4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
21 #include <asm/cpu_device_id.h>
23 #include "../perf_event.h"
26 * Intel PerfMon, used on Core and later.
28 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
30 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
31 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
32 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
33 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
34 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
35 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
36 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
37 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
40 static struct event_constraint intel_core_event_constraints[] __read_mostly =
42 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
43 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
44 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
45 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
46 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
47 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
51 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
53 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
54 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
55 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
56 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
57 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
58 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
59 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
60 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
61 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
62 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
63 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
64 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
65 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
69 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
71 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
72 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
73 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
74 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
75 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
76 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
77 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
78 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
79 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
80 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
81 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
85 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
87 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
88 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
89 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
93 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
95 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
96 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
97 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
98 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
99 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
100 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
101 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
105 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
107 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
108 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
109 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
110 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
111 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
112 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
113 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
114 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
115 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
116 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
117 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
118 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121 * When HT is off these events can only run on the bottom 4 counters
122 * When HT is on, they are impacted by the HT bug and require EXCL access
124 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
125 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
126 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
127 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
132 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
134 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
135 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
136 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
137 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
138 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
139 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
140 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
141 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
142 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
143 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
144 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
145 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
146 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149 * When HT is off these events can only run on the bottom 4 counters
150 * When HT is on, they are impacted by the HT bug and require EXCL access
152 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
153 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
154 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
155 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
160 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
162 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
163 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
164 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
165 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
169 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
174 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
176 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
177 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
178 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
182 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
184 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
185 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
186 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
190 static struct event_constraint intel_skl_event_constraints[] = {
191 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
192 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
193 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
194 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
197 * when HT is off, these can only run on the bottom 4 counters
199 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
200 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
201 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
202 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
203 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
208 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
209 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
210 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
214 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
215 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
216 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
217 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
218 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
222 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
223 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
224 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
225 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
226 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
230 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
231 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
232 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
233 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
235 * Note the low 8 bits eventsel code is not a continuous field, containing
236 * some #GPing bits. These are masked out.
238 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
242 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
243 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
244 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
246 static struct attribute *nhm_mem_events_attrs[] = {
247 EVENT_PTR(mem_ld_nhm),
252 * topdown events for Intel Core CPUs.
254 * The events are all in slots, which is a free slot in a 4 wide
255 * pipeline. Some events are already reported in slots, for cycle
256 * events we multiply by the pipeline width (4).
258 * With Hyper Threading on, topdown metrics are either summed or averaged
259 * between the threads of a core: (count_t0 + count_t1).
261 * For the average case the metric is always scaled to pipeline width,
262 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
265 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
266 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
267 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
268 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
269 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
270 "event=0xe,umask=0x1"); /* uops_issued.any */
271 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
272 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
273 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
274 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
275 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
276 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
277 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
278 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
281 static struct attribute *snb_events_attrs[] = {
282 EVENT_PTR(td_slots_issued),
283 EVENT_PTR(td_slots_retired),
284 EVENT_PTR(td_fetch_bubbles),
285 EVENT_PTR(td_total_slots),
286 EVENT_PTR(td_total_slots_scale),
287 EVENT_PTR(td_recovery_bubbles),
288 EVENT_PTR(td_recovery_bubbles_scale),
292 static struct attribute *snb_mem_events_attrs[] = {
293 EVENT_PTR(mem_ld_snb),
294 EVENT_PTR(mem_st_snb),
298 static struct event_constraint intel_hsw_event_constraints[] = {
299 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
300 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
301 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
302 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
303 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
304 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
305 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
306 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
307 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
308 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
309 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
310 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
313 * When HT is off these events can only run on the bottom 4 counters
314 * When HT is on, they are impacted by the HT bug and require EXCL access
316 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
317 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
318 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
319 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
324 static struct event_constraint intel_bdw_event_constraints[] = {
325 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
326 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
327 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
328 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
329 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
331 * when HT is off, these can only run on the bottom 4 counters
333 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
334 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
335 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
336 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
340 static u64 intel_pmu_event_map(int hw_event)
342 return intel_perfmon_event_map[hw_event];
346 * Notes on the events:
347 * - data reads do not include code reads (comparable to earlier tables)
348 * - data counts include speculative execution (except L1 write, dtlb, bpu)
349 * - remote node access includes remote memory, remote cache, remote mmio.
350 * - prefetches are not included in the counts.
351 * - icache miss does not include decoded icache
354 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
355 #define SKL_DEMAND_RFO BIT_ULL(1)
356 #define SKL_ANY_RESPONSE BIT_ULL(16)
357 #define SKL_SUPPLIER_NONE BIT_ULL(17)
358 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
359 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
360 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
361 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
362 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
363 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
364 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
365 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
366 #define SKL_SPL_HIT BIT_ULL(30)
367 #define SKL_SNOOP_NONE BIT_ULL(31)
368 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
369 #define SKL_SNOOP_MISS BIT_ULL(33)
370 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
371 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
372 #define SKL_SNOOP_HITM BIT_ULL(36)
373 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
374 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
375 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
378 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
379 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
380 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
381 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
382 SKL_SNOOP_HITM|SKL_SPL_HIT)
383 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
384 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
385 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
386 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
387 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
389 static __initconst const u64 skl_hw_cache_event_ids
390 [PERF_COUNT_HW_CACHE_MAX]
391 [PERF_COUNT_HW_CACHE_OP_MAX]
392 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
396 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
397 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
400 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
401 [ C(RESULT_MISS) ] = 0x0,
403 [ C(OP_PREFETCH) ] = {
404 [ C(RESULT_ACCESS) ] = 0x0,
405 [ C(RESULT_MISS) ] = 0x0,
410 [ C(RESULT_ACCESS) ] = 0x0,
411 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
414 [ C(RESULT_ACCESS) ] = -1,
415 [ C(RESULT_MISS) ] = -1,
417 [ C(OP_PREFETCH) ] = {
418 [ C(RESULT_ACCESS) ] = 0x0,
419 [ C(RESULT_MISS) ] = 0x0,
424 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
425 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
428 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
429 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
431 [ C(OP_PREFETCH) ] = {
432 [ C(RESULT_ACCESS) ] = 0x0,
433 [ C(RESULT_MISS) ] = 0x0,
438 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
439 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
442 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
443 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
445 [ C(OP_PREFETCH) ] = {
446 [ C(RESULT_ACCESS) ] = 0x0,
447 [ C(RESULT_MISS) ] = 0x0,
452 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
453 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
456 [ C(RESULT_ACCESS) ] = -1,
457 [ C(RESULT_MISS) ] = -1,
459 [ C(OP_PREFETCH) ] = {
460 [ C(RESULT_ACCESS) ] = -1,
461 [ C(RESULT_MISS) ] = -1,
466 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
467 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
470 [ C(RESULT_ACCESS) ] = -1,
471 [ C(RESULT_MISS) ] = -1,
473 [ C(OP_PREFETCH) ] = {
474 [ C(RESULT_ACCESS) ] = -1,
475 [ C(RESULT_MISS) ] = -1,
480 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
481 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
484 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
485 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
487 [ C(OP_PREFETCH) ] = {
488 [ C(RESULT_ACCESS) ] = 0x0,
489 [ C(RESULT_MISS) ] = 0x0,
494 static __initconst const u64 skl_hw_cache_extra_regs
495 [PERF_COUNT_HW_CACHE_MAX]
496 [PERF_COUNT_HW_CACHE_OP_MAX]
497 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
501 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
502 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
503 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
504 SKL_L3_MISS|SKL_ANY_SNOOP|
508 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
509 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
510 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
511 SKL_L3_MISS|SKL_ANY_SNOOP|
514 [ C(OP_PREFETCH) ] = {
515 [ C(RESULT_ACCESS) ] = 0x0,
516 [ C(RESULT_MISS) ] = 0x0,
521 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
522 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
523 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
524 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
527 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
528 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
529 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
530 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
532 [ C(OP_PREFETCH) ] = {
533 [ C(RESULT_ACCESS) ] = 0x0,
534 [ C(RESULT_MISS) ] = 0x0,
539 #define SNB_DMND_DATA_RD (1ULL << 0)
540 #define SNB_DMND_RFO (1ULL << 1)
541 #define SNB_DMND_IFETCH (1ULL << 2)
542 #define SNB_DMND_WB (1ULL << 3)
543 #define SNB_PF_DATA_RD (1ULL << 4)
544 #define SNB_PF_RFO (1ULL << 5)
545 #define SNB_PF_IFETCH (1ULL << 6)
546 #define SNB_LLC_DATA_RD (1ULL << 7)
547 #define SNB_LLC_RFO (1ULL << 8)
548 #define SNB_LLC_IFETCH (1ULL << 9)
549 #define SNB_BUS_LOCKS (1ULL << 10)
550 #define SNB_STRM_ST (1ULL << 11)
551 #define SNB_OTHER (1ULL << 15)
552 #define SNB_RESP_ANY (1ULL << 16)
553 #define SNB_NO_SUPP (1ULL << 17)
554 #define SNB_LLC_HITM (1ULL << 18)
555 #define SNB_LLC_HITE (1ULL << 19)
556 #define SNB_LLC_HITS (1ULL << 20)
557 #define SNB_LLC_HITF (1ULL << 21)
558 #define SNB_LOCAL (1ULL << 22)
559 #define SNB_REMOTE (0xffULL << 23)
560 #define SNB_SNP_NONE (1ULL << 31)
561 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
562 #define SNB_SNP_MISS (1ULL << 33)
563 #define SNB_NO_FWD (1ULL << 34)
564 #define SNB_SNP_FWD (1ULL << 35)
565 #define SNB_HITM (1ULL << 36)
566 #define SNB_NON_DRAM (1ULL << 37)
568 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
569 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
570 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
572 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
573 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
576 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
577 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
579 #define SNB_L3_ACCESS SNB_RESP_ANY
580 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
582 static __initconst const u64 snb_hw_cache_extra_regs
583 [PERF_COUNT_HW_CACHE_MAX]
584 [PERF_COUNT_HW_CACHE_OP_MAX]
585 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
589 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
590 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
593 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
594 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
596 [ C(OP_PREFETCH) ] = {
597 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
598 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
603 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
604 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
607 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
608 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
610 [ C(OP_PREFETCH) ] = {
611 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
612 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
617 static __initconst const u64 snb_hw_cache_event_ids
618 [PERF_COUNT_HW_CACHE_MAX]
619 [PERF_COUNT_HW_CACHE_OP_MAX]
620 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
624 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
625 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
628 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
629 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
631 [ C(OP_PREFETCH) ] = {
632 [ C(RESULT_ACCESS) ] = 0x0,
633 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
638 [ C(RESULT_ACCESS) ] = 0x0,
639 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
642 [ C(RESULT_ACCESS) ] = -1,
643 [ C(RESULT_MISS) ] = -1,
645 [ C(OP_PREFETCH) ] = {
646 [ C(RESULT_ACCESS) ] = 0x0,
647 [ C(RESULT_MISS) ] = 0x0,
652 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
653 [ C(RESULT_ACCESS) ] = 0x01b7,
654 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
655 [ C(RESULT_MISS) ] = 0x01b7,
658 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
659 [ C(RESULT_ACCESS) ] = 0x01b7,
660 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
661 [ C(RESULT_MISS) ] = 0x01b7,
663 [ C(OP_PREFETCH) ] = {
664 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
665 [ C(RESULT_ACCESS) ] = 0x01b7,
666 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
667 [ C(RESULT_MISS) ] = 0x01b7,
672 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
673 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
676 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
677 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
679 [ C(OP_PREFETCH) ] = {
680 [ C(RESULT_ACCESS) ] = 0x0,
681 [ C(RESULT_MISS) ] = 0x0,
686 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
687 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
690 [ C(RESULT_ACCESS) ] = -1,
691 [ C(RESULT_MISS) ] = -1,
693 [ C(OP_PREFETCH) ] = {
694 [ C(RESULT_ACCESS) ] = -1,
695 [ C(RESULT_MISS) ] = -1,
700 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
701 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
704 [ C(RESULT_ACCESS) ] = -1,
705 [ C(RESULT_MISS) ] = -1,
707 [ C(OP_PREFETCH) ] = {
708 [ C(RESULT_ACCESS) ] = -1,
709 [ C(RESULT_MISS) ] = -1,
714 [ C(RESULT_ACCESS) ] = 0x01b7,
715 [ C(RESULT_MISS) ] = 0x01b7,
718 [ C(RESULT_ACCESS) ] = 0x01b7,
719 [ C(RESULT_MISS) ] = 0x01b7,
721 [ C(OP_PREFETCH) ] = {
722 [ C(RESULT_ACCESS) ] = 0x01b7,
723 [ C(RESULT_MISS) ] = 0x01b7,
730 * Notes on the events:
731 * - data reads do not include code reads (comparable to earlier tables)
732 * - data counts include speculative execution (except L1 write, dtlb, bpu)
733 * - remote node access includes remote memory, remote cache, remote mmio.
734 * - prefetches are not included in the counts because they are not
738 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
739 #define HSW_DEMAND_RFO BIT_ULL(1)
740 #define HSW_ANY_RESPONSE BIT_ULL(16)
741 #define HSW_SUPPLIER_NONE BIT_ULL(17)
742 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
743 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
744 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
745 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
746 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
747 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
748 HSW_L3_MISS_REMOTE_HOP2P)
749 #define HSW_SNOOP_NONE BIT_ULL(31)
750 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
751 #define HSW_SNOOP_MISS BIT_ULL(33)
752 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
753 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
754 #define HSW_SNOOP_HITM BIT_ULL(36)
755 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
756 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
757 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
758 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
759 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
760 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
761 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
762 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
763 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
764 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
765 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
767 #define BDW_L3_MISS_LOCAL BIT(26)
768 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
769 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
770 HSW_L3_MISS_REMOTE_HOP2P)
773 static __initconst const u64 hsw_hw_cache_event_ids
774 [PERF_COUNT_HW_CACHE_MAX]
775 [PERF_COUNT_HW_CACHE_OP_MAX]
776 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
780 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
781 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
784 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
785 [ C(RESULT_MISS) ] = 0x0,
787 [ C(OP_PREFETCH) ] = {
788 [ C(RESULT_ACCESS) ] = 0x0,
789 [ C(RESULT_MISS) ] = 0x0,
794 [ C(RESULT_ACCESS) ] = 0x0,
795 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
798 [ C(RESULT_ACCESS) ] = -1,
799 [ C(RESULT_MISS) ] = -1,
801 [ C(OP_PREFETCH) ] = {
802 [ C(RESULT_ACCESS) ] = 0x0,
803 [ C(RESULT_MISS) ] = 0x0,
808 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
809 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
812 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
813 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
815 [ C(OP_PREFETCH) ] = {
816 [ C(RESULT_ACCESS) ] = 0x0,
817 [ C(RESULT_MISS) ] = 0x0,
822 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
823 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
826 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
827 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
829 [ C(OP_PREFETCH) ] = {
830 [ C(RESULT_ACCESS) ] = 0x0,
831 [ C(RESULT_MISS) ] = 0x0,
836 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
837 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
840 [ C(RESULT_ACCESS) ] = -1,
841 [ C(RESULT_MISS) ] = -1,
843 [ C(OP_PREFETCH) ] = {
844 [ C(RESULT_ACCESS) ] = -1,
845 [ C(RESULT_MISS) ] = -1,
850 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
851 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
854 [ C(RESULT_ACCESS) ] = -1,
855 [ C(RESULT_MISS) ] = -1,
857 [ C(OP_PREFETCH) ] = {
858 [ C(RESULT_ACCESS) ] = -1,
859 [ C(RESULT_MISS) ] = -1,
864 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
865 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
868 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
869 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
871 [ C(OP_PREFETCH) ] = {
872 [ C(RESULT_ACCESS) ] = 0x0,
873 [ C(RESULT_MISS) ] = 0x0,
878 static __initconst const u64 hsw_hw_cache_extra_regs
879 [PERF_COUNT_HW_CACHE_MAX]
880 [PERF_COUNT_HW_CACHE_OP_MAX]
881 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
885 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
887 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
888 HSW_L3_MISS|HSW_ANY_SNOOP,
891 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
893 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
894 HSW_L3_MISS|HSW_ANY_SNOOP,
896 [ C(OP_PREFETCH) ] = {
897 [ C(RESULT_ACCESS) ] = 0x0,
898 [ C(RESULT_MISS) ] = 0x0,
903 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
904 HSW_L3_MISS_LOCAL_DRAM|
906 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
911 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
912 HSW_L3_MISS_LOCAL_DRAM|
914 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
918 [ C(OP_PREFETCH) ] = {
919 [ C(RESULT_ACCESS) ] = 0x0,
920 [ C(RESULT_MISS) ] = 0x0,
925 static __initconst const u64 westmere_hw_cache_event_ids
926 [PERF_COUNT_HW_CACHE_MAX]
927 [PERF_COUNT_HW_CACHE_OP_MAX]
928 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
932 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
933 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
936 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
937 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
939 [ C(OP_PREFETCH) ] = {
940 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
941 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
946 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
947 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
950 [ C(RESULT_ACCESS) ] = -1,
951 [ C(RESULT_MISS) ] = -1,
953 [ C(OP_PREFETCH) ] = {
954 [ C(RESULT_ACCESS) ] = 0x0,
955 [ C(RESULT_MISS) ] = 0x0,
960 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
961 [ C(RESULT_ACCESS) ] = 0x01b7,
962 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
963 [ C(RESULT_MISS) ] = 0x01b7,
966 * Use RFO, not WRITEBACK, because a write miss would typically occur
970 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
971 [ C(RESULT_ACCESS) ] = 0x01b7,
972 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
973 [ C(RESULT_MISS) ] = 0x01b7,
975 [ C(OP_PREFETCH) ] = {
976 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
977 [ C(RESULT_ACCESS) ] = 0x01b7,
978 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
979 [ C(RESULT_MISS) ] = 0x01b7,
984 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
985 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
988 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
989 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
991 [ C(OP_PREFETCH) ] = {
992 [ C(RESULT_ACCESS) ] = 0x0,
993 [ C(RESULT_MISS) ] = 0x0,
998 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
999 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
1002 [ C(RESULT_ACCESS) ] = -1,
1003 [ C(RESULT_MISS) ] = -1,
1005 [ C(OP_PREFETCH) ] = {
1006 [ C(RESULT_ACCESS) ] = -1,
1007 [ C(RESULT_MISS) ] = -1,
1012 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1013 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1016 [ C(RESULT_ACCESS) ] = -1,
1017 [ C(RESULT_MISS) ] = -1,
1019 [ C(OP_PREFETCH) ] = {
1020 [ C(RESULT_ACCESS) ] = -1,
1021 [ C(RESULT_MISS) ] = -1,
1026 [ C(RESULT_ACCESS) ] = 0x01b7,
1027 [ C(RESULT_MISS) ] = 0x01b7,
1030 [ C(RESULT_ACCESS) ] = 0x01b7,
1031 [ C(RESULT_MISS) ] = 0x01b7,
1033 [ C(OP_PREFETCH) ] = {
1034 [ C(RESULT_ACCESS) ] = 0x01b7,
1035 [ C(RESULT_MISS) ] = 0x01b7,
1041 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1042 * See IA32 SDM Vol 3B 30.6.1.3
1045 #define NHM_DMND_DATA_RD (1 << 0)
1046 #define NHM_DMND_RFO (1 << 1)
1047 #define NHM_DMND_IFETCH (1 << 2)
1048 #define NHM_DMND_WB (1 << 3)
1049 #define NHM_PF_DATA_RD (1 << 4)
1050 #define NHM_PF_DATA_RFO (1 << 5)
1051 #define NHM_PF_IFETCH (1 << 6)
1052 #define NHM_OFFCORE_OTHER (1 << 7)
1053 #define NHM_UNCORE_HIT (1 << 8)
1054 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1055 #define NHM_OTHER_CORE_HITM (1 << 10)
1057 #define NHM_REMOTE_CACHE_FWD (1 << 12)
1058 #define NHM_REMOTE_DRAM (1 << 13)
1059 #define NHM_LOCAL_DRAM (1 << 14)
1060 #define NHM_NON_DRAM (1 << 15)
1062 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1063 #define NHM_REMOTE (NHM_REMOTE_DRAM)
1065 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
1066 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1067 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1069 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1070 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1071 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1073 static __initconst const u64 nehalem_hw_cache_extra_regs
1074 [PERF_COUNT_HW_CACHE_MAX]
1075 [PERF_COUNT_HW_CACHE_OP_MAX]
1076 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1080 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1081 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
1084 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1085 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1087 [ C(OP_PREFETCH) ] = {
1088 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1089 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1094 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1095 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1098 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1099 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1101 [ C(OP_PREFETCH) ] = {
1102 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1103 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1108 static __initconst const u64 nehalem_hw_cache_event_ids
1109 [PERF_COUNT_HW_CACHE_MAX]
1110 [PERF_COUNT_HW_CACHE_OP_MAX]
1111 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1115 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1116 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1119 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1120 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1122 [ C(OP_PREFETCH) ] = {
1123 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1124 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1129 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1130 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1133 [ C(RESULT_ACCESS) ] = -1,
1134 [ C(RESULT_MISS) ] = -1,
1136 [ C(OP_PREFETCH) ] = {
1137 [ C(RESULT_ACCESS) ] = 0x0,
1138 [ C(RESULT_MISS) ] = 0x0,
1143 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1144 [ C(RESULT_ACCESS) ] = 0x01b7,
1145 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1146 [ C(RESULT_MISS) ] = 0x01b7,
1149 * Use RFO, not WRITEBACK, because a write miss would typically occur
1153 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1154 [ C(RESULT_ACCESS) ] = 0x01b7,
1155 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1156 [ C(RESULT_MISS) ] = 0x01b7,
1158 [ C(OP_PREFETCH) ] = {
1159 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1160 [ C(RESULT_ACCESS) ] = 0x01b7,
1161 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1162 [ C(RESULT_MISS) ] = 0x01b7,
1167 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1168 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1171 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1172 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1174 [ C(OP_PREFETCH) ] = {
1175 [ C(RESULT_ACCESS) ] = 0x0,
1176 [ C(RESULT_MISS) ] = 0x0,
1181 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1182 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1185 [ C(RESULT_ACCESS) ] = -1,
1186 [ C(RESULT_MISS) ] = -1,
1188 [ C(OP_PREFETCH) ] = {
1189 [ C(RESULT_ACCESS) ] = -1,
1190 [ C(RESULT_MISS) ] = -1,
1195 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1196 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1199 [ C(RESULT_ACCESS) ] = -1,
1200 [ C(RESULT_MISS) ] = -1,
1202 [ C(OP_PREFETCH) ] = {
1203 [ C(RESULT_ACCESS) ] = -1,
1204 [ C(RESULT_MISS) ] = -1,
1209 [ C(RESULT_ACCESS) ] = 0x01b7,
1210 [ C(RESULT_MISS) ] = 0x01b7,
1213 [ C(RESULT_ACCESS) ] = 0x01b7,
1214 [ C(RESULT_MISS) ] = 0x01b7,
1216 [ C(OP_PREFETCH) ] = {
1217 [ C(RESULT_ACCESS) ] = 0x01b7,
1218 [ C(RESULT_MISS) ] = 0x01b7,
1223 static __initconst const u64 core2_hw_cache_event_ids
1224 [PERF_COUNT_HW_CACHE_MAX]
1225 [PERF_COUNT_HW_CACHE_OP_MAX]
1226 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1230 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1231 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1234 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1235 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1237 [ C(OP_PREFETCH) ] = {
1238 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1239 [ C(RESULT_MISS) ] = 0,
1244 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1245 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1248 [ C(RESULT_ACCESS) ] = -1,
1249 [ C(RESULT_MISS) ] = -1,
1251 [ C(OP_PREFETCH) ] = {
1252 [ C(RESULT_ACCESS) ] = 0,
1253 [ C(RESULT_MISS) ] = 0,
1258 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1259 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1262 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1263 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1265 [ C(OP_PREFETCH) ] = {
1266 [ C(RESULT_ACCESS) ] = 0,
1267 [ C(RESULT_MISS) ] = 0,
1272 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1273 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1276 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1277 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1279 [ C(OP_PREFETCH) ] = {
1280 [ C(RESULT_ACCESS) ] = 0,
1281 [ C(RESULT_MISS) ] = 0,
1286 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1287 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1290 [ C(RESULT_ACCESS) ] = -1,
1291 [ C(RESULT_MISS) ] = -1,
1293 [ C(OP_PREFETCH) ] = {
1294 [ C(RESULT_ACCESS) ] = -1,
1295 [ C(RESULT_MISS) ] = -1,
1300 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1301 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1304 [ C(RESULT_ACCESS) ] = -1,
1305 [ C(RESULT_MISS) ] = -1,
1307 [ C(OP_PREFETCH) ] = {
1308 [ C(RESULT_ACCESS) ] = -1,
1309 [ C(RESULT_MISS) ] = -1,
1314 static __initconst const u64 atom_hw_cache_event_ids
1315 [PERF_COUNT_HW_CACHE_MAX]
1316 [PERF_COUNT_HW_CACHE_OP_MAX]
1317 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1321 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1322 [ C(RESULT_MISS) ] = 0,
1325 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1326 [ C(RESULT_MISS) ] = 0,
1328 [ C(OP_PREFETCH) ] = {
1329 [ C(RESULT_ACCESS) ] = 0x0,
1330 [ C(RESULT_MISS) ] = 0,
1335 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1336 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1339 [ C(RESULT_ACCESS) ] = -1,
1340 [ C(RESULT_MISS) ] = -1,
1342 [ C(OP_PREFETCH) ] = {
1343 [ C(RESULT_ACCESS) ] = 0,
1344 [ C(RESULT_MISS) ] = 0,
1349 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1350 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1353 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1354 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1356 [ C(OP_PREFETCH) ] = {
1357 [ C(RESULT_ACCESS) ] = 0,
1358 [ C(RESULT_MISS) ] = 0,
1363 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1364 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1367 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1368 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1370 [ C(OP_PREFETCH) ] = {
1371 [ C(RESULT_ACCESS) ] = 0,
1372 [ C(RESULT_MISS) ] = 0,
1377 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1378 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1381 [ C(RESULT_ACCESS) ] = -1,
1382 [ C(RESULT_MISS) ] = -1,
1384 [ C(OP_PREFETCH) ] = {
1385 [ C(RESULT_ACCESS) ] = -1,
1386 [ C(RESULT_MISS) ] = -1,
1391 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1392 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1395 [ C(RESULT_ACCESS) ] = -1,
1396 [ C(RESULT_MISS) ] = -1,
1398 [ C(OP_PREFETCH) ] = {
1399 [ C(RESULT_ACCESS) ] = -1,
1400 [ C(RESULT_MISS) ] = -1,
1405 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1406 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1407 /* no_alloc_cycles.not_delivered */
1408 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1409 "event=0xca,umask=0x50");
1410 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1411 /* uops_retired.all */
1412 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1413 "event=0xc2,umask=0x10");
1414 /* uops_retired.all */
1415 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1416 "event=0xc2,umask=0x10");
1418 static struct attribute *slm_events_attrs[] = {
1419 EVENT_PTR(td_total_slots_slm),
1420 EVENT_PTR(td_total_slots_scale_slm),
1421 EVENT_PTR(td_fetch_bubbles_slm),
1422 EVENT_PTR(td_fetch_bubbles_scale_slm),
1423 EVENT_PTR(td_slots_issued_slm),
1424 EVENT_PTR(td_slots_retired_slm),
1428 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1430 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1431 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1432 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1436 #define SLM_DMND_READ SNB_DMND_DATA_RD
1437 #define SLM_DMND_WRITE SNB_DMND_RFO
1438 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1440 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1441 #define SLM_LLC_ACCESS SNB_RESP_ANY
1442 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1444 static __initconst const u64 slm_hw_cache_extra_regs
1445 [PERF_COUNT_HW_CACHE_MAX]
1446 [PERF_COUNT_HW_CACHE_OP_MAX]
1447 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1451 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1452 [ C(RESULT_MISS) ] = 0,
1455 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1456 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1458 [ C(OP_PREFETCH) ] = {
1459 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1460 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1465 static __initconst const u64 slm_hw_cache_event_ids
1466 [PERF_COUNT_HW_CACHE_MAX]
1467 [PERF_COUNT_HW_CACHE_OP_MAX]
1468 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1472 [ C(RESULT_ACCESS) ] = 0,
1473 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1476 [ C(RESULT_ACCESS) ] = 0,
1477 [ C(RESULT_MISS) ] = 0,
1479 [ C(OP_PREFETCH) ] = {
1480 [ C(RESULT_ACCESS) ] = 0,
1481 [ C(RESULT_MISS) ] = 0,
1486 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1487 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1490 [ C(RESULT_ACCESS) ] = -1,
1491 [ C(RESULT_MISS) ] = -1,
1493 [ C(OP_PREFETCH) ] = {
1494 [ C(RESULT_ACCESS) ] = 0,
1495 [ C(RESULT_MISS) ] = 0,
1500 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1501 [ C(RESULT_ACCESS) ] = 0x01b7,
1502 [ C(RESULT_MISS) ] = 0,
1505 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1506 [ C(RESULT_ACCESS) ] = 0x01b7,
1507 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1508 [ C(RESULT_MISS) ] = 0x01b7,
1510 [ C(OP_PREFETCH) ] = {
1511 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1512 [ C(RESULT_ACCESS) ] = 0x01b7,
1513 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1514 [ C(RESULT_MISS) ] = 0x01b7,
1519 [ C(RESULT_ACCESS) ] = 0,
1520 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1523 [ C(RESULT_ACCESS) ] = 0,
1524 [ C(RESULT_MISS) ] = 0,
1526 [ C(OP_PREFETCH) ] = {
1527 [ C(RESULT_ACCESS) ] = 0,
1528 [ C(RESULT_MISS) ] = 0,
1533 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1534 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1537 [ C(RESULT_ACCESS) ] = -1,
1538 [ C(RESULT_MISS) ] = -1,
1540 [ C(OP_PREFETCH) ] = {
1541 [ C(RESULT_ACCESS) ] = -1,
1542 [ C(RESULT_MISS) ] = -1,
1547 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1548 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1551 [ C(RESULT_ACCESS) ] = -1,
1552 [ C(RESULT_MISS) ] = -1,
1554 [ C(OP_PREFETCH) ] = {
1555 [ C(RESULT_ACCESS) ] = -1,
1556 [ C(RESULT_MISS) ] = -1,
1561 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1562 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1563 /* UOPS_NOT_DELIVERED.ANY */
1564 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1565 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1566 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1567 /* UOPS_RETIRED.ANY */
1568 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1569 /* UOPS_ISSUED.ANY */
1570 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1572 static struct attribute *glm_events_attrs[] = {
1573 EVENT_PTR(td_total_slots_glm),
1574 EVENT_PTR(td_total_slots_scale_glm),
1575 EVENT_PTR(td_fetch_bubbles_glm),
1576 EVENT_PTR(td_recovery_bubbles_glm),
1577 EVENT_PTR(td_slots_issued_glm),
1578 EVENT_PTR(td_slots_retired_glm),
1582 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1583 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1584 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1585 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1589 #define GLM_DEMAND_DATA_RD BIT_ULL(0)
1590 #define GLM_DEMAND_RFO BIT_ULL(1)
1591 #define GLM_ANY_RESPONSE BIT_ULL(16)
1592 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1593 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1594 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1595 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1596 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1597 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1598 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1600 static __initconst const u64 glm_hw_cache_event_ids
1601 [PERF_COUNT_HW_CACHE_MAX]
1602 [PERF_COUNT_HW_CACHE_OP_MAX]
1603 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1606 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1607 [C(RESULT_MISS)] = 0x0,
1610 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1611 [C(RESULT_MISS)] = 0x0,
1613 [C(OP_PREFETCH)] = {
1614 [C(RESULT_ACCESS)] = 0x0,
1615 [C(RESULT_MISS)] = 0x0,
1620 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1621 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1624 [C(RESULT_ACCESS)] = -1,
1625 [C(RESULT_MISS)] = -1,
1627 [C(OP_PREFETCH)] = {
1628 [C(RESULT_ACCESS)] = 0x0,
1629 [C(RESULT_MISS)] = 0x0,
1634 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1635 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1638 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1639 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1641 [C(OP_PREFETCH)] = {
1642 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1643 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1648 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1649 [C(RESULT_MISS)] = 0x0,
1652 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1653 [C(RESULT_MISS)] = 0x0,
1655 [C(OP_PREFETCH)] = {
1656 [C(RESULT_ACCESS)] = 0x0,
1657 [C(RESULT_MISS)] = 0x0,
1662 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1663 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1666 [C(RESULT_ACCESS)] = -1,
1667 [C(RESULT_MISS)] = -1,
1669 [C(OP_PREFETCH)] = {
1670 [C(RESULT_ACCESS)] = -1,
1671 [C(RESULT_MISS)] = -1,
1676 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1677 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1680 [C(RESULT_ACCESS)] = -1,
1681 [C(RESULT_MISS)] = -1,
1683 [C(OP_PREFETCH)] = {
1684 [C(RESULT_ACCESS)] = -1,
1685 [C(RESULT_MISS)] = -1,
1690 static __initconst const u64 glm_hw_cache_extra_regs
1691 [PERF_COUNT_HW_CACHE_MAX]
1692 [PERF_COUNT_HW_CACHE_OP_MAX]
1693 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1696 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1698 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1702 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1704 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1707 [C(OP_PREFETCH)] = {
1708 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
1710 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
1716 static __initconst const u64 glp_hw_cache_event_ids
1717 [PERF_COUNT_HW_CACHE_MAX]
1718 [PERF_COUNT_HW_CACHE_OP_MAX]
1719 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1722 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1723 [C(RESULT_MISS)] = 0x0,
1726 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1727 [C(RESULT_MISS)] = 0x0,
1729 [C(OP_PREFETCH)] = {
1730 [C(RESULT_ACCESS)] = 0x0,
1731 [C(RESULT_MISS)] = 0x0,
1736 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1737 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1740 [C(RESULT_ACCESS)] = -1,
1741 [C(RESULT_MISS)] = -1,
1743 [C(OP_PREFETCH)] = {
1744 [C(RESULT_ACCESS)] = 0x0,
1745 [C(RESULT_MISS)] = 0x0,
1750 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1751 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1754 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1755 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1757 [C(OP_PREFETCH)] = {
1758 [C(RESULT_ACCESS)] = 0x0,
1759 [C(RESULT_MISS)] = 0x0,
1764 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1765 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1768 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1769 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
1771 [C(OP_PREFETCH)] = {
1772 [C(RESULT_ACCESS)] = 0x0,
1773 [C(RESULT_MISS)] = 0x0,
1778 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1779 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1782 [C(RESULT_ACCESS)] = -1,
1783 [C(RESULT_MISS)] = -1,
1785 [C(OP_PREFETCH)] = {
1786 [C(RESULT_ACCESS)] = -1,
1787 [C(RESULT_MISS)] = -1,
1792 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1793 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1796 [C(RESULT_ACCESS)] = -1,
1797 [C(RESULT_MISS)] = -1,
1799 [C(OP_PREFETCH)] = {
1800 [C(RESULT_ACCESS)] = -1,
1801 [C(RESULT_MISS)] = -1,
1806 static __initconst const u64 glp_hw_cache_extra_regs
1807 [PERF_COUNT_HW_CACHE_MAX]
1808 [PERF_COUNT_HW_CACHE_OP_MAX]
1809 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1812 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1814 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1818 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1820 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1823 [C(OP_PREFETCH)] = {
1824 [C(RESULT_ACCESS)] = 0x0,
1825 [C(RESULT_MISS)] = 0x0,
1830 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
1831 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
1832 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
1833 #define KNL_MCDRAM_FAR BIT_ULL(22)
1834 #define KNL_DDR_LOCAL BIT_ULL(23)
1835 #define KNL_DDR_FAR BIT_ULL(24)
1836 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1837 KNL_DDR_LOCAL | KNL_DDR_FAR)
1838 #define KNL_L2_READ SLM_DMND_READ
1839 #define KNL_L2_WRITE SLM_DMND_WRITE
1840 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
1841 #define KNL_L2_ACCESS SLM_LLC_ACCESS
1842 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1843 KNL_DRAM_ANY | SNB_SNP_ANY | \
1846 static __initconst const u64 knl_hw_cache_extra_regs
1847 [PERF_COUNT_HW_CACHE_MAX]
1848 [PERF_COUNT_HW_CACHE_OP_MAX]
1849 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1852 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1853 [C(RESULT_MISS)] = 0,
1856 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1857 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
1859 [C(OP_PREFETCH)] = {
1860 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1861 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
1867 * Used from PMIs where the LBRs are already disabled.
1869 * This function could be called consecutively. It is required to remain in
1870 * disabled state if called consecutively.
1872 * During consecutive calls, the same disable value will be written to related
1873 * registers, so the PMU state remains unchanged.
1875 * intel_bts events don't coexist with intel PMU's BTS events because of
1876 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1877 * disabled around intel PMU's event batching etc, only inside the PMI handler.
1879 static void __intel_pmu_disable_all(void)
1881 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1883 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1885 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1886 intel_pmu_disable_bts();
1888 intel_pmu_pebs_disable_all();
1891 static void intel_pmu_disable_all(void)
1893 __intel_pmu_disable_all();
1894 intel_pmu_lbr_disable_all();
1897 static void __intel_pmu_enable_all(int added, bool pmi)
1899 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1901 intel_pmu_pebs_enable_all();
1902 intel_pmu_lbr_enable_all(pmi);
1903 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1904 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1906 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1907 struct perf_event *event =
1908 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1910 if (WARN_ON_ONCE(!event))
1913 intel_pmu_enable_bts(event->hw.config);
1917 static void intel_pmu_enable_all(int added)
1919 __intel_pmu_enable_all(added, false);
1924 * Intel Errata AAK100 (model 26)
1925 * Intel Errata AAP53 (model 30)
1926 * Intel Errata BD53 (model 44)
1928 * The official story:
1929 * These chips need to be 'reset' when adding counters by programming the
1930 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1931 * in sequence on the same PMC or on different PMCs.
1933 * In practise it appears some of these events do in fact count, and
1934 * we need to program all 4 events.
1936 static void intel_pmu_nhm_workaround(void)
1938 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1939 static const unsigned long nhm_magic[4] = {
1945 struct perf_event *event;
1949 * The Errata requires below steps:
1950 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1951 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1952 * the corresponding PMCx;
1953 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1954 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1955 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1959 * The real steps we choose are a little different from above.
1960 * A) To reduce MSR operations, we don't run step 1) as they
1961 * are already cleared before this function is called;
1962 * B) Call x86_perf_event_update to save PMCx before configuring
1963 * PERFEVTSELx with magic number;
1964 * C) With step 5), we do clear only when the PERFEVTSELx is
1965 * not used currently.
1966 * D) Call x86_perf_event_set_period to restore PMCx;
1969 /* We always operate 4 pairs of PERF Counters */
1970 for (i = 0; i < 4; i++) {
1971 event = cpuc->events[i];
1973 x86_perf_event_update(event);
1976 for (i = 0; i < 4; i++) {
1977 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1978 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1981 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1982 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1984 for (i = 0; i < 4; i++) {
1985 event = cpuc->events[i];
1988 x86_perf_event_set_period(event);
1989 __x86_pmu_enable_event(&event->hw,
1990 ARCH_PERFMON_EVENTSEL_ENABLE);
1992 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1996 static void intel_pmu_nhm_enable_all(int added)
1999 intel_pmu_nhm_workaround();
2000 intel_pmu_enable_all(added);
2003 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2005 u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2007 if (cpuc->tfa_shadow != val) {
2008 cpuc->tfa_shadow = val;
2009 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2013 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2016 * We're going to use PMC3, make sure TFA is set before we touch it.
2018 if (cntr == 3 && !cpuc->is_fake)
2019 intel_set_tfa(cpuc, true);
2022 static void intel_tfa_pmu_enable_all(int added)
2024 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2027 * If we find PMC3 is no longer used when we enable the PMU, we can
2030 if (!test_bit(3, cpuc->active_mask))
2031 intel_set_tfa(cpuc, false);
2033 intel_pmu_enable_all(added);
2036 static void enable_counter_freeze(void)
2038 update_debugctlmsr(get_debugctlmsr() |
2039 DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2042 static void disable_counter_freeze(void)
2044 update_debugctlmsr(get_debugctlmsr() &
2045 ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2048 static inline u64 intel_pmu_get_status(void)
2052 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2057 static inline void intel_pmu_ack_status(u64 ack)
2059 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2062 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2064 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2067 mask = 0xfULL << (idx * 4);
2069 rdmsrl(hwc->config_base, ctrl_val);
2071 wrmsrl(hwc->config_base, ctrl_val);
2074 static inline bool event_is_checkpointed(struct perf_event *event)
2076 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2079 static void intel_pmu_disable_event(struct perf_event *event)
2081 struct hw_perf_event *hwc = &event->hw;
2082 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2084 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2085 intel_pmu_disable_bts();
2086 intel_pmu_drain_bts_buffer();
2090 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2091 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2092 cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2094 if (unlikely(event->attr.precise_ip))
2095 intel_pmu_pebs_disable(event);
2097 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2098 intel_pmu_disable_fixed(hwc);
2102 x86_pmu_disable_event(event);
2105 static void intel_pmu_del_event(struct perf_event *event)
2107 if (needs_branch_stack(event))
2108 intel_pmu_lbr_del(event);
2109 if (event->attr.precise_ip)
2110 intel_pmu_pebs_del(event);
2113 static void intel_pmu_read_event(struct perf_event *event)
2115 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2116 intel_pmu_auto_reload_read(event);
2118 x86_perf_event_update(event);
2121 static void intel_pmu_enable_fixed(struct perf_event *event)
2123 struct hw_perf_event *hwc = &event->hw;
2124 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2125 u64 ctrl_val, mask, bits = 0;
2128 * Enable IRQ generation (0x8), if not PEBS,
2129 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2132 if (!event->attr.precise_ip)
2134 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2136 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2140 * ANY bit is supported in v3 and up
2142 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2146 mask = 0xfULL << (idx * 4);
2148 rdmsrl(hwc->config_base, ctrl_val);
2151 wrmsrl(hwc->config_base, ctrl_val);
2154 static void intel_pmu_enable_event(struct perf_event *event)
2156 struct hw_perf_event *hwc = &event->hw;
2157 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2159 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2160 if (!__this_cpu_read(cpu_hw_events.enabled))
2163 intel_pmu_enable_bts(hwc->config);
2167 if (event->attr.exclude_host)
2168 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2169 if (event->attr.exclude_guest)
2170 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2172 if (unlikely(event_is_checkpointed(event)))
2173 cpuc->intel_cp_status |= (1ull << hwc->idx);
2175 if (unlikely(event->attr.precise_ip))
2176 intel_pmu_pebs_enable(event);
2178 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2179 intel_pmu_enable_fixed(event);
2183 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2186 static void intel_pmu_add_event(struct perf_event *event)
2188 if (event->attr.precise_ip)
2189 intel_pmu_pebs_add(event);
2190 if (needs_branch_stack(event))
2191 intel_pmu_lbr_add(event);
2195 * Save and restart an expired event. Called by NMI contexts,
2196 * so it has to be careful about preempting normal event ops:
2198 int intel_pmu_save_and_restart(struct perf_event *event)
2200 x86_perf_event_update(event);
2202 * For a checkpointed counter always reset back to 0. This
2203 * avoids a situation where the counter overflows, aborts the
2204 * transaction and is then set back to shortly before the
2205 * overflow, and overflows and aborts again.
2207 if (unlikely(event_is_checkpointed(event))) {
2208 /* No race with NMIs because the counter should not be armed */
2209 wrmsrl(event->hw.event_base, 0);
2210 local64_set(&event->hw.prev_count, 0);
2212 return x86_perf_event_set_period(event);
2215 static void intel_pmu_reset(void)
2217 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2218 unsigned long flags;
2221 if (!x86_pmu.num_counters)
2224 local_irq_save(flags);
2226 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2228 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2229 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2230 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
2232 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2233 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2236 ds->bts_index = ds->bts_buffer_base;
2238 /* Ack all overflows and disable fixed counters */
2239 if (x86_pmu.version >= 2) {
2240 intel_pmu_ack_status(intel_pmu_get_status());
2241 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2244 /* Reset LBRs and LBR freezing */
2245 if (x86_pmu.lbr_nr) {
2246 update_debugctlmsr(get_debugctlmsr() &
2247 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2250 local_irq_restore(flags);
2253 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2255 struct perf_sample_data data;
2256 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2260 inc_irq_stat(apic_perf_irqs);
2263 * Ignore a range of extra bits in status that do not indicate
2264 * overflow by themselves.
2266 status &= ~(GLOBAL_STATUS_COND_CHG |
2267 GLOBAL_STATUS_ASIF |
2268 GLOBAL_STATUS_LBRS_FROZEN);
2272 * In case multiple PEBS events are sampled at the same time,
2273 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2274 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2275 * having their bits set in the status register. This is a sign
2276 * that there was at least one PEBS record pending at the time
2277 * of the PMU interrupt. PEBS counters must only be processed
2278 * via the drain_pebs() calls and not via the regular sample
2279 * processing loop coming after that the function, otherwise
2280 * phony regular samples may be generated in the sampling buffer
2281 * not marked with the EXACT tag. Another possibility is to have
2282 * one PEBS event and at least one non-PEBS event whic hoverflows
2283 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2284 * not be set, yet the overflow status bit for the PEBS counter will
2287 * To avoid this problem, we systematically ignore the PEBS-enabled
2288 * counters from the GLOBAL_STATUS mask and we always process PEBS
2289 * events via drain_pebs().
2291 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2292 status &= ~cpuc->pebs_enabled;
2294 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2297 * PEBS overflow sets bit 62 in the global status register
2299 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2301 x86_pmu.drain_pebs(regs);
2302 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2308 if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2310 intel_pt_interrupt();
2314 * Checkpointed counters can lead to 'spurious' PMIs because the
2315 * rollback caused by the PMI will have cleared the overflow status
2316 * bit. Therefore always force probe these counters.
2318 status |= cpuc->intel_cp_status;
2320 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2321 struct perf_event *event = cpuc->events[bit];
2325 if (!test_bit(bit, cpuc->active_mask))
2328 if (!intel_pmu_save_and_restart(event))
2331 perf_sample_data_init(&data, 0, event->hw.last_period);
2333 if (has_branch_stack(event))
2334 data.br_stack = &cpuc->lbr_stack;
2336 if (perf_event_overflow(event, &data, regs))
2337 x86_pmu_stop(event, 0);
2343 static bool disable_counter_freezing = true;
2344 static int __init intel_perf_counter_freezing_setup(char *s)
2348 if (kstrtobool(s, &res))
2351 disable_counter_freezing = !res;
2354 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2357 * Simplified handler for Arch Perfmon v4:
2358 * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2359 * This is done automatically on PMU ack.
2360 * - Ack the PMU only after the APIC.
2363 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2365 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2369 int pmu_enabled = cpuc->enabled;
2372 /* PMU has been disabled because of counter freezing */
2374 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2376 intel_bts_disable_local();
2377 handled = intel_pmu_drain_bts_buffer();
2378 handled += intel_bts_interrupt();
2380 status = intel_pmu_get_status();
2384 intel_pmu_lbr_read();
2385 if (++loops > 100) {
2389 WARN(1, "perfevents: irq loop stuck!\n");
2390 perf_event_print_debug();
2398 handled += handle_pmi_common(regs, status);
2400 /* Ack the PMI in the APIC */
2401 apic_write(APIC_LVTPC, APIC_DM_NMI);
2404 * The counters start counting immediately while ack the status.
2405 * Make it as close as possible to IRET. This avoids bogus
2406 * freezing on Skylake CPUs.
2409 intel_pmu_ack_status(status);
2412 * CPU may issues two PMIs very close to each other.
2413 * When the PMI handler services the first one, the
2414 * GLOBAL_STATUS is already updated to reflect both.
2415 * When it IRETs, the second PMI is immediately
2416 * handled and it sees clear status. At the meantime,
2417 * there may be a third PMI, because the freezing bit
2418 * isn't set since the ack in first PMI handlers.
2419 * Double check if there is more work to be done.
2421 status = intel_pmu_get_status();
2427 intel_bts_enable_local();
2428 cpuc->enabled = pmu_enabled;
2433 * This handler is triggered by the local APIC, so the APIC IRQ handling
2436 static int intel_pmu_handle_irq(struct pt_regs *regs)
2438 struct cpu_hw_events *cpuc;
2444 cpuc = this_cpu_ptr(&cpu_hw_events);
2447 * Save the PMU state.
2448 * It needs to be restored when leaving the handler.
2450 pmu_enabled = cpuc->enabled;
2452 * No known reason to not always do late ACK,
2453 * but just in case do it opt-in.
2455 if (!x86_pmu.late_ack)
2456 apic_write(APIC_LVTPC, APIC_DM_NMI);
2457 intel_bts_disable_local();
2459 __intel_pmu_disable_all();
2460 handled = intel_pmu_drain_bts_buffer();
2461 handled += intel_bts_interrupt();
2462 status = intel_pmu_get_status();
2468 intel_pmu_lbr_read();
2469 intel_pmu_ack_status(status);
2470 if (++loops > 100) {
2474 WARN(1, "perfevents: irq loop stuck!\n");
2475 perf_event_print_debug();
2482 handled += handle_pmi_common(regs, status);
2485 * Repeat if there is more work to be done:
2487 status = intel_pmu_get_status();
2492 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2493 cpuc->enabled = pmu_enabled;
2495 __intel_pmu_enable_all(0, true);
2496 intel_bts_enable_local();
2499 * Only unmask the NMI after the overflow counters
2500 * have been reset. This avoids spurious NMIs on
2503 if (x86_pmu.late_ack)
2504 apic_write(APIC_LVTPC, APIC_DM_NMI);
2508 static struct event_constraint *
2509 intel_bts_constraints(struct perf_event *event)
2511 if (unlikely(intel_pmu_has_bts(event)))
2512 return &bts_constraint;
2517 static int intel_alt_er(int idx, u64 config)
2521 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2524 if (idx == EXTRA_REG_RSP_0)
2525 alt_idx = EXTRA_REG_RSP_1;
2527 if (idx == EXTRA_REG_RSP_1)
2528 alt_idx = EXTRA_REG_RSP_0;
2530 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2536 static void intel_fixup_er(struct perf_event *event, int idx)
2538 event->hw.extra_reg.idx = idx;
2540 if (idx == EXTRA_REG_RSP_0) {
2541 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2542 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2543 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2544 } else if (idx == EXTRA_REG_RSP_1) {
2545 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2546 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2547 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2552 * manage allocation of shared extra msr for certain events
2555 * per-cpu: to be shared between the various events on a single PMU
2556 * per-core: per-cpu + shared by HT threads
2558 static struct event_constraint *
2559 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2560 struct perf_event *event,
2561 struct hw_perf_event_extra *reg)
2563 struct event_constraint *c = &emptyconstraint;
2564 struct er_account *era;
2565 unsigned long flags;
2569 * reg->alloc can be set due to existing state, so for fake cpuc we
2570 * need to ignore this, otherwise we might fail to allocate proper fake
2571 * state for this extra reg constraint. Also see the comment below.
2573 if (reg->alloc && !cpuc->is_fake)
2574 return NULL; /* call x86_get_event_constraint() */
2577 era = &cpuc->shared_regs->regs[idx];
2579 * we use spin_lock_irqsave() to avoid lockdep issues when
2580 * passing a fake cpuc
2582 raw_spin_lock_irqsave(&era->lock, flags);
2584 if (!atomic_read(&era->ref) || era->config == reg->config) {
2587 * If its a fake cpuc -- as per validate_{group,event}() we
2588 * shouldn't touch event state and we can avoid doing so
2589 * since both will only call get_event_constraints() once
2590 * on each event, this avoids the need for reg->alloc.
2592 * Not doing the ER fixup will only result in era->reg being
2593 * wrong, but since we won't actually try and program hardware
2594 * this isn't a problem either.
2596 if (!cpuc->is_fake) {
2597 if (idx != reg->idx)
2598 intel_fixup_er(event, idx);
2601 * x86_schedule_events() can call get_event_constraints()
2602 * multiple times on events in the case of incremental
2603 * scheduling(). reg->alloc ensures we only do the ER
2609 /* lock in msr value */
2610 era->config = reg->config;
2611 era->reg = reg->reg;
2614 atomic_inc(&era->ref);
2617 * need to call x86_get_event_constraint()
2618 * to check if associated event has constraints
2622 idx = intel_alt_er(idx, reg->config);
2623 if (idx != reg->idx) {
2624 raw_spin_unlock_irqrestore(&era->lock, flags);
2628 raw_spin_unlock_irqrestore(&era->lock, flags);
2634 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2635 struct hw_perf_event_extra *reg)
2637 struct er_account *era;
2640 * Only put constraint if extra reg was actually allocated. Also takes
2641 * care of event which do not use an extra shared reg.
2643 * Also, if this is a fake cpuc we shouldn't touch any event state
2644 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2645 * either since it'll be thrown out.
2647 if (!reg->alloc || cpuc->is_fake)
2650 era = &cpuc->shared_regs->regs[reg->idx];
2652 /* one fewer user */
2653 atomic_dec(&era->ref);
2655 /* allocate again next time */
2659 static struct event_constraint *
2660 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2661 struct perf_event *event)
2663 struct event_constraint *c = NULL, *d;
2664 struct hw_perf_event_extra *xreg, *breg;
2666 xreg = &event->hw.extra_reg;
2667 if (xreg->idx != EXTRA_REG_NONE) {
2668 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2669 if (c == &emptyconstraint)
2672 breg = &event->hw.branch_reg;
2673 if (breg->idx != EXTRA_REG_NONE) {
2674 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2675 if (d == &emptyconstraint) {
2676 __intel_shared_reg_put_constraints(cpuc, xreg);
2683 struct event_constraint *
2684 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2685 struct perf_event *event)
2687 struct event_constraint *c;
2689 if (x86_pmu.event_constraints) {
2690 for_each_event_constraint(c, x86_pmu.event_constraints) {
2691 if ((event->hw.config & c->cmask) == c->code) {
2692 event->hw.flags |= c->flags;
2698 return &unconstrained;
2701 static struct event_constraint *
2702 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2703 struct perf_event *event)
2705 struct event_constraint *c;
2707 c = intel_bts_constraints(event);
2711 c = intel_shared_regs_constraints(cpuc, event);
2715 c = intel_pebs_constraints(event);
2719 return x86_get_event_constraints(cpuc, idx, event);
2723 intel_start_scheduling(struct cpu_hw_events *cpuc)
2725 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2726 struct intel_excl_states *xl;
2727 int tid = cpuc->excl_thread_id;
2730 * nothing needed if in group validation mode
2732 if (cpuc->is_fake || !is_ht_workaround_enabled())
2736 * no exclusion needed
2738 if (WARN_ON_ONCE(!excl_cntrs))
2741 xl = &excl_cntrs->states[tid];
2743 xl->sched_started = true;
2745 * lock shared state until we are done scheduling
2746 * in stop_event_scheduling()
2747 * makes scheduling appear as a transaction
2749 raw_spin_lock(&excl_cntrs->lock);
2752 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2754 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2755 struct event_constraint *c = cpuc->event_constraint[idx];
2756 struct intel_excl_states *xl;
2757 int tid = cpuc->excl_thread_id;
2759 if (cpuc->is_fake || !is_ht_workaround_enabled())
2762 if (WARN_ON_ONCE(!excl_cntrs))
2765 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2768 xl = &excl_cntrs->states[tid];
2770 lockdep_assert_held(&excl_cntrs->lock);
2772 if (c->flags & PERF_X86_EVENT_EXCL)
2773 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2775 xl->state[cntr] = INTEL_EXCL_SHARED;
2779 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2781 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2782 struct intel_excl_states *xl;
2783 int tid = cpuc->excl_thread_id;
2786 * nothing needed if in group validation mode
2788 if (cpuc->is_fake || !is_ht_workaround_enabled())
2791 * no exclusion needed
2793 if (WARN_ON_ONCE(!excl_cntrs))
2796 xl = &excl_cntrs->states[tid];
2798 xl->sched_started = false;
2800 * release shared state lock (acquired in intel_start_scheduling())
2802 raw_spin_unlock(&excl_cntrs->lock);
2805 static struct event_constraint *
2806 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
2808 WARN_ON_ONCE(!cpuc->constraint_list);
2810 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2811 struct event_constraint *cx;
2814 * grab pre-allocated constraint entry
2816 cx = &cpuc->constraint_list[idx];
2819 * initialize dynamic constraint
2820 * with static constraint
2825 * mark constraint as dynamic
2827 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2834 static struct event_constraint *
2835 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2836 int idx, struct event_constraint *c)
2838 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2839 struct intel_excl_states *xlo;
2840 int tid = cpuc->excl_thread_id;
2844 * validating a group does not require
2845 * enforcing cross-thread exclusion
2847 if (cpuc->is_fake || !is_ht_workaround_enabled())
2851 * no exclusion needed
2853 if (WARN_ON_ONCE(!excl_cntrs))
2857 * because we modify the constraint, we need
2858 * to make a copy. Static constraints come
2859 * from static const tables.
2861 * only needed when constraint has not yet
2862 * been cloned (marked dynamic)
2864 c = dyn_constraint(cpuc, c, idx);
2867 * From here on, the constraint is dynamic.
2868 * Either it was just allocated above, or it
2869 * was allocated during a earlier invocation
2874 * state of sibling HT
2876 xlo = &excl_cntrs->states[tid ^ 1];
2879 * event requires exclusive counter access
2882 is_excl = c->flags & PERF_X86_EVENT_EXCL;
2883 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2884 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2885 if (!cpuc->n_excl++)
2886 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2890 * Modify static constraint with current dynamic
2893 * EXCLUSIVE: sibling counter measuring exclusive event
2894 * SHARED : sibling counter measuring non-exclusive event
2895 * UNUSED : sibling counter unused
2897 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2899 * exclusive event in sibling counter
2900 * our corresponding counter cannot be used
2901 * regardless of our event
2903 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2904 __clear_bit(i, c->idxmsk);
2906 * if measuring an exclusive event, sibling
2907 * measuring non-exclusive, then counter cannot
2910 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2911 __clear_bit(i, c->idxmsk);
2915 * recompute actual bit weight for scheduling algorithm
2917 c->weight = hweight64(c->idxmsk64);
2920 * if we return an empty mask, then switch
2921 * back to static empty constraint to avoid
2922 * the cost of freeing later on
2925 c = &emptyconstraint;
2930 static struct event_constraint *
2931 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2932 struct perf_event *event)
2934 struct event_constraint *c1 = NULL;
2935 struct event_constraint *c2;
2937 if (idx >= 0) /* fake does < 0 */
2938 c1 = cpuc->event_constraint[idx];
2942 * - static constraint: no change across incremental scheduling calls
2943 * - dynamic constraint: handled by intel_get_excl_constraints()
2945 c2 = __intel_get_event_constraints(cpuc, idx, event);
2946 if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2947 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2948 c1->weight = c2->weight;
2952 if (cpuc->excl_cntrs)
2953 return intel_get_excl_constraints(cpuc, event, idx, c2);
2958 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2959 struct perf_event *event)
2961 struct hw_perf_event *hwc = &event->hw;
2962 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2963 int tid = cpuc->excl_thread_id;
2964 struct intel_excl_states *xl;
2967 * nothing needed if in group validation mode
2972 if (WARN_ON_ONCE(!excl_cntrs))
2975 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2976 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2977 if (!--cpuc->n_excl)
2978 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2982 * If event was actually assigned, then mark the counter state as
2985 if (hwc->idx >= 0) {
2986 xl = &excl_cntrs->states[tid];
2989 * put_constraint may be called from x86_schedule_events()
2990 * which already has the lock held so here make locking
2993 if (!xl->sched_started)
2994 raw_spin_lock(&excl_cntrs->lock);
2996 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2998 if (!xl->sched_started)
2999 raw_spin_unlock(&excl_cntrs->lock);
3004 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3005 struct perf_event *event)
3007 struct hw_perf_event_extra *reg;
3009 reg = &event->hw.extra_reg;
3010 if (reg->idx != EXTRA_REG_NONE)
3011 __intel_shared_reg_put_constraints(cpuc, reg);
3013 reg = &event->hw.branch_reg;
3014 if (reg->idx != EXTRA_REG_NONE)
3015 __intel_shared_reg_put_constraints(cpuc, reg);
3018 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3019 struct perf_event *event)
3021 intel_put_shared_regs_event_constraints(cpuc, event);
3024 * is PMU has exclusive counter restrictions, then
3025 * all events are subject to and must call the
3026 * put_excl_constraints() routine
3028 if (cpuc->excl_cntrs)
3029 intel_put_excl_constraints(cpuc, event);
3032 static void intel_pebs_aliases_core2(struct perf_event *event)
3034 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3036 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3037 * (0x003c) so that we can use it with PEBS.
3039 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3040 * PEBS capable. However we can use INST_RETIRED.ANY_P
3041 * (0x00c0), which is a PEBS capable event, to get the same
3044 * INST_RETIRED.ANY_P counts the number of cycles that retires
3045 * CNTMASK instructions. By setting CNTMASK to a value (16)
3046 * larger than the maximum number of instructions that can be
3047 * retired per cycle (4) and then inverting the condition, we
3048 * count all cycles that retire 16 or less instructions, which
3051 * Thereby we gain a PEBS capable cycle counter.
3053 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3055 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3056 event->hw.config = alt_config;
3060 static void intel_pebs_aliases_snb(struct perf_event *event)
3062 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3064 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3065 * (0x003c) so that we can use it with PEBS.
3067 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3068 * PEBS capable. However we can use UOPS_RETIRED.ALL
3069 * (0x01c2), which is a PEBS capable event, to get the same
3072 * UOPS_RETIRED.ALL counts the number of cycles that retires
3073 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3074 * larger than the maximum number of micro-ops that can be
3075 * retired per cycle (4) and then inverting the condition, we
3076 * count all cycles that retire 16 or less micro-ops, which
3079 * Thereby we gain a PEBS capable cycle counter.
3081 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3083 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3084 event->hw.config = alt_config;
3088 static void intel_pebs_aliases_precdist(struct perf_event *event)
3090 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3092 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3093 * (0x003c) so that we can use it with PEBS.
3095 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3096 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3097 * (0x01c0), which is a PEBS capable event, to get the same
3100 * The PREC_DIST event has special support to minimize sample
3101 * shadowing effects. One drawback is that it can be
3102 * only programmed on counter 1, but that seems like an
3103 * acceptable trade off.
3105 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3107 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3108 event->hw.config = alt_config;
3112 static void intel_pebs_aliases_ivb(struct perf_event *event)
3114 if (event->attr.precise_ip < 3)
3115 return intel_pebs_aliases_snb(event);
3116 return intel_pebs_aliases_precdist(event);
3119 static void intel_pebs_aliases_skl(struct perf_event *event)
3121 if (event->attr.precise_ip < 3)
3122 return intel_pebs_aliases_core2(event);
3123 return intel_pebs_aliases_precdist(event);
3126 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3128 unsigned long flags = x86_pmu.large_pebs_flags;
3130 if (event->attr.use_clockid)
3131 flags &= ~PERF_SAMPLE_TIME;
3132 if (!event->attr.exclude_kernel)
3133 flags &= ~PERF_SAMPLE_REGS_USER;
3134 if (event->attr.sample_regs_user & ~PEBS_REGS)
3135 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3139 static int intel_pmu_bts_config(struct perf_event *event)
3141 struct perf_event_attr *attr = &event->attr;
3143 if (unlikely(intel_pmu_has_bts(event))) {
3144 /* BTS is not supported by this architecture. */
3145 if (!x86_pmu.bts_active)
3148 /* BTS is currently only allowed for user-mode. */
3149 if (!attr->exclude_kernel)
3152 /* BTS is not allowed for precise events. */
3153 if (attr->precise_ip)
3156 /* disallow bts if conflicting events are present */
3157 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3160 event->destroy = hw_perf_lbr_event_destroy;
3166 static int core_pmu_hw_config(struct perf_event *event)
3168 int ret = x86_pmu_hw_config(event);
3173 return intel_pmu_bts_config(event);
3176 static int intel_pmu_hw_config(struct perf_event *event)
3178 int ret = x86_pmu_hw_config(event);
3183 ret = intel_pmu_bts_config(event);
3187 if (event->attr.precise_ip) {
3188 if (!event->attr.freq) {
3189 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3190 if (!(event->attr.sample_type &
3191 ~intel_pmu_large_pebs_flags(event)))
3192 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3194 if (x86_pmu.pebs_aliases)
3195 x86_pmu.pebs_aliases(event);
3197 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3198 event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3201 if (needs_branch_stack(event)) {
3202 ret = intel_pmu_setup_lbr_filter(event);
3207 * BTS is set up earlier in this path, so don't account twice
3209 if (!unlikely(intel_pmu_has_bts(event))) {
3210 /* disallow lbr if conflicting events are present */
3211 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3214 event->destroy = hw_perf_lbr_event_destroy;
3218 if (event->attr.type != PERF_TYPE_RAW)
3221 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3224 if (x86_pmu.version < 3)
3227 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3230 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3235 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3237 if (x86_pmu.guest_get_msrs)
3238 return x86_pmu.guest_get_msrs(nr);
3242 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3244 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3246 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3247 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3249 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3250 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3251 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3252 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3253 arr[0].guest &= ~cpuc->pebs_enabled;
3255 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);