f94855000d4ed02677ae5a46a3e622bf54a5f0b2
[muen/linux.git] / arch / x86 / events / intel / core.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21
22 #include "../perf_event.h"
23
24 /*
25  * Intel PerfMon, used on Core and later.
26  */
27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
28 {
29         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
30         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
31         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
32         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
33         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
34         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
35         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
36         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
37 };
38
39 static struct event_constraint intel_core_event_constraints[] __read_mostly =
40 {
41         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
47         EVENT_CONSTRAINT_END
48 };
49
50 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
51 {
52         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
65         EVENT_CONSTRAINT_END
66 };
67
68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
69 {
70         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
81         EVENT_CONSTRAINT_END
82 };
83
84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
85 {
86         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
88         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
89         EVENT_EXTRA_END
90 };
91
92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
93 {
94         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
101         EVENT_CONSTRAINT_END
102 };
103
104 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
105 {
106         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118
119         /*
120          * When HT is off these events can only run on the bottom 4 counters
121          * When HT is on, they are impacted by the HT bug and require EXCL access
122          */
123         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
127
128         EVENT_CONSTRAINT_END
129 };
130
131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
132 {
133         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
146
147         /*
148          * When HT is off these events can only run on the bottom 4 counters
149          * When HT is on, they are impacted by the HT bug and require EXCL access
150          */
151         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
155
156         EVENT_CONSTRAINT_END
157 };
158
159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
160 {
161         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
164         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
165         EVENT_EXTRA_END
166 };
167
168 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
169 {
170         EVENT_CONSTRAINT_END
171 };
172
173 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
174 {
175         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
178         EVENT_CONSTRAINT_END
179 };
180
181 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
182 {
183         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
186         EVENT_CONSTRAINT_END
187 };
188
189 static struct event_constraint intel_skl_event_constraints[] = {
190         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
191         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
192         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
193         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
194
195         /*
196          * when HT is off, these can only run on the bottom 4 counters
197          */
198         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
199         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
200         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
201         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
202         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
203
204         EVENT_CONSTRAINT_END
205 };
206
207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
208         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
210         EVENT_EXTRA_END
211 };
212
213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
214         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
217         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
218         EVENT_EXTRA_END
219 };
220
221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
222         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
225         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
226         EVENT_EXTRA_END
227 };
228
229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
233         /*
234          * Note the low 8 bits eventsel code is not a continuous field, containing
235          * some #GPing bits. These are masked out.
236          */
237         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
238         EVENT_EXTRA_END
239 };
240
241 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
244
245 static struct attribute *nhm_events_attrs[] = {
246         EVENT_PTR(mem_ld_nhm),
247         NULL,
248 };
249
250 /*
251  * topdown events for Intel Core CPUs.
252  *
253  * The events are all in slots, which is a free slot in a 4 wide
254  * pipeline. Some events are already reported in slots, for cycle
255  * events we multiply by the pipeline width (4).
256  *
257  * With Hyper Threading on, topdown metrics are either summed or averaged
258  * between the threads of a core: (count_t0 + count_t1).
259  *
260  * For the average case the metric is always scaled to pipeline width,
261  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
262  */
263
264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
266         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269         "event=0xe,umask=0x1");                 /* uops_issued.any */
270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
276         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
278         "4", "2");
279
280 static struct attribute *snb_events_attrs[] = {
281         EVENT_PTR(mem_ld_snb),
282         EVENT_PTR(mem_st_snb),
283         EVENT_PTR(td_slots_issued),
284         EVENT_PTR(td_slots_retired),
285         EVENT_PTR(td_fetch_bubbles),
286         EVENT_PTR(td_total_slots),
287         EVENT_PTR(td_total_slots_scale),
288         EVENT_PTR(td_recovery_bubbles),
289         EVENT_PTR(td_recovery_bubbles_scale),
290         NULL,
291 };
292
293 static struct event_constraint intel_hsw_event_constraints[] = {
294         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
295         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
296         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
297         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
298         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
299         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
300         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
301         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
302         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
303         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
304         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
305         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
306
307         /*
308          * When HT is off these events can only run on the bottom 4 counters
309          * When HT is on, they are impacted by the HT bug and require EXCL access
310          */
311         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
312         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
313         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
314         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
315
316         EVENT_CONSTRAINT_END
317 };
318
319 static struct event_constraint intel_bdw_event_constraints[] = {
320         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
321         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
322         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
323         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
324         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
325         /*
326          * when HT is off, these can only run on the bottom 4 counters
327          */
328         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
329         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
330         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
331         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
332         EVENT_CONSTRAINT_END
333 };
334
335 static u64 intel_pmu_event_map(int hw_event)
336 {
337         return intel_perfmon_event_map[hw_event];
338 }
339
340 /*
341  * Notes on the events:
342  * - data reads do not include code reads (comparable to earlier tables)
343  * - data counts include speculative execution (except L1 write, dtlb, bpu)
344  * - remote node access includes remote memory, remote cache, remote mmio.
345  * - prefetches are not included in the counts.
346  * - icache miss does not include decoded icache
347  */
348
349 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
350 #define SKL_DEMAND_RFO                  BIT_ULL(1)
351 #define SKL_ANY_RESPONSE                BIT_ULL(16)
352 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
353 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
354 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
355 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
356 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
357 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
358                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
359                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
360                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
361 #define SKL_SPL_HIT                     BIT_ULL(30)
362 #define SKL_SNOOP_NONE                  BIT_ULL(31)
363 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
364 #define SKL_SNOOP_MISS                  BIT_ULL(33)
365 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
366 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
367 #define SKL_SNOOP_HITM                  BIT_ULL(36)
368 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
369 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
370                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
371                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
372                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
373 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
374 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
375                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
378 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
379 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
380 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
381                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
382                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
383
384 static __initconst const u64 skl_hw_cache_event_ids
385                                 [PERF_COUNT_HW_CACHE_MAX]
386                                 [PERF_COUNT_HW_CACHE_OP_MAX]
387                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
388 {
389  [ C(L1D ) ] = {
390         [ C(OP_READ) ] = {
391                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
392                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
393         },
394         [ C(OP_WRITE) ] = {
395                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
396                 [ C(RESULT_MISS)   ] = 0x0,
397         },
398         [ C(OP_PREFETCH) ] = {
399                 [ C(RESULT_ACCESS) ] = 0x0,
400                 [ C(RESULT_MISS)   ] = 0x0,
401         },
402  },
403  [ C(L1I ) ] = {
404         [ C(OP_READ) ] = {
405                 [ C(RESULT_ACCESS) ] = 0x0,
406                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
407         },
408         [ C(OP_WRITE) ] = {
409                 [ C(RESULT_ACCESS) ] = -1,
410                 [ C(RESULT_MISS)   ] = -1,
411         },
412         [ C(OP_PREFETCH) ] = {
413                 [ C(RESULT_ACCESS) ] = 0x0,
414                 [ C(RESULT_MISS)   ] = 0x0,
415         },
416  },
417  [ C(LL  ) ] = {
418         [ C(OP_READ) ] = {
419                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
420                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
421         },
422         [ C(OP_WRITE) ] = {
423                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
424                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
425         },
426         [ C(OP_PREFETCH) ] = {
427                 [ C(RESULT_ACCESS) ] = 0x0,
428                 [ C(RESULT_MISS)   ] = 0x0,
429         },
430  },
431  [ C(DTLB) ] = {
432         [ C(OP_READ) ] = {
433                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
434                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
435         },
436         [ C(OP_WRITE) ] = {
437                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
438                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
439         },
440         [ C(OP_PREFETCH) ] = {
441                 [ C(RESULT_ACCESS) ] = 0x0,
442                 [ C(RESULT_MISS)   ] = 0x0,
443         },
444  },
445  [ C(ITLB) ] = {
446         [ C(OP_READ) ] = {
447                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
448                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
449         },
450         [ C(OP_WRITE) ] = {
451                 [ C(RESULT_ACCESS) ] = -1,
452                 [ C(RESULT_MISS)   ] = -1,
453         },
454         [ C(OP_PREFETCH) ] = {
455                 [ C(RESULT_ACCESS) ] = -1,
456                 [ C(RESULT_MISS)   ] = -1,
457         },
458  },
459  [ C(BPU ) ] = {
460         [ C(OP_READ) ] = {
461                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
462                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
463         },
464         [ C(OP_WRITE) ] = {
465                 [ C(RESULT_ACCESS) ] = -1,
466                 [ C(RESULT_MISS)   ] = -1,
467         },
468         [ C(OP_PREFETCH) ] = {
469                 [ C(RESULT_ACCESS) ] = -1,
470                 [ C(RESULT_MISS)   ] = -1,
471         },
472  },
473  [ C(NODE) ] = {
474         [ C(OP_READ) ] = {
475                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
476                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
477         },
478         [ C(OP_WRITE) ] = {
479                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
480                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
481         },
482         [ C(OP_PREFETCH) ] = {
483                 [ C(RESULT_ACCESS) ] = 0x0,
484                 [ C(RESULT_MISS)   ] = 0x0,
485         },
486  },
487 };
488
489 static __initconst const u64 skl_hw_cache_extra_regs
490                                 [PERF_COUNT_HW_CACHE_MAX]
491                                 [PERF_COUNT_HW_CACHE_OP_MAX]
492                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
493 {
494  [ C(LL  ) ] = {
495         [ C(OP_READ) ] = {
496                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
497                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
498                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
499                                        SKL_L3_MISS|SKL_ANY_SNOOP|
500                                        SKL_SUPPLIER_NONE,
501         },
502         [ C(OP_WRITE) ] = {
503                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
504                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
505                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
506                                        SKL_L3_MISS|SKL_ANY_SNOOP|
507                                        SKL_SUPPLIER_NONE,
508         },
509         [ C(OP_PREFETCH) ] = {
510                 [ C(RESULT_ACCESS) ] = 0x0,
511                 [ C(RESULT_MISS)   ] = 0x0,
512         },
513  },
514  [ C(NODE) ] = {
515         [ C(OP_READ) ] = {
516                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
517                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
518                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
519                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
520         },
521         [ C(OP_WRITE) ] = {
522                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
523                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
524                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
525                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
526         },
527         [ C(OP_PREFETCH) ] = {
528                 [ C(RESULT_ACCESS) ] = 0x0,
529                 [ C(RESULT_MISS)   ] = 0x0,
530         },
531  },
532 };
533
534 #define SNB_DMND_DATA_RD        (1ULL << 0)
535 #define SNB_DMND_RFO            (1ULL << 1)
536 #define SNB_DMND_IFETCH         (1ULL << 2)
537 #define SNB_DMND_WB             (1ULL << 3)
538 #define SNB_PF_DATA_RD          (1ULL << 4)
539 #define SNB_PF_RFO              (1ULL << 5)
540 #define SNB_PF_IFETCH           (1ULL << 6)
541 #define SNB_LLC_DATA_RD         (1ULL << 7)
542 #define SNB_LLC_RFO             (1ULL << 8)
543 #define SNB_LLC_IFETCH          (1ULL << 9)
544 #define SNB_BUS_LOCKS           (1ULL << 10)
545 #define SNB_STRM_ST             (1ULL << 11)
546 #define SNB_OTHER               (1ULL << 15)
547 #define SNB_RESP_ANY            (1ULL << 16)
548 #define SNB_NO_SUPP             (1ULL << 17)
549 #define SNB_LLC_HITM            (1ULL << 18)
550 #define SNB_LLC_HITE            (1ULL << 19)
551 #define SNB_LLC_HITS            (1ULL << 20)
552 #define SNB_LLC_HITF            (1ULL << 21)
553 #define SNB_LOCAL               (1ULL << 22)
554 #define SNB_REMOTE              (0xffULL << 23)
555 #define SNB_SNP_NONE            (1ULL << 31)
556 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
557 #define SNB_SNP_MISS            (1ULL << 33)
558 #define SNB_NO_FWD              (1ULL << 34)
559 #define SNB_SNP_FWD             (1ULL << 35)
560 #define SNB_HITM                (1ULL << 36)
561 #define SNB_NON_DRAM            (1ULL << 37)
562
563 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
564 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
565 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
566
567 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
568                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
569                                  SNB_HITM)
570
571 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
572 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
573
574 #define SNB_L3_ACCESS           SNB_RESP_ANY
575 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
576
577 static __initconst const u64 snb_hw_cache_extra_regs
578                                 [PERF_COUNT_HW_CACHE_MAX]
579                                 [PERF_COUNT_HW_CACHE_OP_MAX]
580                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
581 {
582  [ C(LL  ) ] = {
583         [ C(OP_READ) ] = {
584                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
585                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
586         },
587         [ C(OP_WRITE) ] = {
588                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
589                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
590         },
591         [ C(OP_PREFETCH) ] = {
592                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
593                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
594         },
595  },
596  [ C(NODE) ] = {
597         [ C(OP_READ) ] = {
598                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
599                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
600         },
601         [ C(OP_WRITE) ] = {
602                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
603                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
604         },
605         [ C(OP_PREFETCH) ] = {
606                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
607                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
608         },
609  },
610 };
611
612 static __initconst const u64 snb_hw_cache_event_ids
613                                 [PERF_COUNT_HW_CACHE_MAX]
614                                 [PERF_COUNT_HW_CACHE_OP_MAX]
615                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
616 {
617  [ C(L1D) ] = {
618         [ C(OP_READ) ] = {
619                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
620                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
621         },
622         [ C(OP_WRITE) ] = {
623                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
624                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
625         },
626         [ C(OP_PREFETCH) ] = {
627                 [ C(RESULT_ACCESS) ] = 0x0,
628                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
629         },
630  },
631  [ C(L1I ) ] = {
632         [ C(OP_READ) ] = {
633                 [ C(RESULT_ACCESS) ] = 0x0,
634                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
635         },
636         [ C(OP_WRITE) ] = {
637                 [ C(RESULT_ACCESS) ] = -1,
638                 [ C(RESULT_MISS)   ] = -1,
639         },
640         [ C(OP_PREFETCH) ] = {
641                 [ C(RESULT_ACCESS) ] = 0x0,
642                 [ C(RESULT_MISS)   ] = 0x0,
643         },
644  },
645  [ C(LL  ) ] = {
646         [ C(OP_READ) ] = {
647                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
648                 [ C(RESULT_ACCESS) ] = 0x01b7,
649                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
650                 [ C(RESULT_MISS)   ] = 0x01b7,
651         },
652         [ C(OP_WRITE) ] = {
653                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
654                 [ C(RESULT_ACCESS) ] = 0x01b7,
655                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
656                 [ C(RESULT_MISS)   ] = 0x01b7,
657         },
658         [ C(OP_PREFETCH) ] = {
659                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
660                 [ C(RESULT_ACCESS) ] = 0x01b7,
661                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
662                 [ C(RESULT_MISS)   ] = 0x01b7,
663         },
664  },
665  [ C(DTLB) ] = {
666         [ C(OP_READ) ] = {
667                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
668                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
669         },
670         [ C(OP_WRITE) ] = {
671                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
672                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
673         },
674         [ C(OP_PREFETCH) ] = {
675                 [ C(RESULT_ACCESS) ] = 0x0,
676                 [ C(RESULT_MISS)   ] = 0x0,
677         },
678  },
679  [ C(ITLB) ] = {
680         [ C(OP_READ) ] = {
681                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
682                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
683         },
684         [ C(OP_WRITE) ] = {
685                 [ C(RESULT_ACCESS) ] = -1,
686                 [ C(RESULT_MISS)   ] = -1,
687         },
688         [ C(OP_PREFETCH) ] = {
689                 [ C(RESULT_ACCESS) ] = -1,
690                 [ C(RESULT_MISS)   ] = -1,
691         },
692  },
693  [ C(BPU ) ] = {
694         [ C(OP_READ) ] = {
695                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
696                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
697         },
698         [ C(OP_WRITE) ] = {
699                 [ C(RESULT_ACCESS) ] = -1,
700                 [ C(RESULT_MISS)   ] = -1,
701         },
702         [ C(OP_PREFETCH) ] = {
703                 [ C(RESULT_ACCESS) ] = -1,
704                 [ C(RESULT_MISS)   ] = -1,
705         },
706  },
707  [ C(NODE) ] = {
708         [ C(OP_READ) ] = {
709                 [ C(RESULT_ACCESS) ] = 0x01b7,
710                 [ C(RESULT_MISS)   ] = 0x01b7,
711         },
712         [ C(OP_WRITE) ] = {
713                 [ C(RESULT_ACCESS) ] = 0x01b7,
714                 [ C(RESULT_MISS)   ] = 0x01b7,
715         },
716         [ C(OP_PREFETCH) ] = {
717                 [ C(RESULT_ACCESS) ] = 0x01b7,
718                 [ C(RESULT_MISS)   ] = 0x01b7,
719         },
720  },
721
722 };
723
724 /*
725  * Notes on the events:
726  * - data reads do not include code reads (comparable to earlier tables)
727  * - data counts include speculative execution (except L1 write, dtlb, bpu)
728  * - remote node access includes remote memory, remote cache, remote mmio.
729  * - prefetches are not included in the counts because they are not
730  *   reliably counted.
731  */
732
733 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
734 #define HSW_DEMAND_RFO                  BIT_ULL(1)
735 #define HSW_ANY_RESPONSE                BIT_ULL(16)
736 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
737 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
738 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
739 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
740 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
741 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
742                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
743                                          HSW_L3_MISS_REMOTE_HOP2P)
744 #define HSW_SNOOP_NONE                  BIT_ULL(31)
745 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
746 #define HSW_SNOOP_MISS                  BIT_ULL(33)
747 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
748 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
749 #define HSW_SNOOP_HITM                  BIT_ULL(36)
750 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
751 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
752                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
753                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
754                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
755 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
756 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
757 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
758 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
759                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
760 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
761
762 #define BDW_L3_MISS_LOCAL               BIT(26)
763 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
764                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
765                                          HSW_L3_MISS_REMOTE_HOP2P)
766
767
768 static __initconst const u64 hsw_hw_cache_event_ids
769                                 [PERF_COUNT_HW_CACHE_MAX]
770                                 [PERF_COUNT_HW_CACHE_OP_MAX]
771                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
772 {
773  [ C(L1D ) ] = {
774         [ C(OP_READ) ] = {
775                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
776                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
777         },
778         [ C(OP_WRITE) ] = {
779                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
780                 [ C(RESULT_MISS)   ] = 0x0,
781         },
782         [ C(OP_PREFETCH) ] = {
783                 [ C(RESULT_ACCESS) ] = 0x0,
784                 [ C(RESULT_MISS)   ] = 0x0,
785         },
786  },
787  [ C(L1I ) ] = {
788         [ C(OP_READ) ] = {
789                 [ C(RESULT_ACCESS) ] = 0x0,
790                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
791         },
792         [ C(OP_WRITE) ] = {
793                 [ C(RESULT_ACCESS) ] = -1,
794                 [ C(RESULT_MISS)   ] = -1,
795         },
796         [ C(OP_PREFETCH) ] = {
797                 [ C(RESULT_ACCESS) ] = 0x0,
798                 [ C(RESULT_MISS)   ] = 0x0,
799         },
800  },
801  [ C(LL  ) ] = {
802         [ C(OP_READ) ] = {
803                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
804                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
805         },
806         [ C(OP_WRITE) ] = {
807                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
808                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
809         },
810         [ C(OP_PREFETCH) ] = {
811                 [ C(RESULT_ACCESS) ] = 0x0,
812                 [ C(RESULT_MISS)   ] = 0x0,
813         },
814  },
815  [ C(DTLB) ] = {
816         [ C(OP_READ) ] = {
817                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
818                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
819         },
820         [ C(OP_WRITE) ] = {
821                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
822                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
823         },
824         [ C(OP_PREFETCH) ] = {
825                 [ C(RESULT_ACCESS) ] = 0x0,
826                 [ C(RESULT_MISS)   ] = 0x0,
827         },
828  },
829  [ C(ITLB) ] = {
830         [ C(OP_READ) ] = {
831                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
832                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
833         },
834         [ C(OP_WRITE) ] = {
835                 [ C(RESULT_ACCESS) ] = -1,
836                 [ C(RESULT_MISS)   ] = -1,
837         },
838         [ C(OP_PREFETCH) ] = {
839                 [ C(RESULT_ACCESS) ] = -1,
840                 [ C(RESULT_MISS)   ] = -1,
841         },
842  },
843  [ C(BPU ) ] = {
844         [ C(OP_READ) ] = {
845                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
846                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
847         },
848         [ C(OP_WRITE) ] = {
849                 [ C(RESULT_ACCESS) ] = -1,
850                 [ C(RESULT_MISS)   ] = -1,
851         },
852         [ C(OP_PREFETCH) ] = {
853                 [ C(RESULT_ACCESS) ] = -1,
854                 [ C(RESULT_MISS)   ] = -1,
855         },
856  },
857  [ C(NODE) ] = {
858         [ C(OP_READ) ] = {
859                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
860                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
861         },
862         [ C(OP_WRITE) ] = {
863                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
864                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
865         },
866         [ C(OP_PREFETCH) ] = {
867                 [ C(RESULT_ACCESS) ] = 0x0,
868                 [ C(RESULT_MISS)   ] = 0x0,
869         },
870  },
871 };
872
873 static __initconst const u64 hsw_hw_cache_extra_regs
874                                 [PERF_COUNT_HW_CACHE_MAX]
875                                 [PERF_COUNT_HW_CACHE_OP_MAX]
876                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
877 {
878  [ C(LL  ) ] = {
879         [ C(OP_READ) ] = {
880                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
881                                        HSW_LLC_ACCESS,
882                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
883                                        HSW_L3_MISS|HSW_ANY_SNOOP,
884         },
885         [ C(OP_WRITE) ] = {
886                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
887                                        HSW_LLC_ACCESS,
888                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
889                                        HSW_L3_MISS|HSW_ANY_SNOOP,
890         },
891         [ C(OP_PREFETCH) ] = {
892                 [ C(RESULT_ACCESS) ] = 0x0,
893                 [ C(RESULT_MISS)   ] = 0x0,
894         },
895  },
896  [ C(NODE) ] = {
897         [ C(OP_READ) ] = {
898                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
899                                        HSW_L3_MISS_LOCAL_DRAM|
900                                        HSW_SNOOP_DRAM,
901                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
902                                        HSW_L3_MISS_REMOTE|
903                                        HSW_SNOOP_DRAM,
904         },
905         [ C(OP_WRITE) ] = {
906                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
907                                        HSW_L3_MISS_LOCAL_DRAM|
908                                        HSW_SNOOP_DRAM,
909                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
910                                        HSW_L3_MISS_REMOTE|
911                                        HSW_SNOOP_DRAM,
912         },
913         [ C(OP_PREFETCH) ] = {
914                 [ C(RESULT_ACCESS) ] = 0x0,
915                 [ C(RESULT_MISS)   ] = 0x0,
916         },
917  },
918 };
919
920 static __initconst const u64 westmere_hw_cache_event_ids
921                                 [PERF_COUNT_HW_CACHE_MAX]
922                                 [PERF_COUNT_HW_CACHE_OP_MAX]
923                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
924 {
925  [ C(L1D) ] = {
926         [ C(OP_READ) ] = {
927                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
928                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
929         },
930         [ C(OP_WRITE) ] = {
931                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
932                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
933         },
934         [ C(OP_PREFETCH) ] = {
935                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
936                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
937         },
938  },
939  [ C(L1I ) ] = {
940         [ C(OP_READ) ] = {
941                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
942                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
943         },
944         [ C(OP_WRITE) ] = {
945                 [ C(RESULT_ACCESS) ] = -1,
946                 [ C(RESULT_MISS)   ] = -1,
947         },
948         [ C(OP_PREFETCH) ] = {
949                 [ C(RESULT_ACCESS) ] = 0x0,
950                 [ C(RESULT_MISS)   ] = 0x0,
951         },
952  },
953  [ C(LL  ) ] = {
954         [ C(OP_READ) ] = {
955                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
956                 [ C(RESULT_ACCESS) ] = 0x01b7,
957                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
958                 [ C(RESULT_MISS)   ] = 0x01b7,
959         },
960         /*
961          * Use RFO, not WRITEBACK, because a write miss would typically occur
962          * on RFO.
963          */
964         [ C(OP_WRITE) ] = {
965                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
966                 [ C(RESULT_ACCESS) ] = 0x01b7,
967                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
968                 [ C(RESULT_MISS)   ] = 0x01b7,
969         },
970         [ C(OP_PREFETCH) ] = {
971                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
972                 [ C(RESULT_ACCESS) ] = 0x01b7,
973                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
974                 [ C(RESULT_MISS)   ] = 0x01b7,
975         },
976  },
977  [ C(DTLB) ] = {
978         [ C(OP_READ) ] = {
979                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
980                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
981         },
982         [ C(OP_WRITE) ] = {
983                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
984                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
985         },
986         [ C(OP_PREFETCH) ] = {
987                 [ C(RESULT_ACCESS) ] = 0x0,
988                 [ C(RESULT_MISS)   ] = 0x0,
989         },
990  },
991  [ C(ITLB) ] = {
992         [ C(OP_READ) ] = {
993                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
994                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
995         },
996         [ C(OP_WRITE) ] = {
997                 [ C(RESULT_ACCESS) ] = -1,
998                 [ C(RESULT_MISS)   ] = -1,
999         },
1000         [ C(OP_PREFETCH) ] = {
1001                 [ C(RESULT_ACCESS) ] = -1,
1002                 [ C(RESULT_MISS)   ] = -1,
1003         },
1004  },
1005  [ C(BPU ) ] = {
1006         [ C(OP_READ) ] = {
1007                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1008                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1009         },
1010         [ C(OP_WRITE) ] = {
1011                 [ C(RESULT_ACCESS) ] = -1,
1012                 [ C(RESULT_MISS)   ] = -1,
1013         },
1014         [ C(OP_PREFETCH) ] = {
1015                 [ C(RESULT_ACCESS) ] = -1,
1016                 [ C(RESULT_MISS)   ] = -1,
1017         },
1018  },
1019  [ C(NODE) ] = {
1020         [ C(OP_READ) ] = {
1021                 [ C(RESULT_ACCESS) ] = 0x01b7,
1022                 [ C(RESULT_MISS)   ] = 0x01b7,
1023         },
1024         [ C(OP_WRITE) ] = {
1025                 [ C(RESULT_ACCESS) ] = 0x01b7,
1026                 [ C(RESULT_MISS)   ] = 0x01b7,
1027         },
1028         [ C(OP_PREFETCH) ] = {
1029                 [ C(RESULT_ACCESS) ] = 0x01b7,
1030                 [ C(RESULT_MISS)   ] = 0x01b7,
1031         },
1032  },
1033 };
1034
1035 /*
1036  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1037  * See IA32 SDM Vol 3B 30.6.1.3
1038  */
1039
1040 #define NHM_DMND_DATA_RD        (1 << 0)
1041 #define NHM_DMND_RFO            (1 << 1)
1042 #define NHM_DMND_IFETCH         (1 << 2)
1043 #define NHM_DMND_WB             (1 << 3)
1044 #define NHM_PF_DATA_RD          (1 << 4)
1045 #define NHM_PF_DATA_RFO         (1 << 5)
1046 #define NHM_PF_IFETCH           (1 << 6)
1047 #define NHM_OFFCORE_OTHER       (1 << 7)
1048 #define NHM_UNCORE_HIT          (1 << 8)
1049 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1050 #define NHM_OTHER_CORE_HITM     (1 << 10)
1051                                 /* reserved */
1052 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1053 #define NHM_REMOTE_DRAM         (1 << 13)
1054 #define NHM_LOCAL_DRAM          (1 << 14)
1055 #define NHM_NON_DRAM            (1 << 15)
1056
1057 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1058 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1059
1060 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1061 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1062 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1063
1064 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1065 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1066 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1067
1068 static __initconst const u64 nehalem_hw_cache_extra_regs
1069                                 [PERF_COUNT_HW_CACHE_MAX]
1070                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1071                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1072 {
1073  [ C(LL  ) ] = {
1074         [ C(OP_READ) ] = {
1075                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1076                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1077         },
1078         [ C(OP_WRITE) ] = {
1079                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1080                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1081         },
1082         [ C(OP_PREFETCH) ] = {
1083                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1084                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1085         },
1086  },
1087  [ C(NODE) ] = {
1088         [ C(OP_READ) ] = {
1089                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1090                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1091         },
1092         [ C(OP_WRITE) ] = {
1093                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1094                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1095         },
1096         [ C(OP_PREFETCH) ] = {
1097                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1098                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1099         },
1100  },
1101 };
1102
1103 static __initconst const u64 nehalem_hw_cache_event_ids
1104                                 [PERF_COUNT_HW_CACHE_MAX]
1105                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1106                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1107 {
1108  [ C(L1D) ] = {
1109         [ C(OP_READ) ] = {
1110                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1111                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1112         },
1113         [ C(OP_WRITE) ] = {
1114                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1115                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1116         },
1117         [ C(OP_PREFETCH) ] = {
1118                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1119                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1120         },
1121  },
1122  [ C(L1I ) ] = {
1123         [ C(OP_READ) ] = {
1124                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1125                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1126         },
1127         [ C(OP_WRITE) ] = {
1128                 [ C(RESULT_ACCESS) ] = -1,
1129                 [ C(RESULT_MISS)   ] = -1,
1130         },
1131         [ C(OP_PREFETCH) ] = {
1132                 [ C(RESULT_ACCESS) ] = 0x0,
1133                 [ C(RESULT_MISS)   ] = 0x0,
1134         },
1135  },
1136  [ C(LL  ) ] = {
1137         [ C(OP_READ) ] = {
1138                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1139                 [ C(RESULT_ACCESS) ] = 0x01b7,
1140                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1141                 [ C(RESULT_MISS)   ] = 0x01b7,
1142         },
1143         /*
1144          * Use RFO, not WRITEBACK, because a write miss would typically occur
1145          * on RFO.
1146          */
1147         [ C(OP_WRITE) ] = {
1148                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1149                 [ C(RESULT_ACCESS) ] = 0x01b7,
1150                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1151                 [ C(RESULT_MISS)   ] = 0x01b7,
1152         },
1153         [ C(OP_PREFETCH) ] = {
1154                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1155                 [ C(RESULT_ACCESS) ] = 0x01b7,
1156                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1157                 [ C(RESULT_MISS)   ] = 0x01b7,
1158         },
1159  },
1160  [ C(DTLB) ] = {
1161         [ C(OP_READ) ] = {
1162                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1163                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1164         },
1165         [ C(OP_WRITE) ] = {
1166                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1167                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1168         },
1169         [ C(OP_PREFETCH) ] = {
1170                 [ C(RESULT_ACCESS) ] = 0x0,
1171                 [ C(RESULT_MISS)   ] = 0x0,
1172         },
1173  },
1174  [ C(ITLB) ] = {
1175         [ C(OP_READ) ] = {
1176                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1177                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1178         },
1179         [ C(OP_WRITE) ] = {
1180                 [ C(RESULT_ACCESS) ] = -1,
1181                 [ C(RESULT_MISS)   ] = -1,
1182         },
1183         [ C(OP_PREFETCH) ] = {
1184                 [ C(RESULT_ACCESS) ] = -1,
1185                 [ C(RESULT_MISS)   ] = -1,
1186         },
1187  },
1188  [ C(BPU ) ] = {
1189         [ C(OP_READ) ] = {
1190                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1191                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1192         },
1193         [ C(OP_WRITE) ] = {
1194                 [ C(RESULT_ACCESS) ] = -1,
1195                 [ C(RESULT_MISS)   ] = -1,
1196         },
1197         [ C(OP_PREFETCH) ] = {
1198                 [ C(RESULT_ACCESS) ] = -1,
1199                 [ C(RESULT_MISS)   ] = -1,
1200         },
1201  },
1202  [ C(NODE) ] = {
1203         [ C(OP_READ) ] = {
1204                 [ C(RESULT_ACCESS) ] = 0x01b7,
1205                 [ C(RESULT_MISS)   ] = 0x01b7,
1206         },
1207         [ C(OP_WRITE) ] = {
1208                 [ C(RESULT_ACCESS) ] = 0x01b7,
1209                 [ C(RESULT_MISS)   ] = 0x01b7,
1210         },
1211         [ C(OP_PREFETCH) ] = {
1212                 [ C(RESULT_ACCESS) ] = 0x01b7,
1213                 [ C(RESULT_MISS)   ] = 0x01b7,
1214         },
1215  },
1216 };
1217
1218 static __initconst const u64 core2_hw_cache_event_ids
1219                                 [PERF_COUNT_HW_CACHE_MAX]
1220                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1221                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1222 {
1223  [ C(L1D) ] = {
1224         [ C(OP_READ) ] = {
1225                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1226                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1227         },
1228         [ C(OP_WRITE) ] = {
1229                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1230                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1231         },
1232         [ C(OP_PREFETCH) ] = {
1233                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1234                 [ C(RESULT_MISS)   ] = 0,
1235         },
1236  },
1237  [ C(L1I ) ] = {
1238         [ C(OP_READ) ] = {
1239                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1240                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1241         },
1242         [ C(OP_WRITE) ] = {
1243                 [ C(RESULT_ACCESS) ] = -1,
1244                 [ C(RESULT_MISS)   ] = -1,
1245         },
1246         [ C(OP_PREFETCH) ] = {
1247                 [ C(RESULT_ACCESS) ] = 0,
1248                 [ C(RESULT_MISS)   ] = 0,
1249         },
1250  },
1251  [ C(LL  ) ] = {
1252         [ C(OP_READ) ] = {
1253                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1254                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1255         },
1256         [ C(OP_WRITE) ] = {
1257                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1258                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1259         },
1260         [ C(OP_PREFETCH) ] = {
1261                 [ C(RESULT_ACCESS) ] = 0,
1262                 [ C(RESULT_MISS)   ] = 0,
1263         },
1264  },
1265  [ C(DTLB) ] = {
1266         [ C(OP_READ) ] = {
1267                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1268                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1269         },
1270         [ C(OP_WRITE) ] = {
1271                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1272                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1273         },
1274         [ C(OP_PREFETCH) ] = {
1275                 [ C(RESULT_ACCESS) ] = 0,
1276                 [ C(RESULT_MISS)   ] = 0,
1277         },
1278  },
1279  [ C(ITLB) ] = {
1280         [ C(OP_READ) ] = {
1281                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1282                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1283         },
1284         [ C(OP_WRITE) ] = {
1285                 [ C(RESULT_ACCESS) ] = -1,
1286                 [ C(RESULT_MISS)   ] = -1,
1287         },
1288         [ C(OP_PREFETCH) ] = {
1289                 [ C(RESULT_ACCESS) ] = -1,
1290                 [ C(RESULT_MISS)   ] = -1,
1291         },
1292  },
1293  [ C(BPU ) ] = {
1294         [ C(OP_READ) ] = {
1295                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1296                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1297         },
1298         [ C(OP_WRITE) ] = {
1299                 [ C(RESULT_ACCESS) ] = -1,
1300                 [ C(RESULT_MISS)   ] = -1,
1301         },
1302         [ C(OP_PREFETCH) ] = {
1303                 [ C(RESULT_ACCESS) ] = -1,
1304                 [ C(RESULT_MISS)   ] = -1,
1305         },
1306  },
1307 };
1308
1309 static __initconst const u64 atom_hw_cache_event_ids
1310                                 [PERF_COUNT_HW_CACHE_MAX]
1311                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1312                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313 {
1314  [ C(L1D) ] = {
1315         [ C(OP_READ) ] = {
1316                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1317                 [ C(RESULT_MISS)   ] = 0,
1318         },
1319         [ C(OP_WRITE) ] = {
1320                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1321                 [ C(RESULT_MISS)   ] = 0,
1322         },
1323         [ C(OP_PREFETCH) ] = {
1324                 [ C(RESULT_ACCESS) ] = 0x0,
1325                 [ C(RESULT_MISS)   ] = 0,
1326         },
1327  },
1328  [ C(L1I ) ] = {
1329         [ C(OP_READ) ] = {
1330                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1331                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1332         },
1333         [ C(OP_WRITE) ] = {
1334                 [ C(RESULT_ACCESS) ] = -1,
1335                 [ C(RESULT_MISS)   ] = -1,
1336         },
1337         [ C(OP_PREFETCH) ] = {
1338                 [ C(RESULT_ACCESS) ] = 0,
1339                 [ C(RESULT_MISS)   ] = 0,
1340         },
1341  },
1342  [ C(LL  ) ] = {
1343         [ C(OP_READ) ] = {
1344                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1345                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1346         },
1347         [ C(OP_WRITE) ] = {
1348                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1349                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1350         },
1351         [ C(OP_PREFETCH) ] = {
1352                 [ C(RESULT_ACCESS) ] = 0,
1353                 [ C(RESULT_MISS)   ] = 0,
1354         },
1355  },
1356  [ C(DTLB) ] = {
1357         [ C(OP_READ) ] = {
1358                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1359                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1360         },
1361         [ C(OP_WRITE) ] = {
1362                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1363                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1364         },
1365         [ C(OP_PREFETCH) ] = {
1366                 [ C(RESULT_ACCESS) ] = 0,
1367                 [ C(RESULT_MISS)   ] = 0,
1368         },
1369  },
1370  [ C(ITLB) ] = {
1371         [ C(OP_READ) ] = {
1372                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1373                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1374         },
1375         [ C(OP_WRITE) ] = {
1376                 [ C(RESULT_ACCESS) ] = -1,
1377                 [ C(RESULT_MISS)   ] = -1,
1378         },
1379         [ C(OP_PREFETCH) ] = {
1380                 [ C(RESULT_ACCESS) ] = -1,
1381                 [ C(RESULT_MISS)   ] = -1,
1382         },
1383  },
1384  [ C(BPU ) ] = {
1385         [ C(OP_READ) ] = {
1386                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1387                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1388         },
1389         [ C(OP_WRITE) ] = {
1390                 [ C(RESULT_ACCESS) ] = -1,
1391                 [ C(RESULT_MISS)   ] = -1,
1392         },
1393         [ C(OP_PREFETCH) ] = {
1394                 [ C(RESULT_ACCESS) ] = -1,
1395                 [ C(RESULT_MISS)   ] = -1,
1396         },
1397  },
1398 };
1399
1400 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1401 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1402 /* no_alloc_cycles.not_delivered */
1403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1404                "event=0xca,umask=0x50");
1405 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1406 /* uops_retired.all */
1407 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1408                "event=0xc2,umask=0x10");
1409 /* uops_retired.all */
1410 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1411                "event=0xc2,umask=0x10");
1412
1413 static struct attribute *slm_events_attrs[] = {
1414         EVENT_PTR(td_total_slots_slm),
1415         EVENT_PTR(td_total_slots_scale_slm),
1416         EVENT_PTR(td_fetch_bubbles_slm),
1417         EVENT_PTR(td_fetch_bubbles_scale_slm),
1418         EVENT_PTR(td_slots_issued_slm),
1419         EVENT_PTR(td_slots_retired_slm),
1420         NULL
1421 };
1422
1423 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1424 {
1425         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1426         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1427         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1428         EVENT_EXTRA_END
1429 };
1430
1431 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1432 #define SLM_DMND_WRITE          SNB_DMND_RFO
1433 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1434
1435 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1436 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1437 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1438
1439 static __initconst const u64 slm_hw_cache_extra_regs
1440                                 [PERF_COUNT_HW_CACHE_MAX]
1441                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1442                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1443 {
1444  [ C(LL  ) ] = {
1445         [ C(OP_READ) ] = {
1446                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1447                 [ C(RESULT_MISS)   ] = 0,
1448         },
1449         [ C(OP_WRITE) ] = {
1450                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1451                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1452         },
1453         [ C(OP_PREFETCH) ] = {
1454                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1455                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1456         },
1457  },
1458 };
1459
1460 static __initconst const u64 slm_hw_cache_event_ids
1461                                 [PERF_COUNT_HW_CACHE_MAX]
1462                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1463                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1464 {
1465  [ C(L1D) ] = {
1466         [ C(OP_READ) ] = {
1467                 [ C(RESULT_ACCESS) ] = 0,
1468                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1469         },
1470         [ C(OP_WRITE) ] = {
1471                 [ C(RESULT_ACCESS) ] = 0,
1472                 [ C(RESULT_MISS)   ] = 0,
1473         },
1474         [ C(OP_PREFETCH) ] = {
1475                 [ C(RESULT_ACCESS) ] = 0,
1476                 [ C(RESULT_MISS)   ] = 0,
1477         },
1478  },
1479  [ C(L1I ) ] = {
1480         [ C(OP_READ) ] = {
1481                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1482                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1483         },
1484         [ C(OP_WRITE) ] = {
1485                 [ C(RESULT_ACCESS) ] = -1,
1486                 [ C(RESULT_MISS)   ] = -1,
1487         },
1488         [ C(OP_PREFETCH) ] = {
1489                 [ C(RESULT_ACCESS) ] = 0,
1490                 [ C(RESULT_MISS)   ] = 0,
1491         },
1492  },
1493  [ C(LL  ) ] = {
1494         [ C(OP_READ) ] = {
1495                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1496                 [ C(RESULT_ACCESS) ] = 0x01b7,
1497                 [ C(RESULT_MISS)   ] = 0,
1498         },
1499         [ C(OP_WRITE) ] = {
1500                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1501                 [ C(RESULT_ACCESS) ] = 0x01b7,
1502                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1503                 [ C(RESULT_MISS)   ] = 0x01b7,
1504         },
1505         [ C(OP_PREFETCH) ] = {
1506                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1507                 [ C(RESULT_ACCESS) ] = 0x01b7,
1508                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1509                 [ C(RESULT_MISS)   ] = 0x01b7,
1510         },
1511  },
1512  [ C(DTLB) ] = {
1513         [ C(OP_READ) ] = {
1514                 [ C(RESULT_ACCESS) ] = 0,
1515                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1516         },
1517         [ C(OP_WRITE) ] = {
1518                 [ C(RESULT_ACCESS) ] = 0,
1519                 [ C(RESULT_MISS)   ] = 0,
1520         },
1521         [ C(OP_PREFETCH) ] = {
1522                 [ C(RESULT_ACCESS) ] = 0,
1523                 [ C(RESULT_MISS)   ] = 0,
1524         },
1525  },
1526  [ C(ITLB) ] = {
1527         [ C(OP_READ) ] = {
1528                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1529                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1530         },
1531         [ C(OP_WRITE) ] = {
1532                 [ C(RESULT_ACCESS) ] = -1,
1533                 [ C(RESULT_MISS)   ] = -1,
1534         },
1535         [ C(OP_PREFETCH) ] = {
1536                 [ C(RESULT_ACCESS) ] = -1,
1537                 [ C(RESULT_MISS)   ] = -1,
1538         },
1539  },
1540  [ C(BPU ) ] = {
1541         [ C(OP_READ) ] = {
1542                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1543                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1544         },
1545         [ C(OP_WRITE) ] = {
1546                 [ C(RESULT_ACCESS) ] = -1,
1547                 [ C(RESULT_MISS)   ] = -1,
1548         },
1549         [ C(OP_PREFETCH) ] = {
1550                 [ C(RESULT_ACCESS) ] = -1,
1551                 [ C(RESULT_MISS)   ] = -1,
1552         },
1553  },
1554 };
1555
1556 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1557 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1558 /* UOPS_NOT_DELIVERED.ANY */
1559 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1560 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1561 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1562 /* UOPS_RETIRED.ANY */
1563 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1564 /* UOPS_ISSUED.ANY */
1565 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1566
1567 static struct attribute *glm_events_attrs[] = {
1568         EVENT_PTR(td_total_slots_glm),
1569         EVENT_PTR(td_total_slots_scale_glm),
1570         EVENT_PTR(td_fetch_bubbles_glm),
1571         EVENT_PTR(td_recovery_bubbles_glm),
1572         EVENT_PTR(td_slots_issued_glm),
1573         EVENT_PTR(td_slots_retired_glm),
1574         NULL
1575 };
1576
1577 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1578         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1579         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1580         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1581         EVENT_EXTRA_END
1582 };
1583
1584 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1585 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1586 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1587 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1588 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1589 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1590 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1591 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1592 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1593 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1594
1595 static __initconst const u64 glm_hw_cache_event_ids
1596                                 [PERF_COUNT_HW_CACHE_MAX]
1597                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1598                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1599         [C(L1D)] = {
1600                 [C(OP_READ)] = {
1601                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1602                         [C(RESULT_MISS)]        = 0x0,
1603                 },
1604                 [C(OP_WRITE)] = {
1605                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1606                         [C(RESULT_MISS)]        = 0x0,
1607                 },
1608                 [C(OP_PREFETCH)] = {
1609                         [C(RESULT_ACCESS)]      = 0x0,
1610                         [C(RESULT_MISS)]        = 0x0,
1611                 },
1612         },
1613         [C(L1I)] = {
1614                 [C(OP_READ)] = {
1615                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1616                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1617                 },
1618                 [C(OP_WRITE)] = {
1619                         [C(RESULT_ACCESS)]      = -1,
1620                         [C(RESULT_MISS)]        = -1,
1621                 },
1622                 [C(OP_PREFETCH)] = {
1623                         [C(RESULT_ACCESS)]      = 0x0,
1624                         [C(RESULT_MISS)]        = 0x0,
1625                 },
1626         },
1627         [C(LL)] = {
1628                 [C(OP_READ)] = {
1629                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1630                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1631                 },
1632                 [C(OP_WRITE)] = {
1633                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1634                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1635                 },
1636                 [C(OP_PREFETCH)] = {
1637                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1638                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1639                 },
1640         },
1641         [C(DTLB)] = {
1642                 [C(OP_READ)] = {
1643                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1644                         [C(RESULT_MISS)]        = 0x0,
1645                 },
1646                 [C(OP_WRITE)] = {
1647                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1648                         [C(RESULT_MISS)]        = 0x0,
1649                 },
1650                 [C(OP_PREFETCH)] = {
1651                         [C(RESULT_ACCESS)]      = 0x0,
1652                         [C(RESULT_MISS)]        = 0x0,
1653                 },
1654         },
1655         [C(ITLB)] = {
1656                 [C(OP_READ)] = {
1657                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1658                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1659                 },
1660                 [C(OP_WRITE)] = {
1661                         [C(RESULT_ACCESS)]      = -1,
1662                         [C(RESULT_MISS)]        = -1,
1663                 },
1664                 [C(OP_PREFETCH)] = {
1665                         [C(RESULT_ACCESS)]      = -1,
1666                         [C(RESULT_MISS)]        = -1,
1667                 },
1668         },
1669         [C(BPU)] = {
1670                 [C(OP_READ)] = {
1671                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1672                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1673                 },
1674                 [C(OP_WRITE)] = {
1675                         [C(RESULT_ACCESS)]      = -1,
1676                         [C(RESULT_MISS)]        = -1,
1677                 },
1678                 [C(OP_PREFETCH)] = {
1679                         [C(RESULT_ACCESS)]      = -1,
1680                         [C(RESULT_MISS)]        = -1,
1681                 },
1682         },
1683 };
1684
1685 static __initconst const u64 glm_hw_cache_extra_regs
1686                                 [PERF_COUNT_HW_CACHE_MAX]
1687                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1688                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1689         [C(LL)] = {
1690                 [C(OP_READ)] = {
1691                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1692                                                   GLM_LLC_ACCESS,
1693                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1694                                                   GLM_LLC_MISS,
1695                 },
1696                 [C(OP_WRITE)] = {
1697                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1698                                                   GLM_LLC_ACCESS,
1699                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1700                                                   GLM_LLC_MISS,
1701                 },
1702                 [C(OP_PREFETCH)] = {
1703                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1704                                                   GLM_LLC_ACCESS,
1705                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1706                                                   GLM_LLC_MISS,
1707                 },
1708         },
1709 };
1710
1711 static __initconst const u64 glp_hw_cache_event_ids
1712                                 [PERF_COUNT_HW_CACHE_MAX]
1713                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1714                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1715         [C(L1D)] = {
1716                 [C(OP_READ)] = {
1717                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1718                         [C(RESULT_MISS)]        = 0x0,
1719                 },
1720                 [C(OP_WRITE)] = {
1721                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1722                         [C(RESULT_MISS)]        = 0x0,
1723                 },
1724                 [C(OP_PREFETCH)] = {
1725                         [C(RESULT_ACCESS)]      = 0x0,
1726                         [C(RESULT_MISS)]        = 0x0,
1727                 },
1728         },
1729         [C(L1I)] = {
1730                 [C(OP_READ)] = {
1731                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1732                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1733                 },
1734                 [C(OP_WRITE)] = {
1735                         [C(RESULT_ACCESS)]      = -1,
1736                         [C(RESULT_MISS)]        = -1,
1737                 },
1738                 [C(OP_PREFETCH)] = {
1739                         [C(RESULT_ACCESS)]      = 0x0,
1740                         [C(RESULT_MISS)]        = 0x0,
1741                 },
1742         },
1743         [C(LL)] = {
1744                 [C(OP_READ)] = {
1745                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1746                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1747                 },
1748                 [C(OP_WRITE)] = {
1749                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1750                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1751                 },
1752                 [C(OP_PREFETCH)] = {
1753                         [C(RESULT_ACCESS)]      = 0x0,
1754                         [C(RESULT_MISS)]        = 0x0,
1755                 },
1756         },
1757         [C(DTLB)] = {
1758                 [C(OP_READ)] = {
1759                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1760                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1761                 },
1762                 [C(OP_WRITE)] = {
1763                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1764                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1765                 },
1766                 [C(OP_PREFETCH)] = {
1767                         [C(RESULT_ACCESS)]      = 0x0,
1768                         [C(RESULT_MISS)]        = 0x0,
1769                 },
1770         },
1771         [C(ITLB)] = {
1772                 [C(OP_READ)] = {
1773                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1774                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1775                 },
1776                 [C(OP_WRITE)] = {
1777                         [C(RESULT_ACCESS)]      = -1,
1778                         [C(RESULT_MISS)]        = -1,
1779                 },
1780                 [C(OP_PREFETCH)] = {
1781                         [C(RESULT_ACCESS)]      = -1,
1782                         [C(RESULT_MISS)]        = -1,
1783                 },
1784         },
1785         [C(BPU)] = {
1786                 [C(OP_READ)] = {
1787                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1788                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1789                 },
1790                 [C(OP_WRITE)] = {
1791                         [C(RESULT_ACCESS)]      = -1,
1792                         [C(RESULT_MISS)]        = -1,
1793                 },
1794                 [C(OP_PREFETCH)] = {
1795                         [C(RESULT_ACCESS)]      = -1,
1796                         [C(RESULT_MISS)]        = -1,
1797                 },
1798         },
1799 };
1800
1801 static __initconst const u64 glp_hw_cache_extra_regs
1802                                 [PERF_COUNT_HW_CACHE_MAX]
1803                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1804                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1805         [C(LL)] = {
1806                 [C(OP_READ)] = {
1807                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1808                                                   GLM_LLC_ACCESS,
1809                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1810                                                   GLM_LLC_MISS,
1811                 },
1812                 [C(OP_WRITE)] = {
1813                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1814                                                   GLM_LLC_ACCESS,
1815                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1816                                                   GLM_LLC_MISS,
1817                 },
1818                 [C(OP_PREFETCH)] = {
1819                         [C(RESULT_ACCESS)]      = 0x0,
1820                         [C(RESULT_MISS)]        = 0x0,
1821                 },
1822         },
1823 };
1824
1825 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1826 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1827 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1828 #define KNL_MCDRAM_FAR          BIT_ULL(22)
1829 #define KNL_DDR_LOCAL           BIT_ULL(23)
1830 #define KNL_DDR_FAR             BIT_ULL(24)
1831 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1832                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
1833 #define KNL_L2_READ             SLM_DMND_READ
1834 #define KNL_L2_WRITE            SLM_DMND_WRITE
1835 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1836 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
1837 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1838                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
1839                                                   SNB_NON_DRAM)
1840
1841 static __initconst const u64 knl_hw_cache_extra_regs
1842                                 [PERF_COUNT_HW_CACHE_MAX]
1843                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1844                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1845         [C(LL)] = {
1846                 [C(OP_READ)] = {
1847                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1848                         [C(RESULT_MISS)]   = 0,
1849                 },
1850                 [C(OP_WRITE)] = {
1851                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1852                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1853                 },
1854                 [C(OP_PREFETCH)] = {
1855                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1856                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1857                 },
1858         },
1859 };
1860
1861 /*
1862  * Used from PMIs where the LBRs are already disabled.
1863  *
1864  * This function could be called consecutively. It is required to remain in
1865  * disabled state if called consecutively.
1866  *
1867  * During consecutive calls, the same disable value will be written to related
1868  * registers, so the PMU state remains unchanged.
1869  *
1870  * intel_bts events don't coexist with intel PMU's BTS events because of
1871  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1872  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1873  */
1874 static void __intel_pmu_disable_all(void)
1875 {
1876         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1877
1878         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1879
1880         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1881                 intel_pmu_disable_bts();
1882
1883         intel_pmu_pebs_disable_all();
1884 }
1885
1886 static void intel_pmu_disable_all(void)
1887 {
1888         __intel_pmu_disable_all();
1889         intel_pmu_lbr_disable_all();
1890 }
1891
1892 static void __intel_pmu_enable_all(int added, bool pmi)
1893 {
1894         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1895
1896         intel_pmu_pebs_enable_all();
1897         intel_pmu_lbr_enable_all(pmi);
1898         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1899                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1900
1901         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1902                 struct perf_event *event =
1903                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1904
1905                 if (WARN_ON_ONCE(!event))
1906                         return;
1907
1908                 intel_pmu_enable_bts(event->hw.config);
1909         }
1910 }
1911
1912 static void intel_pmu_enable_all(int added)
1913 {
1914         __intel_pmu_enable_all(added, false);
1915 }
1916
1917 /*
1918  * Workaround for:
1919  *   Intel Errata AAK100 (model 26)
1920  *   Intel Errata AAP53  (model 30)
1921  *   Intel Errata BD53   (model 44)
1922  *
1923  * The official story:
1924  *   These chips need to be 'reset' when adding counters by programming the
1925  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1926  *   in sequence on the same PMC or on different PMCs.
1927  *
1928  * In practise it appears some of these events do in fact count, and
1929  * we need to programm all 4 events.
1930  */
1931 static void intel_pmu_nhm_workaround(void)
1932 {
1933         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1934         static const unsigned long nhm_magic[4] = {
1935                 0x4300B5,
1936                 0x4300D2,
1937                 0x4300B1,
1938                 0x4300B1
1939         };
1940         struct perf_event *event;
1941         int i;
1942
1943         /*
1944          * The Errata requires below steps:
1945          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1946          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1947          *    the corresponding PMCx;
1948          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1949          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1950          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1951          */
1952
1953         /*
1954          * The real steps we choose are a little different from above.
1955          * A) To reduce MSR operations, we don't run step 1) as they
1956          *    are already cleared before this function is called;
1957          * B) Call x86_perf_event_update to save PMCx before configuring
1958          *    PERFEVTSELx with magic number;
1959          * C) With step 5), we do clear only when the PERFEVTSELx is
1960          *    not used currently.
1961          * D) Call x86_perf_event_set_period to restore PMCx;
1962          */
1963
1964         /* We always operate 4 pairs of PERF Counters */
1965         for (i = 0; i < 4; i++) {
1966                 event = cpuc->events[i];
1967                 if (event)
1968                         x86_perf_event_update(event);
1969         }
1970
1971         for (i = 0; i < 4; i++) {
1972                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1973                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1974         }
1975
1976         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1977         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1978
1979         for (i = 0; i < 4; i++) {
1980                 event = cpuc->events[i];
1981
1982                 if (event) {
1983                         x86_perf_event_set_period(event);
1984                         __x86_pmu_enable_event(&event->hw,
1985                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1986                 } else
1987                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1988         }
1989 }
1990
1991 static void intel_pmu_nhm_enable_all(int added)
1992 {
1993         if (added)
1994                 intel_pmu_nhm_workaround();
1995         intel_pmu_enable_all(added);
1996 }
1997
1998 static inline u64 intel_pmu_get_status(void)
1999 {
2000         u64 status;
2001
2002         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2003
2004         return status;
2005 }
2006
2007 static inline void intel_pmu_ack_status(u64 ack)
2008 {
2009         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2010 }
2011
2012 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2013 {
2014         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2015         u64 ctrl_val, mask;
2016
2017         mask = 0xfULL << (idx * 4);
2018
2019         rdmsrl(hwc->config_base, ctrl_val);
2020         ctrl_val &= ~mask;
2021         wrmsrl(hwc->config_base, ctrl_val);
2022 }
2023
2024 static inline bool event_is_checkpointed(struct perf_event *event)
2025 {
2026         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2027 }
2028
2029 static void intel_pmu_disable_event(struct perf_event *event)
2030 {
2031         struct hw_perf_event *hwc = &event->hw;
2032         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2033
2034         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2035                 intel_pmu_disable_bts();
2036                 intel_pmu_drain_bts_buffer();
2037                 return;
2038         }
2039
2040         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2041         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2042         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2043
2044         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2045                 intel_pmu_disable_fixed(hwc);
2046                 return;
2047         }
2048
2049         x86_pmu_disable_event(event);
2050
2051         if (unlikely(event->attr.precise_ip))
2052                 intel_pmu_pebs_disable(event);
2053 }
2054
2055 static void intel_pmu_del_event(struct perf_event *event)
2056 {
2057         if (needs_branch_stack(event))
2058                 intel_pmu_lbr_del(event);
2059         if (event->attr.precise_ip)
2060                 intel_pmu_pebs_del(event);
2061 }
2062
2063 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
2064 {
2065         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2066         u64 ctrl_val, bits, mask;
2067
2068         /*
2069          * Enable IRQ generation (0x8),
2070          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2071          * if requested:
2072          */
2073         bits = 0x8ULL;
2074         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2075                 bits |= 0x2;
2076         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2077                 bits |= 0x1;
2078
2079         /*
2080          * ANY bit is supported in v3 and up
2081          */
2082         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2083                 bits |= 0x4;
2084
2085         bits <<= (idx * 4);
2086         mask = 0xfULL << (idx * 4);
2087
2088         rdmsrl(hwc->config_base, ctrl_val);
2089         ctrl_val &= ~mask;
2090         ctrl_val |= bits;
2091         wrmsrl(hwc->config_base, ctrl_val);
2092 }
2093
2094 static void intel_pmu_enable_event(struct perf_event *event)
2095 {
2096         struct hw_perf_event *hwc = &event->hw;
2097         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2098
2099         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2100                 if (!__this_cpu_read(cpu_hw_events.enabled))
2101                         return;
2102
2103                 intel_pmu_enable_bts(hwc->config);
2104                 return;
2105         }
2106
2107         if (event->attr.exclude_host)
2108                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2109         if (event->attr.exclude_guest)
2110                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2111
2112         if (unlikely(event_is_checkpointed(event)))
2113                 cpuc->intel_cp_status |= (1ull << hwc->idx);
2114
2115         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2116                 intel_pmu_enable_fixed(hwc);
2117                 return;
2118         }
2119
2120         if (unlikely(event->attr.precise_ip))
2121                 intel_pmu_pebs_enable(event);
2122
2123         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2124 }
2125
2126 static void intel_pmu_add_event(struct perf_event *event)
2127 {
2128         if (event->attr.precise_ip)
2129                 intel_pmu_pebs_add(event);
2130         if (needs_branch_stack(event))
2131                 intel_pmu_lbr_add(event);
2132 }
2133
2134 /*
2135  * Save and restart an expired event. Called by NMI contexts,
2136  * so it has to be careful about preempting normal event ops:
2137  */
2138 int intel_pmu_save_and_restart(struct perf_event *event)
2139 {
2140         x86_perf_event_update(event);
2141         /*
2142          * For a checkpointed counter always reset back to 0.  This
2143          * avoids a situation where the counter overflows, aborts the
2144          * transaction and is then set back to shortly before the
2145          * overflow, and overflows and aborts again.
2146          */
2147         if (unlikely(event_is_checkpointed(event))) {
2148                 /* No race with NMIs because the counter should not be armed */
2149                 wrmsrl(event->hw.event_base, 0);
2150                 local64_set(&event->hw.prev_count, 0);
2151         }
2152         return x86_perf_event_set_period(event);
2153 }
2154
2155 static void intel_pmu_reset(void)
2156 {
2157         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2158         unsigned long flags;
2159         int idx;
2160
2161         if (!x86_pmu.num_counters)
2162                 return;
2163
2164         local_irq_save(flags);
2165
2166         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2167
2168         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2169                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2170                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2171         }
2172         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2173                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2174
2175         if (ds)
2176                 ds->bts_index = ds->bts_buffer_base;
2177
2178         /* Ack all overflows and disable fixed counters */
2179         if (x86_pmu.version >= 2) {
2180                 intel_pmu_ack_status(intel_pmu_get_status());
2181                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2182         }
2183
2184         /* Reset LBRs and LBR freezing */
2185         if (x86_pmu.lbr_nr) {
2186                 update_debugctlmsr(get_debugctlmsr() &
2187                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2188         }
2189
2190         local_irq_restore(flags);
2191 }
2192
2193 /*
2194  * This handler is triggered by the local APIC, so the APIC IRQ handling
2195  * rules apply:
2196  */
2197 static int intel_pmu_handle_irq(struct pt_regs *regs)
2198 {
2199         struct perf_sample_data data;
2200         struct cpu_hw_events *cpuc;
2201         int bit, loops;
2202         u64 status;
2203         int handled;
2204
2205         cpuc = this_cpu_ptr(&cpu_hw_events);
2206
2207         /*
2208          * No known reason to not always do late ACK,
2209          * but just in case do it opt-in.
2210          */
2211         if (!x86_pmu.late_ack)
2212                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2213         intel_bts_disable_local();
2214         __intel_pmu_disable_all();
2215         handled = intel_pmu_drain_bts_buffer();
2216         handled += intel_bts_interrupt();
2217         status = intel_pmu_get_status();
2218         if (!status)
2219                 goto done;
2220
2221         loops = 0;
2222 again:
2223         intel_pmu_lbr_read();
2224         intel_pmu_ack_status(status);
2225         if (++loops > 100) {
2226                 static bool warned = false;
2227                 if (!warned) {
2228                         WARN(1, "perfevents: irq loop stuck!\n");
2229                         perf_event_print_debug();
2230                         warned = true;
2231                 }
2232                 intel_pmu_reset();
2233                 goto done;
2234         }
2235
2236         inc_irq_stat(apic_perf_irqs);
2237
2238
2239         /*
2240          * Ignore a range of extra bits in status that do not indicate
2241          * overflow by themselves.
2242          */
2243         status &= ~(GLOBAL_STATUS_COND_CHG |
2244                     GLOBAL_STATUS_ASIF |
2245                     GLOBAL_STATUS_LBRS_FROZEN);
2246         if (!status)
2247                 goto done;
2248         /*
2249          * In case multiple PEBS events are sampled at the same time,
2250          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2251          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2252          * having their bits set in the status register. This is a sign
2253          * that there was at least one PEBS record pending at the time
2254          * of the PMU interrupt. PEBS counters must only be processed
2255          * via the drain_pebs() calls and not via the regular sample
2256          * processing loop coming after that the function, otherwise
2257          * phony regular samples may be generated in the sampling buffer
2258          * not marked with the EXACT tag. Another possibility is to have
2259          * one PEBS event and at least one non-PEBS event whic hoverflows
2260          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2261          * not be set, yet the overflow status bit for the PEBS counter will
2262          * be on Skylake.
2263          *
2264          * To avoid this problem, we systematically ignore the PEBS-enabled
2265          * counters from the GLOBAL_STATUS mask and we always process PEBS
2266          * events via drain_pebs().
2267          */
2268         status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2269
2270         /*
2271          * PEBS overflow sets bit 62 in the global status register
2272          */
2273         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2274                 handled++;
2275                 x86_pmu.drain_pebs(regs);
2276                 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2277         }
2278
2279         /*
2280          * Intel PT
2281          */
2282         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2283                 handled++;
2284                 intel_pt_interrupt();
2285         }
2286
2287         /*
2288          * Checkpointed counters can lead to 'spurious' PMIs because the
2289          * rollback caused by the PMI will have cleared the overflow status
2290          * bit. Therefore always force probe these counters.
2291          */
2292         status |= cpuc->intel_cp_status;
2293
2294         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2295                 struct perf_event *event = cpuc->events[bit];
2296
2297                 handled++;
2298
2299                 if (!test_bit(bit, cpuc->active_mask))
2300                         continue;
2301
2302                 if (!intel_pmu_save_and_restart(event))
2303                         continue;
2304
2305                 perf_sample_data_init(&data, 0, event->hw.last_period);
2306
2307                 if (has_branch_stack(event))
2308                         data.br_stack = &cpuc->lbr_stack;
2309
2310                 if (perf_event_overflow(event, &data, regs))
2311                         x86_pmu_stop(event, 0);
2312         }
2313
2314         /*
2315          * Repeat if there is more work to be done:
2316          */
2317         status = intel_pmu_get_status();
2318         if (status)
2319                 goto again;
2320
2321 done:
2322         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2323         if (cpuc->enabled)
2324                 __intel_pmu_enable_all(0, true);
2325         intel_bts_enable_local();
2326
2327         /*
2328          * Only unmask the NMI after the overflow counters
2329          * have been reset. This avoids spurious NMIs on
2330          * Haswell CPUs.
2331          */
2332         if (x86_pmu.late_ack)
2333                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2334         return handled;
2335 }
2336
2337 static struct event_constraint *
2338 intel_bts_constraints(struct perf_event *event)
2339 {
2340         struct hw_perf_event *hwc = &event->hw;
2341         unsigned int hw_event, bts_event;
2342
2343         if (event->attr.freq)
2344                 return NULL;
2345
2346         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2347         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2348
2349         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2350                 return &bts_constraint;
2351
2352         return NULL;
2353 }
2354
2355 static int intel_alt_er(int idx, u64 config)
2356 {
2357         int alt_idx = idx;
2358
2359         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2360                 return idx;
2361
2362         if (idx == EXTRA_REG_RSP_0)
2363                 alt_idx = EXTRA_REG_RSP_1;
2364
2365         if (idx == EXTRA_REG_RSP_1)
2366                 alt_idx = EXTRA_REG_RSP_0;
2367
2368         if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2369                 return idx;
2370
2371         return alt_idx;
2372 }
2373
2374 static void intel_fixup_er(struct perf_event *event, int idx)
2375 {
2376         event->hw.extra_reg.idx = idx;
2377
2378         if (idx == EXTRA_REG_RSP_0) {
2379                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2380                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2381                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2382         } else if (idx == EXTRA_REG_RSP_1) {
2383                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2384                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2385                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2386         }
2387 }
2388
2389 /*
2390  * manage allocation of shared extra msr for certain events
2391  *
2392  * sharing can be:
2393  * per-cpu: to be shared between the various events on a single PMU
2394  * per-core: per-cpu + shared by HT threads
2395  */
2396 static struct event_constraint *
2397 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2398                                    struct perf_event *event,
2399                                    struct hw_perf_event_extra *reg)
2400 {
2401         struct event_constraint *c = &emptyconstraint;
2402         struct er_account *era;
2403         unsigned long flags;
2404         int idx = reg->idx;
2405
2406         /*
2407          * reg->alloc can be set due to existing state, so for fake cpuc we
2408          * need to ignore this, otherwise we might fail to allocate proper fake
2409          * state for this extra reg constraint. Also see the comment below.
2410          */
2411         if (reg->alloc && !cpuc->is_fake)
2412                 return NULL; /* call x86_get_event_constraint() */
2413
2414 again:
2415         era = &cpuc->shared_regs->regs[idx];
2416         /*
2417          * we use spin_lock_irqsave() to avoid lockdep issues when
2418          * passing a fake cpuc
2419          */
2420         raw_spin_lock_irqsave(&era->lock, flags);
2421
2422         if (!atomic_read(&era->ref) || era->config == reg->config) {
2423
2424                 /*
2425                  * If its a fake cpuc -- as per validate_{group,event}() we
2426                  * shouldn't touch event state and we can avoid doing so
2427                  * since both will only call get_event_constraints() once
2428                  * on each event, this avoids the need for reg->alloc.
2429                  *
2430                  * Not doing the ER fixup will only result in era->reg being
2431                  * wrong, but since we won't actually try and program hardware
2432                  * this isn't a problem either.
2433                  */
2434                 if (!cpuc->is_fake) {
2435                         if (idx != reg->idx)
2436                                 intel_fixup_er(event, idx);
2437
2438                         /*
2439                          * x86_schedule_events() can call get_event_constraints()
2440                          * multiple times on events in the case of incremental
2441                          * scheduling(). reg->alloc ensures we only do the ER
2442                          * allocation once.
2443                          */
2444                         reg->alloc = 1;
2445                 }
2446
2447                 /* lock in msr value */
2448                 era->config = reg->config;
2449                 era->reg = reg->reg;
2450
2451                 /* one more user */
2452                 atomic_inc(&era->ref);
2453
2454                 /*
2455                  * need to call x86_get_event_constraint()
2456                  * to check if associated event has constraints
2457                  */
2458                 c = NULL;
2459         } else {
2460                 idx = intel_alt_er(idx, reg->config);
2461                 if (idx != reg->idx) {
2462                         raw_spin_unlock_irqrestore(&era->lock, flags);
2463                         goto again;
2464                 }
2465         }
2466         raw_spin_unlock_irqrestore(&era->lock, flags);
2467
2468         return c;
2469 }
2470
2471 static void
2472 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2473                                    struct hw_perf_event_extra *reg)
2474 {
2475         struct er_account *era;
2476
2477         /*
2478          * Only put constraint if extra reg was actually allocated. Also takes
2479          * care of event which do not use an extra shared reg.
2480          *
2481          * Also, if this is a fake cpuc we shouldn't touch any event state
2482          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2483          * either since it'll be thrown out.
2484          */
2485         if (!reg->alloc || cpuc->is_fake)
2486                 return;
2487
2488         era = &cpuc->shared_regs->regs[reg->idx];
2489
2490         /* one fewer user */
2491         atomic_dec(&era->ref);
2492
2493         /* allocate again next time */
2494         reg->alloc = 0;
2495 }
2496
2497 static struct event_constraint *
2498 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2499                               struct perf_event *event)
2500 {
2501         struct event_constraint *c = NULL, *d;
2502         struct hw_perf_event_extra *xreg, *breg;
2503
2504         xreg = &event->hw.extra_reg;
2505         if (xreg->idx != EXTRA_REG_NONE) {
2506                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2507                 if (c == &emptyconstraint)
2508                         return c;
2509         }
2510         breg = &event->hw.branch_reg;
2511         if (breg->idx != EXTRA_REG_NONE) {
2512                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2513                 if (d == &emptyconstraint) {
2514                         __intel_shared_reg_put_constraints(cpuc, xreg);
2515                         c = d;
2516                 }
2517         }
2518         return c;
2519 }
2520
2521 struct event_constraint *
2522 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2523                           struct perf_event *event)
2524 {
2525         struct event_constraint *c;
2526
2527         if (x86_pmu.event_constraints) {
2528                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2529                         if ((event->hw.config & c->cmask) == c->code) {
2530                                 event->hw.flags |= c->flags;
2531                                 return c;
2532                         }
2533                 }
2534         }
2535
2536         return &unconstrained;
2537 }
2538
2539 static struct event_constraint *
2540 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2541                             struct perf_event *event)
2542 {
2543         struct event_constraint *c;
2544
2545         c = intel_bts_constraints(event);
2546         if (c)
2547                 return c;
2548
2549         c = intel_shared_regs_constraints(cpuc, event);
2550         if (c)
2551                 return c;
2552
2553         c = intel_pebs_constraints(event);
2554         if (c)
2555                 return c;
2556
2557         return x86_get_event_constraints(cpuc, idx, event);
2558 }
2559
2560 static void
2561 intel_start_scheduling(struct cpu_hw_events *cpuc)
2562 {
2563         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2564         struct intel_excl_states *xl;
2565         int tid = cpuc->excl_thread_id;
2566
2567         /*
2568          * nothing needed if in group validation mode
2569          */
2570         if (cpuc->is_fake || !is_ht_workaround_enabled())
2571                 return;
2572
2573         /*
2574          * no exclusion needed
2575          */
2576         if (WARN_ON_ONCE(!excl_cntrs))
2577                 return;
2578
2579         xl = &excl_cntrs->states[tid];
2580
2581         xl->sched_started = true;
2582         /*
2583          * lock shared state until we are done scheduling
2584          * in stop_event_scheduling()
2585          * makes scheduling appear as a transaction
2586          */
2587         raw_spin_lock(&excl_cntrs->lock);
2588 }
2589
2590 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2591 {
2592         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2593         struct event_constraint *c = cpuc->event_constraint[idx];
2594         struct intel_excl_states *xl;
2595         int tid = cpuc->excl_thread_id;
2596
2597         if (cpuc->is_fake || !is_ht_workaround_enabled())
2598                 return;
2599
2600         if (WARN_ON_ONCE(!excl_cntrs))
2601                 return;
2602
2603         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2604                 return;
2605
2606         xl = &excl_cntrs->states[tid];
2607
2608         lockdep_assert_held(&excl_cntrs->lock);
2609
2610         if (c->flags & PERF_X86_EVENT_EXCL)
2611                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2612         else
2613                 xl->state[cntr] = INTEL_EXCL_SHARED;
2614 }
2615
2616 static void
2617 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2618 {
2619         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2620         struct intel_excl_states *xl;
2621         int tid = cpuc->excl_thread_id;
2622
2623         /*
2624          * nothing needed if in group validation mode
2625          */
2626         if (cpuc->is_fake || !is_ht_workaround_enabled())
2627                 return;
2628         /*
2629          * no exclusion needed
2630          */
2631         if (WARN_ON_ONCE(!excl_cntrs))
2632                 return;
2633
2634         xl = &excl_cntrs->states[tid];
2635
2636         xl->sched_started = false;
2637         /*
2638          * release shared state lock (acquired in intel_start_scheduling())
2639          */
2640         raw_spin_unlock(&excl_cntrs->lock);
2641 }
2642
2643 static struct event_constraint *
2644 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2645                            int idx, struct event_constraint *c)
2646 {
2647         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2648         struct intel_excl_states *xlo;
2649         int tid = cpuc->excl_thread_id;
2650         int is_excl, i;
2651
2652         /*
2653          * validating a group does not require
2654          * enforcing cross-thread  exclusion
2655          */
2656         if (cpuc->is_fake || !is_ht_workaround_enabled())
2657                 return c;
2658
2659         /*
2660          * no exclusion needed
2661          */
2662         if (WARN_ON_ONCE(!excl_cntrs))
2663                 return c;
2664
2665         /*
2666          * because we modify the constraint, we need
2667          * to make a copy. Static constraints come
2668          * from static const tables.
2669          *
2670          * only needed when constraint has not yet
2671          * been cloned (marked dynamic)
2672          */
2673         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2674                 struct event_constraint *cx;
2675
2676                 /*
2677                  * grab pre-allocated constraint entry
2678                  */
2679                 cx = &cpuc->constraint_list[idx];
2680
2681                 /*
2682                  * initialize dynamic constraint
2683                  * with static constraint
2684                  */
2685                 *cx = *c;
2686
2687                 /*
2688                  * mark constraint as dynamic, so we
2689                  * can free it later on
2690                  */
2691                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2692                 c = cx;
2693         }
2694
2695         /*
2696          * From here on, the constraint is dynamic.
2697          * Either it was just allocated above, or it
2698          * was allocated during a earlier invocation
2699          * of this function
2700          */
2701
2702         /*
2703          * state of sibling HT
2704          */
2705         xlo = &excl_cntrs->states[tid ^ 1];
2706
2707         /*
2708          * event requires exclusive counter access
2709          * across HT threads
2710          */
2711         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2712         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2713                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2714                 if (!cpuc->n_excl++)
2715                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2716         }
2717
2718         /*
2719          * Modify static constraint with current dynamic
2720          * state of thread
2721          *
2722          * EXCLUSIVE: sibling counter measuring exclusive event
2723          * SHARED   : sibling counter measuring non-exclusive event
2724          * UNUSED   : sibling counter unused
2725          */
2726         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2727                 /*
2728                  * exclusive event in sibling counter
2729                  * our corresponding counter cannot be used
2730                  * regardless of our event
2731                  */
2732                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2733                         __clear_bit(i, c->idxmsk);
2734                 /*
2735                  * if measuring an exclusive event, sibling
2736                  * measuring non-exclusive, then counter cannot
2737                  * be used
2738                  */
2739                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2740                         __clear_bit(i, c->idxmsk);
2741         }
2742
2743         /*
2744          * recompute actual bit weight for scheduling algorithm
2745          */
2746         c->weight = hweight64(c->idxmsk64);
2747
2748         /*
2749          * if we return an empty mask, then switch
2750          * back to static empty constraint to avoid
2751          * the cost of freeing later on
2752          */
2753         if (c->weight == 0)
2754                 c = &emptyconstraint;
2755
2756         return c;
2757 }
2758
2759 static struct event_constraint *
2760 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2761                             struct perf_event *event)
2762 {
2763         struct event_constraint *c1 = NULL;
2764         struct event_constraint *c2;
2765
2766         if (idx >= 0) /* fake does < 0 */
2767                 c1 = cpuc->event_constraint[idx];
2768
2769         /*
2770          * first time only
2771          * - static constraint: no change across incremental scheduling calls
2772          * - dynamic constraint: handled by intel_get_excl_constraints()
2773          */
2774         c2 = __intel_get_event_constraints(cpuc, idx, event);
2775         if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2776                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2777                 c1->weight = c2->weight;
2778                 c2 = c1;
2779         }
2780
2781         if (cpuc->excl_cntrs)
2782                 return intel_get_excl_constraints(cpuc, event, idx, c2);
2783
2784         return c2;
2785 }
2786
2787 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2788                 struct perf_event *event)
2789 {
2790         struct hw_perf_event *hwc = &event->hw;
2791         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2792         int tid = cpuc->excl_thread_id;
2793         struct intel_excl_states *xl;
2794
2795         /*
2796          * nothing needed if in group validation mode
2797          */
2798         if (cpuc->is_fake)
2799                 return;
2800
2801         if (WARN_ON_ONCE(!excl_cntrs))
2802                 return;
2803
2804         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2805                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2806                 if (!--cpuc->n_excl)
2807                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2808         }
2809
2810         /*
2811          * If event was actually assigned, then mark the counter state as
2812          * unused now.
2813          */
2814         if (hwc->idx >= 0) {
2815                 xl = &excl_cntrs->states[tid];
2816
2817                 /*
2818                  * put_constraint may be called from x86_schedule_events()
2819                  * which already has the lock held so here make locking
2820                  * conditional.
2821                  */
2822                 if (!xl->sched_started)
2823                         raw_spin_lock(&excl_cntrs->lock);
2824
2825                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2826
2827                 if (!xl->sched_started)
2828                         raw_spin_unlock(&excl_cntrs->lock);
2829         }
2830 }
2831
2832 static void
2833 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2834                                         struct perf_event *event)
2835 {
2836         struct hw_perf_event_extra *reg;
2837
2838         reg = &event->hw.extra_reg;
2839         if (reg->idx != EXTRA_REG_NONE)
2840                 __intel_shared_reg_put_constraints(cpuc, reg);
2841
2842         reg = &event->hw.branch_reg;
2843         if (reg->idx != EXTRA_REG_NONE)
2844                 __intel_shared_reg_put_constraints(cpuc, reg);
2845 }
2846
2847 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2848                                         struct perf_event *event)
2849 {
2850         intel_put_shared_regs_event_constraints(cpuc, event);
2851
2852         /*
2853          * is PMU has exclusive counter restrictions, then
2854          * all events are subject to and must call the
2855          * put_excl_constraints() routine
2856          */
2857         if (cpuc->excl_cntrs)
2858                 intel_put_excl_constraints(cpuc, event);
2859 }
2860
2861 static void intel_pebs_aliases_core2(struct perf_event *event)
2862 {
2863         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2864                 /*
2865                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2866                  * (0x003c) so that we can use it with PEBS.
2867                  *
2868                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2869                  * PEBS capable. However we can use INST_RETIRED.ANY_P
2870                  * (0x00c0), which is a PEBS capable event, to get the same
2871                  * count.
2872                  *
2873                  * INST_RETIRED.ANY_P counts the number of cycles that retires
2874                  * CNTMASK instructions. By setting CNTMASK to a value (16)
2875                  * larger than the maximum number of instructions that can be
2876                  * retired per cycle (4) and then inverting the condition, we
2877                  * count all cycles that retire 16 or less instructions, which
2878                  * is every cycle.
2879                  *
2880                  * Thereby we gain a PEBS capable cycle counter.
2881                  */
2882                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2883
2884                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2885                 event->hw.config = alt_config;
2886         }
2887 }
2888
2889 static void intel_pebs_aliases_snb(struct perf_event *event)
2890 {
2891         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2892                 /*
2893                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2894                  * (0x003c) so that we can use it with PEBS.
2895                  *
2896                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2897                  * PEBS capable. However we can use UOPS_RETIRED.ALL
2898                  * (0x01c2), which is a PEBS capable event, to get the same
2899                  * count.
2900                  *
2901                  * UOPS_RETIRED.ALL counts the number of cycles that retires
2902                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2903                  * larger than the maximum number of micro-ops that can be
2904                  * retired per cycle (4) and then inverting the condition, we
2905                  * count all cycles that retire 16 or less micro-ops, which
2906                  * is every cycle.
2907                  *
2908                  * Thereby we gain a PEBS capable cycle counter.
2909                  */
2910                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2911
2912                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2913                 event->hw.config = alt_config;
2914         }
2915 }
2916
2917 static void intel_pebs_aliases_precdist(struct perf_event *event)
2918 {
2919         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2920                 /*
2921                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2922                  * (0x003c) so that we can use it with PEBS.
2923                  *
2924                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2925                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2926                  * (0x01c0), which is a PEBS capable event, to get the same
2927                  * count.
2928                  *
2929                  * The PREC_DIST event has special support to minimize sample
2930                  * shadowing effects. One drawback is that it can be
2931                  * only programmed on counter 1, but that seems like an
2932                  * acceptable trade off.
2933                  */
2934                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2935
2936                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2937                 event->hw.config = alt_config;
2938         }
2939 }
2940
2941 static void intel_pebs_aliases_ivb(struct perf_event *event)
2942 {
2943         if (event->attr.precise_ip < 3)
2944                 return intel_pebs_aliases_snb(event);
2945         return intel_pebs_aliases_precdist(event);
2946 }
2947
2948 static void intel_pebs_aliases_skl(struct perf_event *event)
2949 {
2950         if (event->attr.precise_ip < 3)
2951                 return intel_pebs_aliases_core2(event);
2952         return intel_pebs_aliases_precdist(event);
2953 }
2954
2955 static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2956 {
2957         unsigned long flags = x86_pmu.free_running_flags;
2958
2959         if (event->attr.use_clockid)
2960                 flags &= ~PERF_SAMPLE_TIME;
2961         return flags;
2962 }
2963
2964 static int intel_pmu_hw_config(struct perf_event *event)
2965 {
2966         int ret = x86_pmu_hw_config(event);
2967
2968         if (ret)
2969                 return ret;
2970
2971         if (event->attr.precise_ip) {
2972                 if (!event->attr.freq) {
2973                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2974                         if (!(event->attr.sample_type &
2975                               ~intel_pmu_free_running_flags(event)))
2976                                 event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2977                 }
2978                 if (x86_pmu.pebs_aliases)
2979                         x86_pmu.pebs_aliases(event);
2980         }
2981
2982         if (needs_branch_stack(event)) {
2983                 ret = intel_pmu_setup_lbr_filter(event);
2984                 if (ret)
2985                         return ret;
2986
2987                 /*
2988                  * BTS is set up earlier in this path, so don't account twice
2989                  */
2990                 if (!intel_pmu_has_bts(event)) {
2991                         /* disallow lbr if conflicting events are present */
2992                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2993                                 return -EBUSY;
2994
2995                         event->destroy = hw_perf_lbr_event_destroy;
2996                 }
2997         }
2998
2999         if (event->attr.type != PERF_TYPE_RAW)
3000                 return 0;
3001
3002         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3003                 return 0;
3004
3005         if (x86_pmu.version < 3)
3006                 return -EINVAL;
3007
3008         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3009                 return -EACCES;
3010
3011         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3012
3013         return 0;
3014 }
3015
3016 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3017 {
3018         if (x86_pmu.guest_get_msrs)
3019                 return x86_pmu.guest_get_msrs(nr);
3020         *nr = 0;
3021         return NULL;
3022 }
3023 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3024
3025 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3026 {
3027         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3028         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3029
3030         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3031         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3032         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3033         /*
3034          * If PMU counter has PEBS enabled it is not enough to disable counter
3035          * on a guest entry since PEBS memory write can overshoot guest entry
3036          * and corrupt guest memory. Disabling PEBS solves the problem.
3037          */
3038         arr[1].msr = MSR_IA32_PEBS_ENABLE;
3039         arr[1].host = cpuc->pebs_enabled;
3040         arr[1].guest = 0;
3041
3042         *nr = 2;
3043         return arr;
3044 }
3045
3046 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3047 {
3048         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3049         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3050         int idx;
3051
3052         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3053                 struct perf_event *event = cpuc->events[idx];
3054
3055                 arr[idx].msr = x86_pmu_config_addr(idx);
3056                 arr[idx].host = arr[idx].guest = 0;
3057
3058                 if (!test_bit(idx, cpuc->active_mask))
3059                         continue;
3060
3061                 arr[idx].host = arr[idx].guest =
3062                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3063
3064                 if (event->attr.exclude_host)
3065                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3066                 else if (event->attr.exclude_guest)
3067                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3068         }
3069
3070         *nr = x86_pmu.num_counters;
3071         return arr;
3072 }
3073
3074 static void core_pmu_enable_event(struct perf_event *event)
3075 {
3076         if (!event->attr.exclude_host)
3077                 x86_pmu_enable_event(event);
3078 }
3079
3080 static void core_pmu_enable_all(int added)
3081 {
3082         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3083         int idx;
3084
3085         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3086                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3087
3088                 if (!test_bit(idx, cpuc->active_mask) ||
3089                                 cpuc->events[idx]->attr.exclude_host)
3090                         continue;
3091
3092                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3093         }
3094 }
3095
3096 static int hsw_hw_config(struct perf_event *event)
3097 {
3098         int ret = intel_pmu_hw_config(event);
3099
3100         if (ret)
3101                 return ret;
3102         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3103                 return 0;
3104         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3105
3106         /*
3107          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3108          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3109          * this combination.
3110          */
3111         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3112              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3113               event->attr.precise_ip > 0))
3114                 return -EOPNOTSUPP;
3115
3116         if (event_is_checkpointed(event)) {
3117                 /*
3118                  * Sampling of checkpointed events can cause situations where
3119                  * the CPU constantly aborts because of a overflow, which is
3120                  * then checkpointed back and ignored. Forbid checkpointing
3121                  * for sampling.
3122                  *
3123                  * But still allow a long sampling period, so that perf stat
3124                  * from KVM works.
3125                  */
3126                 if (event->attr.sample_period > 0 &&
3127                     event->attr.sample_period < 0x7fffffff)
3128                         return -EOPNOTSUPP;
3129         }
3130         return 0;
3131 }
3132
3133 static struct event_constraint counter0_constraint =
3134                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3135
3136 static struct event_constraint counter2_constraint =
3137                         EVENT_CONSTRAINT(0, 0x4, 0);
3138
3139 static struct event_constraint *
3140 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3141                           struct perf_event *event)
3142 {
3143         struct event_constraint *c;
3144
3145         c = intel_get_event_constraints(cpuc, idx, event);
3146
3147         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3148         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3149                 if (c->idxmsk64 & (1U << 2))
3150                         return &counter2_constraint;
3151                 return &emptyconstraint;
3152         }
3153
3154         return c;
3155 }
3156
3157 static struct event_constraint *
3158 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3159                           struct perf_event *event)
3160 {
3161         struct event_constraint *c;
3162
3163         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3164         if (event->attr.precise_ip == 3)
3165                 return &counter0_constraint;
3166
3167         c = intel_get_event_constraints(cpuc, idx, event);
3168
3169         return c;
3170 }
3171
3172 /*
3173  * Broadwell:
3174  *
3175  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3176  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3177  * the two to enforce a minimum period of 128 (the smallest value that has bits
3178  * 0-5 cleared and >= 100).
3179  *
3180  * Because of how the code in x86_perf_event_set_period() works, the truncation
3181  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3182  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3183  *
3184  * Therefore the effective (average) period matches the requested period,
3185  * despite coarser hardware granularity.
3186  */
3187 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
3188 {
3189         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3190                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
3191                 if (left < 128)
3192                         left = 128;
3193                 left &= ~0x3fu;
3194         }
3195         return left;
3196 }
3197
3198 PMU_FORMAT_ATTR(event,  "config:0-7"    );
3199 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
3200 PMU_FORMAT_ATTR(edge,   "config:18"     );
3201 PMU_FORMAT_ATTR(pc,     "config:19"     );
3202 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
3203 PMU_FORMAT_ATTR(inv,    "config:23"     );
3204 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
3205 PMU_FORMAT_ATTR(in_tx,  "config:32");
3206 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3207
3208 static struct attribute *intel_arch_formats_attr[] = {
3209         &format_attr_event.attr,
3210         &format_attr_umask.attr,
3211         &format_attr_edge.attr,
3212         &format_attr_pc.attr,
3213         &format_attr_inv.attr,
3214         &format_attr_cmask.attr,
3215         NULL,
3216 };
3217
3218 ssize_t intel_event_sysfs_show(char *page, u64 config)
3219 {
3220         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3221
3222         return x86_event_sysfs_show(page, config, event);
3223 }
3224
3225 struct intel_shared_regs *allocate_shared_regs(int cpu)
3226 {
3227         struct intel_shared_regs *regs;
3228         int i;
3229
3230         regs = kzalloc_node(sizeof(struct intel_shared_regs),
3231                             GFP_KERNEL, cpu_to_node(cpu));
3232         if (regs) {
3233                 /*
3234                  * initialize the locks to keep lockdep happy
3235                  */
3236                 for (i = 0; i < EXTRA_REG_MAX; i++)
3237                         raw_spin_lock_init(&regs->regs[i].lock);
3238
3239                 regs->core_id = -1;
3240         }
3241         return regs;
3242 }
3243
3244 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3245 {
3246         struct intel_excl_cntrs *c;
3247
3248         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3249                          GFP_KERNEL, cpu_to_node(cpu));
3250         if (c) {
3251                 raw_spin_lock_init(&c->lock);
3252                 c->core_id = -1;
3253         }
3254         return c;
3255 }
3256
3257 static int intel_pmu_cpu_prepare(int cpu)