92dfeb343a6ae2fb86ed0d63f4247963521ec4f8
[muen/linux.git] / arch / x86 / events / intel / core.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21 #include <asm/cpu_device_id.h>
22
23 #include "../perf_event.h"
24
25 /*
26  * Intel PerfMon, used on Core and later.
27  */
28 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
29 {
30         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
31         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
32         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
33         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
34         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
35         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
36         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
37         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
38 };
39
40 static struct event_constraint intel_core_event_constraints[] __read_mostly =
41 {
42         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
43         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
44         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
45         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
46         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
47         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
48         EVENT_CONSTRAINT_END
49 };
50
51 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
52 {
53         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
54         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
55         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
56         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
57         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
58         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
59         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
60         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
61         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
62         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
63         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
64         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
65         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
66         EVENT_CONSTRAINT_END
67 };
68
69 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
70 {
71         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
72         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
73         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
74         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
75         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
76         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
77         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
78         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
79         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
80         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
81         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
82         EVENT_CONSTRAINT_END
83 };
84
85 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
86 {
87         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
88         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
89         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
90         EVENT_EXTRA_END
91 };
92
93 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
94 {
95         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
96         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
97         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
98         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
99         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
100         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
101         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
102         EVENT_CONSTRAINT_END
103 };
104
105 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
106 {
107         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
108         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
109         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
110         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
111         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
112         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
113         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
114         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
115         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
116         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
117         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
118         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
119
120         /*
121          * When HT is off these events can only run on the bottom 4 counters
122          * When HT is on, they are impacted by the HT bug and require EXCL access
123          */
124         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
125         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
126         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
127         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
128
129         EVENT_CONSTRAINT_END
130 };
131
132 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
133 {
134         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
135         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
136         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
137         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
138         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
139         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
140         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
141         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
142         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
144         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
146         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
147
148         /*
149          * When HT is off these events can only run on the bottom 4 counters
150          * When HT is on, they are impacted by the HT bug and require EXCL access
151          */
152         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
153         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
154         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
155         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
156
157         EVENT_CONSTRAINT_END
158 };
159
160 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
161 {
162         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
163         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
164         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
165         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
166         EVENT_EXTRA_END
167 };
168
169 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
170 {
171         EVENT_CONSTRAINT_END
172 };
173
174 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
175 {
176         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
177         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
178         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
179         EVENT_CONSTRAINT_END
180 };
181
182 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
183 {
184         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
185         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
186         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
187         EVENT_CONSTRAINT_END
188 };
189
190 static struct event_constraint intel_skl_event_constraints[] = {
191         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
192         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
193         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
194         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
195
196         /*
197          * when HT is off, these can only run on the bottom 4 counters
198          */
199         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
200         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
201         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
202         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
203         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
204
205         EVENT_CONSTRAINT_END
206 };
207
208 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
209         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
210         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
211         EVENT_EXTRA_END
212 };
213
214 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
215         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
216         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
217         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
218         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
219         EVENT_EXTRA_END
220 };
221
222 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
223         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
224         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
225         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
226         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
227         EVENT_EXTRA_END
228 };
229
230 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
231         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
232         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
233         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
234         /*
235          * Note the low 8 bits eventsel code is not a continuous field, containing
236          * some #GPing bits. These are masked out.
237          */
238         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
239         EVENT_EXTRA_END
240 };
241
242 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
243 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
244 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
245
246 static struct attribute *nhm_mem_events_attrs[] = {
247         EVENT_PTR(mem_ld_nhm),
248         NULL,
249 };
250
251 /*
252  * topdown events for Intel Core CPUs.
253  *
254  * The events are all in slots, which is a free slot in a 4 wide
255  * pipeline. Some events are already reported in slots, for cycle
256  * events we multiply by the pipeline width (4).
257  *
258  * With Hyper Threading on, topdown metrics are either summed or averaged
259  * between the threads of a core: (count_t0 + count_t1).
260  *
261  * For the average case the metric is always scaled to pipeline width,
262  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
263  */
264
265 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
266         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
267         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
268 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
269 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
270         "event=0xe,umask=0x1");                 /* uops_issued.any */
271 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
272         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
273 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
274         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
275 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
276         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
277         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
278 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
279         "4", "2");
280
281 static struct attribute *snb_events_attrs[] = {
282         EVENT_PTR(td_slots_issued),
283         EVENT_PTR(td_slots_retired),
284         EVENT_PTR(td_fetch_bubbles),
285         EVENT_PTR(td_total_slots),
286         EVENT_PTR(td_total_slots_scale),
287         EVENT_PTR(td_recovery_bubbles),
288         EVENT_PTR(td_recovery_bubbles_scale),
289         NULL,
290 };
291
292 static struct attribute *snb_mem_events_attrs[] = {
293         EVENT_PTR(mem_ld_snb),
294         EVENT_PTR(mem_st_snb),
295         NULL,
296 };
297
298 static struct event_constraint intel_hsw_event_constraints[] = {
299         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
300         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
301         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
302         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
303         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
304         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
305         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
306         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
307         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
308         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
309         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
310         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
311
312         /*
313          * When HT is off these events can only run on the bottom 4 counters
314          * When HT is on, they are impacted by the HT bug and require EXCL access
315          */
316         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
317         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
318         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
319         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
320
321         EVENT_CONSTRAINT_END
322 };
323
324 static struct event_constraint intel_bdw_event_constraints[] = {
325         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
326         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
327         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
328         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
329         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
330         /*
331          * when HT is off, these can only run on the bottom 4 counters
332          */
333         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
334         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
335         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
336         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
337         EVENT_CONSTRAINT_END
338 };
339
340 static u64 intel_pmu_event_map(int hw_event)
341 {
342         return intel_perfmon_event_map[hw_event];
343 }
344
345 /*
346  * Notes on the events:
347  * - data reads do not include code reads (comparable to earlier tables)
348  * - data counts include speculative execution (except L1 write, dtlb, bpu)
349  * - remote node access includes remote memory, remote cache, remote mmio.
350  * - prefetches are not included in the counts.
351  * - icache miss does not include decoded icache
352  */
353
354 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
355 #define SKL_DEMAND_RFO                  BIT_ULL(1)
356 #define SKL_ANY_RESPONSE                BIT_ULL(16)
357 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
358 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
359 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
360 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
361 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
362 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
363                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
364                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
365                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
366 #define SKL_SPL_HIT                     BIT_ULL(30)
367 #define SKL_SNOOP_NONE                  BIT_ULL(31)
368 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
369 #define SKL_SNOOP_MISS                  BIT_ULL(33)
370 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
371 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
372 #define SKL_SNOOP_HITM                  BIT_ULL(36)
373 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
374 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
375                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
378 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
379 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
380                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
381                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
382                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
383 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
384 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
385 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
386                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
387                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
388
389 static __initconst const u64 skl_hw_cache_event_ids
390                                 [PERF_COUNT_HW_CACHE_MAX]
391                                 [PERF_COUNT_HW_CACHE_OP_MAX]
392                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
393 {
394  [ C(L1D ) ] = {
395         [ C(OP_READ) ] = {
396                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
397                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
398         },
399         [ C(OP_WRITE) ] = {
400                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
401                 [ C(RESULT_MISS)   ] = 0x0,
402         },
403         [ C(OP_PREFETCH) ] = {
404                 [ C(RESULT_ACCESS) ] = 0x0,
405                 [ C(RESULT_MISS)   ] = 0x0,
406         },
407  },
408  [ C(L1I ) ] = {
409         [ C(OP_READ) ] = {
410                 [ C(RESULT_ACCESS) ] = 0x0,
411                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
412         },
413         [ C(OP_WRITE) ] = {
414                 [ C(RESULT_ACCESS) ] = -1,
415                 [ C(RESULT_MISS)   ] = -1,
416         },
417         [ C(OP_PREFETCH) ] = {
418                 [ C(RESULT_ACCESS) ] = 0x0,
419                 [ C(RESULT_MISS)   ] = 0x0,
420         },
421  },
422  [ C(LL  ) ] = {
423         [ C(OP_READ) ] = {
424                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
425                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
426         },
427         [ C(OP_WRITE) ] = {
428                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
429                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
430         },
431         [ C(OP_PREFETCH) ] = {
432                 [ C(RESULT_ACCESS) ] = 0x0,
433                 [ C(RESULT_MISS)   ] = 0x0,
434         },
435  },
436  [ C(DTLB) ] = {
437         [ C(OP_READ) ] = {
438                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
439                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
440         },
441         [ C(OP_WRITE) ] = {
442                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
443                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
444         },
445         [ C(OP_PREFETCH) ] = {
446                 [ C(RESULT_ACCESS) ] = 0x0,
447                 [ C(RESULT_MISS)   ] = 0x0,
448         },
449  },
450  [ C(ITLB) ] = {
451         [ C(OP_READ) ] = {
452                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
453                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
454         },
455         [ C(OP_WRITE) ] = {
456                 [ C(RESULT_ACCESS) ] = -1,
457                 [ C(RESULT_MISS)   ] = -1,
458         },
459         [ C(OP_PREFETCH) ] = {
460                 [ C(RESULT_ACCESS) ] = -1,
461                 [ C(RESULT_MISS)   ] = -1,
462         },
463  },
464  [ C(BPU ) ] = {
465         [ C(OP_READ) ] = {
466                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
467                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
468         },
469         [ C(OP_WRITE) ] = {
470                 [ C(RESULT_ACCESS) ] = -1,
471                 [ C(RESULT_MISS)   ] = -1,
472         },
473         [ C(OP_PREFETCH) ] = {
474                 [ C(RESULT_ACCESS) ] = -1,
475                 [ C(RESULT_MISS)   ] = -1,
476         },
477  },
478  [ C(NODE) ] = {
479         [ C(OP_READ) ] = {
480                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
481                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
482         },
483         [ C(OP_WRITE) ] = {
484                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
485                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
486         },
487         [ C(OP_PREFETCH) ] = {
488                 [ C(RESULT_ACCESS) ] = 0x0,
489                 [ C(RESULT_MISS)   ] = 0x0,
490         },
491  },
492 };
493
494 static __initconst const u64 skl_hw_cache_extra_regs
495                                 [PERF_COUNT_HW_CACHE_MAX]
496                                 [PERF_COUNT_HW_CACHE_OP_MAX]
497                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
498 {
499  [ C(LL  ) ] = {
500         [ C(OP_READ) ] = {
501                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
502                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
503                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
504                                        SKL_L3_MISS|SKL_ANY_SNOOP|
505                                        SKL_SUPPLIER_NONE,
506         },
507         [ C(OP_WRITE) ] = {
508                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
509                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
510                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
511                                        SKL_L3_MISS|SKL_ANY_SNOOP|
512                                        SKL_SUPPLIER_NONE,
513         },
514         [ C(OP_PREFETCH) ] = {
515                 [ C(RESULT_ACCESS) ] = 0x0,
516                 [ C(RESULT_MISS)   ] = 0x0,
517         },
518  },
519  [ C(NODE) ] = {
520         [ C(OP_READ) ] = {
521                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
522                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
523                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
524                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
525         },
526         [ C(OP_WRITE) ] = {
527                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
528                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
529                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
530                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
531         },
532         [ C(OP_PREFETCH) ] = {
533                 [ C(RESULT_ACCESS) ] = 0x0,
534                 [ C(RESULT_MISS)   ] = 0x0,
535         },
536  },
537 };
538
539 #define SNB_DMND_DATA_RD        (1ULL << 0)
540 #define SNB_DMND_RFO            (1ULL << 1)
541 #define SNB_DMND_IFETCH         (1ULL << 2)
542 #define SNB_DMND_WB             (1ULL << 3)
543 #define SNB_PF_DATA_RD          (1ULL << 4)
544 #define SNB_PF_RFO              (1ULL << 5)
545 #define SNB_PF_IFETCH           (1ULL << 6)
546 #define SNB_LLC_DATA_RD         (1ULL << 7)
547 #define SNB_LLC_RFO             (1ULL << 8)
548 #define SNB_LLC_IFETCH          (1ULL << 9)
549 #define SNB_BUS_LOCKS           (1ULL << 10)
550 #define SNB_STRM_ST             (1ULL << 11)
551 #define SNB_OTHER               (1ULL << 15)
552 #define SNB_RESP_ANY            (1ULL << 16)
553 #define SNB_NO_SUPP             (1ULL << 17)
554 #define SNB_LLC_HITM            (1ULL << 18)
555 #define SNB_LLC_HITE            (1ULL << 19)
556 #define SNB_LLC_HITS            (1ULL << 20)
557 #define SNB_LLC_HITF            (1ULL << 21)
558 #define SNB_LOCAL               (1ULL << 22)
559 #define SNB_REMOTE              (0xffULL << 23)
560 #define SNB_SNP_NONE            (1ULL << 31)
561 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
562 #define SNB_SNP_MISS            (1ULL << 33)
563 #define SNB_NO_FWD              (1ULL << 34)
564 #define SNB_SNP_FWD             (1ULL << 35)
565 #define SNB_HITM                (1ULL << 36)
566 #define SNB_NON_DRAM            (1ULL << 37)
567
568 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
569 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
570 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
571
572 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
573                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
574                                  SNB_HITM)
575
576 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
577 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
578
579 #define SNB_L3_ACCESS           SNB_RESP_ANY
580 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
581
582 static __initconst const u64 snb_hw_cache_extra_regs
583                                 [PERF_COUNT_HW_CACHE_MAX]
584                                 [PERF_COUNT_HW_CACHE_OP_MAX]
585                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
586 {
587  [ C(LL  ) ] = {
588         [ C(OP_READ) ] = {
589                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
590                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
591         },
592         [ C(OP_WRITE) ] = {
593                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
594                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
595         },
596         [ C(OP_PREFETCH) ] = {
597                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
598                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
599         },
600  },
601  [ C(NODE) ] = {
602         [ C(OP_READ) ] = {
603                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
604                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
605         },
606         [ C(OP_WRITE) ] = {
607                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
608                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
609         },
610         [ C(OP_PREFETCH) ] = {
611                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
612                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
613         },
614  },
615 };
616
617 static __initconst const u64 snb_hw_cache_event_ids
618                                 [PERF_COUNT_HW_CACHE_MAX]
619                                 [PERF_COUNT_HW_CACHE_OP_MAX]
620                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
621 {
622  [ C(L1D) ] = {
623         [ C(OP_READ) ] = {
624                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
625                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
626         },
627         [ C(OP_WRITE) ] = {
628                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
629                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
630         },
631         [ C(OP_PREFETCH) ] = {
632                 [ C(RESULT_ACCESS) ] = 0x0,
633                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
634         },
635  },
636  [ C(L1I ) ] = {
637         [ C(OP_READ) ] = {
638                 [ C(RESULT_ACCESS) ] = 0x0,
639                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
640         },
641         [ C(OP_WRITE) ] = {
642                 [ C(RESULT_ACCESS) ] = -1,
643                 [ C(RESULT_MISS)   ] = -1,
644         },
645         [ C(OP_PREFETCH) ] = {
646                 [ C(RESULT_ACCESS) ] = 0x0,
647                 [ C(RESULT_MISS)   ] = 0x0,
648         },
649  },
650  [ C(LL  ) ] = {
651         [ C(OP_READ) ] = {
652                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
653                 [ C(RESULT_ACCESS) ] = 0x01b7,
654                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
655                 [ C(RESULT_MISS)   ] = 0x01b7,
656         },
657         [ C(OP_WRITE) ] = {
658                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
659                 [ C(RESULT_ACCESS) ] = 0x01b7,
660                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
661                 [ C(RESULT_MISS)   ] = 0x01b7,
662         },
663         [ C(OP_PREFETCH) ] = {
664                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
665                 [ C(RESULT_ACCESS) ] = 0x01b7,
666                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
667                 [ C(RESULT_MISS)   ] = 0x01b7,
668         },
669  },
670  [ C(DTLB) ] = {
671         [ C(OP_READ) ] = {
672                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
673                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
674         },
675         [ C(OP_WRITE) ] = {
676                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
677                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
678         },
679         [ C(OP_PREFETCH) ] = {
680                 [ C(RESULT_ACCESS) ] = 0x0,
681                 [ C(RESULT_MISS)   ] = 0x0,
682         },
683  },
684  [ C(ITLB) ] = {
685         [ C(OP_READ) ] = {
686                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
687                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
688         },
689         [ C(OP_WRITE) ] = {
690                 [ C(RESULT_ACCESS) ] = -1,
691                 [ C(RESULT_MISS)   ] = -1,
692         },
693         [ C(OP_PREFETCH) ] = {
694                 [ C(RESULT_ACCESS) ] = -1,
695                 [ C(RESULT_MISS)   ] = -1,
696         },
697  },
698  [ C(BPU ) ] = {
699         [ C(OP_READ) ] = {
700                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
701                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
702         },
703         [ C(OP_WRITE) ] = {
704                 [ C(RESULT_ACCESS) ] = -1,
705                 [ C(RESULT_MISS)   ] = -1,
706         },
707         [ C(OP_PREFETCH) ] = {
708                 [ C(RESULT_ACCESS) ] = -1,
709                 [ C(RESULT_MISS)   ] = -1,
710         },
711  },
712  [ C(NODE) ] = {
713         [ C(OP_READ) ] = {
714                 [ C(RESULT_ACCESS) ] = 0x01b7,
715                 [ C(RESULT_MISS)   ] = 0x01b7,
716         },
717         [ C(OP_WRITE) ] = {
718                 [ C(RESULT_ACCESS) ] = 0x01b7,
719                 [ C(RESULT_MISS)   ] = 0x01b7,
720         },
721         [ C(OP_PREFETCH) ] = {
722                 [ C(RESULT_ACCESS) ] = 0x01b7,
723                 [ C(RESULT_MISS)   ] = 0x01b7,
724         },
725  },
726
727 };
728
729 /*
730  * Notes on the events:
731  * - data reads do not include code reads (comparable to earlier tables)
732  * - data counts include speculative execution (except L1 write, dtlb, bpu)
733  * - remote node access includes remote memory, remote cache, remote mmio.
734  * - prefetches are not included in the counts because they are not
735  *   reliably counted.
736  */
737
738 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
739 #define HSW_DEMAND_RFO                  BIT_ULL(1)
740 #define HSW_ANY_RESPONSE                BIT_ULL(16)
741 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
742 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
743 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
744 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
745 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
746 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
747                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
748                                          HSW_L3_MISS_REMOTE_HOP2P)
749 #define HSW_SNOOP_NONE                  BIT_ULL(31)
750 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
751 #define HSW_SNOOP_MISS                  BIT_ULL(33)
752 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
753 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
754 #define HSW_SNOOP_HITM                  BIT_ULL(36)
755 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
756 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
757                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
758                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
759                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
760 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
761 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
762 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
763 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
764                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
765 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
766
767 #define BDW_L3_MISS_LOCAL               BIT(26)
768 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
769                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
770                                          HSW_L3_MISS_REMOTE_HOP2P)
771
772
773 static __initconst const u64 hsw_hw_cache_event_ids
774                                 [PERF_COUNT_HW_CACHE_MAX]
775                                 [PERF_COUNT_HW_CACHE_OP_MAX]
776                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
777 {
778  [ C(L1D ) ] = {
779         [ C(OP_READ) ] = {
780                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
781                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
782         },
783         [ C(OP_WRITE) ] = {
784                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
785                 [ C(RESULT_MISS)   ] = 0x0,
786         },
787         [ C(OP_PREFETCH) ] = {
788                 [ C(RESULT_ACCESS) ] = 0x0,
789                 [ C(RESULT_MISS)   ] = 0x0,
790         },
791  },
792  [ C(L1I ) ] = {
793         [ C(OP_READ) ] = {
794                 [ C(RESULT_ACCESS) ] = 0x0,
795                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
796         },
797         [ C(OP_WRITE) ] = {
798                 [ C(RESULT_ACCESS) ] = -1,
799                 [ C(RESULT_MISS)   ] = -1,
800         },
801         [ C(OP_PREFETCH) ] = {
802                 [ C(RESULT_ACCESS) ] = 0x0,
803                 [ C(RESULT_MISS)   ] = 0x0,
804         },
805  },
806  [ C(LL  ) ] = {
807         [ C(OP_READ) ] = {
808                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
809                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
810         },
811         [ C(OP_WRITE) ] = {
812                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
813                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
814         },
815         [ C(OP_PREFETCH) ] = {
816                 [ C(RESULT_ACCESS) ] = 0x0,
817                 [ C(RESULT_MISS)   ] = 0x0,
818         },
819  },
820  [ C(DTLB) ] = {
821         [ C(OP_READ) ] = {
822                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
823                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
824         },
825         [ C(OP_WRITE) ] = {
826                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
827                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
828         },
829         [ C(OP_PREFETCH) ] = {
830                 [ C(RESULT_ACCESS) ] = 0x0,
831                 [ C(RESULT_MISS)   ] = 0x0,
832         },
833  },
834  [ C(ITLB) ] = {
835         [ C(OP_READ) ] = {
836                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
837                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
838         },
839         [ C(OP_WRITE) ] = {
840                 [ C(RESULT_ACCESS) ] = -1,
841                 [ C(RESULT_MISS)   ] = -1,
842         },
843         [ C(OP_PREFETCH) ] = {
844                 [ C(RESULT_ACCESS) ] = -1,
845                 [ C(RESULT_MISS)   ] = -1,
846         },
847  },
848  [ C(BPU ) ] = {
849         [ C(OP_READ) ] = {
850                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
851                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
852         },
853         [ C(OP_WRITE) ] = {
854                 [ C(RESULT_ACCESS) ] = -1,
855                 [ C(RESULT_MISS)   ] = -1,
856         },
857         [ C(OP_PREFETCH) ] = {
858                 [ C(RESULT_ACCESS) ] = -1,
859                 [ C(RESULT_MISS)   ] = -1,
860         },
861  },
862  [ C(NODE) ] = {
863         [ C(OP_READ) ] = {
864                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
865                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
866         },
867         [ C(OP_WRITE) ] = {
868                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
869                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
870         },
871         [ C(OP_PREFETCH) ] = {
872                 [ C(RESULT_ACCESS) ] = 0x0,
873                 [ C(RESULT_MISS)   ] = 0x0,
874         },
875  },
876 };
877
878 static __initconst const u64 hsw_hw_cache_extra_regs
879                                 [PERF_COUNT_HW_CACHE_MAX]
880                                 [PERF_COUNT_HW_CACHE_OP_MAX]
881                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
882 {
883  [ C(LL  ) ] = {
884         [ C(OP_READ) ] = {
885                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
886                                        HSW_LLC_ACCESS,
887                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
888                                        HSW_L3_MISS|HSW_ANY_SNOOP,
889         },
890         [ C(OP_WRITE) ] = {
891                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
892                                        HSW_LLC_ACCESS,
893                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
894                                        HSW_L3_MISS|HSW_ANY_SNOOP,
895         },
896         [ C(OP_PREFETCH) ] = {
897                 [ C(RESULT_ACCESS) ] = 0x0,
898                 [ C(RESULT_MISS)   ] = 0x0,
899         },
900  },
901  [ C(NODE) ] = {
902         [ C(OP_READ) ] = {
903                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
904                                        HSW_L3_MISS_LOCAL_DRAM|
905                                        HSW_SNOOP_DRAM,
906                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
907                                        HSW_L3_MISS_REMOTE|
908                                        HSW_SNOOP_DRAM,
909         },
910         [ C(OP_WRITE) ] = {
911                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
912                                        HSW_L3_MISS_LOCAL_DRAM|
913                                        HSW_SNOOP_DRAM,
914                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
915                                        HSW_L3_MISS_REMOTE|
916                                        HSW_SNOOP_DRAM,
917         },
918         [ C(OP_PREFETCH) ] = {
919                 [ C(RESULT_ACCESS) ] = 0x0,
920                 [ C(RESULT_MISS)   ] = 0x0,
921         },
922  },
923 };
924
925 static __initconst const u64 westmere_hw_cache_event_ids
926                                 [PERF_COUNT_HW_CACHE_MAX]
927                                 [PERF_COUNT_HW_CACHE_OP_MAX]
928                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
929 {
930  [ C(L1D) ] = {
931         [ C(OP_READ) ] = {
932                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
933                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
934         },
935         [ C(OP_WRITE) ] = {
936                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
937                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
938         },
939         [ C(OP_PREFETCH) ] = {
940                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
941                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
942         },
943  },
944  [ C(L1I ) ] = {
945         [ C(OP_READ) ] = {
946                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
947                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
948         },
949         [ C(OP_WRITE) ] = {
950                 [ C(RESULT_ACCESS) ] = -1,
951                 [ C(RESULT_MISS)   ] = -1,
952         },
953         [ C(OP_PREFETCH) ] = {
954                 [ C(RESULT_ACCESS) ] = 0x0,
955                 [ C(RESULT_MISS)   ] = 0x0,
956         },
957  },
958  [ C(LL  ) ] = {
959         [ C(OP_READ) ] = {
960                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
961                 [ C(RESULT_ACCESS) ] = 0x01b7,
962                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
963                 [ C(RESULT_MISS)   ] = 0x01b7,
964         },
965         /*
966          * Use RFO, not WRITEBACK, because a write miss would typically occur
967          * on RFO.
968          */
969         [ C(OP_WRITE) ] = {
970                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
971                 [ C(RESULT_ACCESS) ] = 0x01b7,
972                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
973                 [ C(RESULT_MISS)   ] = 0x01b7,
974         },
975         [ C(OP_PREFETCH) ] = {
976                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
977                 [ C(RESULT_ACCESS) ] = 0x01b7,
978                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
979                 [ C(RESULT_MISS)   ] = 0x01b7,
980         },
981  },
982  [ C(DTLB) ] = {
983         [ C(OP_READ) ] = {
984                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
985                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
986         },
987         [ C(OP_WRITE) ] = {
988                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
989                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
990         },
991         [ C(OP_PREFETCH) ] = {
992                 [ C(RESULT_ACCESS) ] = 0x0,
993                 [ C(RESULT_MISS)   ] = 0x0,
994         },
995  },
996  [ C(ITLB) ] = {
997         [ C(OP_READ) ] = {
998                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
999                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1000         },
1001         [ C(OP_WRITE) ] = {
1002                 [ C(RESULT_ACCESS) ] = -1,
1003                 [ C(RESULT_MISS)   ] = -1,
1004         },
1005         [ C(OP_PREFETCH) ] = {
1006                 [ C(RESULT_ACCESS) ] = -1,
1007                 [ C(RESULT_MISS)   ] = -1,
1008         },
1009  },
1010  [ C(BPU ) ] = {
1011         [ C(OP_READ) ] = {
1012                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1013                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1014         },
1015         [ C(OP_WRITE) ] = {
1016                 [ C(RESULT_ACCESS) ] = -1,
1017                 [ C(RESULT_MISS)   ] = -1,
1018         },
1019         [ C(OP_PREFETCH) ] = {
1020                 [ C(RESULT_ACCESS) ] = -1,
1021                 [ C(RESULT_MISS)   ] = -1,
1022         },
1023  },
1024  [ C(NODE) ] = {
1025         [ C(OP_READ) ] = {
1026                 [ C(RESULT_ACCESS) ] = 0x01b7,
1027                 [ C(RESULT_MISS)   ] = 0x01b7,
1028         },
1029         [ C(OP_WRITE) ] = {
1030                 [ C(RESULT_ACCESS) ] = 0x01b7,
1031                 [ C(RESULT_MISS)   ] = 0x01b7,
1032         },
1033         [ C(OP_PREFETCH) ] = {
1034                 [ C(RESULT_ACCESS) ] = 0x01b7,
1035                 [ C(RESULT_MISS)   ] = 0x01b7,
1036         },
1037  },
1038 };
1039
1040 /*
1041  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1042  * See IA32 SDM Vol 3B 30.6.1.3
1043  */
1044
1045 #define NHM_DMND_DATA_RD        (1 << 0)
1046 #define NHM_DMND_RFO            (1 << 1)
1047 #define NHM_DMND_IFETCH         (1 << 2)
1048 #define NHM_DMND_WB             (1 << 3)
1049 #define NHM_PF_DATA_RD          (1 << 4)
1050 #define NHM_PF_DATA_RFO         (1 << 5)
1051 #define NHM_PF_IFETCH           (1 << 6)
1052 #define NHM_OFFCORE_OTHER       (1 << 7)
1053 #define NHM_UNCORE_HIT          (1 << 8)
1054 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1055 #define NHM_OTHER_CORE_HITM     (1 << 10)
1056                                 /* reserved */
1057 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1058 #define NHM_REMOTE_DRAM         (1 << 13)
1059 #define NHM_LOCAL_DRAM          (1 << 14)
1060 #define NHM_NON_DRAM            (1 << 15)
1061
1062 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1063 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1064
1065 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1066 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1067 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1068
1069 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1070 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1071 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1072
1073 static __initconst const u64 nehalem_hw_cache_extra_regs
1074                                 [PERF_COUNT_HW_CACHE_MAX]
1075                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1076                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1077 {
1078  [ C(LL  ) ] = {
1079         [ C(OP_READ) ] = {
1080                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1081                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1082         },
1083         [ C(OP_WRITE) ] = {
1084                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1085                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1086         },
1087         [ C(OP_PREFETCH) ] = {
1088                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1089                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1090         },
1091  },
1092  [ C(NODE) ] = {
1093         [ C(OP_READ) ] = {
1094                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1095                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1096         },
1097         [ C(OP_WRITE) ] = {
1098                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1099                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1100         },
1101         [ C(OP_PREFETCH) ] = {
1102                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1103                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1104         },
1105  },
1106 };
1107
1108 static __initconst const u64 nehalem_hw_cache_event_ids
1109                                 [PERF_COUNT_HW_CACHE_MAX]
1110                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1111                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1112 {
1113  [ C(L1D) ] = {
1114         [ C(OP_READ) ] = {
1115                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1116                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1117         },
1118         [ C(OP_WRITE) ] = {
1119                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1120                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1121         },
1122         [ C(OP_PREFETCH) ] = {
1123                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1124                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1125         },
1126  },
1127  [ C(L1I ) ] = {
1128         [ C(OP_READ) ] = {
1129                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1130                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1131         },
1132         [ C(OP_WRITE) ] = {
1133                 [ C(RESULT_ACCESS) ] = -1,
1134                 [ C(RESULT_MISS)   ] = -1,
1135         },
1136         [ C(OP_PREFETCH) ] = {
1137                 [ C(RESULT_ACCESS) ] = 0x0,
1138                 [ C(RESULT_MISS)   ] = 0x0,
1139         },
1140  },
1141  [ C(LL  ) ] = {
1142         [ C(OP_READ) ] = {
1143                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1144                 [ C(RESULT_ACCESS) ] = 0x01b7,
1145                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1146                 [ C(RESULT_MISS)   ] = 0x01b7,
1147         },
1148         /*
1149          * Use RFO, not WRITEBACK, because a write miss would typically occur
1150          * on RFO.
1151          */
1152         [ C(OP_WRITE) ] = {
1153                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1154                 [ C(RESULT_ACCESS) ] = 0x01b7,
1155                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1156                 [ C(RESULT_MISS)   ] = 0x01b7,
1157         },
1158         [ C(OP_PREFETCH) ] = {
1159                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1160                 [ C(RESULT_ACCESS) ] = 0x01b7,
1161                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1162                 [ C(RESULT_MISS)   ] = 0x01b7,
1163         },
1164  },
1165  [ C(DTLB) ] = {
1166         [ C(OP_READ) ] = {
1167                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1168                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1169         },
1170         [ C(OP_WRITE) ] = {
1171                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1172                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1173         },
1174         [ C(OP_PREFETCH) ] = {
1175                 [ C(RESULT_ACCESS) ] = 0x0,
1176                 [ C(RESULT_MISS)   ] = 0x0,
1177         },
1178  },
1179  [ C(ITLB) ] = {
1180         [ C(OP_READ) ] = {
1181                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1182                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1183         },
1184         [ C(OP_WRITE) ] = {
1185                 [ C(RESULT_ACCESS) ] = -1,
1186                 [ C(RESULT_MISS)   ] = -1,
1187         },
1188         [ C(OP_PREFETCH) ] = {
1189                 [ C(RESULT_ACCESS) ] = -1,
1190                 [ C(RESULT_MISS)   ] = -1,
1191         },
1192  },
1193  [ C(BPU ) ] = {
1194         [ C(OP_READ) ] = {
1195                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1196                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1197         },
1198         [ C(OP_WRITE) ] = {
1199                 [ C(RESULT_ACCESS) ] = -1,
1200                 [ C(RESULT_MISS)   ] = -1,
1201         },
1202         [ C(OP_PREFETCH) ] = {
1203                 [ C(RESULT_ACCESS) ] = -1,
1204                 [ C(RESULT_MISS)   ] = -1,
1205         },
1206  },
1207  [ C(NODE) ] = {
1208         [ C(OP_READ) ] = {
1209                 [ C(RESULT_ACCESS) ] = 0x01b7,
1210                 [ C(RESULT_MISS)   ] = 0x01b7,
1211         },
1212         [ C(OP_WRITE) ] = {
1213                 [ C(RESULT_ACCESS) ] = 0x01b7,
1214                 [ C(RESULT_MISS)   ] = 0x01b7,
1215         },
1216         [ C(OP_PREFETCH) ] = {
1217                 [ C(RESULT_ACCESS) ] = 0x01b7,
1218                 [ C(RESULT_MISS)   ] = 0x01b7,
1219         },
1220  },
1221 };
1222
1223 static __initconst const u64 core2_hw_cache_event_ids
1224                                 [PERF_COUNT_HW_CACHE_MAX]
1225                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1226                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1227 {
1228  [ C(L1D) ] = {
1229         [ C(OP_READ) ] = {
1230                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1231                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1232         },
1233         [ C(OP_WRITE) ] = {
1234                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1235                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1236         },
1237         [ C(OP_PREFETCH) ] = {
1238                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1239                 [ C(RESULT_MISS)   ] = 0,
1240         },
1241  },
1242  [ C(L1I ) ] = {
1243         [ C(OP_READ) ] = {
1244                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1245                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1246         },
1247         [ C(OP_WRITE) ] = {
1248                 [ C(RESULT_ACCESS) ] = -1,
1249                 [ C(RESULT_MISS)   ] = -1,
1250         },
1251         [ C(OP_PREFETCH) ] = {
1252                 [ C(RESULT_ACCESS) ] = 0,
1253                 [ C(RESULT_MISS)   ] = 0,
1254         },
1255  },
1256  [ C(LL  ) ] = {
1257         [ C(OP_READ) ] = {
1258                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1259                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1260         },
1261         [ C(OP_WRITE) ] = {
1262                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1263                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1264         },
1265         [ C(OP_PREFETCH) ] = {
1266                 [ C(RESULT_ACCESS) ] = 0,
1267                 [ C(RESULT_MISS)   ] = 0,
1268         },
1269  },
1270  [ C(DTLB) ] = {
1271         [ C(OP_READ) ] = {
1272                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1273                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1274         },
1275         [ C(OP_WRITE) ] = {
1276                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1277                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1278         },
1279         [ C(OP_PREFETCH) ] = {
1280                 [ C(RESULT_ACCESS) ] = 0,
1281                 [ C(RESULT_MISS)   ] = 0,
1282         },
1283  },
1284  [ C(ITLB) ] = {
1285         [ C(OP_READ) ] = {
1286                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1287                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1288         },
1289         [ C(OP_WRITE) ] = {
1290                 [ C(RESULT_ACCESS) ] = -1,
1291                 [ C(RESULT_MISS)   ] = -1,
1292         },
1293         [ C(OP_PREFETCH) ] = {
1294                 [ C(RESULT_ACCESS) ] = -1,
1295                 [ C(RESULT_MISS)   ] = -1,
1296         },
1297  },
1298  [ C(BPU ) ] = {
1299         [ C(OP_READ) ] = {
1300                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1301                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1302         },
1303         [ C(OP_WRITE) ] = {
1304                 [ C(RESULT_ACCESS) ] = -1,
1305                 [ C(RESULT_MISS)   ] = -1,
1306         },
1307         [ C(OP_PREFETCH) ] = {
1308                 [ C(RESULT_ACCESS) ] = -1,
1309                 [ C(RESULT_MISS)   ] = -1,
1310         },
1311  },
1312 };
1313
1314 static __initconst const u64 atom_hw_cache_event_ids
1315                                 [PERF_COUNT_HW_CACHE_MAX]
1316                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1317                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1318 {
1319  [ C(L1D) ] = {
1320         [ C(OP_READ) ] = {
1321                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1322                 [ C(RESULT_MISS)   ] = 0,
1323         },
1324         [ C(OP_WRITE) ] = {
1325                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1326                 [ C(RESULT_MISS)   ] = 0,
1327         },
1328         [ C(OP_PREFETCH) ] = {
1329                 [ C(RESULT_ACCESS) ] = 0x0,
1330                 [ C(RESULT_MISS)   ] = 0,
1331         },
1332  },
1333  [ C(L1I ) ] = {
1334         [ C(OP_READ) ] = {
1335                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1336                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1337         },
1338         [ C(OP_WRITE) ] = {
1339                 [ C(RESULT_ACCESS) ] = -1,
1340                 [ C(RESULT_MISS)   ] = -1,
1341         },
1342         [ C(OP_PREFETCH) ] = {
1343                 [ C(RESULT_ACCESS) ] = 0,
1344                 [ C(RESULT_MISS)   ] = 0,
1345         },
1346  },
1347  [ C(LL  ) ] = {
1348         [ C(OP_READ) ] = {
1349                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1350                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1351         },
1352         [ C(OP_WRITE) ] = {
1353                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1354                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1355         },
1356         [ C(OP_PREFETCH) ] = {
1357                 [ C(RESULT_ACCESS) ] = 0,
1358                 [ C(RESULT_MISS)   ] = 0,
1359         },
1360  },
1361  [ C(DTLB) ] = {
1362         [ C(OP_READ) ] = {
1363                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1364                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1365         },
1366         [ C(OP_WRITE) ] = {
1367                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1368                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1369         },
1370         [ C(OP_PREFETCH) ] = {
1371                 [ C(RESULT_ACCESS) ] = 0,
1372                 [ C(RESULT_MISS)   ] = 0,
1373         },
1374  },
1375  [ C(ITLB) ] = {
1376         [ C(OP_READ) ] = {
1377                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1378                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1379         },
1380         [ C(OP_WRITE) ] = {
1381                 [ C(RESULT_ACCESS) ] = -1,
1382                 [ C(RESULT_MISS)   ] = -1,
1383         },
1384         [ C(OP_PREFETCH) ] = {
1385                 [ C(RESULT_ACCESS) ] = -1,
1386                 [ C(RESULT_MISS)   ] = -1,
1387         },
1388  },
1389  [ C(BPU ) ] = {
1390         [ C(OP_READ) ] = {
1391                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1392                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1393         },
1394         [ C(OP_WRITE) ] = {
1395                 [ C(RESULT_ACCESS) ] = -1,
1396                 [ C(RESULT_MISS)   ] = -1,
1397         },
1398         [ C(OP_PREFETCH) ] = {
1399                 [ C(RESULT_ACCESS) ] = -1,
1400                 [ C(RESULT_MISS)   ] = -1,
1401         },
1402  },
1403 };
1404
1405 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1406 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1407 /* no_alloc_cycles.not_delivered */
1408 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1409                "event=0xca,umask=0x50");
1410 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1411 /* uops_retired.all */
1412 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1413                "event=0xc2,umask=0x10");
1414 /* uops_retired.all */
1415 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1416                "event=0xc2,umask=0x10");
1417
1418 static struct attribute *slm_events_attrs[] = {
1419         EVENT_PTR(td_total_slots_slm),
1420         EVENT_PTR(td_total_slots_scale_slm),
1421         EVENT_PTR(td_fetch_bubbles_slm),
1422         EVENT_PTR(td_fetch_bubbles_scale_slm),
1423         EVENT_PTR(td_slots_issued_slm),
1424         EVENT_PTR(td_slots_retired_slm),
1425         NULL
1426 };
1427
1428 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1429 {
1430         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1431         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1432         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1433         EVENT_EXTRA_END
1434 };
1435
1436 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1437 #define SLM_DMND_WRITE          SNB_DMND_RFO
1438 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1439
1440 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1441 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1442 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1443
1444 static __initconst const u64 slm_hw_cache_extra_regs
1445                                 [PERF_COUNT_HW_CACHE_MAX]
1446                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1447                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1448 {
1449  [ C(LL  ) ] = {
1450         [ C(OP_READ) ] = {
1451                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1452                 [ C(RESULT_MISS)   ] = 0,
1453         },
1454         [ C(OP_WRITE) ] = {
1455                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1456                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1457         },
1458         [ C(OP_PREFETCH) ] = {
1459                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1460                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1461         },
1462  },
1463 };
1464
1465 static __initconst const u64 slm_hw_cache_event_ids
1466                                 [PERF_COUNT_HW_CACHE_MAX]
1467                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1468                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1469 {
1470  [ C(L1D) ] = {
1471         [ C(OP_READ) ] = {
1472                 [ C(RESULT_ACCESS) ] = 0,
1473                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1474         },
1475         [ C(OP_WRITE) ] = {
1476                 [ C(RESULT_ACCESS) ] = 0,
1477                 [ C(RESULT_MISS)   ] = 0,
1478         },
1479         [ C(OP_PREFETCH) ] = {
1480                 [ C(RESULT_ACCESS) ] = 0,
1481                 [ C(RESULT_MISS)   ] = 0,
1482         },
1483  },
1484  [ C(L1I ) ] = {
1485         [ C(OP_READ) ] = {
1486                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1487                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1488         },
1489         [ C(OP_WRITE) ] = {
1490                 [ C(RESULT_ACCESS) ] = -1,
1491                 [ C(RESULT_MISS)   ] = -1,
1492         },
1493         [ C(OP_PREFETCH) ] = {
1494                 [ C(RESULT_ACCESS) ] = 0,
1495                 [ C(RESULT_MISS)   ] = 0,
1496         },
1497  },
1498  [ C(LL  ) ] = {
1499         [ C(OP_READ) ] = {
1500                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1501                 [ C(RESULT_ACCESS) ] = 0x01b7,
1502                 [ C(RESULT_MISS)   ] = 0,
1503         },
1504         [ C(OP_WRITE) ] = {
1505                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1506                 [ C(RESULT_ACCESS) ] = 0x01b7,
1507                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1508                 [ C(RESULT_MISS)   ] = 0x01b7,
1509         },
1510         [ C(OP_PREFETCH) ] = {
1511                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1512                 [ C(RESULT_ACCESS) ] = 0x01b7,
1513                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1514                 [ C(RESULT_MISS)   ] = 0x01b7,
1515         },
1516  },
1517  [ C(DTLB) ] = {
1518         [ C(OP_READ) ] = {
1519                 [ C(RESULT_ACCESS) ] = 0,
1520                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1521         },
1522         [ C(OP_WRITE) ] = {
1523                 [ C(RESULT_ACCESS) ] = 0,
1524                 [ C(RESULT_MISS)   ] = 0,
1525         },
1526         [ C(OP_PREFETCH) ] = {
1527                 [ C(RESULT_ACCESS) ] = 0,
1528                 [ C(RESULT_MISS)   ] = 0,
1529         },
1530  },
1531  [ C(ITLB) ] = {
1532         [ C(OP_READ) ] = {
1533                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1534                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1535         },
1536         [ C(OP_WRITE) ] = {
1537                 [ C(RESULT_ACCESS) ] = -1,
1538                 [ C(RESULT_MISS)   ] = -1,
1539         },
1540         [ C(OP_PREFETCH) ] = {
1541                 [ C(RESULT_ACCESS) ] = -1,
1542                 [ C(RESULT_MISS)   ] = -1,
1543         },
1544  },
1545  [ C(BPU ) ] = {
1546         [ C(OP_READ) ] = {
1547                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1548                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1549         },
1550         [ C(OP_WRITE) ] = {
1551                 [ C(RESULT_ACCESS) ] = -1,
1552                 [ C(RESULT_MISS)   ] = -1,
1553         },
1554         [ C(OP_PREFETCH) ] = {
1555                 [ C(RESULT_ACCESS) ] = -1,
1556                 [ C(RESULT_MISS)   ] = -1,
1557         },
1558  },
1559 };
1560
1561 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1562 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1563 /* UOPS_NOT_DELIVERED.ANY */
1564 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1565 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1566 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1567 /* UOPS_RETIRED.ANY */
1568 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1569 /* UOPS_ISSUED.ANY */
1570 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1571
1572 static struct attribute *glm_events_attrs[] = {
1573         EVENT_PTR(td_total_slots_glm),
1574         EVENT_PTR(td_total_slots_scale_glm),
1575         EVENT_PTR(td_fetch_bubbles_glm),
1576         EVENT_PTR(td_recovery_bubbles_glm),
1577         EVENT_PTR(td_slots_issued_glm),
1578         EVENT_PTR(td_slots_retired_glm),
1579         NULL
1580 };
1581
1582 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1583         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1584         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1585         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1586         EVENT_EXTRA_END
1587 };
1588
1589 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1590 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1591 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1592 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1593 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1594 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1595 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1596 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1597 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1598 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1599
1600 static __initconst const u64 glm_hw_cache_event_ids
1601                                 [PERF_COUNT_HW_CACHE_MAX]
1602                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1603                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1604         [C(L1D)] = {
1605                 [C(OP_READ)] = {
1606                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1607                         [C(RESULT_MISS)]        = 0x0,
1608                 },
1609                 [C(OP_WRITE)] = {
1610                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1611                         [C(RESULT_MISS)]        = 0x0,
1612                 },
1613                 [C(OP_PREFETCH)] = {
1614                         [C(RESULT_ACCESS)]      = 0x0,
1615                         [C(RESULT_MISS)]        = 0x0,
1616                 },
1617         },
1618         [C(L1I)] = {
1619                 [C(OP_READ)] = {
1620                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1621                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1622                 },
1623                 [C(OP_WRITE)] = {
1624                         [C(RESULT_ACCESS)]      = -1,
1625                         [C(RESULT_MISS)]        = -1,
1626                 },
1627                 [C(OP_PREFETCH)] = {
1628                         [C(RESULT_ACCESS)]      = 0x0,
1629                         [C(RESULT_MISS)]        = 0x0,
1630                 },
1631         },
1632         [C(LL)] = {
1633                 [C(OP_READ)] = {
1634                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1635                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1636                 },
1637                 [C(OP_WRITE)] = {
1638                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1639                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1640                 },
1641                 [C(OP_PREFETCH)] = {
1642                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1643                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1644                 },
1645         },
1646         [C(DTLB)] = {
1647                 [C(OP_READ)] = {
1648                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1649                         [C(RESULT_MISS)]        = 0x0,
1650                 },
1651                 [C(OP_WRITE)] = {
1652                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1653                         [C(RESULT_MISS)]        = 0x0,
1654                 },
1655                 [C(OP_PREFETCH)] = {
1656                         [C(RESULT_ACCESS)]      = 0x0,
1657                         [C(RESULT_MISS)]        = 0x0,
1658                 },
1659         },
1660         [C(ITLB)] = {
1661                 [C(OP_READ)] = {
1662                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1663                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1664                 },
1665                 [C(OP_WRITE)] = {
1666                         [C(RESULT_ACCESS)]      = -1,
1667                         [C(RESULT_MISS)]        = -1,
1668                 },
1669                 [C(OP_PREFETCH)] = {
1670                         [C(RESULT_ACCESS)]      = -1,
1671                         [C(RESULT_MISS)]        = -1,
1672                 },
1673         },
1674         [C(BPU)] = {
1675                 [C(OP_READ)] = {
1676                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1677                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1678                 },
1679                 [C(OP_WRITE)] = {
1680                         [C(RESULT_ACCESS)]      = -1,
1681                         [C(RESULT_MISS)]        = -1,
1682                 },
1683                 [C(OP_PREFETCH)] = {
1684                         [C(RESULT_ACCESS)]      = -1,
1685                         [C(RESULT_MISS)]        = -1,
1686                 },
1687         },
1688 };
1689
1690 static __initconst const u64 glm_hw_cache_extra_regs
1691                                 [PERF_COUNT_HW_CACHE_MAX]
1692                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1693                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1694         [C(LL)] = {
1695                 [C(OP_READ)] = {
1696                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1697                                                   GLM_LLC_ACCESS,
1698                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1699                                                   GLM_LLC_MISS,
1700                 },
1701                 [C(OP_WRITE)] = {
1702                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1703                                                   GLM_LLC_ACCESS,
1704                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1705                                                   GLM_LLC_MISS,
1706                 },
1707                 [C(OP_PREFETCH)] = {
1708                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1709                                                   GLM_LLC_ACCESS,
1710                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1711                                                   GLM_LLC_MISS,
1712                 },
1713         },
1714 };
1715
1716 static __initconst const u64 glp_hw_cache_event_ids
1717                                 [PERF_COUNT_HW_CACHE_MAX]
1718                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1719                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1720         [C(L1D)] = {
1721                 [C(OP_READ)] = {
1722                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1723                         [C(RESULT_MISS)]        = 0x0,
1724                 },
1725                 [C(OP_WRITE)] = {
1726                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1727                         [C(RESULT_MISS)]        = 0x0,
1728                 },
1729                 [C(OP_PREFETCH)] = {
1730                         [C(RESULT_ACCESS)]      = 0x0,
1731                         [C(RESULT_MISS)]        = 0x0,
1732                 },
1733         },
1734         [C(L1I)] = {
1735                 [C(OP_READ)] = {
1736                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1737                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1738                 },
1739                 [C(OP_WRITE)] = {
1740                         [C(RESULT_ACCESS)]      = -1,
1741                         [C(RESULT_MISS)]        = -1,
1742                 },
1743                 [C(OP_PREFETCH)] = {
1744                         [C(RESULT_ACCESS)]      = 0x0,
1745                         [C(RESULT_MISS)]        = 0x0,
1746                 },
1747         },
1748         [C(LL)] = {
1749                 [C(OP_READ)] = {
1750                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1751                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1752                 },
1753                 [C(OP_WRITE)] = {
1754                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1755                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1756                 },
1757                 [C(OP_PREFETCH)] = {
1758                         [C(RESULT_ACCESS)]      = 0x0,
1759                         [C(RESULT_MISS)]        = 0x0,
1760                 },
1761         },
1762         [C(DTLB)] = {
1763                 [C(OP_READ)] = {
1764                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1765                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1766                 },
1767                 [C(OP_WRITE)] = {
1768                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1769                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1770                 },
1771                 [C(OP_PREFETCH)] = {
1772                         [C(RESULT_ACCESS)]      = 0x0,
1773                         [C(RESULT_MISS)]        = 0x0,
1774                 },
1775         },
1776         [C(ITLB)] = {
1777                 [C(OP_READ)] = {
1778                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1779                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1780                 },
1781                 [C(OP_WRITE)] = {
1782                         [C(RESULT_ACCESS)]      = -1,
1783                         [C(RESULT_MISS)]        = -1,
1784                 },
1785                 [C(OP_PREFETCH)] = {
1786                         [C(RESULT_ACCESS)]      = -1,
1787                         [C(RESULT_MISS)]        = -1,
1788                 },
1789         },
1790         [C(BPU)] = {
1791                 [C(OP_READ)] = {
1792                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1793                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1794                 },
1795                 [C(OP_WRITE)] = {
1796                         [C(RESULT_ACCESS)]      = -1,
1797                         [C(RESULT_MISS)]        = -1,
1798                 },
1799                 [C(OP_PREFETCH)] = {
1800                         [C(RESULT_ACCESS)]      = -1,
1801                         [C(RESULT_MISS)]        = -1,
1802                 },
1803         },
1804 };
1805
1806 static __initconst const u64 glp_hw_cache_extra_regs
1807                                 [PERF_COUNT_HW_CACHE_MAX]
1808                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1809                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1810         [C(LL)] = {
1811                 [C(OP_READ)] = {
1812                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1813                                                   GLM_LLC_ACCESS,
1814                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1815                                                   GLM_LLC_MISS,
1816                 },
1817                 [C(OP_WRITE)] = {
1818                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1819                                                   GLM_LLC_ACCESS,
1820                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1821                                                   GLM_LLC_MISS,
1822                 },
1823                 [C(OP_PREFETCH)] = {
1824                         [C(RESULT_ACCESS)]      = 0x0,
1825                         [C(RESULT_MISS)]        = 0x0,
1826                 },
1827         },
1828 };
1829
1830 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1831 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1832 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1833 #define KNL_MCDRAM_FAR          BIT_ULL(22)
1834 #define KNL_DDR_LOCAL           BIT_ULL(23)
1835 #define KNL_DDR_FAR             BIT_ULL(24)
1836 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1837                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
1838 #define KNL_L2_READ             SLM_DMND_READ
1839 #define KNL_L2_WRITE            SLM_DMND_WRITE
1840 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1841 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
1842 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1843                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
1844                                                   SNB_NON_DRAM)
1845
1846 static __initconst const u64 knl_hw_cache_extra_regs
1847                                 [PERF_COUNT_HW_CACHE_MAX]
1848                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1849                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1850         [C(LL)] = {
1851                 [C(OP_READ)] = {
1852                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1853                         [C(RESULT_MISS)]   = 0,
1854                 },
1855                 [C(OP_WRITE)] = {
1856                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1857                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1858                 },
1859                 [C(OP_PREFETCH)] = {
1860                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1861                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1862                 },
1863         },
1864 };
1865
1866 /*
1867  * Used from PMIs where the LBRs are already disabled.
1868  *
1869  * This function could be called consecutively. It is required to remain in
1870  * disabled state if called consecutively.
1871  *
1872  * During consecutive calls, the same disable value will be written to related
1873  * registers, so the PMU state remains unchanged.
1874  *
1875  * intel_bts events don't coexist with intel PMU's BTS events because of
1876  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1877  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1878  */
1879 static void __intel_pmu_disable_all(void)
1880 {
1881         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1882
1883         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1884
1885         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1886                 intel_pmu_disable_bts();
1887
1888         intel_pmu_pebs_disable_all();
1889 }
1890
1891 static void intel_pmu_disable_all(void)
1892 {
1893         __intel_pmu_disable_all();
1894         intel_pmu_lbr_disable_all();
1895 }
1896
1897 static void __intel_pmu_enable_all(int added, bool pmi)
1898 {
1899         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1900
1901         intel_pmu_pebs_enable_all();
1902         intel_pmu_lbr_enable_all(pmi);
1903         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1904                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1905
1906         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1907                 struct perf_event *event =
1908                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1909
1910                 if (WARN_ON_ONCE(!event))
1911                         return;
1912
1913                 intel_pmu_enable_bts(event->hw.config);
1914         }
1915 }
1916
1917 static void intel_pmu_enable_all(int added)
1918 {
1919         __intel_pmu_enable_all(added, false);
1920 }
1921
1922 /*
1923  * Workaround for:
1924  *   Intel Errata AAK100 (model 26)
1925  *   Intel Errata AAP53  (model 30)
1926  *   Intel Errata BD53   (model 44)
1927  *
1928  * The official story:
1929  *   These chips need to be 'reset' when adding counters by programming the
1930  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1931  *   in sequence on the same PMC or on different PMCs.
1932  *
1933  * In practise it appears some of these events do in fact count, and
1934  * we need to program all 4 events.
1935  */
1936 static void intel_pmu_nhm_workaround(void)
1937 {
1938         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1939         static const unsigned long nhm_magic[4] = {
1940                 0x4300B5,
1941                 0x4300D2,
1942                 0x4300B1,
1943                 0x4300B1
1944         };
1945         struct perf_event *event;
1946         int i;
1947
1948         /*
1949          * The Errata requires below steps:
1950          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1951          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1952          *    the corresponding PMCx;
1953          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1954          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1955          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1956          */
1957
1958         /*
1959          * The real steps we choose are a little different from above.
1960          * A) To reduce MSR operations, we don't run step 1) as they
1961          *    are already cleared before this function is called;
1962          * B) Call x86_perf_event_update to save PMCx before configuring
1963          *    PERFEVTSELx with magic number;
1964          * C) With step 5), we do clear only when the PERFEVTSELx is
1965          *    not used currently.
1966          * D) Call x86_perf_event_set_period to restore PMCx;
1967          */
1968
1969         /* We always operate 4 pairs of PERF Counters */
1970         for (i = 0; i < 4; i++) {
1971                 event = cpuc->events[i];
1972                 if (event)
1973                         x86_perf_event_update(event);
1974         }
1975
1976         for (i = 0; i < 4; i++) {
1977                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1978                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1979         }
1980
1981         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1982         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1983
1984         for (i = 0; i < 4; i++) {
1985                 event = cpuc->events[i];
1986
1987                 if (event) {
1988                         x86_perf_event_set_period(event);
1989                         __x86_pmu_enable_event(&event->hw,
1990                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1991                 } else
1992                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1993         }
1994 }
1995
1996 static void intel_pmu_nhm_enable_all(int added)
1997 {
1998         if (added)
1999                 intel_pmu_nhm_workaround();
2000         intel_pmu_enable_all(added);
2001 }
2002
2003 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2004 {
2005         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2006
2007         if (cpuc->tfa_shadow != val) {
2008                 cpuc->tfa_shadow = val;
2009                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2010         }
2011 }
2012
2013 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2014 {
2015         /*
2016          * We're going to use PMC3, make sure TFA is set before we touch it.
2017          */
2018         if (cntr == 3 && !cpuc->is_fake)
2019                 intel_set_tfa(cpuc, true);
2020 }
2021
2022 static void intel_tfa_pmu_enable_all(int added)
2023 {
2024         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2025
2026         /*
2027          * If we find PMC3 is no longer used when we enable the PMU, we can
2028          * clear TFA.
2029          */
2030         if (!test_bit(3, cpuc->active_mask))
2031                 intel_set_tfa(cpuc, false);
2032
2033         intel_pmu_enable_all(added);
2034 }
2035
2036 static void enable_counter_freeze(void)
2037 {
2038         update_debugctlmsr(get_debugctlmsr() |
2039                         DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2040 }
2041
2042 static void disable_counter_freeze(void)
2043 {
2044         update_debugctlmsr(get_debugctlmsr() &
2045                         ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2046 }
2047
2048 static inline u64 intel_pmu_get_status(void)
2049 {
2050         u64 status;
2051
2052         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2053
2054         return status;
2055 }
2056
2057 static inline void intel_pmu_ack_status(u64 ack)
2058 {
2059         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2060 }
2061
2062 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2063 {
2064         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2065         u64 ctrl_val, mask;
2066
2067         mask = 0xfULL << (idx * 4);
2068
2069         rdmsrl(hwc->config_base, ctrl_val);
2070         ctrl_val &= ~mask;
2071         wrmsrl(hwc->config_base, ctrl_val);
2072 }
2073
2074 static inline bool event_is_checkpointed(struct perf_event *event)
2075 {
2076         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2077 }
2078
2079 static void intel_pmu_disable_event(struct perf_event *event)
2080 {
2081         struct hw_perf_event *hwc = &event->hw;
2082         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2083
2084         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2085                 intel_pmu_disable_bts();
2086                 intel_pmu_drain_bts_buffer();
2087                 return;
2088         }
2089
2090         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2091         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2092         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2093
2094         if (unlikely(event->attr.precise_ip))
2095                 intel_pmu_pebs_disable(event);
2096
2097         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2098                 intel_pmu_disable_fixed(hwc);
2099                 return;
2100         }
2101
2102         x86_pmu_disable_event(event);
2103 }
2104
2105 static void intel_pmu_del_event(struct perf_event *event)
2106 {
2107         if (needs_branch_stack(event))
2108                 intel_pmu_lbr_del(event);
2109         if (event->attr.precise_ip)
2110                 intel_pmu_pebs_del(event);
2111 }
2112
2113 static void intel_pmu_read_event(struct perf_event *event)
2114 {
2115         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2116                 intel_pmu_auto_reload_read(event);
2117         else
2118                 x86_perf_event_update(event);
2119 }
2120
2121 static void intel_pmu_enable_fixed(struct perf_event *event)
2122 {
2123         struct hw_perf_event *hwc = &event->hw;
2124         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2125         u64 ctrl_val, mask, bits = 0;
2126
2127         /*
2128          * Enable IRQ generation (0x8), if not PEBS,
2129          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2130          * if requested:
2131          */
2132         if (!event->attr.precise_ip)
2133                 bits |= 0x8;
2134         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2135                 bits |= 0x2;
2136         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2137                 bits |= 0x1;
2138
2139         /*
2140          * ANY bit is supported in v3 and up
2141          */
2142         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2143                 bits |= 0x4;
2144
2145         bits <<= (idx * 4);
2146         mask = 0xfULL << (idx * 4);
2147
2148         rdmsrl(hwc->config_base, ctrl_val);
2149         ctrl_val &= ~mask;
2150         ctrl_val |= bits;
2151         wrmsrl(hwc->config_base, ctrl_val);
2152 }
2153
2154 static void intel_pmu_enable_event(struct perf_event *event)
2155 {
2156         struct hw_perf_event *hwc = &event->hw;
2157         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2158
2159         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2160                 if (!__this_cpu_read(cpu_hw_events.enabled))
2161                         return;
2162
2163                 intel_pmu_enable_bts(hwc->config);
2164                 return;
2165         }
2166
2167         if (event->attr.exclude_host)
2168                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2169         if (event->attr.exclude_guest)
2170                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2171
2172         if (unlikely(event_is_checkpointed(event)))
2173                 cpuc->intel_cp_status |= (1ull << hwc->idx);
2174
2175         if (unlikely(event->attr.precise_ip))
2176                 intel_pmu_pebs_enable(event);
2177
2178         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2179                 intel_pmu_enable_fixed(event);
2180                 return;
2181         }
2182
2183         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2184 }
2185
2186 static void intel_pmu_add_event(struct perf_event *event)
2187 {
2188         if (event->attr.precise_ip)
2189                 intel_pmu_pebs_add(event);
2190         if (needs_branch_stack(event))
2191                 intel_pmu_lbr_add(event);
2192 }
2193
2194 /*
2195  * Save and restart an expired event. Called by NMI contexts,
2196  * so it has to be careful about preempting normal event ops:
2197  */
2198 int intel_pmu_save_and_restart(struct perf_event *event)
2199 {
2200         x86_perf_event_update(event);
2201         /*
2202          * For a checkpointed counter always reset back to 0.  This
2203          * avoids a situation where the counter overflows, aborts the
2204          * transaction and is then set back to shortly before the
2205          * overflow, and overflows and aborts again.
2206          */
2207         if (unlikely(event_is_checkpointed(event))) {
2208                 /* No race with NMIs because the counter should not be armed */
2209                 wrmsrl(event->hw.event_base, 0);
2210                 local64_set(&event->hw.prev_count, 0);
2211         }
2212         return x86_perf_event_set_period(event);
2213 }
2214
2215 static void intel_pmu_reset(void)
2216 {
2217         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2218         unsigned long flags;
2219         int idx;
2220
2221         if (!x86_pmu.num_counters)
2222                 return;
2223
2224         local_irq_save(flags);
2225
2226         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2227
2228         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2229                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2230                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2231         }
2232         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2233                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2234
2235         if (ds)
2236                 ds->bts_index = ds->bts_buffer_base;
2237
2238         /* Ack all overflows and disable fixed counters */
2239         if (x86_pmu.version >= 2) {
2240                 intel_pmu_ack_status(intel_pmu_get_status());
2241                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2242         }
2243
2244         /* Reset LBRs and LBR freezing */
2245         if (x86_pmu.lbr_nr) {
2246                 update_debugctlmsr(get_debugctlmsr() &
2247                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2248         }
2249
2250         local_irq_restore(flags);
2251 }
2252
2253 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2254 {
2255         struct perf_sample_data data;
2256         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2257         int bit;
2258         int handled = 0;
2259
2260         inc_irq_stat(apic_perf_irqs);
2261
2262         /*
2263          * Ignore a range of extra bits in status that do not indicate
2264          * overflow by themselves.
2265          */
2266         status &= ~(GLOBAL_STATUS_COND_CHG |
2267                     GLOBAL_STATUS_ASIF |
2268                     GLOBAL_STATUS_LBRS_FROZEN);
2269         if (!status)
2270                 return 0;
2271         /*
2272          * In case multiple PEBS events are sampled at the same time,
2273          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2274          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2275          * having their bits set in the status register. This is a sign
2276          * that there was at least one PEBS record pending at the time
2277          * of the PMU interrupt. PEBS counters must only be processed
2278          * via the drain_pebs() calls and not via the regular sample
2279          * processing loop coming after that the function, otherwise
2280          * phony regular samples may be generated in the sampling buffer
2281          * not marked with the EXACT tag. Another possibility is to have
2282          * one PEBS event and at least one non-PEBS event whic hoverflows
2283          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2284          * not be set, yet the overflow status bit for the PEBS counter will
2285          * be on Skylake.
2286          *
2287          * To avoid this problem, we systematically ignore the PEBS-enabled
2288          * counters from the GLOBAL_STATUS mask and we always process PEBS
2289          * events via drain_pebs().
2290          */
2291         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2292                 status &= ~cpuc->pebs_enabled;
2293         else
2294                 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2295
2296         /*
2297          * PEBS overflow sets bit 62 in the global status register
2298          */
2299         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2300                 handled++;
2301                 x86_pmu.drain_pebs(regs);
2302                 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2303         }
2304
2305         /*
2306          * Intel PT
2307          */
2308         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2309                 handled++;
2310                 intel_pt_interrupt();
2311         }
2312
2313         /*
2314          * Checkpointed counters can lead to 'spurious' PMIs because the
2315          * rollback caused by the PMI will have cleared the overflow status
2316          * bit. Therefore always force probe these counters.
2317          */
2318         status |= cpuc->intel_cp_status;
2319
2320         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2321                 struct perf_event *event = cpuc->events[bit];
2322
2323                 handled++;
2324
2325                 if (!test_bit(bit, cpuc->active_mask))
2326                         continue;
2327
2328                 if (!intel_pmu_save_and_restart(event))
2329                         continue;
2330
2331                 perf_sample_data_init(&data, 0, event->hw.last_period);
2332
2333                 if (has_branch_stack(event))
2334                         data.br_stack = &cpuc->lbr_stack;
2335
2336                 if (perf_event_overflow(event, &data, regs))
2337                         x86_pmu_stop(event, 0);
2338         }
2339
2340         return handled;
2341 }
2342
2343 static bool disable_counter_freezing = true;
2344 static int __init intel_perf_counter_freezing_setup(char *s)
2345 {
2346         bool res;
2347
2348         if (kstrtobool(s, &res))
2349                 return -EINVAL;
2350
2351         disable_counter_freezing = !res;
2352         return 1;
2353 }
2354 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2355
2356 /*
2357  * Simplified handler for Arch Perfmon v4:
2358  * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2359  * This is done automatically on PMU ack.
2360  * - Ack the PMU only after the APIC.
2361  */
2362
2363 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2364 {
2365         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2366         int handled = 0;
2367         bool bts = false;
2368         u64 status;
2369         int pmu_enabled = cpuc->enabled;
2370         int loops = 0;
2371
2372         /* PMU has been disabled because of counter freezing */
2373         cpuc->enabled = 0;
2374         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2375                 bts = true;
2376                 intel_bts_disable_local();
2377                 handled = intel_pmu_drain_bts_buffer();
2378                 handled += intel_bts_interrupt();
2379         }
2380         status = intel_pmu_get_status();
2381         if (!status)
2382                 goto done;
2383 again:
2384         intel_pmu_lbr_read();
2385         if (++loops > 100) {
2386                 static bool warned;
2387
2388                 if (!warned) {
2389                         WARN(1, "perfevents: irq loop stuck!\n");
2390                         perf_event_print_debug();
2391                         warned = true;
2392                 }
2393                 intel_pmu_reset();
2394                 goto done;
2395         }
2396
2397
2398         handled += handle_pmi_common(regs, status);
2399 done:
2400         /* Ack the PMI in the APIC */
2401         apic_write(APIC_LVTPC, APIC_DM_NMI);
2402
2403         /*
2404          * The counters start counting immediately while ack the status.
2405          * Make it as close as possible to IRET. This avoids bogus
2406          * freezing on Skylake CPUs.
2407          */
2408         if (status) {
2409                 intel_pmu_ack_status(status);
2410         } else {
2411                 /*
2412                  * CPU may issues two PMIs very close to each other.
2413                  * When the PMI handler services the first one, the
2414                  * GLOBAL_STATUS is already updated to reflect both.
2415                  * When it IRETs, the second PMI is immediately
2416                  * handled and it sees clear status. At the meantime,
2417                  * there may be a third PMI, because the freezing bit
2418                  * isn't set since the ack in first PMI handlers.
2419                  * Double check if there is more work to be done.
2420                  */
2421                 status = intel_pmu_get_status();
2422                 if (status)
2423                         goto again;
2424         }
2425
2426         if (bts)
2427                 intel_bts_enable_local();
2428         cpuc->enabled = pmu_enabled;
2429         return handled;
2430 }
2431
2432 /*
2433  * This handler is triggered by the local APIC, so the APIC IRQ handling
2434  * rules apply:
2435  */
2436 static int intel_pmu_handle_irq(struct pt_regs *regs)
2437 {
2438         struct cpu_hw_events *cpuc;
2439         int loops;
2440         u64 status;
2441         int handled;
2442         int pmu_enabled;
2443
2444         cpuc = this_cpu_ptr(&cpu_hw_events);
2445
2446         /*
2447          * Save the PMU state.
2448          * It needs to be restored when leaving the handler.
2449          */
2450         pmu_enabled = cpuc->enabled;
2451         /*
2452          * No known reason to not always do late ACK,
2453          * but just in case do it opt-in.
2454          */
2455         if (!x86_pmu.late_ack)
2456                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2457         intel_bts_disable_local();
2458         cpuc->enabled = 0;
2459         __intel_pmu_disable_all();
2460         handled = intel_pmu_drain_bts_buffer();
2461         handled += intel_bts_interrupt();
2462         status = intel_pmu_get_status();
2463         if (!status)
2464                 goto done;
2465
2466         loops = 0;
2467 again:
2468         intel_pmu_lbr_read();
2469         intel_pmu_ack_status(status);
2470         if (++loops > 100) {
2471                 static bool warned;
2472
2473                 if (!warned) {
2474                         WARN(1, "perfevents: irq loop stuck!\n");
2475                         perf_event_print_debug();
2476                         warned = true;
2477                 }
2478                 intel_pmu_reset();
2479                 goto done;
2480         }
2481
2482         handled += handle_pmi_common(regs, status);
2483
2484         /*
2485          * Repeat if there is more work to be done:
2486          */
2487         status = intel_pmu_get_status();
2488         if (status)
2489                 goto again;
2490
2491 done:
2492         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2493         cpuc->enabled = pmu_enabled;
2494         if (pmu_enabled)
2495                 __intel_pmu_enable_all(0, true);
2496         intel_bts_enable_local();
2497
2498         /*
2499          * Only unmask the NMI after the overflow counters
2500          * have been reset. This avoids spurious NMIs on
2501          * Haswell CPUs.
2502          */
2503         if (x86_pmu.late_ack)
2504                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2505         return handled;
2506 }
2507
2508 static struct event_constraint *
2509 intel_bts_constraints(struct perf_event *event)
2510 {
2511         if (unlikely(intel_pmu_has_bts(event)))
2512                 return &bts_constraint;
2513
2514         return NULL;
2515 }
2516
2517 static int intel_alt_er(int idx, u64 config)
2518 {
2519         int alt_idx = idx;
2520
2521         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2522                 return idx;
2523
2524         if (idx == EXTRA_REG_RSP_0)
2525                 alt_idx = EXTRA_REG_RSP_1;
2526
2527         if (idx == EXTRA_REG_RSP_1)
2528                 alt_idx = EXTRA_REG_RSP_0;
2529
2530         if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2531                 return idx;
2532
2533         return alt_idx;
2534 }
2535
2536 static void intel_fixup_er(struct perf_event *event, int idx)
2537 {
2538         event->hw.extra_reg.idx = idx;
2539
2540         if (idx == EXTRA_REG_RSP_0) {
2541                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2542                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2543                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2544         } else if (idx == EXTRA_REG_RSP_1) {
2545                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2546                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2547                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2548         }
2549 }
2550
2551 /*
2552  * manage allocation of shared extra msr for certain events
2553  *
2554  * sharing can be:
2555  * per-cpu: to be shared between the various events on a single PMU
2556  * per-core: per-cpu + shared by HT threads
2557  */
2558 static struct event_constraint *
2559 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2560                                    struct perf_event *event,
2561                                    struct hw_perf_event_extra *reg)
2562 {
2563         struct event_constraint *c = &emptyconstraint;
2564         struct er_account *era;
2565         unsigned long flags;
2566         int idx = reg->idx;
2567
2568         /*
2569          * reg->alloc can be set due to existing state, so for fake cpuc we
2570          * need to ignore this, otherwise we might fail to allocate proper fake
2571          * state for this extra reg constraint. Also see the comment below.
2572          */
2573         if (reg->alloc && !cpuc->is_fake)
2574                 return NULL; /* call x86_get_event_constraint() */
2575
2576 again:
2577         era = &cpuc->shared_regs->regs[idx];
2578         /*
2579          * we use spin_lock_irqsave() to avoid lockdep issues when
2580          * passing a fake cpuc
2581          */
2582         raw_spin_lock_irqsave(&era->lock, flags);
2583
2584         if (!atomic_read(&era->ref) || era->config == reg->config) {
2585
2586                 /*
2587                  * If its a fake cpuc -- as per validate_{group,event}() we
2588                  * shouldn't touch event state and we can avoid doing so
2589                  * since both will only call get_event_constraints() once
2590                  * on each event, this avoids the need for reg->alloc.
2591                  *
2592                  * Not doing the ER fixup will only result in era->reg being
2593                  * wrong, but since we won't actually try and program hardware
2594                  * this isn't a problem either.
2595                  */
2596                 if (!cpuc->is_fake) {
2597                         if (idx != reg->idx)
2598                                 intel_fixup_er(event, idx);
2599
2600                         /*
2601                          * x86_schedule_events() can call get_event_constraints()
2602                          * multiple times on events in the case of incremental
2603                          * scheduling(). reg->alloc ensures we only do the ER
2604                          * allocation once.
2605                          */
2606                         reg->alloc = 1;
2607                 }
2608
2609                 /* lock in msr value */
2610                 era->config = reg->config;
2611                 era->reg = reg->reg;
2612
2613                 /* one more user */
2614                 atomic_inc(&era->ref);
2615
2616                 /*
2617                  * need to call x86_get_event_constraint()
2618                  * to check if associated event has constraints
2619                  */
2620                 c = NULL;
2621         } else {
2622                 idx = intel_alt_er(idx, reg->config);
2623                 if (idx != reg->idx) {
2624                         raw_spin_unlock_irqrestore(&era->lock, flags);
2625                         goto again;
2626                 }
2627         }
2628         raw_spin_unlock_irqrestore(&era->lock, flags);
2629
2630         return c;
2631 }
2632
2633 static void
2634 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2635                                    struct hw_perf_event_extra *reg)
2636 {
2637         struct er_account *era;
2638
2639         /*
2640          * Only put constraint if extra reg was actually allocated. Also takes
2641          * care of event which do not use an extra shared reg.
2642          *
2643          * Also, if this is a fake cpuc we shouldn't touch any event state
2644          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2645          * either since it'll be thrown out.
2646          */
2647         if (!reg->alloc || cpuc->is_fake)
2648                 return;
2649
2650         era = &cpuc->shared_regs->regs[reg->idx];
2651
2652         /* one fewer user */
2653         atomic_dec(&era->ref);
2654
2655         /* allocate again next time */
2656         reg->alloc = 0;
2657 }
2658
2659 static struct event_constraint *
2660 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2661                               struct perf_event *event)
2662 {
2663         struct event_constraint *c = NULL, *d;
2664         struct hw_perf_event_extra *xreg, *breg;
2665
2666         xreg = &event->hw.extra_reg;
2667         if (xreg->idx != EXTRA_REG_NONE) {
2668                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2669                 if (c == &emptyconstraint)
2670                         return c;
2671         }
2672         breg = &event->hw.branch_reg;
2673         if (breg->idx != EXTRA_REG_NONE) {
2674                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2675                 if (d == &emptyconstraint) {
2676                         __intel_shared_reg_put_constraints(cpuc, xreg);
2677                         c = d;
2678                 }
2679         }
2680         return c;
2681 }
2682
2683 struct event_constraint *
2684 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2685                           struct perf_event *event)
2686 {
2687         struct event_constraint *c;
2688
2689         if (x86_pmu.event_constraints) {
2690                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2691                         if ((event->hw.config & c->cmask) == c->code) {
2692                                 event->hw.flags |= c->flags;
2693                                 return c;
2694                         }
2695                 }
2696         }
2697
2698         return &unconstrained;
2699 }
2700
2701 static struct event_constraint *
2702 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2703                             struct perf_event *event)
2704 {
2705         struct event_constraint *c;
2706
2707         c = intel_bts_constraints(event);
2708         if (c)
2709                 return c;
2710
2711         c = intel_shared_regs_constraints(cpuc, event);
2712         if (c)
2713                 return c;
2714
2715         c = intel_pebs_constraints(event);
2716         if (c)
2717                 return c;
2718
2719         return x86_get_event_constraints(cpuc, idx, event);
2720 }
2721
2722 static void
2723 intel_start_scheduling(struct cpu_hw_events *cpuc)
2724 {
2725         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2726         struct intel_excl_states *xl;
2727         int tid = cpuc->excl_thread_id;
2728
2729         /*
2730          * nothing needed if in group validation mode
2731          */
2732         if (cpuc->is_fake || !is_ht_workaround_enabled())
2733                 return;
2734
2735         /*
2736          * no exclusion needed
2737          */
2738         if (WARN_ON_ONCE(!excl_cntrs))
2739                 return;
2740
2741         xl = &excl_cntrs->states[tid];
2742
2743         xl->sched_started = true;
2744         /*
2745          * lock shared state until we are done scheduling
2746          * in stop_event_scheduling()
2747          * makes scheduling appear as a transaction
2748          */
2749         raw_spin_lock(&excl_cntrs->lock);
2750 }
2751
2752 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2753 {
2754         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2755         struct event_constraint *c = cpuc->event_constraint[idx];
2756         struct intel_excl_states *xl;
2757         int tid = cpuc->excl_thread_id;
2758
2759         if (cpuc->is_fake || !is_ht_workaround_enabled())
2760                 return;
2761
2762         if (WARN_ON_ONCE(!excl_cntrs))
2763                 return;
2764
2765         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2766                 return;
2767
2768         xl = &excl_cntrs->states[tid];
2769
2770         lockdep_assert_held(&excl_cntrs->lock);
2771
2772         if (c->flags & PERF_X86_EVENT_EXCL)
2773                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2774         else
2775                 xl->state[cntr] = INTEL_EXCL_SHARED;
2776 }
2777
2778 static void
2779 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2780 {
2781         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2782         struct intel_excl_states *xl;
2783         int tid = cpuc->excl_thread_id;
2784
2785         /*
2786          * nothing needed if in group validation mode
2787          */
2788         if (cpuc->is_fake || !is_ht_workaround_enabled())
2789                 return;
2790         /*
2791          * no exclusion needed
2792          */
2793         if (WARN_ON_ONCE(!excl_cntrs))
2794                 return;
2795
2796         xl = &excl_cntrs->states[tid];
2797
2798         xl->sched_started = false;
2799         /*
2800          * release shared state lock (acquired in intel_start_scheduling())
2801          */
2802         raw_spin_unlock(&excl_cntrs->lock);
2803 }
2804
2805 static struct event_constraint *
2806 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
2807 {
2808         WARN_ON_ONCE(!cpuc->constraint_list);
2809
2810         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2811                 struct event_constraint *cx;
2812
2813                 /*
2814                  * grab pre-allocated constraint entry
2815                  */
2816                 cx = &cpuc->constraint_list[idx];
2817
2818                 /*
2819                  * initialize dynamic constraint
2820                  * with static constraint
2821                  */
2822                 *cx = *c;
2823
2824                 /*
2825                  * mark constraint as dynamic
2826                  */
2827                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2828                 c = cx;
2829         }
2830
2831         return c;
2832 }
2833
2834 static struct event_constraint *
2835 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2836                            int idx, struct event_constraint *c)
2837 {
2838         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2839         struct intel_excl_states *xlo;
2840         int tid = cpuc->excl_thread_id;
2841         int is_excl, i;
2842
2843         /*
2844          * validating a group does not require
2845          * enforcing cross-thread  exclusion
2846          */
2847         if (cpuc->is_fake || !is_ht_workaround_enabled())
2848                 return c;
2849
2850         /*
2851          * no exclusion needed
2852          */
2853         if (WARN_ON_ONCE(!excl_cntrs))
2854                 return c;
2855
2856         /*
2857          * because we modify the constraint, we need
2858          * to make a copy. Static constraints come
2859          * from static const tables.
2860          *
2861          * only needed when constraint has not yet
2862          * been cloned (marked dynamic)
2863          */
2864         c = dyn_constraint(cpuc, c, idx);
2865
2866         /*
2867          * From here on, the constraint is dynamic.
2868          * Either it was just allocated above, or it
2869          * was allocated during a earlier invocation
2870          * of this function
2871          */
2872
2873         /*
2874          * state of sibling HT
2875          */
2876         xlo = &excl_cntrs->states[tid ^ 1];
2877
2878         /*
2879          * event requires exclusive counter access
2880          * across HT threads
2881          */
2882         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2883         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2884                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2885                 if (!cpuc->n_excl++)
2886                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2887         }
2888
2889         /*
2890          * Modify static constraint with current dynamic
2891          * state of thread
2892          *
2893          * EXCLUSIVE: sibling counter measuring exclusive event
2894          * SHARED   : sibling counter measuring non-exclusive event
2895          * UNUSED   : sibling counter unused
2896          */
2897         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2898                 /*
2899                  * exclusive event in sibling counter
2900                  * our corresponding counter cannot be used
2901                  * regardless of our event
2902                  */
2903                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2904                         __clear_bit(i, c->idxmsk);
2905                 /*
2906                  * if measuring an exclusive event, sibling
2907                  * measuring non-exclusive, then counter cannot
2908                  * be used
2909                  */
2910                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2911                         __clear_bit(i, c->idxmsk);
2912         }
2913
2914         /*
2915          * recompute actual bit weight for scheduling algorithm
2916          */
2917         c->weight = hweight64(c->idxmsk64);
2918
2919         /*
2920          * if we return an empty mask, then switch
2921          * back to static empty constraint to avoid
2922          * the cost of freeing later on
2923          */
2924         if (c->weight == 0)
2925                 c = &emptyconstraint;
2926
2927         return c;
2928 }
2929
2930 static struct event_constraint *
2931 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2932                             struct perf_event *event)
2933 {
2934         struct event_constraint *c1 = NULL;
2935         struct event_constraint *c2;
2936
2937         if (idx >= 0) /* fake does < 0 */
2938                 c1 = cpuc->event_constraint[idx];
2939
2940         /*
2941          * first time only
2942          * - static constraint: no change across incremental scheduling calls
2943          * - dynamic constraint: handled by intel_get_excl_constraints()
2944          */
2945         c2 = __intel_get_event_constraints(cpuc, idx, event);
2946         if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2947                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2948                 c1->weight = c2->weight;
2949                 c2 = c1;
2950         }
2951
2952         if (cpuc->excl_cntrs)
2953                 return intel_get_excl_constraints(cpuc, event, idx, c2);
2954
2955         return c2;
2956 }
2957
2958 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2959                 struct perf_event *event)
2960 {
2961         struct hw_perf_event *hwc = &event->hw;
2962         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2963         int tid = cpuc->excl_thread_id;
2964         struct intel_excl_states *xl;
2965
2966         /*
2967          * nothing needed if in group validation mode
2968          */
2969         if (cpuc->is_fake)
2970                 return;
2971
2972         if (WARN_ON_ONCE(!excl_cntrs))
2973                 return;
2974
2975         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2976                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2977                 if (!--cpuc->n_excl)
2978                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2979         }
2980
2981         /*
2982          * If event was actually assigned, then mark the counter state as
2983          * unused now.
2984          */
2985         if (hwc->idx >= 0) {
2986                 xl = &excl_cntrs->states[tid];
2987
2988                 /*
2989                  * put_constraint may be called from x86_schedule_events()
2990                  * which already has the lock held so here make locking
2991                  * conditional.
2992                  */
2993                 if (!xl->sched_started)
2994                         raw_spin_lock(&excl_cntrs->lock);
2995
2996                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2997
2998                 if (!xl->sched_started)
2999                         raw_spin_unlock(&excl_cntrs->lock);
3000         }
3001 }
3002
3003 static void
3004 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3005                                         struct perf_event *event)
3006 {
3007         struct hw_perf_event_extra *reg;
3008
3009         reg = &event->hw.extra_reg;
3010         if (reg->idx != EXTRA_REG_NONE)
3011                 __intel_shared_reg_put_constraints(cpuc, reg);
3012
3013         reg = &event->hw.branch_reg;
3014         if (reg->idx != EXTRA_REG_NONE)
3015                 __intel_shared_reg_put_constraints(cpuc, reg);
3016 }
3017
3018 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3019                                         struct perf_event *event)
3020 {
3021         intel_put_shared_regs_event_constraints(cpuc, event);
3022
3023         /*
3024          * is PMU has exclusive counter restrictions, then
3025          * all events are subject to and must call the
3026          * put_excl_constraints() routine
3027          */
3028         if (cpuc->excl_cntrs)
3029                 intel_put_excl_constraints(cpuc, event);
3030 }
3031
3032 static void intel_pebs_aliases_core2(struct perf_event *event)
3033 {
3034         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3035                 /*
3036                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3037                  * (0x003c) so that we can use it with PEBS.
3038                  *
3039                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3040                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3041                  * (0x00c0), which is a PEBS capable event, to get the same
3042                  * count.
3043                  *
3044                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3045                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3046                  * larger than the maximum number of instructions that can be
3047                  * retired per cycle (4) and then inverting the condition, we
3048                  * count all cycles that retire 16 or less instructions, which
3049                  * is every cycle.
3050                  *
3051                  * Thereby we gain a PEBS capable cycle counter.
3052                  */
3053                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3054
3055                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3056                 event->hw.config = alt_config;
3057         }
3058 }
3059
3060 static void intel_pebs_aliases_snb(struct perf_event *event)
3061 {
3062         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3063                 /*
3064                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3065                  * (0x003c) so that we can use it with PEBS.
3066                  *
3067                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3068                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3069                  * (0x01c2), which is a PEBS capable event, to get the same
3070                  * count.
3071                  *
3072                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3073                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3074                  * larger than the maximum number of micro-ops that can be
3075                  * retired per cycle (4) and then inverting the condition, we
3076                  * count all cycles that retire 16 or less micro-ops, which
3077                  * is every cycle.
3078                  *
3079                  * Thereby we gain a PEBS capable cycle counter.
3080                  */
3081                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3082
3083                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3084                 event->hw.config = alt_config;
3085         }
3086 }
3087
3088 static void intel_pebs_aliases_precdist(struct perf_event *event)
3089 {
3090         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3091                 /*
3092                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3093                  * (0x003c) so that we can use it with PEBS.
3094                  *
3095                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3096                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3097                  * (0x01c0), which is a PEBS capable event, to get the same
3098                  * count.
3099                  *
3100                  * The PREC_DIST event has special support to minimize sample
3101                  * shadowing effects. One drawback is that it can be
3102                  * only programmed on counter 1, but that seems like an
3103                  * acceptable trade off.
3104                  */
3105                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3106
3107                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3108                 event->hw.config = alt_config;
3109         }
3110 }
3111
3112 static void intel_pebs_aliases_ivb(struct perf_event *event)
3113 {
3114         if (event->attr.precise_ip < 3)
3115                 return intel_pebs_aliases_snb(event);
3116         return intel_pebs_aliases_precdist(event);
3117 }
3118
3119 static void intel_pebs_aliases_skl(struct perf_event *event)
3120 {
3121         if (event->attr.precise_ip < 3)
3122                 return intel_pebs_aliases_core2(event);
3123         return intel_pebs_aliases_precdist(event);
3124 }
3125
3126 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3127 {
3128         unsigned long flags = x86_pmu.large_pebs_flags;
3129
3130         if (event->attr.use_clockid)
3131                 flags &= ~PERF_SAMPLE_TIME;
3132         if (!event->attr.exclude_kernel)
3133                 flags &= ~PERF_SAMPLE_REGS_USER;
3134         if (event->attr.sample_regs_user & ~PEBS_REGS)
3135                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3136         return flags;
3137 }
3138
3139 static int intel_pmu_bts_config(struct perf_event *event)
3140 {
3141         struct perf_event_attr *attr = &event->attr;
3142
3143         if (unlikely(intel_pmu_has_bts(event))) {
3144                 /* BTS is not supported by this architecture. */
3145                 if (!x86_pmu.bts_active)
3146                         return -EOPNOTSUPP;
3147
3148                 /* BTS is currently only allowed for user-mode. */
3149                 if (!attr->exclude_kernel)
3150                         return -EOPNOTSUPP;
3151
3152                 /* BTS is not allowed for precise events. */
3153                 if (attr->precise_ip)
3154                         return -EOPNOTSUPP;
3155
3156                 /* disallow bts if conflicting events are present */
3157                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3158                         return -EBUSY;
3159
3160                 event->destroy = hw_perf_lbr_event_destroy;
3161         }
3162
3163         return 0;
3164 }
3165
3166 static int core_pmu_hw_config(struct perf_event *event)
3167 {
3168         int ret = x86_pmu_hw_config(event);
3169
3170         if (ret)
3171                 return ret;
3172
3173         return intel_pmu_bts_config(event);
3174 }
3175
3176 static int intel_pmu_hw_config(struct perf_event *event)
3177 {
3178         int ret = x86_pmu_hw_config(event);
3179
3180         if (ret)
3181                 return ret;
3182
3183         ret = intel_pmu_bts_config(event);
3184         if (ret)
3185                 return ret;
3186
3187         if (event->attr.precise_ip) {
3188                 if (!event->attr.freq) {
3189                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3190                         if (!(event->attr.sample_type &
3191                               ~intel_pmu_large_pebs_flags(event)))
3192                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3193                 }
3194                 if (x86_pmu.pebs_aliases)
3195                         x86_pmu.pebs_aliases(event);
3196
3197                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3198                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3199         }
3200
3201         if (needs_branch_stack(event)) {
3202                 ret = intel_pmu_setup_lbr_filter(event);
3203                 if (ret)
3204                         return ret;
3205
3206                 /*
3207                  * BTS is set up earlier in this path, so don't account twice
3208                  */
3209                 if (!unlikely(intel_pmu_has_bts(event))) {
3210                         /* disallow lbr if conflicting events are present */
3211                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3212                                 return -EBUSY;
3213
3214                         event->destroy = hw_perf_lbr_event_destroy;
3215                 }
3216         }
3217
3218         if (event->attr.type != PERF_TYPE_RAW)
3219                 return 0;
3220
3221         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3222                 return 0;
3223
3224         if (x86_pmu.version < 3)
3225                 return -EINVAL;
3226
3227         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3228                 return -EACCES;
3229
3230         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3231
3232         return 0;
3233 }
3234
3235 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3236 {
3237         if (x86_pmu.guest_get_msrs)
3238                 return x86_pmu.guest_get_msrs(nr);
3239         *nr = 0;
3240         return NULL;
3241 }
3242 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3243
3244 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3245 {
3246         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3247         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3248
3249         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3250         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3251         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3252         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3253                 arr[0].guest &= ~cpuc->pebs_enabled;
3254         else
3255                 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3256         *nr = 1;
3257
3258         if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3259                 /*
3260                  * If PMU counter has PEBS enabled it is not enough to
3261                  * disable counter on a guest entry since PEBS memory
3262                  * write can overshoot guest entry and corrupt guest
3263                  * memory. Disabling PEBS solves the problem.
3264                  *
3265                  * Don't do this if the CPU already enforces it.
3266                  */
3267                 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3268                 arr[1].host = cpuc->pebs_enabled;
3269                 arr[1].guest = 0;
3270                 *nr = 2;
3271         }
3272
3273         return arr;
3274 }
3275
3276 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3277 {
3278         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3279         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3280         int idx;
3281
3282         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3283                 struct perf_event *event = cpuc->events[idx];
3284
3285                 arr[idx].msr = x86_pmu_config_addr(idx);
3286                 arr[idx].host = arr[idx].guest = 0;
3287
3288                 if (!test_bit(idx, cpuc->active_mask))
3289                         continue;
3290
3291                 arr[idx].host = arr[idx].guest =
3292                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3293
3294                 if (event->attr.exclude_host)
3295                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3296                 else if (event->attr.exclude_guest)
3297                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3298         }
3299
3300         *nr = x86_pmu.num_counters;
3301         return arr;
3302 }
3303
3304 static void core_pmu_enable_event(struct perf_event *event)
3305 {
3306         if (!event->attr.exclude_host)
3307                 x86_pmu_enable_event(event);
3308 }
3309
3310 static void core_pmu_enable_all(int added)
3311 {
3312         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3313         int idx;
3314
3315         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3316                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3317
3318                 if (!test_bit(idx, cpuc->active_mask) ||
3319                                 cpuc->events[idx]->attr.exclude_host)
3320                         continue;
3321
3322                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3323         }
3324 }
3325
3326 static int hsw_hw_config(struct perf_event *event)
3327 {
3328         int ret = intel_pmu_hw_config(event);
3329
3330         if (ret)
3331                 return ret;
3332         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3333                 return 0;
3334         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3335
3336         /*
3337          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3338          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3339          * this combination.
3340          */
3341         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3342              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3343               event->attr.precise_ip > 0))
3344                 return -EOPNOTSUPP;
3345
3346         if (event_is_checkpointed(event)) {
3347                 /*
3348                  * Sampling of checkpointed events can cause situations where
3349                  * the CPU constantly aborts because of a overflow, which is
3350                  * then checkpointed back and ignored. Forbid checkpointing
3351                  * for sampling.
3352                  *
3353                  * But still allow a long sampling period, so that perf stat
3354                  * from KVM works.
3355                  */
3356                 if (event->attr.sample_period > 0 &&
3357                     event->attr.sample_period < 0x7fffffff)
3358                         return -EOPNOTSUPP;
3359         }
3360         return 0;
3361 }
3362
3363 static struct event_constraint counter0_constraint =
3364                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3365
3366 static struct event_constraint counter2_constraint =
3367                         EVENT_CONSTRAINT(0, 0x4, 0);
3368
3369 static struct event_constraint *
3370 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3371                           struct perf_event *event)
3372 {
3373         struct event_constraint *c;
3374
3375         c = intel_get_event_constraints(cpuc, idx, event);
3376
3377         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3378         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3379                 if (c->idxmsk64 & (1U << 2))
3380                         return &counter2_constraint;
3381                 return &emptyconstraint;
3382         }
3383
3384         return c;
3385 }
3386
3387 static struct event_constraint *
3388 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3389                           struct perf_event *event)
3390 {
3391         struct event_constraint *c;
3392
3393         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3394         if (event->attr.precise_ip == 3)
3395                 return &counter0_constraint;
3396
3397         c = intel_get_event_constraints(cpuc, idx, event);
3398
3399         return c;
3400 }
3401
3402 static bool allow_tsx_force_abort = true;
3403
3404 static struct event_constraint *
3405 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3406                           struct perf_event *event)
3407 {
3408         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
3409
3410         /*
3411          * Without TFA we must not use PMC3.
3412          */
3413         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk) && idx >= 0) {
3414                 c = dyn_constraint(cpuc, c, idx);
3415                 c->idxmsk64 &= ~(1ULL << 3);
3416                 c->weight--;
3417         }
3418
3419         return c;
3420 }
3421
3422 /*
3423  * Broadwell:
3424  *
3425  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3426  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3427  * the two to enforce a minimum period of 128 (the smallest value that has bits
3428  * 0-5 cleared and >= 100).
3429  *
3430  * Because of how the code in x86_perf_event_set_period() works, the truncation
3431  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3432  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3433  *
3434  * Therefore the effective (average) period matches the requested period,
3435  * despite coarser hardware granularity.
3436  */
3437 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3438 {
3439         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3440                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
3441                 if (left < 128)
3442                         left = 128;
3443                 left &= ~0x3fULL;
3444         }
3445         return left;
3446 }
3447
3448 PMU_FORMAT_ATTR(event,  "config:0-7"    );
3449 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
3450 PMU_FORMAT_ATTR(edge,   "config:18"     );
3451 PMU_FORMAT_ATTR(pc,     "config:19"     );
3452 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
3453 PMU_FORMAT_ATTR(inv,    "config:23"     );
3454 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
3455 PMU_FORMAT_ATTR(in_tx,  "config:32");
3456 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3457
3458 static struct attribute *intel_arch_formats_attr[] = {
3459         &format_attr_event.attr,
3460         &format_attr_umask.attr,
3461         &format_attr_edge.attr,
3462         &format_attr_pc.attr,
3463         &format_attr_inv.attr,
3464         &format_attr_cmask.attr,
3465         NULL,
3466 };
3467
3468 ssize_t intel_event_sysfs_show(char *page, u64 config)
3469 {
3470         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3471
3472         return x86_event_sysfs_show(page, config, event);
3473 }
3474
3475 static struct intel_shared_regs *allocate_shared_regs(int cpu)
3476 {
3477         struct intel_shared_regs *regs;
3478         int i;
3479
3480         regs = kzalloc_node(sizeof(struct intel_shared_regs),
3481                             GFP_KERNEL, cpu_to_node(cpu));
3482         if (regs) {
3483                 /*
3484                  * initialize the locks to keep lockdep happy
3485                  */
3486                 for (i = 0; i < EXTRA_REG_MAX; i++)
3487                         raw_spin_lock_init(&regs->regs[i].lock);
3488
3489                 regs->core_id = -1;
3490         }
3491         return regs;
3492 }
3493
3494 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3495 {
3496         struct intel_excl_cntrs *c;
3497
3498         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3499                          GFP_KERNEL, cpu_to_node(cpu));
3500         if (c) {
3501                 raw_spin_lock_init(&c->lock);
3502                 c->core_id = -1;
3503         }
3504         return c;
3505 }
3506
3507
3508 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
3509 {
3510         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3511                 cpuc->shared_regs = allocate_shared_regs(cpu);
3512                 if (!cpuc->shared_regs)
3513                         goto err;
3514         }
3515
3516         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
3517                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3518
3519                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
3520                 if (!cpuc->constraint_list)
3521                         goto err_shared_regs;
3522         }
3523
3524         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3525                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3526                 if (!cpuc->excl_cntrs)
3527                         goto err_constraint_list;
3528
3529                 cpuc->excl_thread_id = 0;
3530         }
3531
3532         return 0;
3533
3534 err_constraint_list:
3535         kfree(cpuc->constraint_list);
3536         cpuc->constraint_list = NULL;
3537
3538 err_shared_regs:
3539         kfree(cpuc->shared_regs);
3540         cpuc->shared_regs = NULL;
3541
3542 err:
3543         return -ENOMEM;
3544 }
3545
3546 static int intel_pmu_cpu_prepare(int cpu)
3547 {
3548         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
3549 }
3550
3551 static void flip_smm_bit(void *data)
3552 {
3553         unsigned long set = *(unsigned long *)data;
3554
3555         if (set > 0) {
3556                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3557                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3558         } else {
3559                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3560                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3561         }
3562 }
3563
3564 static void intel_pmu_cpu_starting(int cpu)
3565 {
3566         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3567         int core_id = topology_core_id(cpu);
3568         int i;
3569
3570         init_debug_store_on_cpu(cpu);
3571         /*
3572          * Deal with CPUs that don't clear their LBRs on power-up.
3573          */
3574         intel_pmu_lbr_reset();
3575
3576         cpuc->lbr_sel = NULL;
3577
3578         if (x86_pmu.version > 1)
3579                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3580
3581         if (x86_pmu.counter_freezing)
3582                 enable_counter_freeze();
3583
3584         if (!cpuc->shared_regs)
3585                 return;
3586
3587         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3588                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3589                         struct intel_shared_regs *pc;
3590
3591                         pc = per_cpu(cpu_hw_events, i).shared_regs;
3592                         if (pc && pc->core_id == core_id) {
3593                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
3594                                 cpuc->shared_regs = pc;
3595                                 break;
3596                         }
3597                 }
3598                 cpuc->shared_regs->core_id = core_id;
3599                 cpuc->shared_regs->refcnt++;
3600         }
3601
3602         if (x86_pmu.lbr_sel_map)
3603                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3604
3605         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3606                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3607                         struct cpu_hw_events *sibling;
3608                         struct intel_excl_cntrs *c;
3609
3610                         sibling = &per_cpu(cpu_hw_events, i);
3611                         c = sibling->excl_cntrs;
3612                         if (c && c->core_id == core_id) {
3613                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3614                                 cpuc->excl_cntrs = c;
3615                                 if (!sibling->excl_thread_id)
3616                                         cpuc->excl_thread_id = 1;
3617                                 break;
3618                         }
3619                 }
3620                 cpuc->excl_cntrs->core_id = core_id;
3621                 cpuc->excl_cntrs->refcnt++;
3622         }
3623 }
3624
3625 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
3626 {
3627         struct intel_excl_cntrs *c;
3628
3629         c = cpuc->excl_cntrs;
3630         if (c) {
3631                 if (c->core_id == -1 || --c->refcnt == 0)
3632                         kfree(c);
3633                 cpuc->excl_cntrs = NULL;
3634         }
3635
3636         kfree(cpuc->constraint_list);
3637         cpuc->constraint_list = NULL;
3638 }
3639
3640 static void intel_pmu_cpu_dying(int cpu)
3641 {
3642         fini_debug_store_on_cpu(cpu);
3643
3644         if (x86_pmu.counter_freezing)
3645                 disable_counter_freeze();
3646 }
3647
3648 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
3649 {
3650         struct intel_shared_regs *pc;
3651
3652         pc = cpuc->shared_regs;
3653         if (pc) {
3654                 if (pc->core_id == -1 || --pc->refcnt == 0)
3655                         kfree(pc);
3656                 cpuc->shared_regs = NULL;
3657         }
3658
3659         free_excl_cntrs(cpuc);
3660 }
3661
3662 static void intel_pmu_cpu_dead(int cpu)
3663 {
3664         intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
3665 }
3666
3667 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3668                                  bool sched_in)
3669 {
3670         intel_pmu_pebs_sched_task(ctx, sched_in);
3671         intel_pmu_lbr_sched_task(ctx, sched_in);
3672 }
3673
3674 static int intel_pmu_check_period(struct perf_event *event, u64 value)
3675 {
3676         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
3677 }
3678
3679 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3680
3681 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3682
3683 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3684
3685 static struct attribute *intel_arch3_formats_attr[] = {
3686         &format_attr_event.attr,
3687         &format_attr_umask.attr,
3688         &format_attr_edge.attr,
3689         &format_attr_pc.attr,
3690         &format_attr_any.attr,
3691         &format_attr_inv.attr,
3692         &format_attr_cmask.attr,
3693         NULL,
3694 };
3695
3696 static struct attribute *hsw_format_attr[] = {
3697         &format_attr_in_tx.attr,
3698         &format_attr_in_tx_cp.attr,
3699         &format_attr_offcore_rsp.attr,
3700         &format_attr_ldlat.attr,
3701         NULL
3702 };
3703
3704 static struct attribute *nhm_format_attr[] = {
3705         &format_attr_offcore_rsp.attr,
3706         &format_attr_ldlat.attr,
3707         NULL
3708 };
3709
3710 static struct attribute *slm_format_attr[] = {
3711         &format_attr_offcore_rsp.attr,
3712         NULL
3713 };
3714
3715 static struct attribute *skl_format_attr[] = {
3716         &format_attr_frontend.attr,
3717         NULL,
3718 };
3719
3720 static __initconst const struct x86_pmu core_pmu = {
3721         .name                   = "core",
3722         .handle_irq             = x86_pmu_handle_irq,
3723         .disable_all            = x86_pmu_disable_all,
3724         .enable_all             = core_pmu_enable_all,
3725         .enable                 = core_pmu_enable_event,
3726         .disable                = x86_pmu_disable_event,
3727         .hw_config              = core_pmu_hw_config,
3728         .schedule_events        = x86_schedule_events,
3729         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3730         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3731         .event_map              = intel_pmu_event_map,
3732         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3733         .apic                   = 1,
3734         .large_pebs_flags       = LARGE_PEBS_FLAGS,
3735
3736         /*
3737          * Intel PMCs cannot be accessed sanely above 32-bit width,
3738          * so we install an artificial 1<<31 period regardless of
3739          * the generic event period:
3740          */
3741         .max_period             = (1ULL<<31) - 1,
3742         .get_event_constraints  = intel_get_event_constraints,
3743         .put_event_constraints  = intel_put_event_constraints,
3744         .event_constraints      = intel_core_event_constraints,
3745         .guest_get_msrs         = core_guest_get_msrs,
3746         .format_attrs           = intel_arch_formats_attr,
3747         .events_sysfs_show      = intel_event_sysfs_show,
3748
3749         /*
3750          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3751          * together with PMU version 1 and thus be using core_pmu with
3752          * shared_regs. We need following callbacks here to allocate
3753          * it properly.
3754          */
3755         .cpu_prepare            = intel_pmu_cpu_prepare,
3756         .cpu_starting           = intel_pmu_cpu_starting,
3757         .cpu_dying              = intel_pmu_cpu_dying,
3758         .cpu_dead               = intel_pmu_cpu_dead,
3759
3760         .check_period           = intel_pmu_check_period,
3761 };
3762
3763 static struct attribute *intel_pmu_attrs[];
3764
3765 static __initconst const struct x86_pmu intel_pmu = {
3766         .name                   = "Intel",
3767         .handle_irq             = intel_pmu_handle_irq,
3768         .disable_all            = intel_pmu_disable_all,
3769         .enable_all             = intel_pmu_enable_all,
3770         .enable                 = intel_pmu_enable_event,
3771         .disable                = intel_pmu_disable_event,
3772         .add                    = intel_pmu_add_event,
3773         .del                    = intel_pmu_del_event,
3774         .read                   = intel_pmu_read_event,
3775         .hw_config              = intel_pmu_hw_config,
3776         .schedule_events        = x86_schedule_events,
3777         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3778         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3779         .event_map              = intel_pmu_event_map,
3780         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3781         .apic                   = 1,
3782         .large_pebs_flags       = LARGE_PEBS_FLAGS,
3783         /*
3784          * Intel PMCs cannot be accessed sanely above 32 bit width,
3785          * so we install an artificial 1<<31 period regardless of
3786          * the generic event period:
3787          */
3788         .max_period             = (1ULL << 31) - 1,
3789         .get_event_constraints  = intel_get_event_constraints,
3790         .put_event_constraints  = intel_put_event_constraints,
3791         .pebs_aliases           = intel_pebs_aliases_core2,
3792
3793         .format_attrs           = intel_arch3_formats_attr,
3794         .events_sysfs_show      = intel_event_sysfs_show,
3795
3796         .attrs                  = intel_pmu_attrs,
3797
3798         .cpu_prepare            = intel_pmu_cpu_prepare,
3799         .cpu_starting           = intel_pmu_cpu_starting,
3800         .cpu_dying              = intel_pmu_cpu_dying,
3801         .cpu_dead               = intel_pmu_cpu_dead,
3802
3803         .guest_get_msrs         = intel_guest_get_msrs,
3804         .sched_task             = intel_pmu_sched_task,
3805
3806         .check_period           = intel_pmu_check_period,
3807 };
3808
3809 static __init void intel_clovertown_quirk(void)