1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/bootmem.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
20 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
21 #include <asm/traps.h> /* dotraplinkage, ... */
22 #include <asm/pgalloc.h> /* pgd_*(), ... */
23 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
24 #include <asm/vsyscall.h> /* emulate_vsyscall */
25 #include <asm/vm86.h> /* struct vm86 */
26 #include <asm/mmu_context.h> /* vma_pkey() */
28 #define CREATE_TRACE_POINTS
29 #include <asm/trace/exceptions.h>
32 * Returns 0 if mmiotrace is disabled, or if the fault is not
33 * handled by mmiotrace:
35 static nokprobe_inline int
36 kmmio_fault(struct pt_regs *regs, unsigned long addr)
38 if (unlikely(is_kmmio_active()))
39 if (kmmio_handler(regs, addr) == 1)
44 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
48 /* kprobe_running() needs smp_processor_id() */
49 if (kprobes_built_in() && !user_mode(regs)) {
51 if (kprobe_running() && kprobe_fault_handler(regs, 14))
64 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
65 * Check that here and ignore it.
69 * Sometimes the CPU reports invalid exceptions on prefetch.
70 * Check that here and ignore it.
72 * Opcode checker based on code by Richard Brunner.
75 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
76 unsigned char opcode, int *prefetch)
78 unsigned char instr_hi = opcode & 0xf0;
79 unsigned char instr_lo = opcode & 0x0f;
85 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
86 * In X86_64 long mode, the CPU will signal invalid
87 * opcode if some of these prefixes are present so
88 * X86_64 will never get here anyway
90 return ((instr_lo & 7) == 0x6);
94 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
95 * Need to figure out under what instruction mode the
96 * instruction was issued. Could check the LDT for lm,
97 * but for now it's good enough to assume that long
98 * mode only uses well known segments or kernel.
100 return (!user_mode(regs) || user_64bit_mode(regs));
103 /* 0x64 thru 0x67 are valid prefixes in all modes. */
104 return (instr_lo & 0xC) == 0x4;
106 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
107 return !instr_lo || (instr_lo>>1) == 1;
109 /* Prefetch instruction is 0x0F0D or 0x0F18 */
110 if (probe_kernel_address(instr, opcode))
113 *prefetch = (instr_lo == 0xF) &&
114 (opcode == 0x0D || opcode == 0x18);
122 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
124 unsigned char *max_instr;
125 unsigned char *instr;
129 * If it was a exec (instruction fetch) fault on NX page, then
130 * do not ignore the fault:
132 if (error_code & X86_PF_INSTR)
135 instr = (void *)convert_ip_to_linear(current, regs);
136 max_instr = instr + 15;
138 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
141 while (instr < max_instr) {
142 unsigned char opcode;
144 if (probe_kernel_address(instr, opcode))
149 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
156 * A protection key fault means that the PKRU value did not allow
157 * access to some PTE. Userspace can figure out what PKRU was
158 * from the XSAVE state, and this function fills out a field in
159 * siginfo so userspace can discover which protection key was set
162 * If we get here, we know that the hardware signaled a X86_PF_PK
163 * fault and that there was a VMA once we got in the fault
164 * handler. It does *not* guarantee that the VMA we find here
165 * was the one that we faulted on.
167 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
168 * 2. T1 : set PKRU to deny access to pkey=4, touches page
170 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
171 * 5. T1 : enters fault handler, takes mmap_sem, etc...
172 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
173 * faulted on a pte with its pkey=4.
175 static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
178 /* This is effectively an #ifdef */
179 if (!boot_cpu_has(X86_FEATURE_OSPKE))
182 /* Fault not from Protection Keys: nothing to do */
183 if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
186 * force_sig_info_fault() is called from a number of
187 * contexts, some of which have a VMA and some of which
188 * do not. The X86_PF_PK handing happens after we have a
189 * valid VMA, so we should never reach this without a
193 WARN_ONCE(1, "PKU fault with no VMA passed in");
198 * si_pkey should be thought of as a strong hint, but not
199 * absolutely guranteed to be 100% accurate because of
200 * the race explained above.
202 info->si_pkey = *pkey;
206 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
207 struct task_struct *tsk, u32 *pkey, int fault)
212 clear_siginfo(&info);
213 info.si_signo = si_signo;
215 info.si_code = si_code;
216 info.si_addr = (void __user *)address;
217 if (fault & VM_FAULT_HWPOISON_LARGE)
218 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
219 if (fault & VM_FAULT_HWPOISON)
221 info.si_addr_lsb = lsb;
223 fill_sig_info_pkey(si_signo, si_code, &info, pkey);
225 force_sig_info(si_signo, &info, tsk);
228 DEFINE_SPINLOCK(pgd_lock);
232 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
234 unsigned index = pgd_index(address);
241 pgd_k = init_mm.pgd + index;
243 if (!pgd_present(*pgd_k))
247 * set_pgd(pgd, *pgd_k); here would be useless on PAE
248 * and redundant with the set_pmd() on non-PAE. As would
251 p4d = p4d_offset(pgd, address);
252 p4d_k = p4d_offset(pgd_k, address);
253 if (!p4d_present(*p4d_k))
256 pud = pud_offset(p4d, address);
257 pud_k = pud_offset(p4d_k, address);
258 if (!pud_present(*pud_k))
261 pmd = pmd_offset(pud, address);
262 pmd_k = pmd_offset(pud_k, address);
263 if (!pmd_present(*pmd_k))
266 if (!pmd_present(*pmd))
267 set_pmd(pmd, *pmd_k);
269 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
274 void vmalloc_sync_all(void)
276 unsigned long address;
278 if (SHARED_KERNEL_PMD)
281 for (address = VMALLOC_START & PMD_MASK;
282 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
283 address += PMD_SIZE) {
286 spin_lock(&pgd_lock);
287 list_for_each_entry(page, &pgd_list, lru) {
288 spinlock_t *pgt_lock;
291 /* the pgt_lock only for Xen */
292 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
295 ret = vmalloc_sync_one(page_address(page), address);
296 spin_unlock(pgt_lock);
301 spin_unlock(&pgd_lock);
308 * Handle a fault on the vmalloc or module mapping area
310 static noinline int vmalloc_fault(unsigned long address)
312 unsigned long pgd_paddr;
316 /* Make sure we are in vmalloc area: */
317 if (!(address >= VMALLOC_START && address < VMALLOC_END))
320 WARN_ON_ONCE(in_nmi());
323 * Synchronize this task's top level page-table
324 * with the 'reference' page table.
326 * Do _not_ use "current" here. We might be inside
327 * an interrupt in the middle of a task switch..
329 pgd_paddr = read_cr3_pa();
330 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
334 if (pmd_large(*pmd_k))
337 pte_k = pte_offset_kernel(pmd_k, address);
338 if (!pte_present(*pte_k))
343 NOKPROBE_SYMBOL(vmalloc_fault);
346 * Did it hit the DOS screen memory VA from vm86 mode?
349 check_v8086_mode(struct pt_regs *regs, unsigned long address,
350 struct task_struct *tsk)
355 if (!v8086_mode(regs) || !tsk->thread.vm86)
358 bit = (address - 0xA0000) >> PAGE_SHIFT;
360 tsk->thread.vm86->screen_bitmap |= 1 << bit;
364 static bool low_pfn(unsigned long pfn)
366 return pfn < max_low_pfn;
369 static void dump_pagetable(unsigned long address)
371 pgd_t *base = __va(read_cr3_pa());
372 pgd_t *pgd = &base[pgd_index(address)];
378 #ifdef CONFIG_X86_PAE
379 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
380 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
382 #define pr_pde pr_cont
384 #define pr_pde pr_info
386 p4d = p4d_offset(pgd, address);
387 pud = pud_offset(p4d, address);
388 pmd = pmd_offset(pud, address);
389 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
393 * We must not directly access the pte in the highpte
394 * case if the page table is located in highmem.
395 * And let's rather not kmap-atomic the pte, just in case
396 * it's allocated already:
398 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
401 pte = pte_offset_kernel(pmd, address);
402 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
407 #else /* CONFIG_X86_64: */
409 void vmalloc_sync_all(void)
411 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
417 * Handle a fault on the vmalloc area
419 static noinline int vmalloc_fault(unsigned long address)
427 /* Make sure we are in vmalloc area: */
428 if (!(address >= VMALLOC_START && address < VMALLOC_END))
431 WARN_ON_ONCE(in_nmi());
434 * Copy kernel mappings over when needed. This can also
435 * happen within a race in page table update. In the later
438 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
439 pgd_k = pgd_offset_k(address);
440 if (pgd_none(*pgd_k))
443 if (pgtable_l5_enabled()) {
444 if (pgd_none(*pgd)) {
445 set_pgd(pgd, *pgd_k);
446 arch_flush_lazy_mmu_mode();
448 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
452 /* With 4-level paging, copying happens on the p4d level. */
453 p4d = p4d_offset(pgd, address);
454 p4d_k = p4d_offset(pgd_k, address);
455 if (p4d_none(*p4d_k))
458 if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
459 set_p4d(p4d, *p4d_k);
460 arch_flush_lazy_mmu_mode();
462 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
465 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
467 pud = pud_offset(p4d, address);
474 pmd = pmd_offset(pud, address);
481 pte = pte_offset_kernel(pmd, address);
482 if (!pte_present(*pte))
487 NOKPROBE_SYMBOL(vmalloc_fault);
489 #ifdef CONFIG_CPU_SUP_AMD
490 static const char errata93_warning[] =
492 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
493 "******* Working around it, but it may cause SEGVs or burn power.\n"
494 "******* Please consider a BIOS update.\n"
495 "******* Disabling USB legacy in the BIOS may also help.\n";
499 * No vm86 mode in 64-bit mode:
502 check_v8086_mode(struct pt_regs *regs, unsigned long address,
503 struct task_struct *tsk)
507 static int bad_address(void *p)
511 return probe_kernel_address((unsigned long *)p, dummy);
514 static void dump_pagetable(unsigned long address)
516 pgd_t *base = __va(read_cr3_pa());
517 pgd_t *pgd = base + pgd_index(address);
523 if (bad_address(pgd))
526 pr_info("PGD %lx ", pgd_val(*pgd));
528 if (!pgd_present(*pgd))
531 p4d = p4d_offset(pgd, address);
532 if (bad_address(p4d))
535 pr_cont("P4D %lx ", p4d_val(*p4d));
536 if (!p4d_present(*p4d) || p4d_large(*p4d))
539 pud = pud_offset(p4d, address);
540 if (bad_address(pud))
543 pr_cont("PUD %lx ", pud_val(*pud));
544 if (!pud_present(*pud) || pud_large(*pud))
547 pmd = pmd_offset(pud, address);
548 if (bad_address(pmd))
551 pr_cont("PMD %lx ", pmd_val(*pmd));
552 if (!pmd_present(*pmd) || pmd_large(*pmd))
555 pte = pte_offset_kernel(pmd, address);
556 if (bad_address(pte))
559 pr_cont("PTE %lx", pte_val(*pte));
567 #endif /* CONFIG_X86_64 */
570 * Workaround for K8 erratum #93 & buggy BIOS.
572 * BIOS SMM functions are required to use a specific workaround
573 * to avoid corruption of the 64bit RIP register on C stepping K8.
575 * A lot of BIOS that didn't get tested properly miss this.
577 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
578 * Try to work around it here.
580 * Note we only handle faults in kernel here.
581 * Does nothing on 32-bit.
583 static int is_errata93(struct pt_regs *regs, unsigned long address)
585 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
586 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
587 || boot_cpu_data.x86 != 0xf)
590 if (address != regs->ip)
593 if ((address >> 32) != 0)
596 address |= 0xffffffffUL << 32;
597 if ((address >= (u64)_stext && address <= (u64)_etext) ||
598 (address >= MODULES_VADDR && address <= MODULES_END)) {
599 printk_once(errata93_warning);
608 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
609 * to illegal addresses >4GB.
611 * We catch this in the page fault handler because these addresses
612 * are not reachable. Just detect this case and return. Any code
613 * segment in LDT is compatibility mode.
615 static int is_errata100(struct pt_regs *regs, unsigned long address)
618 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
624 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
626 #ifdef CONFIG_X86_F00F_BUG
630 * Pentium F0 0F C7 C8 bug workaround:
632 if (boot_cpu_has_bug(X86_BUG_F00F)) {
633 nr = (address - idt_descr.address) >> 3;
636 do_invalid_op(regs, 0);
644 static const char nx_warning[] = KERN_CRIT
645 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
646 static const char smep_warning[] = KERN_CRIT
647 "unable to execute userspace code (SMEP?) (uid: %d)\n";
650 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
651 unsigned long address)
653 if (!oops_may_print())
656 if (error_code & X86_PF_INSTR) {
661 pgd = __va(read_cr3_pa());
662 pgd += pgd_index(address);
664 pte = lookup_address_in_pgd(pgd, address, &level);
666 if (pte && pte_present(*pte) && !pte_exec(*pte))
667 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
668 if (pte && pte_present(*pte) && pte_exec(*pte) &&
669 (pgd_flags(*pgd) & _PAGE_USER) &&
670 (__read_cr4() & X86_CR4_SMEP))
671 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
674 printk(KERN_ALERT "BUG: unable to handle kernel ");
675 if (address < PAGE_SIZE)
676 printk(KERN_CONT "NULL pointer dereference");
678 printk(KERN_CONT "paging request");
680 printk(KERN_CONT " at %px\n", (void *) address);
682 dump_pagetable(address);
686 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
687 unsigned long address)
689 struct task_struct *tsk;
693 flags = oops_begin();
697 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
699 dump_pagetable(address);
701 tsk->thread.cr2 = address;
702 tsk->thread.trap_nr = X86_TRAP_PF;
703 tsk->thread.error_code = error_code;
705 if (__die("Bad pagetable", regs, error_code))
708 oops_end(flags, regs, sig);
712 no_context(struct pt_regs *regs, unsigned long error_code,
713 unsigned long address, int signal, int si_code)
715 struct task_struct *tsk = current;
719 /* Are we prepared to handle this kernel fault? */
720 if (fixup_exception(regs, X86_TRAP_PF)) {
722 * Any interrupt that takes a fault gets the fixup. This makes
723 * the below recursive fault logic only apply to a faults from
730 * Per the above we're !in_interrupt(), aka. task context.
732 * In this case we need to make sure we're not recursively
733 * faulting through the emulate_vsyscall() logic.
735 if (current->thread.sig_on_uaccess_err && signal) {
736 tsk->thread.trap_nr = X86_TRAP_PF;
737 tsk->thread.error_code = error_code | X86_PF_USER;
738 tsk->thread.cr2 = address;
740 /* XXX: hwpoison faults will set the wrong code. */
741 force_sig_info_fault(signal, si_code, address,
746 * Barring that, we can do the fixup and be happy.
751 #ifdef CONFIG_VMAP_STACK
753 * Stack overflow? During boot, we can fault near the initial
754 * stack in the direct map, but that's not an overflow -- check
755 * that we're in vmalloc space to avoid this.
757 if (is_vmalloc_addr((void *)address) &&
758 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
759 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
760 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
762 * We're likely to be running with very little stack space
763 * left. It's plausible that we'd hit this condition but
764 * double-fault even before we get this far, in which case
765 * we're fine: the double-fault handler will deal with it.
767 * We don't want to make it all the way into the oops code
768 * and then double-fault, though, because we're likely to
769 * break the console driver and lose most of the stack dump.
771 asm volatile ("movq %[stack], %%rsp\n\t"
772 "call handle_stack_overflow\n\t"
774 : ASM_CALL_CONSTRAINT
775 : "D" ("kernel stack overflow (page fault)"),
776 "S" (regs), "d" (address),
777 [stack] "rm" (stack));
785 * Valid to do another page fault here, because if this fault
786 * had been triggered by is_prefetch fixup_exception would have
791 * Hall of shame of CPU/BIOS bugs.
793 if (is_prefetch(regs, error_code, address))
796 if (is_errata93(regs, address))
800 * Oops. The kernel tried to access some bad page. We'll have to
801 * terminate things with extreme prejudice:
803 flags = oops_begin();
805 show_fault_oops(regs, error_code, address);
807 if (task_stack_end_corrupted(tsk))
808 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
810 tsk->thread.cr2 = address;
811 tsk->thread.trap_nr = X86_TRAP_PF;
812 tsk->thread.error_code = error_code;
815 if (__die("Oops", regs, error_code))
818 /* Executive summary in case the body of the oops scrolled away */
819 printk(KERN_DEFAULT "CR2: %016lx\n", address);
821 oops_end(flags, regs, sig);
825 * Print out info about fatal segfaults, if the show_unhandled_signals
829 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
830 unsigned long address, struct task_struct *tsk)
832 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
834 if (!unhandled_signal(tsk, SIGSEGV))
837 if (!printk_ratelimit())
840 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
841 loglvl, tsk->comm, task_pid_nr(tsk), address,
842 (void *)regs->ip, (void *)regs->sp, error_code);
844 print_vma_addr(KERN_CONT " in ", regs->ip);
846 printk(KERN_CONT "\n");
848 show_opcodes((u8 *)regs->ip, loglvl);
852 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
853 unsigned long address, u32 *pkey, int si_code)
855 struct task_struct *tsk = current;
857 /* User mode accesses just cause a SIGSEGV */
858 if (error_code & X86_PF_USER) {
860 * It's possible to have interrupts off here:
865 * Valid to do another page fault here because this one came
868 if (is_prefetch(regs, error_code, address))
871 if (is_errata100(regs, address))
876 * Instruction fetch faults in the vsyscall page might need
879 if (unlikely((error_code & X86_PF_INSTR) &&
880 ((address & ~0xfff) == VSYSCALL_ADDR))) {
881 if (emulate_vsyscall(regs, address))
887 * To avoid leaking information about the kernel page table
888 * layout, pretend that user-mode accesses to kernel addresses
889 * are always protection faults.
891 if (address >= TASK_SIZE_MAX)
892 error_code |= X86_PF_PROT;
894 if (likely(show_unhandled_signals))
895 show_signal_msg(regs, error_code, address, tsk);
897 tsk->thread.cr2 = address;
898 tsk->thread.error_code = error_code;
899 tsk->thread.trap_nr = X86_TRAP_PF;
901 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
906 if (is_f00f_bug(regs, address))
909 no_context(regs, error_code, address, SIGSEGV, si_code);
913 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
914 unsigned long address, u32 *pkey)
916 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
920 __bad_area(struct pt_regs *regs, unsigned long error_code,
921 unsigned long address, struct vm_area_struct *vma, int si_code)
923 struct mm_struct *mm = current->mm;
927 pkey = vma_pkey(vma);
930 * Something tried to access memory that isn't in our memory map..
931 * Fix it, but check if it's kernel or user first..
933 up_read(&mm->mmap_sem);
935 __bad_area_nosemaphore(regs, error_code, address,
936 (vma) ? &pkey : NULL, si_code);
940 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
942 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
945 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
946 struct vm_area_struct *vma)
948 /* This code is always called on the current mm */
949 bool foreign = false;
951 if (!boot_cpu_has(X86_FEATURE_OSPKE))
953 if (error_code & X86_PF_PK)
955 /* this checks permission keys on the VMA: */
956 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
957 (error_code & X86_PF_INSTR), foreign))
963 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
964 unsigned long address, struct vm_area_struct *vma)
967 * This OSPKE check is not strictly necessary at runtime.
968 * But, doing it this way allows compiler optimizations
969 * if pkeys are compiled out.
971 if (bad_area_access_from_pkeys(error_code, vma))
972 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
974 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
978 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
979 u32 *pkey, unsigned int fault)
981 struct task_struct *tsk = current;
982 int code = BUS_ADRERR;
984 /* Kernel mode? Handle exceptions or die: */
985 if (!(error_code & X86_PF_USER)) {
986 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
990 /* User-space => ok to do another page fault: */
991 if (is_prefetch(regs, error_code, address))
994 tsk->thread.cr2 = address;
995 tsk->thread.error_code = error_code;
996 tsk->thread.trap_nr = X86_TRAP_PF;
998 #ifdef CONFIG_MEMORY_FAILURE
999 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1001 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1002 tsk->comm, tsk->pid, address);
1003 code = BUS_MCEERR_AR;
1006 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1009 static noinline void
1010 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1011 unsigned long address, u32 *pkey, unsigned int fault)
1013 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1014 no_context(regs, error_code, address, 0, 0);
1018 if (fault & VM_FAULT_OOM) {
1019 /* Kernel mode? Handle exceptions or die: */
1020 if (!(error_code & X86_PF_USER)) {
1021 no_context(regs, error_code, address,
1022 SIGSEGV, SEGV_MAPERR);
1027 * We ran out of memory, call the OOM killer, and return the
1028 * userspace (which will retry the fault, or kill us if we got
1031 pagefault_out_of_memory();
1033 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1034 VM_FAULT_HWPOISON_LARGE))
1035 do_sigbus(regs, error_code, address, pkey, fault);
1036 else if (fault & VM_FAULT_SIGSEGV)
1037 bad_area_nosemaphore(regs, error_code, address, pkey);
1043 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1045 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1048 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1051 * Note: We do not do lazy flushing on protection key
1052 * changes, so no spurious fault will ever set X86_PF_PK.
1054 if ((error_code & X86_PF_PK))
1061 * Handle a spurious fault caused by a stale TLB entry.
1063 * This allows us to lazily refresh the TLB when increasing the
1064 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1065 * eagerly is very expensive since that implies doing a full
1066 * cross-processor TLB flush, even if no stale TLB entries exist
1067 * on other processors.
1069 * Spurious faults may only occur if the TLB contains an entry with
1070 * fewer permission than the page table entry. Non-present (P = 0)
1071 * and reserved bit (R = 1) faults are never spurious.
1073 * There are no security implications to leaving a stale TLB when
1074 * increasing the permissions on a page.
1076 * Returns non-zero if a spurious fault was handled, zero otherwise.
1078 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1079 * (Optional Invalidation).
1082 spurious_fault(unsigned long error_code, unsigned long address)
1092 * Only writes to RO or instruction fetches from NX may cause
1095 * These could be from user or supervisor accesses but the TLB
1096 * is only lazily flushed after a kernel mapping protection
1097 * change, so user accesses are not expected to cause spurious
1100 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1101 error_code != (X86_PF_INSTR | X86_PF_PROT))
1104 pgd = init_mm.pgd + pgd_index(address);
1105 if (!pgd_present(*pgd))
1108 p4d = p4d_offset(pgd, address);
1109 if (!p4d_present(*p4d))
1112 if (p4d_large(*p4d))
1113 return spurious_fault_check(error_code, (pte_t *) p4d);
1115 pud = pud_offset(p4d, address);
1116 if (!pud_present(*pud))
1119 if (pud_large(*pud))
1120 return spurious_fault_check(error_code, (pte_t *) pud);
1122 pmd = pmd_offset(pud, address);
1123 if (!pmd_present(*pmd))
1126 if (pmd_large(*pmd))
1127 return spurious_fault_check(error_code, (pte_t *) pmd);
1129 pte = pte_offset_kernel(pmd, address);
1130 if (!pte_present(*pte))
1133 ret = spurious_fault_check(error_code, pte);
1138 * Make sure we have permissions in PMD.
1139 * If not, then there's a bug in the page tables:
1141 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1142 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1146 NOKPROBE_SYMBOL(spurious_fault);
1148 int show_unhandled_signals = 1;
1151 access_error(unsigned long error_code, struct vm_area_struct *vma)
1153 /* This is only called for the current mm, so: */
1154 bool foreign = false;
1157 * Read or write was blocked by protection keys. This is
1158 * always an unconditional error and can never result in
1159 * a follow-up action to resolve the fault, like a COW.
1161 if (error_code & X86_PF_PK)
1165 * Make sure to check the VMA so that we do not perform
1166 * faults just to hit a X86_PF_PK as soon as we fill in a
1169 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1170 (error_code & X86_PF_INSTR), foreign))
1173 if (error_code & X86_PF_WRITE) {
1174 /* write, present and write, not present: */
1175 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1180 /* read, present: */
1181 if (unlikely(error_code & X86_PF_PROT))
1184 /* read, not present: */
1185 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1191 static int fault_in_kernel_space(unsigned long address)
1193 return address >= TASK_SIZE_MAX;
1196 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1198 if (!IS_ENABLED(CONFIG_X86_SMAP))
1201 if (!static_cpu_has(X86_FEATURE_SMAP))
1204 if (error_code & X86_PF_USER)
1207 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1214 * This routine handles page faults. It determines the address,
1215 * and the problem, and then passes it off to one of the appropriate
1218 static noinline void
1219 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1220 unsigned long address)
1222 struct vm_area_struct *vma;
1223 struct task_struct *tsk;
1224 struct mm_struct *mm;
1225 int fault, major = 0;
1226 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1232 prefetchw(&mm->mmap_sem);
1234 if (unlikely(kmmio_fault(regs, address)))
1238 * We fault-in kernel-space virtual memory on-demand. The
1239 * 'reference' page table is init_mm.pgd.
1241 * NOTE! We MUST NOT take any locks for this case. We may
1242 * be in an interrupt or a critical region, and should
1243 * only copy the information from the master page table,
1246 * This verifies that the fault happens in kernel space
1247 * (error_code & 4) == 0, and that the fault was not a
1248 * protection error (error_code & 9) == 0.
1250 if (unlikely(fault_in_kernel_space(address))) {
1251 if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1252 if (vmalloc_fault(address) >= 0)
1256 /* Can handle a stale RO->RW TLB: */
1257 if (spurious_fault(error_code, address))
1260 /* kprobes don't want to hook the spurious faults: */
1261 if (kprobes_fault(regs))
1264 * Don't take the mm semaphore here. If we fixup a prefetch
1265 * fault we could otherwise deadlock:
1267 bad_area_nosemaphore(regs, error_code, address, NULL);
1272 /* kprobes don't want to hook the spurious faults: */
1273 if (unlikely(kprobes_fault(regs)))
1276 if (unlikely(error_code & X86_PF_RSVD))
1277 pgtable_bad(regs, error_code, address);
1279 if (unlikely(smap_violation(error_code, regs))) {
1280 bad_area_nosemaphore(regs, error_code, address, NULL);
1285 * If we're in an interrupt, have no user context or are running
1286 * in a region with pagefaults disabled then we must not take the fault
1288 if (unlikely(faulthandler_disabled() || !mm)) {
1289 bad_area_nosemaphore(regs, error_code, address, NULL);
1294 * It's safe to allow irq's after cr2 has been saved and the
1295 * vmalloc fault has been handled.
1297 * User-mode registers count as a user access even for any
1298 * potential system fault or CPU buglet:
1300 if (user_mode(regs)) {
1302 error_code |= X86_PF_USER;
1303 flags |= FAULT_FLAG_USER;
1305 if (regs->flags & X86_EFLAGS_IF)
1309 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1311 if (error_code & X86_PF_WRITE)
1312 flags |= FAULT_FLAG_WRITE;
1313 if (error_code & X86_PF_INSTR)
1314 flags |= FAULT_FLAG_INSTRUCTION;
1317 * When running in the kernel we expect faults to occur only to
1318 * addresses in user space. All other faults represent errors in
1319 * the kernel and should generate an OOPS. Unfortunately, in the
1320 * case of an erroneous fault occurring in a code path which already
1321 * holds mmap_sem we will deadlock attempting to validate the fault
1322 * against the address space. Luckily the kernel only validly
1323 * references user space from well defined areas of code, which are
1324 * listed in the exceptions table.
1326 * As the vast majority of faults will be valid we will only perform
1327 * the source reference check when there is a possibility of a
1328 * deadlock. Attempt to lock the address space, if we cannot we then
1329 * validate the source. If this is invalid we can skip the address
1330 * space check, thus avoiding the deadlock:
1332 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1333 if (!(error_code & X86_PF_USER) &&
1334 !search_exception_tables(regs->ip)) {
1335 bad_area_nosemaphore(regs, error_code, address, NULL);
1339 down_read(&mm->mmap_sem);
1342 * The above down_read_trylock() might have succeeded in
1343 * which case we'll have missed the might_sleep() from
1349 vma = find_vma(mm, address);
1350 if (unlikely(!vma)) {
1351 bad_area(regs, error_code, address);
1354 if (likely(vma->vm_start <= address))
1356 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1357 bad_area(regs, error_code, address);
1360 if (error_code & X86_PF_USER) {
1362 * Accessing the stack below %sp is always a bug.
1363 * The large cushion allows instructions like enter
1364 * and pusha to work. ("enter $65535, $31" pushes
1365 * 32 pointers and then decrements %sp by 65535.)
1367 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1368 bad_area(regs, error_code, address);
1372 if (unlikely(expand_stack(vma, address))) {
1373 bad_area(regs, error_code, address);
1378 * Ok, we have a good vm_area for this memory access, so
1379 * we can handle it..
1382 if (unlikely(access_error(error_code, vma))) {
1383 bad_area_access_error(regs, error_code, address, vma);
1388 * If for any reason at all we couldn't handle the fault,
1389 * make sure we exit gracefully rather than endlessly redo
1390 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1391 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1393 * Note that handle_userfault() may also release and reacquire mmap_sem
1394 * (and not return with VM_FAULT_RETRY), when returning to userland to
1395 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1396 * (potentially after handling any pending signal during the return to
1397 * userland). The return to userland is identified whenever
1398 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1399 * Thus we have to be careful about not touching vma after handling the
1400 * fault, so we read the pkey beforehand.
1402 pkey = vma_pkey(vma);
1403 fault = handle_mm_fault(vma, address, flags);
1404 major |= fault & VM_FAULT_MAJOR;
1407 * If we need to retry the mmap_sem has already been released,
1408 * and if there is a fatal signal pending there is no guarantee
1409 * that we made any progress. Handle this case first.
1411 if (unlikely(fault & VM_FAULT_RETRY)) {
1412 /* Retry at most once */
1413 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1414 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1415 flags |= FAULT_FLAG_TRIED;
1416 if (!fatal_signal_pending(tsk))
1420 /* User mode? Just return to handle the fatal exception */
1421 if (flags & FAULT_FLAG_USER)
1424 /* Not returning to user mode? Handle exceptions or die: */
1425 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1429 up_read(&mm->mmap_sem);
1430 if (unlikely(fault & VM_FAULT_ERROR)) {
1431 mm_fault_error(regs, error_code, address, &pkey, fault);
1436 * Major/minor page fault accounting. If any of the events
1437 * returned VM_FAULT_MAJOR, we account it as a major fault.
1441 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1444 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1447 check_v8086_mode(regs, address, tsk);
1449 NOKPROBE_SYMBOL(__do_page_fault);
1451 static nokprobe_inline void
1452 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1453 unsigned long error_code)
1455 if (user_mode(regs))
1456 trace_page_fault_user(address, regs, error_code);
1458 trace_page_fault_kernel(address, regs, error_code);
1462 * We must have this function blacklisted from kprobes, tagged with notrace
1463 * and call read_cr2() before calling anything else. To avoid calling any
1464 * kind of tracing machinery before we've observed the CR2 value.
1466 * exception_{enter,exit}() contains all sorts of tracepoints.
1468 dotraplinkage void notrace
1469 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1471 unsigned long address = read_cr2(); /* Get the faulting address */
1472 enum ctx_state prev_state;
1474 prev_state = exception_enter();
1475 if (trace_pagefault_enabled())
1476 trace_page_fault_entries(address, regs, error_code);
1478 __do_page_fault(regs, error_code, address);
1479 exception_exit(prev_state);
1481 NOKPROBE_SYMBOL(do_page_fault);