE:
296                 /* Future optimization: only reload non-volatiles if they were
297                  * actually modified. */
298                 r = RESUME_GUEST_NV;
299                 break;
300         case EMULATE_AGAIN:
301                 r = RESUME_GUEST;
302                 break;
303         case EMULATE_DO_MMIO:
304                 run->exit_reason = KVM_EXIT_MMIO;
305                 /* We must reload nonvolatiles because "update" load/store
306                  * instructions modify register state. */
307                 /* Future optimization: only reload non-volatiles if they were
308                  * actually modified. */
309                 r = RESUME_HOST_NV;
310                 break;
311         case EMULATE_FAIL:
312         {
313                 u32 last_inst;
314
315                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
316                 /* XXX Deliver Program interrupt to guest. */
317                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
318                 r = RESUME_HOST;
319                 break;
320         }
321         default:
322                 WARN_ON(1);
323                 r = RESUME_GUEST;
324         }
325
326         return r;
327 }
328 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
329
330 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
331               bool data)
332 {
333         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
334         struct kvmppc_pte pte;
335         int r;
336
337         vcpu->stat.st++;
338
339         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
340                          XLATE_WRITE, &pte);
341         if (r < 0)
342                 return r;
343
344         *eaddr = pte.raddr;
345
346         if (!pte.may_write)
347                 return -EPERM;
348
349         /* Magic page override */
350         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
351             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
352             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
353                 void *magic = vcpu->arch.shared;
354                 magic += pte.eaddr & 0xfff;
355                 memcpy(magic, ptr, size);
356                 return EMULATE_DONE;
357         }
358
359         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
360                 return EMULATE_DO_MMIO;
361
362         return EMULATE_DONE;
363 }
364 EXPORT_SYMBOL_GPL(kvmppc_st);
365
366 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
367                       bool data)
368 {
369         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
370         struct kvmppc_pte pte;
371         int rc;
372
373         vcpu->stat.ld++;
374
375         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
376                           XLATE_READ, &pte);
377         if (rc)
378                 return rc;
379
380         *eaddr = pte.raddr;
381
382         if (!pte.may_read)
383                 return -EPERM;
384
385         if (!data && !pte.may_execute)
386                 return -ENOEXEC;
387
388         /* Magic page override */
389         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
390             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
391             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
392                 void *magic = vcpu->arch.shared;
393                 magic += pte.eaddr & 0xfff;
394                 memcpy(ptr, magic, size);
395                 return EMULATE_DONE;
396         }
397
398         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
399                 return EMULATE_DO_MMIO;
400
401         return EMULATE_DONE;
402 }
403 EXPORT_SYMBOL_GPL(kvmppc_ld);
404
405 int kvm_arch_hardware_enable(void)
406 {
407         return 0;
408 }
409
410 int kvm_arch_hardware_setup(void)
411 {
412         return 0;
413 }
414
415 void kvm_arch_check_processor_compat(void *rtn)
416 {
417         *(int *)rtn = kvmppc_core_check_processor_compat();
418 }
419
420 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
421 {
422         struct kvmppc_ops *kvm_ops = NULL;
423         /*
424          * if we have both HV and PR enabled, default is HV
425          */
426         if (type == 0) {
427                 if (kvmppc_hv_ops)
428                         kvm_ops = kvmppc_hv_ops;
429                 else
430                         kvm_ops = kvmppc_pr_ops;
431                 if (!kvm_ops)
432                         goto err_out;
433         } else  if (type == KVM_VM_PPC_HV) {
434                 if (!kvmppc_hv_ops)
435                         goto err_out;
436                 kvm_ops = kvmppc_hv_ops;
437         } else if (type == KVM_VM_PPC_PR) {
438                 if (!kvmppc_pr_ops)
439                         goto err_out;
440                 kvm_ops = kvmppc_pr_ops;
441         } else
442                 goto err_out;
443
444         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
445                 return -ENOENT;
446
447         kvm->arch.kvm_ops = kvm_ops;
448         return kvmppc_core_init_vm(kvm);
449 err_out:
450         return -EINVAL;
451 }
452
453 bool kvm_arch_has_vcpu_debugfs(void)
454 {
455         return false;
456 }
457
458 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
459 {
460         return 0;
461 }
462
463 void kvm_arch_destroy_vm(struct kvm *kvm)
464 {
465         unsigned int i;
466         struct kvm_vcpu *vcpu;
467
468 #ifdef CONFIG_KVM_XICS
469         /*
470          * We call kick_all_cpus_sync() to ensure that all
471          * CPUs have executed any pending IPIs before we
472          * continue and free VCPUs structures below.
473          */
474         if (is_kvmppc_hv_enabled(kvm))
475                 kick_all_cpus_sync();
476 #endif
477
478         kvm_for_each_vcpu(i, vcpu, kvm)
479                 kvm_arch_vcpu_free(vcpu);
480
481         mutex_lock(&kvm->lock);
482         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
483                 kvm->vcpus[i] = NULL;
484
485         atomic_set(&kvm->online_vcpus, 0);
486
487         kvmppc_core_destroy_vm(kvm);
488
489         mutex_unlock(&kvm->lock);
490
491         /* drop the module reference */
492         module_put(kvm->arch.kvm_ops->owner);
493 }
494
495 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
496 {
497         int r;
498         /* Assume we're using HV mode when the HV module is loaded */
499         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
500
501         if (kvm) {
502                 /*
503                  * Hooray - we know which VM type we're running on. Depend on
504                  * that rather than the guess above.
505                  */
506                 hv_enabled = is_kvmppc_hv_enabled(kvm);
507         }
508
509         switch (ext) {
510 #ifdef CONFIG_BOOKE
511         case KVM_CAP_PPC_BOOKE_SREGS:
512         case KVM_CAP_PPC_BOOKE_WATCHDOG:
513         case KVM_CAP_PPC_EPR:
514 #else
515         case KVM_CAP_PPC_SEGSTATE:
516         case KVM_CAP_PPC_HIOR:
517         case KVM_CAP_PPC_PAPR:
518 #endif
519         case KVM_CAP_PPC_UNSET_IRQ:
520         case KVM_CAP_PPC_IRQ_LEVEL:
521         case KVM_CAP_ENABLE_CAP:
522         case KVM_CAP_ENABLE_CAP_VM:
523         case KVM_CAP_ONE_REG:
524         case KVM_CAP_IOEVENTFD:
525         case KVM_CAP_DEVICE_CTRL:
526         case KVM_CAP_IMMEDIATE_EXIT:
527                 r = 1;
528                 break;
529         case KVM_CAP_PPC_PAIRED_SINGLES:
530         case KVM_CAP_PPC_OSI:
531         case KVM_CAP_PPC_GET_PVINFO:
532 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
533         case KVM_CAP_SW_TLB:
534 #endif
535                 /* We support this only for PR */
536                 r = !hv_enabled;
537                 break;
538 #ifdef CONFIG_KVM_MPIC
539         case KVM_CAP_IRQ_MPIC:
540                 r = 1;
541                 break;
542 #endif
543
544 #ifdef CONFIG_PPC_BOOK3S_64
545         case KVM_CAP_SPAPR_TCE:
546         case KVM_CAP_SPAPR_TCE_64:
547                 /* fallthrough */
548         case KVM_CAP_SPAPR_TCE_VFIO:
549         case KVM_CAP_PPC_RTAS:
550         case KVM_CAP_PPC_FIXUP_HCALL:
551         case KVM_CAP_PPC_ENABLE_HCALL:
552 #ifdef CONFIG_KVM_XICS
553         case KVM_CAP_IRQ_XICS:
554 #endif
555         case KVM_CAP_PPC_GET_CPU_CHAR:
556                 r = 1;
557                 break;
558
559         case KVM_CAP_PPC_ALLOC_HTAB:
560                 r = hv_enabled;
561                 break;
562 #endif /* CONFIG_PPC_BOOK3S_64 */
563 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
564         case KVM_CAP_PPC_SMT:
565                 r = 0;
566                 if (kvm) {
567                         if (kvm->arch.emul_smt_mode > 1)
568                                 r = kvm->arch.emul_smt_mode;
569                         else
570                                 r = kvm->arch.smt_mode;
571                 } else if (hv_enabled) {
572                         if (cpu_has_feature(CPU_FTR_ARCH_300))
573                                 r = 1;
574                         else
575                                 r = threads_per_subcore;
576                 }
577                 break;
578         case KVM_CAP_PPC_SMT_POSSIBLE:
579                 r = 1;
580                 if (hv_enabled) {
581                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
582                                 r = ((threads_per_subcore << 1) - 1);
583                         else
584                                 /* P9 can emulate dbells, so allow any mode */
585                                 r = 8 | 4 | 2 | 1;
586                 }
587                 break;
588         case KVM_CAP_PPC_RMA:
589                 r = 0;
590                 break;
591         case KVM_CAP_PPC_HWRNG:
592                 r = kvmppc_hwrng_present();
593                 break;
594         case KVM_CAP_PPC_MMU_RADIX:
595                 r = !!(hv_enabled && radix_enabled());
596                 break;
597         case KVM_CAP_PPC_MMU_HASH_V3:
598                 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
599                 break;
600 #endif
601         case KVM_CAP_SYNC_MMU:
602 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
603                 r = hv_enabled;
604 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
605                 r = 1;
606 #else
607                 r = 0;
608 #endif
609                 break;
610 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
611         case KVM_CAP_PPC_HTAB_FD:
612                 r = hv_enabled;
613                 break;
614 #endif
615         case KVM_CAP_NR_VCPUS:
616                 /*
617                  * Recommending a number of CPUs is somewhat arbitrary; we
618                  * return the number of present CPUs for -HV (since a host
619                  * will have secondary threads "offline"), and for other KVM
620                  * implementations just count online CPUs.
621                  */
622                 if (hv_enabled)
623                         r = num_present_cpus();
624                 else
625                         r = num_online_cpus();
626                 break;
627         case KVM_CAP_NR_MEMSLOTS:
628                 r = KVM_USER_MEM_SLOTS;
629                 break;
630         case KVM_CAP_MAX_VCPUS:
631                 r = KVM_MAX_VCPUS;
632                 break;
633 #ifdef CONFIG_PPC_BOOK3S_64
634         case KVM_CAP_PPC_GET_SMMU_INFO:
635                 r = 1;
636                 break;
637         case KVM_CAP_SPAPR_MULTITCE:
638                 r = 1;
639                 break;
640         case KVM_CAP_SPAPR_RESIZE_HPT:
641                 /* Disable this on POWER9 until code handles new HPTE format */
642                 r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
643                 break;
644 #endif
645 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
646         case KVM_CAP_PPC_FWNMI:
647                 r = hv_enabled;
648                 break;
649 #endif
650         case KVM_CAP_PPC_HTM:
651                 r = hv_enabled &&
652                     (cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM_COMP);
653                 break;
654         default:
655                 r = 0;
656                 break;
657         }
658         return r;
659
660 }
661
662 long kvm_arch_dev_ioctl(struct file *filp,
663                         unsigned int ioctl, unsigned long arg)
664 {
665         return -EINVAL;
666 }
667
668 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
669                            struct kvm_memory_slot *dont)
670 {
671         kvmppc_core_free_memslot(kvm, free, dont);
672 }
673
674 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
675                             unsigned long npages)
676 {
677         return kvmppc_core_create_memslot(kvm, slot, npages);
678 }
679
680 int kvm_arch_prepare_memory_region(struct kvm *kvm,
681                                    struct kvm_memory_slot *memslot,
682                                    const struct kvm_userspace_memory_region *mem,
683                                    enum kvm_mr_change change)
684 {
685         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
686 }
687
688 void kvm_arch_commit_memory_region(struct kvm *kvm,
689                                    const struct kvm_userspace_memory_region *mem,
690                                    const struct kvm_memory_slot *old,
691                                    const struct kvm_memory_slot *new,
692                                    enum kvm_mr_change change)
693 {
694         kvmppc_core_commit_memory_region(kvm, mem, old, new);
695 }
696
697 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
698                                    struct kvm_memory_slot *slot)
699 {
700         kvmppc_core_flush_memslot(kvm, slot);
701 }
702
703 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
704 {
705         struct kvm_vcpu *vcpu;
706         vcpu = kvmppc_core_vcpu_create(kvm, id);
707         if (!IS_ERR(vcpu)) {
708                 vcpu->arch.wqp = &vcpu->wq;
709                 kvmppc_create_vcpu_debugfs(vcpu, id);
710         }
711         return vcpu;
712 }
713
714 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
715 {
716 }
717
718 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
719 {
720         /* Make sure we're not using the vcpu anymore */
721         hrtimer_cancel(&vcpu->arch.dec_timer);
722
723         kvmppc_remove_vcpu_debugfs(vcpu);
724
725         switch (vcpu->arch.irq_type) {
726         case KVMPPC_IRQ_MPIC:
727                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
728                 break;
729         case KVMPPC_IRQ_XICS:
730                 if (xive_enabled())
731                         kvmppc_xive_cleanup_vcpu(vcpu);
732                 else
733                         kvmppc_xics_free_icp(vcpu);
734                 break;
735         }
736
737         kvmppc_core_vcpu_free(vcpu);
738 }
739
740 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
741 {
742         kvm_arch_vcpu_free(vcpu);
743 }
744
745 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
746 {
747         return kvmppc_core_pending_dec(vcpu);
748 }
749
750 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
751 {
752         struct kvm_vcpu *vcpu;
753
754         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
755         kvmppc_decrementer_func(vcpu);
756
757         return HRTIMER_NORESTART;
758 }
759
760 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
761 {
762         int ret;
763
764         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
765         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
766         vcpu->arch.dec_expires = get_tb();
767
768 #ifdef CONFIG_KVM_EXIT_TIMING
769         mutex_init(&vcpu->arch.exit_timing_lock);
770 #endif
771         ret = kvmppc_subarch_vcpu_init(vcpu);
772         return ret;
773 }
774
775 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
776 {
777         kvmppc_mmu_destroy(vcpu);
778         kvmppc_subarch_vcpu_uninit(vcpu);
779 }
780
781 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
782 {
783 #ifdef CONFIG_BOOKE
784         /*
785          * vrsave (formerly usprg0) isn't used by Linux, but may
786          * be used by the guest.
787          *
788          * On non-booke this is associated with Altivec and
789          * is handled by code in book3s.c.
790          */
791         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
792 #endif
793         kvmppc_core_vcpu_load(vcpu, cpu);
794 }
795
796 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
797 {
798         kvmppc_core_vcpu_put(vcpu);
799 #ifdef CONFIG_BOOKE
800         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
801 #endif
802 }
803
804 /*
805  * irq_bypass_add_producer and irq_bypass_del_producer are only
806  * useful if the architecture supports PCI passthrough.
807  * irq_bypass_stop and irq_bypass_start are not needed and so
808  * kvm_ops are not defined for them.
809  */
810 bool kvm_arch_has_irq_bypass(void)
811 {
812         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
813                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
814 }
815
816 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
817                                      struct irq_bypass_producer *prod)
818 {
819         struct kvm_kernel_irqfd *irqfd =
820                 container_of(cons, struct kvm_kernel_irqfd, consumer);
821         struct kvm *kvm = irqfd->kvm;
822
823         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
824                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
825
826         return 0;
827 }
828
829 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
830                                       struct irq_bypass_producer *prod)
831 {
832         struct kvm_kernel_irqfd *irqfd =
833                 container_of(cons, struct kvm_kernel_irqfd, consumer);
834         struct kvm *kvm = irqfd->kvm;
835
836         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
837                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
838 }
839
840 #ifdef CONFIG_VSX
841 static inline int kvmppc_get_vsr_dword_offset(int index)
842 {
843         int offset;
844
845         if ((index != 0) && (index != 1))
846                 return -1;
847
848 #ifdef __BIG_ENDIAN
849         offset =  index;
850 #else
851         offset = 1 - index;
852 #endif
853
854         return offset;
855 }
856
857 static inline int kvmppc_get_vsr_word_offset(int index)
858 {
859         int offset;
860
861         if ((index > 3) || (index < 0))
862                 return -1;
863
864 #ifdef __BIG_ENDIAN
865         offset = index;
866 #else
867         offset = 3 - index;
868 #endif
869         return offset;
870 }
871
872 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
873         u64 gpr)
874 {
875         union kvmppc_one_reg val;
876         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
877         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
878
879         if (offset == -1)
880                 return;
881
882         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
883                 val.vval = VCPU_VSX_VR(vcpu, index);
884                 val.vsxval[offset] = gpr;
885                 VCPU_VSX_VR(vcpu, index) = val.vval;
886         } else {
887                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
888         }
889 }
890
891 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
892         u64 gpr)
893 {
894         union kvmppc_one_reg val;
895         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
896
897         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
898                 val.vval = VCPU_VSX_VR(vcpu, index);
899                 val.vsxval[0] = gpr;
900                 val.vsxval[1] = gpr;
901                 VCPU_VSX_VR(vcpu, index) = val.vval;
902         } else {
903                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
904                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
905         }
906 }
907
908 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
909         u32 gpr32)
910 {
911         union kvmppc_one_reg val;
912         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
913         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
914         int dword_offset, word_offset;
915
916         if (offset == -1)
917                 return;
918
919         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
920                 val.vval = VCPU_VSX_VR(vcpu, index);
921                 val.vsx32val[offset] = gpr32;
922                 VCPU_VSX_VR(vcpu, index) = val.vval;
923         } else {
924                 dword_offset = offset / 2;
925                 word_offset = offset % 2;
926                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
927                 val.vsx32val[word_offset] = gpr32;
928                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
929         }
930 }
931 #endif /* CONFIG_VSX */
932
933 #ifdef CONFIG_PPC_FPU
934 static inline u64 sp_to_dp(u32 fprs)
935 {
936         u64 fprd;
937
938         preempt_disable();
939         enable_kernel_fp();
940         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
941              : "fr0");
942         preempt_enable();
943         return fprd;
944 }
945
946 static inline u32 dp_to_sp(u64 fprd)
947 {
948         u32 fprs;
949
950         preempt_disable();
951         enable_kernel_fp();
952         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
953              : "fr0");
954         preempt_enable();
955         return fprs;
956 }
957
958 #else
959 #define sp_to_dp(x)     (x)
960 #define dp_to_sp(x)     (x)
961 #endif /* CONFIG_PPC_FPU */
962
963 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
964                                       struct kvm_run *run)
965 {
966         u64 uninitialized_var(gpr);
967
968         if (run->mmio.len > sizeof(gpr)) {
969                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
970                 return;
971         }
972
973         if (!vcpu->arch.mmio_host_swabbed) {
974                 switch (run->mmio.len) {
975                 case 8: gpr = *(u64 *)run->mmio.data; break;
976                 case 4: gpr = *(u32 *)run->mmio.data; break;
977                 case 2: gpr = *(u16 *)run->mmio.data; break;
978                 case 1: gpr = *(u8 *)run->mmio.data; break;
979                 }
980         } else {
981                 switch (run->mmio.len) {
982                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
983                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
984                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
985                 case 1: gpr = *(u8 *)run->mmio.data; break;
986                 }
987         }
988
989         /* conversion between single and double precision */
990         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
991                 gpr = sp_to_dp(gpr);
992
993         if (vcpu->arch.mmio_sign_extend) {
994                 switch (run->mmio.len) {
995 #ifdef CONFIG_PPC64
996                 case 4:
997                         gpr = (s64)(s32)gpr;
998                         break;
999 #endif
1000                 case 2:
1001                         gpr = (s64)(s16)gpr;
1002                         break;
1003                 case 1:
1004                         gpr = (s64)(s8)gpr;
1005                         break;
1006                 }
1007         }
1008
1009         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1010         case KVM_MMIO_REG_GPR:
1011                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1012                 break;
1013         case KVM_MMIO_REG_FPR:
1014                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1015                 break;
1016 #ifdef CONFIG_PPC_BOOK3S
1017         case KVM_MMIO_REG_QPR:
1018                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1019                 break;
1020         case KVM_MMIO_REG_FQPR:
1021                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1022                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1023                 break;
1024 #endif
1025 #ifdef CONFIG_VSX
1026         case KVM_MMIO_REG_VSX:
1027                 if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1028                         kvmppc_set_vsr_dword(vcpu, gpr);
1029                 else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1030                         kvmppc_set_vsr_word(vcpu, gpr);
1031                 else if (vcpu->arch.mmio_vsx_copy_type ==
1032                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1033                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1034                 break;
1035 #endif
1036         default:
1037                 BUG();
1038         }
1039 }
1040
1041 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1042                                 unsigned int rt, unsigned int bytes,
1043                                 int is_default_endian, int sign_extend)
1044 {
1045         int idx, ret;
1046         bool host_swabbed;
1047
1048         /* Pity C doesn't have a logical XOR operator */
1049         if (kvmppc_need_byteswap(vcpu)) {
1050                 host_swabbed = is_default_endian;
1051         } else {
1052                 host_swabbed = !is_default_endian;
1053         }
1054
1055         if (bytes > sizeof(run->mmio.data)) {
1056                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1057                        run->mmio.len);
1058         }
1059
1060         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1061         run->mmio.len = bytes;
1062         run->mmio.is_write = 0;
1063
1064         vcpu->arch.io_gpr = rt;
1065         vcpu->arch.mmio_host_swabbed = host_swabbed;
1066         vcpu->mmio_needed = 1;
1067         vcpu->mmio_is_write = 0;
1068         vcpu->arch.mmio_sign_extend = sign_extend;
1069
1070         idx = srcu_read_lock(&vcpu->kvm->srcu);
1071
1072         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1073                               bytes, &run->mmio.data);
1074
1075         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1076
1077         if (!ret) {
1078                 kvmppc_complete_mmio_load(vcpu, run);
1079                 vcpu->mmio_needed = 0;
1080                 return EMULATE_DONE;
1081         }
1082
1083         return EMULATE_DO_MMIO;
1084 }
1085
1086 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1087                        unsigned int rt, unsigned int bytes,
1088                        int is_default_endian)
1089 {
1090         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1091 }
1092 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1093
1094 /* Same as above, but sign extends */
1095 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1096                         unsigned int rt, unsigned int bytes,
1097                         int is_default_endian)
1098 {
1099         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1100 }
1101
1102 #ifdef CONFIG_VSX
1103 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1104                         unsigned int rt, unsigned int bytes,
1105                         int is_default_endian, int mmio_sign_extend)
1106 {
1107         enum emulation_result emulated = EMULATE_DONE;
1108
1109         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1110         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1111                 return EMULATE_FAIL;
1112
1113         while (vcpu->arch.mmio_vsx_copy_nums) {
1114                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1115                         is_default_endian, mmio_sign_extend);
1116
1117                 if (emulated != EMULATE_DONE)
1118                         break;
1119
1120                 vcpu->arch.paddr_accessed += run->mmio.len;
1121
1122                 vcpu->arch.mmio_vsx_copy_nums--;
1123                 vcpu->arch.mmio_vsx_offset++;
1124         }
1125         return emulated;
1126 }
1127 #endif /* CONFIG_VSX */
1128
1129 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1130                         u64 val, unsigned int bytes, int is_default_endian)
1131 {
1132         void *data = run->mmio.data;
1133         int idx, ret;
1134         bool host_swabbed;
1135
1136         /* Pity C doesn't have a logical XOR operator */
1137         if (kvmppc_need_byteswap(vcpu)) {
1138                 host_swabbed = is_default_endian;
1139         } else {
1140                 host_swabbed = !is_default_endian;
1141         }
1142
1143         if (bytes > sizeof(run->mmio.data)) {
1144                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1145                        run->mmio.len);
1146         }
1147
1148         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1149         run->mmio.len = bytes;
1150         run->mmio.is_write = 1;
1151         vcpu->mmio_needed = 1;
1152         vcpu->mmio_is_write = 1;
1153
1154         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1155                 val = dp_to_sp(val);
1156
1157         /* Store the value at the lowest bytes in 'data'. */
1158         if (!host_swabbed) {
1159                 switch (bytes) {
1160                 case 8: *(u64 *)data = val; break;
1161                 case 4: *(u32 *)data = val; break;
1162                 case 2: *(u16 *)data = val; break;
1163                 case 1: *(u8  *)data = val; break;
1164                 }
1165         } else {
1166                 switch (bytes) {
1167                 case 8: *(u64 *)data = swab64(val); break;
1168                 case 4: *(u32 *)data = swab32(val); break;
1169                 case 2: *(u16 *)data = swab16(val); break;
1170                 case 1: *(u8  *)data = val; break;
1171                 }
1172         }
1173
1174         idx = srcu_read_lock(&vcpu->kvm->srcu);
1175
1176         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1177                                bytes, &run->mmio.data);
1178
1179         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1180
1181         if (!ret) {
1182                 vcpu->mmio_needed = 0;
1183                 return EMULATE_DONE;
1184         }
1185
1186         return EMULATE_DO_MMIO;
1187 }
1188 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1189
1190 #ifdef CONFIG_VSX
1191 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1192 {
1193         u32 dword_offset, word_offset;
1194         union kvmppc_one_reg reg;
1195         int vsx_offset = 0;
1196         int copy_type = vcpu->arch.mmio_vsx_copy_type;
1197         int result = 0;
1198
1199         switch (copy_type) {
1200         case KVMPPC_VSX_COPY_DWORD:
1201                 vsx_offset =
1202                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1203
1204                 if (vsx_offset == -1) {
1205                         result = -1;
1206                         break;
1207                 }
1208
1209                 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1210                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1211                 } else {
1212                         reg.vval = VCPU_VSX_VR(vcpu, rs);
1213                         *val = reg.vsxval[vsx_offset];
1214                 }
1215                 break;
1216
1217         case KVMPPC_VSX_COPY_WORD:
1218                 vsx_offset =
1219                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1220
1221                 if (vsx_offset == -1) {
1222                         result = -1;
1223                         break;
1224                 }
1225
1226                 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1227                         dword_offset = vsx_offset / 2;
1228                         word_offset = vsx_offset % 2;
1229                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1230                         *val = reg.vsx32val[word_offset];
1231                 } else {
1232                         reg.vval = VCPU_VSX_VR(vcpu, rs);
1233                         *val = reg.vsx32val[vsx_offset];
1234                 }
1235                 break;
1236
1237         default:
1238                 result = -1;
1239                 break;
1240         }
1241
1242         return result;
1243 }
1244
1245 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1246                         int rs, unsigned int bytes, int is_default_endian)
1247 {
1248         u64 val;
1249         enum emulation_result emulated = EMULATE_DONE;
1250
1251         vcpu->arch.io_gpr = rs;
1252
1253         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1254         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1255                 return EMULATE_FAIL;
1256
1257         while (vcpu->arch.mmio_vsx_copy_nums) {
1258                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1259                         return EMULATE_FAIL;
1260
1261                 emulated = kvmppc_handle_store(run, vcpu,
1262                          val, bytes, is_default_endian);
1263
1264                 if (emulated != EMULATE_DONE)
1265                         break;
1266
1267                 vcpu->arch.paddr_accessed += run->mmio.len;
1268
1269                 vcpu->arch.mmio_vsx_copy_nums--;
1270                 vcpu->arch.mmio_vsx_offset++;
1271         }
1272
1273         return emulated;
1274 }
1275
1276 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1277                         struct kvm_run *run)
1278 {
1279         enum emulation_result emulated = EMULATE_FAIL;
1280         int r;
1281
1282         vcpu->arch.paddr_accessed += run->mmio.len;
1283
1284         if (!vcpu->mmio_is_write) {
1285                 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1286                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1287         } else {
1288                 emulated = kvmppc_handle_vsx_store(run, vcpu,
1289                          vcpu->arch.io_gpr, run->mmio.len, 1);
1290         }
1291
1292         switch (emulated) {
1293         case EMULATE_DO_MMIO:
1294                 run->exit_reason = KVM_EXIT_MMIO;
1295                 r = RESUME_HOST;
1296                 break;
1297         case EMULATE_FAIL:
1298                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1299                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1300                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1301                 r = RESUME_HOST;
1302                 break;
1303         default:
1304                 r = RESUME_GUEST;
1305                 break;
1306         }
1307         return r;
1308 }
1309 #endif /* CONFIG_VSX */
1310
1311 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1312 {
1313         int r = 0;
1314         union kvmppc_one_reg val;
1315         int size;
1316
1317         size = one_reg_size(reg->id);
1318         if (size > sizeof(val))
1319                 return -EINVAL;
1320
1321         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1322         if (r == -EINVAL) {
1323                 r = 0;
1324                 switch (reg->id) {
1325 #ifdef CONFIG_ALTIVEC
1326                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1327                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1328                                 r = -ENXIO;
1329                                 break;
1330                         }
1331                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1332                         break;
1333                 case KVM_REG_PPC_VSCR:
1334                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1335                                 r = -ENXIO;
1336                                 break;
1337                         }
1338                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1339                         break;
1340                 case KVM_REG_PPC_VRSAVE:
1341                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1342                         break;
1343 #endif /* CONFIG_ALTIVEC */
1344                 default:
1345                         r = -EINVAL;
1346                         break;
1347                 }
1348         }
1349
1350         if (r)
1351                 return r;
1352
1353         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1354                 r = -EFAULT;
1355
1356         return r;
1357 }
1358
1359 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1360 {
1361         int r;
1362         union kvmppc_one_reg val;
1363         int size;
1364
1365         size = one_reg_size(reg->id);
1366         if (size > sizeof(val))
1367                 return -EINVAL;
1368
1369         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1370                 return -EFAULT;
1371
1372         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1373         if (r == -EINVAL) {
1374                 r = 0;
1375                 switch (reg->id) {
1376 #ifdef CONFIG_ALTIVEC
1377                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1378                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1379                                 r = -ENXIO;
1380                                 break;
1381                         }
1382                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1383                         break;
1384                 case KVM_REG_PPC_VSCR:
1385                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1386                                 r = -ENXIO;
1387                                 break;
1388                         }
1389                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1390                         break;
1391                 case KVM_REG_PPC_VRSAVE:
1392                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1393                                 r = -ENXIO;
1394                                 break;
1395                         }
1396                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1397                         break;
1398 #endif /* CONFIG_ALTIVEC */
1399                 default:
1400                         r = -EINVAL;
1401                         break;
1402                 }
1403         }
1404
1405         return r;
1406 }
1407
1408 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1409 {
1410         int r;
1411
1412         vcpu_load(vcpu);
1413
1414         if (vcpu->mmio_needed) {
1415                 vcpu->mmio_needed = 0;
1416                 if (!vcpu->mmio_is_write)
1417                         kvmppc_complete_mmio_load(vcpu, run);
1418 #ifdef CONFIG_VSX
1419                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1420                         vcpu->arch.mmio_vsx_copy_nums--;
1421                         vcpu->arch.mmio_vsx_offset++;
1422                 }
1423
1424                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1425                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1426                         if (r == RESUME_HOST) {
1427                                 vcpu->mmio_needed = 1;
1428                                 goto out;
1429                         }
1430                 }
1431 #endif
1432         } else if (vcpu->arch.osi_needed) {
1433                 u64 *gprs = run->osi.gprs;
1434                 int i;
1435
1436                 for (i = 0; i < 32; i++)
1437                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1438                 vcpu->arch.osi_needed = 0;
1439         } else if (vcpu->arch.hcall_needed) {
1440                 int i;
1441
1442                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1443                 for (i = 0; i < 9; ++i)
1444                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1445                 vcpu->arch.hcall_needed = 0;
1446 #ifdef CONFIG_BOOKE
1447         } else if (vcpu->arch.epr_needed) {
1448                 kvmppc_set_epr(vcpu, run->epr.epr);
1449                 vcpu->arch.epr_needed = 0;
1450 #endif
1451         }
1452
1453         kvm_sigset_activate(vcpu);
1454
1455         if (run->immediate_exit)
1456                 r = -EINTR;
1457         else
1458                 r = kvmppc_vcpu_run(run, vcpu);
1459
1460         kvm_sigset_deactivate(vcpu);
1461
1462 out:
1463         vcpu_put(vcpu);
1464         return r;
1465 }
1466
1467 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1468 {
1469         if (irq->irq == KVM_INTERRUPT_UNSET) {
1470                 kvmppc_core_dequeue_external(vcpu);
1471                 return 0;
1472         }
1473
1474         kvmppc_core_queue_external(vcpu, irq);
1475
1476         kvm_vcpu_kick(vcpu);
1477
1478         return 0;
1479 }
1480
1481 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1482                                      struct kvm_enable_cap *cap)
1483 {
1484         int r;
1485
1486         if (cap->flags)
1487                 return -EINVAL;
1488
1489         switch (cap->cap) {
1490         case KVM_CAP_PPC_OSI:
1491                 r = 0;
1492                 vcpu->arch.osi_enabled = true;
1493                 break;
1494         case KVM_CAP_PPC_PAPR:
1495                 r = 0;
1496                 vcpu->arch.papr_enabled = true;
1497                 break;
1498         case KVM_CAP_PPC_EPR:
1499                 r = 0;
1500                 if (cap->args[0])
1501                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1502                 else
1503                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1504                 break;
1505 #ifdef CONFIG_BOOKE
1506         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1507                 r = 0;
1508                 vcpu->arch.watchdog_enabled = true;
1509                 break;
1510 #endif
1511 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1512         case KVM_CAP_SW_TLB: {
1513                 struct kvm_config_tlb cfg;
1514                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1515
1516                 r = -EFAULT;
1517                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1518                         break;
1519
1520                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1521                 break;
1522         }
1523 #endif
1524 #ifdef CONFIG_KVM_MPIC
1525         case KVM_CAP_IRQ_MPIC: {
1526                 struct fd f;
1527                 struct kvm_device *dev;
1528
1529                 r = -EBADF;
1530                 f = fdget(cap->args[0]);
1531                 if (!f.file)
1532                         break;
1533
1534                 r = -EPERM;
1535                 dev = kvm_device_from_filp(f.file);
1536                 if (dev)
1537                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1538
1539                 fdput(f);
1540                 break;
1541         }
1542 #endif
1543 #ifdef CONFIG_KVM_XICS
1544         case KVM_CAP_IRQ_XICS: {
1545                 struct fd f;
1546                 struct kvm_device *dev;
1547
1548                 r = -EBADF;
1549                 f = fdget(cap->args[0]);
1550                 if (!f.file)
1551                         break;
1552
1553                 r = -EPERM;
1554                 dev = kvm_device_from_filp(f.file);
1555                 if (dev) {
1556                         if (xive_enabled())
1557                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1558                         else
1559                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1560                 }
1561
1562                 fdput(f);
1563                 break;
1564         }
1565 #endif /* CONFIG_KVM_XICS */
1566 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1567         case KVM_CAP_PPC_FWNMI:
1568                 r = -EINVAL;
1569                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1570                         break;
1571                 r = 0;
1572                 vcpu->kvm->arch.fwnmi_enabled = true;
1573                 break;
1574 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1575         default:
1576                 r = -EINVAL;
1577                 break;
1578         }
1579
1580         if (!r)
1581                 r = kvmppc_sanity_check(vcpu);
1582
1583         return r;
1584 }
1585
1586 bool kvm_arch_intc_initialized(struct kvm *kvm)
1587 {
1588 #ifdef CONFIG_KVM_MPIC
1589         if (kvm->arch.mpic)
1590                 return true;
1591 #endif
1592 #ifdef CONFIG_KVM_XICS
1593         if (kvm->arch.xics || kvm->arch.xive)
1594                 return true;
1595 #endif
1596         return false;
1597 }
1598
1599 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1600                                     struct kvm_mp_state *mp_state)
1601 {
1602         return -EINVAL;
1603 }
1604
1605 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1606                                     struct kvm_mp_state *mp_state)
1607 {
1608         return -EINVAL;
1609 }
1610
1611 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1612                                unsigned int ioctl, unsigned long arg)
1613 {
1614         struct kvm_vcpu *vcpu = filp->private_data;
1615         void __user *argp = (void __user *)arg;
1616
1617         if (ioctl == KVM_INTERRUPT) {
1618                 struct kvm_interrupt irq;
1619                 if (copy_from_user(&irq, argp, sizeof(irq)))
1620                         return -EFAULT;
1621                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1622         }
1623         return -ENOIOCTLCMD;
1624 }
1625
1626 long kvm_arch_vcpu_ioctl(struct file *filp,
1627                          unsigned int ioctl, unsigned long arg)
1628 {
1629         struct kvm_vcpu *vcpu = filp->private_data;
1630         void __user *argp = (void __user *)arg;
1631         long r;
1632
1633         vcpu_load(vcpu);
1634
1635         switch (ioctl) {
1636         case KVM_ENABLE_CAP:
1637         {
1638                 struct kvm_enable_cap cap;
1639                 r = -EFAULT;
1640                 if (copy_from_user(&cap, argp, sizeof(cap)))
1641                         goto out;
1642                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1643                 break;
1644         }
1645
1646         case KVM_SET_ONE_REG:
1647         case KVM_GET_ONE_REG:
1648         {
1649                 struct kvm_one_reg reg;
1650                 r = -EFAULT;
1651                 if (copy_from_user(&reg, argp, sizeof(reg)))
1652                         goto out;
1653                 if (ioctl == KVM_SET_ONE_REG)
1654                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1655                 else
1656                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1657                 break;
1658         }
1659
1660 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1661         case KVM_DIRTY_TLB: {
1662                 struct kvm_dirty_tlb dirty;
1663                 r = -EFAULT;
1664                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1665                         goto out;
1666                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1667                 break;
1668         }
1669 #endif
1670         default:
1671                 r = -EINVAL;
1672         }
1673
1674 out:
1675         vcpu_put(vcpu);
1676         return r;
1677 }
1678
1679 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1680 {
1681         return VM_FAULT_SIGBUS;
1682 }
1683
1684 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1685 {
1686         u32 inst_nop = 0x60000000;
1687 #ifdef CONFIG_KVM_BOOKE_HV
1688         u32 inst_sc1 = 0x44000022;
1689         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1690         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1691         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1692         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1693 #else
1694         u32 inst_lis = 0x3c000000;
1695         u32 inst_ori = 0x60000000;
1696         u32 inst_sc = 0x44000002;
1697         u32 inst_imm_mask = 0xffff;
1698
1699         /*
1700          * The hypercall to get into KVM from within guest context is as
1701          * follows:
1702          *
1703          *    lis r0, r0, KVM_SC_MAGIC_R0@h
1704          *    ori r0, KVM_SC_MAGIC_R0@l
1705          *    sc
1706          *    nop
1707          */
1708         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1709         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1710         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1711         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1712 #endif
1713
1714         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1715
1716         return 0;
1717 }
1718
1719 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1720                           bool line_status)
1721 {
1722         if (!irqchip_in_kernel(kvm))
1723                 return -ENXIO;
1724
1725         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1726                                         irq_event->irq, irq_event->level,
1727                                         line_status);
1728         return 0;
1729 }
1730
1731
1732 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1733                                    struct kvm_enable_cap *cap)
1734 {
1735         int r;
1736
1737         if (cap->flags)
1738                 return -EINVAL;
1739
1740         switch (cap->cap) {
1741 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1742         case KVM_CAP_PPC_ENABLE_HCALL: {
1743                 unsigned long hcall = cap->args[0];
1744
1745                 r = -EINVAL;
1746                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1747                     cap->args[1] > 1)
1748                         break;
1749                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1750                         break;
1751                 if (cap->args[1])
1752                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1753                 else
1754                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1755                 r = 0;
1756                 break;
1757         }
1758         case KVM_CAP_PPC_SMT: {
1759                 unsigned long mode = cap->args[0];
1760                 unsigned long flags = cap->args[1];
1761
1762                 r = -EINVAL;
1763                 if (kvm->arch.kvm_ops->set_smt_mode)
1764                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
1765                 break;
1766         }
1767 #endif
1768         default:
1769                 r = -EINVAL;
1770                 break;
1771         }
1772
1773         return r;
1774 }
1775
1776 #ifdef CONFIG_PPC_BOOK3S_64
1777 /*
1778  * These functions check whether the underlying hardware is safe
1779  * against attacks based on observing the effects of speculatively
1780  * executed instructions, and whether it supplies instructions for
1781  * use in workarounds.  The information comes from firmware, either
1782  * via the device tree on powernv platforms or from an hcall on
1783  * pseries platforms.
1784  */
1785 #ifdef CONFIG_PPC_PSERIES
1786 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1787 {
1788         struct h_cpu_char_result c;
1789         unsigned long rc;
1790
1791         if (!machine_is(pseries))
1792                 return -ENOTTY;
1793
1794         rc = plpar_get_cpu_characteristics(&c);
1795         if (rc == H_SUCCESS) {
1796                 cp->character = c.character;
1797                 cp->behaviour = c.behaviour;
1798                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
1799                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
1800                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
1801                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
1802                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
1803                         KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
1804                         KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
1805                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
1806                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
1807                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
1808                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1809         }
1810         return 0;
1811 }
1812 #else
1813 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1814 {
1815         return -ENOTTY;
1816 }
1817 #endif
1818
1819 static inline bool have_fw_feat(struct device_node *fw_features,
1820                                 const char *state, const char *name)
1821 {
1822         struct device_node *np;
1823         bool r = false;
1824
1825         np = of_get_child_by_name(fw_features, name);
1826         if (np) {
1827                 r = of_property_read_bool(np, state);
1828                 of_node_put(np);
1829         }
1830         return r;
1831 }
1832
1833 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1834 {
1835         struct device_node *np, *fw_features;
1836         int r;
1837
1838         memset(cp, 0, sizeof(*cp));
1839         r = pseries_get_cpu_char(cp);
1840         if (r != -ENOTTY)
1841                 return r;
1842
1843         np = of_find_node_by_name(NULL, "ibm,opal");
1844         if (np) {
1845                 fw_features = of_get_child_by_name(np, "fw-features");
1846                 of_node_put(np);
1847                 if (!fw_features)
1848                         return 0;
1849                 if (have_fw_feat(fw_features, "enabled",
1850                                  "inst-spec-barrier-ori31,31,0"))
1851                         cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
1852                 if (have_fw_feat(fw_features, "enabled",
1853                                  "fw-bcctrl-serialized"))
1854                         cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
1855                 if (have_fw_feat(fw_features, "enabled",
1856                                  "inst-l1d-flush-ori30,30,0"))
1857                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
1858                 if (have_fw_feat(fw_features, "enabled",
1859                                  "inst-l1d-flush-trig2"))
1860                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
1861                 if (have_fw_feat(fw_features, "enabled",
1862                                  "fw-l1d-thread-split"))
1863                         cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
1864                 if (have_fw_feat(fw_features, "enabled",
1865                                  "fw-count-cache-disabled"))
1866                         cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
1867                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
1868                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
1869                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
1870                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
1871                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
1872                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
1873
1874                 if (have_fw_feat(fw_features, "enabled",
1875                                  "speculation-policy-favor-security"))
1876                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
1877                 if (!have_fw_feat(fw_features, "disabled",
1878                                   "needs-l1d-flush-msr-pr-0-to-1"))
1879                         cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
1880                 if (!have_fw_feat(fw_features, "disabled",
1881                                   "needs-spec-barrier-for-bound-checks"))
1882                         cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1883                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
1884                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
1885                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1886
1887                 of_node_put(fw_features);
1888         }
1889
1890         return 0;
1891 }
1892 #endif
1893
1894 long kvm_arch_vm_ioctl(struct file *filp,
1895                        unsigned int ioctl, unsigned long arg)
1896 {
1897         struct kvm *kvm __maybe_unused = filp->private_data;
1898         void __user *argp = (void __user *)arg;
1899         long r;
1900
1901         switch (ioctl) {
1902         case KVM_PPC_GET_PVINFO: {
1903                 struct kvm_ppc_pvinfo pvinfo;
1904                 memset(&pvinfo, 0, sizeof(pvinfo));
1905                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1906                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1907                         r = -EFAULT;
1908                         goto out;
1909                 }
1910
1911                 break;
1912         }
1913         case KVM_ENABLE_CAP:
1914         {
1915                 struct kvm_enable_cap cap;
1916                 r = -EFAULT;
1917                 if (copy_from_user(&cap, argp, sizeof(cap)))
1918                         goto out;
1919                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1920                 break;
1921         }
1922 #ifdef CONFIG_SPAPR_TCE_IOMMU
1923         case KVM_CREATE_SPAPR_TCE_64: {
1924                 struct kvm_create_spapr_tce_64 create_tce_64;
1925
1926                 r = -EFAULT;
1927                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1928                         goto out;
1929                 if (create_tce_64.flags) {
1930                         r = -EINVAL;
1931                         goto out;
1932                 }
1933                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1934                 goto out;
1935         }
1936         case KVM_CREATE_SPAPR_TCE: {
1937                 struct kvm_create_spapr_tce create_tce;
1938                 struct kvm_create_spapr_tce_64 create_tce_64;
1939
1940                 r = -EFAULT;
1941                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1942                         goto out;
1943
1944                 create_tce_64.liobn = create_tce.liobn;
1945                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1946                 create_tce_64.offset = 0;
1947                 create_tce_64.size = create_tce.window_size >>
1948                                 IOMMU_PAGE_SHIFT_4K;
1949                 create_tce_64.flags = 0;
1950                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1951                 goto out;
1952         }
1953 #endif
1954 #ifdef CONFIG_PPC_BOOK3S_64
1955         case KVM_PPC_GET_SMMU_INFO: {
1956                 struct kvm_ppc_smmu_info info;
1957                 struct kvm *kvm = filp->private_data;
1958
1959                 memset(&info, 0, sizeof(info));
1960                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1961                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1962                         r = -EFAULT;
1963                 break;
1964         }
1965         case KVM_PPC_RTAS_DEFINE_TOKEN: {
1966                 struct kvm *kvm = filp->private_data;
1967
1968                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1969                 break;
1970         }
1971         case KVM_PPC_CONFIGURE_V3_MMU: {
1972                 struct kvm *kvm = filp->private_data;
1973                 struct kvm_ppc_mmuv3_cfg cfg;
1974
1975                 r = -EINVAL;
1976                 if (!kvm->arch.kvm_ops->configure_mmu)
1977                         goto out;
1978                 r = -EFAULT;
1979                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
1980                         goto out;
1981                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1982                 break;
1983         }
1984         case KVM_PPC_GET_RMMU_INFO: {
1985                 struct kvm *kvm = filp->private_data;
1986                 struct kvm_ppc_rmmu_info info;
1987
1988                 r = -EINVAL;
1989                 if (!kvm->arch.kvm_ops->get_rmmu_info)
1990                         goto out;
1991                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1992                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1993                         r = -EFAULT;
1994                 break;
1995         }
1996         case KVM_PPC_GET_CPU_CHAR: {
1997                 struct kvm_ppc_cpu_char cpuchar;
1998
1999                 r = kvmppc_get_cpu_char(&cpuchar);
2000                 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2001                         r = -EFAULT;
2002                 break;
2003         }
2004         default: {
2005                 struct kvm *kvm = filp->private_data;
2006                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2007         }
2008 #else /* CONFIG_PPC_BOOK3S_64 */
2009         default:
2010                 r = -ENOTTY;
2011 #endif
2012         }
2013 out:
2014         return r;
2015 }
2016
2017 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2018 static unsigned long nr_lpids;
2019
2020 long kvmppc_alloc_lpid(void)
2021 {
2022         long lpid;
2023
2024         do {
2025                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2026                 if (lpid >= nr_lpids) {
2027                         pr_err("%s: No LPIDs free\n", __func__);
2028                         return -ENOMEM;
2029                 }
2030         } while (test_and_set_bit(lpid, lpid_inuse));
2031
2032         return lpid;
2033 }
2034 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2035
2036 void kvmppc_claim_lpid(long lpid)
2037 {
2038         set_bit(lpid, lpid_inuse);
2039 }
2040 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2041
2042 void kvmppc_free_lpid(long lpid)
2043 {
2044         clear_bit(lpid, lpid_inuse);
2045 }
2046 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2047
2048 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2049 {
2050         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2051         memset(lpid_inuse, 0, sizeof(lpid_inuse));
2052 }
2053 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2054
2055 int kvm_arch_init(void *opaque)
2056 {
2057         return 0;
2058 }
2059
2060 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);