2 * X86 specific Hyper-V initialization code.
4 * Copyright (C) 2016, Microsoft, Inc.
6 * Author : K. Y. Srinivasan <kys@microsoft.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published
10 * by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15 * NON INFRINGEMENT. See the GNU General Public License for more
20 #include <linux/efi.h>
21 #include <linux/types.h>
24 #include <asm/hypervisor.h>
25 #include <asm/hyperv-tlfs.h>
26 #include <asm/mshyperv.h>
27 #include <linux/version.h>
28 #include <linux/vmalloc.h>
30 #include <linux/clockchips.h>
31 #include <linux/hyperv.h>
32 #include <linux/slab.h>
33 #include <linux/cpuhotplug.h>
35 #ifdef CONFIG_HYPERV_TSCPAGE
37 static struct ms_hyperv_tsc_page *tsc_pg;
39 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
43 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
45 static u64 read_hv_clock_tsc(struct clocksource *arg)
47 u64 current_tick = hv_read_tsc_page(tsc_pg);
49 if (current_tick == U64_MAX)
50 rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
55 static struct clocksource hyperv_cs_tsc = {
56 .name = "hyperv_clocksource_tsc_page",
58 .read = read_hv_clock_tsc,
59 .mask = CLOCKSOURCE_MASK(64),
60 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
64 static u64 read_hv_clock_msr(struct clocksource *arg)
68 * Read the partition counter to get the current tick count. This count
69 * is set to 0 when the partition is created and is incremented in
70 * 100 nanosecond units.
72 rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
76 static struct clocksource hyperv_cs_msr = {
77 .name = "hyperv_clocksource_msr",
79 .read = read_hv_clock_msr,
80 .mask = CLOCKSOURCE_MASK(64),
81 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
84 void *hv_hypercall_pg;
85 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
86 struct clocksource *hyperv_cs;
87 EXPORT_SYMBOL_GPL(hyperv_cs);
90 EXPORT_SYMBOL_GPL(hv_vp_index);
92 struct hv_vp_assist_page **hv_vp_assist_page;
93 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
95 void __percpu **hyperv_pcpu_input_arg;
96 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg);
99 EXPORT_SYMBOL_GPL(hv_max_vp_index);
101 static int hv_cpu_init(unsigned int cpu)
104 struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
107 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
108 *input_arg = page_address(alloc_page(GFP_KERNEL));
110 hv_get_vp_index(msr_vp_index);
112 hv_vp_index[smp_processor_id()] = msr_vp_index;
114 if (msr_vp_index > hv_max_vp_index)
115 hv_max_vp_index = msr_vp_index;
117 if (!hv_vp_assist_page)
121 *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
126 val = vmalloc_to_pfn(*hvp);
127 val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) |
128 HV_X64_MSR_VP_ASSIST_PAGE_ENABLE;
130 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val);
136 static void (*hv_reenlightenment_cb)(void);
138 static void hv_reenlightenment_notify(struct work_struct *dummy)
140 struct hv_tsc_emulation_status emu_status;
142 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
144 /* Don't issue the callback if TSC accesses are not emulated */
145 if (hv_reenlightenment_cb && emu_status.inprogress)
146 hv_reenlightenment_cb();
148 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
150 void hyperv_stop_tsc_emulation(void)
153 struct hv_tsc_emulation_status emu_status;
155 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
156 emu_status.inprogress = 0;
157 wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
159 rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
160 tsc_khz = div64_u64(freq, 1000);
162 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
164 static inline bool hv_reenlightenment_available(void)
167 * Check for required features and priviliges to make TSC frequency
168 * change notifications work.
170 return ms_hyperv.features & HV_X64_ACCESS_FREQUENCY_MSRS &&
171 ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
172 ms_hyperv.features & HV_X64_ACCESS_REENLIGHTENMENT;
175 __visible void __irq_entry hyperv_reenlightenment_intr(struct pt_regs *regs)
179 inc_irq_stat(irq_hv_reenlightenment_count);
181 schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
186 void set_hv_tscchange_cb(void (*cb)(void))
188 struct hv_reenlightenment_control re_ctrl = {
189 .vector = HYPERV_REENLIGHTENMENT_VECTOR,
191 .target_vp = hv_vp_index[smp_processor_id()]
193 struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
195 if (!hv_reenlightenment_available()) {
196 pr_warn("Hyper-V: reenlightenment support is unavailable\n");
200 hv_reenlightenment_cb = cb;
202 /* Make sure callback is registered before we write to MSRs */
205 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
206 wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
208 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
210 void clear_hv_tscchange_cb(void)
212 struct hv_reenlightenment_control re_ctrl;
214 if (!hv_reenlightenment_available())
217 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
219 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
221 hv_reenlightenment_cb = NULL;
223 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
225 static int hv_cpu_die(unsigned int cpu)
227 struct hv_reenlightenment_control re_ctrl;
228 unsigned int new_cpu;
231 void *input_pg = NULL;
233 local_irq_save(flags);
234 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
235 input_pg = *input_arg;
237 local_irq_restore(flags);
238 free_page((unsigned long)input_pg);
240 if (hv_vp_assist_page && hv_vp_assist_page[cpu])
241 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0);
243 if (hv_reenlightenment_cb == NULL)
246 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
247 if (re_ctrl.target_vp == hv_vp_index[cpu]) {
248 /* Reassign to some other online CPU */
249 new_cpu = cpumask_any_but(cpu_online_mask, cpu);
251 re_ctrl.target_vp = hv_vp_index[new_cpu];
252 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
258 static int __init hv_pci_init(void)
260 int gen2vm = efi_enabled(EFI_BOOT);
263 * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
264 * The purpose is to suppress the harmless warning:
265 * "PCI: Fatal: No config space access function found"
270 /* For Generation-1 VM, we'll proceed in pci_arch_init(). */
275 * This function is to be invoked early in the boot sequence after the
276 * hypervisor has been detected.
278 * 1. Setup the hypercall page.
279 * 2. Register Hyper-V specific clocksource.
280 * 3. Setup Hyper-V specific APIC entry points.
282 void __init hyperv_init(void)
284 u64 guest_id, required_msrs;
285 union hv_x64_msr_hypercall_contents hypercall_msr;
288 if (x86_hyper_type != X86_HYPER_MS_HYPERV)
291 /* Absolutely required MSRs */
292 required_msrs = HV_X64_MSR_HYPERCALL_AVAILABLE |
293 HV_X64_MSR_VP_INDEX_AVAILABLE;
295 if ((ms_hyperv.features & required_msrs) != required_msrs)
299 * Allocate the per-CPU state for the hypercall input arg.
300 * If this allocation fails, we will not be able to setup
301 * (per-CPU) hypercall input page and thus this failure is
304 hyperv_pcpu_input_arg = alloc_percpu(void *);
306 BUG_ON(hyperv_pcpu_input_arg == NULL);
308 /* Allocate percpu VP index */
309 hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index),
314 for (i = 0; i < num_possible_cpus(); i++)
315 hv_vp_index[i] = VP_INVAL;
317 hv_vp_assist_page = kcalloc(num_possible_cpus(),
318 sizeof(*hv_vp_assist_page), GFP_KERNEL);
319 if (!hv_vp_assist_page) {
320 ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
324 cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
325 hv_cpu_init, hv_cpu_die);
327 goto free_vp_assist_page;
330 * Setup the hypercall page and enable hypercalls.
331 * 1. Register the guest ID
332 * 2. Enable the hypercall and register the hypercall page
334 guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
335 wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
337 hv_hypercall_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RX);
338 if (hv_hypercall_pg == NULL) {
339 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
340 goto remove_cpuhp_state;
343 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
344 hypercall_msr.enable = 1;
345 hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
346 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
350 x86_init.pci.arch_init = hv_pci_init;
353 * Register Hyper-V specific clocksource.
355 #ifdef CONFIG_HYPERV_TSCPAGE
356 if (ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE) {
357 union hv_x64_msr_hypercall_contents tsc_msr;
359 tsc_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
361 goto register_msr_cs;
363 hyperv_cs = &hyperv_cs_tsc;
365 rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
368 tsc_msr.guest_physical_address = vmalloc_to_pfn(tsc_pg);
370 wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
372 hyperv_cs_tsc.archdata.vclock_mode = VCLOCK_HVCLOCK;
374 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
380 * For 32 bit guests just use the MSR based mechanism for reading
381 * the partition counter.
384 hyperv_cs = &hyperv_cs_msr;
385 if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)
386 clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
391 cpuhp_remove_state(cpuhp);
393 kfree(hv_vp_assist_page);
394 hv_vp_assist_page = NULL;
401 * This routine is called before kexec/kdump, it does the required cleanup.
403 void hyperv_cleanup(void)
405 union hv_x64_msr_hypercall_contents hypercall_msr;
407 /* Reset our OS id */
408 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
411 * Reset hypercall page reference before reset the page,
412 * let hypercall operations fail safely rather than
413 * panic the kernel for using invalid hypercall page
415 hv_hypercall_pg = NULL;
417 /* Reset the hypercall page */
418 hypercall_msr.as_uint64 = 0;
419 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
421 /* Reset the TSC page */
422 hypercall_msr.as_uint64 = 0;
423 wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
425 EXPORT_SYMBOL_GPL(hyperv_cleanup);
427 void hyperv_report_panic(struct pt_regs *regs, long err)
429 static bool panic_reported;
433 * We prefer to report panic on 'die' chain as we have proper
434 * registers to report, but if we miss it (e.g. on BUG()) we need
435 * to report it on 'panic'.
439 panic_reported = true;
441 rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
443 wrmsrl(HV_X64_MSR_CRASH_P0, err);
444 wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
445 wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
446 wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
447 wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
450 * Let Hyper-V know there is crash data available
452 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
454 EXPORT_SYMBOL_GPL(hyperv_report_panic);
457 * hyperv_report_panic_msg - report panic message to Hyper-V
458 * @pa: physical address of the panic page containing the message
459 * @size: size of the message in the page
461 void hyperv_report_panic_msg(phys_addr_t pa, size_t size)
464 * P3 to contain the physical address of the panic page & P4 to
465 * contain the size of the panic data in that page. Rest of the
466 * registers are no-op when the NOTIFY_MSG flag is set.
468 wrmsrl(HV_X64_MSR_CRASH_P0, 0);
469 wrmsrl(HV_X64_MSR_CRASH_P1, 0);
470 wrmsrl(HV_X64_MSR_CRASH_P2, 0);
471 wrmsrl(HV_X64_MSR_CRASH_P3, pa);
472 wrmsrl(HV_X64_MSR_CRASH_P4, size);
475 * Let Hyper-V know there is crash data available along with
478 wrmsrl(HV_X64_MSR_CRASH_CTL,
479 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
481 EXPORT_SYMBOL_GPL(hyperv_report_panic_msg);
483 bool hv_is_hyperv_initialized(void)
485 union hv_x64_msr_hypercall_contents hypercall_msr;
488 * Ensure that we're really on Hyper-V, and not a KVM or Xen
489 * emulation of Hyper-V
491 if (x86_hyper_type != X86_HYPER_MS_HYPERV)
495 * Verify that earlier initialization succeeded by checking
496 * that the hypercall page is setup
498 hypercall_msr.as_uint64 = 0;
499 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
501 return hypercall_msr.enable;
503 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);