1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/bootmem.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
19 #include <linux/efi.h> /* efi_recover_from_page_fault()*/
20 #include <linux/mm_types.h>
22 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
23 #include <asm/traps.h> /* dotraplinkage, ... */
24 #include <asm/pgalloc.h> /* pgd_*(), ... */
25 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
26 #include <asm/vsyscall.h> /* emulate_vsyscall */
27 #include <asm/vm86.h> /* struct vm86 */
28 #include <asm/mmu_context.h> /* vma_pkey() */
29 #include <asm/efi.h> /* efi_recover_from_page_fault()*/
31 #define CREATE_TRACE_POINTS
32 #include <asm/trace/exceptions.h>
35 * Returns 0 if mmiotrace is disabled, or if the fault is not
36 * handled by mmiotrace:
38 static nokprobe_inline int
39 kmmio_fault(struct pt_regs *regs, unsigned long addr)
41 if (unlikely(is_kmmio_active()))
42 if (kmmio_handler(regs, addr) == 1)
47 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
51 /* kprobe_running() needs smp_processor_id() */
52 if (kprobes_built_in() && !user_mode(regs)) {
54 if (kprobe_running() && kprobe_fault_handler(regs, 14))
67 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
68 * Check that here and ignore it.
72 * Sometimes the CPU reports invalid exceptions on prefetch.
73 * Check that here and ignore it.
75 * Opcode checker based on code by Richard Brunner.
78 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
79 unsigned char opcode, int *prefetch)
81 unsigned char instr_hi = opcode & 0xf0;
82 unsigned char instr_lo = opcode & 0x0f;
88 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
89 * In X86_64 long mode, the CPU will signal invalid
90 * opcode if some of these prefixes are present so
91 * X86_64 will never get here anyway
93 return ((instr_lo & 7) == 0x6);
97 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
98 * Need to figure out under what instruction mode the
99 * instruction was issued. Could check the LDT for lm,
100 * but for now it's good enough to assume that long
101 * mode only uses well known segments or kernel.
103 return (!user_mode(regs) || user_64bit_mode(regs));
106 /* 0x64 thru 0x67 are valid prefixes in all modes. */
107 return (instr_lo & 0xC) == 0x4;
109 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
110 return !instr_lo || (instr_lo>>1) == 1;
112 /* Prefetch instruction is 0x0F0D or 0x0F18 */
113 if (probe_kernel_address(instr, opcode))
116 *prefetch = (instr_lo == 0xF) &&
117 (opcode == 0x0D || opcode == 0x18);
125 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
127 unsigned char *max_instr;
128 unsigned char *instr;
132 * If it was a exec (instruction fetch) fault on NX page, then
133 * do not ignore the fault:
135 if (error_code & X86_PF_INSTR)
138 instr = (void *)convert_ip_to_linear(current, regs);
139 max_instr = instr + 15;
141 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
144 while (instr < max_instr) {
145 unsigned char opcode;
147 if (probe_kernel_address(instr, opcode))
152 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
159 * A protection key fault means that the PKRU value did not allow
160 * access to some PTE. Userspace can figure out what PKRU was
161 * from the XSAVE state, and this function fills out a field in
162 * siginfo so userspace can discover which protection key was set
165 * If we get here, we know that the hardware signaled a X86_PF_PK
166 * fault and that there was a VMA once we got in the fault
167 * handler. It does *not* guarantee that the VMA we find here
168 * was the one that we faulted on.
170 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
171 * 2. T1 : set PKRU to deny access to pkey=4, touches page
173 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
174 * 5. T1 : enters fault handler, takes mmap_sem, etc...
175 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
176 * faulted on a pte with its pkey=4.
178 static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
181 /* This is effectively an #ifdef */
182 if (!boot_cpu_has(X86_FEATURE_OSPKE))
185 /* Fault not from Protection Keys: nothing to do */
186 if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
189 * force_sig_info_fault() is called from a number of
190 * contexts, some of which have a VMA and some of which
191 * do not. The X86_PF_PK handing happens after we have a
192 * valid VMA, so we should never reach this without a
196 WARN_ONCE(1, "PKU fault with no VMA passed in");
201 * si_pkey should be thought of as a strong hint, but not
202 * absolutely guranteed to be 100% accurate because of
203 * the race explained above.
205 info->si_pkey = *pkey;
209 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
210 struct task_struct *tsk, u32 *pkey, int fault)
215 clear_siginfo(&info);
216 info.si_signo = si_signo;
218 info.si_code = si_code;
219 info.si_addr = (void __user *)address;
220 if (fault & VM_FAULT_HWPOISON_LARGE)
221 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
222 if (fault & VM_FAULT_HWPOISON)
224 info.si_addr_lsb = lsb;
226 fill_sig_info_pkey(si_signo, si_code, &info, pkey);
228 force_sig_info(si_signo, &info, tsk);
231 DEFINE_SPINLOCK(pgd_lock);
235 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
237 unsigned index = pgd_index(address);
244 pgd_k = init_mm.pgd + index;
246 if (!pgd_present(*pgd_k))
250 * set_pgd(pgd, *pgd_k); here would be useless on PAE
251 * and redundant with the set_pmd() on non-PAE. As would
254 p4d = p4d_offset(pgd, address);
255 p4d_k = p4d_offset(pgd_k, address);
256 if (!p4d_present(*p4d_k))
259 pud = pud_offset(p4d, address);
260 pud_k = pud_offset(p4d_k, address);
261 if (!pud_present(*pud_k))
264 pmd = pmd_offset(pud, address);
265 pmd_k = pmd_offset(pud_k, address);
266 if (!pmd_present(*pmd_k))
269 if (!pmd_present(*pmd))
270 set_pmd(pmd, *pmd_k);
272 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
277 void vmalloc_sync_all(void)
279 unsigned long address;
281 if (SHARED_KERNEL_PMD)
284 for (address = VMALLOC_START & PMD_MASK;
285 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
286 address += PMD_SIZE) {
289 spin_lock(&pgd_lock);
290 list_for_each_entry(page, &pgd_list, lru) {
291 spinlock_t *pgt_lock;
294 /* the pgt_lock only for Xen */
295 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
298 ret = vmalloc_sync_one(page_address(page), address);
299 spin_unlock(pgt_lock);
304 spin_unlock(&pgd_lock);
311 * Handle a fault on the vmalloc or module mapping area
313 static noinline int vmalloc_fault(unsigned long address)
315 unsigned long pgd_paddr;
319 /* Make sure we are in vmalloc area: */
320 if (!(address >= VMALLOC_START && address < VMALLOC_END))
324 * Synchronize this task's top level page-table
325 * with the 'reference' page table.
327 * Do _not_ use "current" here. We might be inside
328 * an interrupt in the middle of a task switch..
330 pgd_paddr = read_cr3_pa();
331 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
335 if (pmd_large(*pmd_k))
338 pte_k = pte_offset_kernel(pmd_k, address);
339 if (!pte_present(*pte_k))
344 NOKPROBE_SYMBOL(vmalloc_fault);
347 * Did it hit the DOS screen memory VA from vm86 mode?
350 check_v8086_mode(struct pt_regs *regs, unsigned long address,
351 struct task_struct *tsk)
356 if (!v8086_mode(regs) || !tsk->thread.vm86)
359 bit = (address - 0xA0000) >> PAGE_SHIFT;
361 tsk->thread.vm86->screen_bitmap |= 1 << bit;
365 static bool low_pfn(unsigned long pfn)
367 return pfn < max_low_pfn;
370 static void dump_pagetable(unsigned long address)
372 pgd_t *base = __va(read_cr3_pa());
373 pgd_t *pgd = &base[pgd_index(address)];
379 #ifdef CONFIG_X86_PAE
380 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
381 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
383 #define pr_pde pr_cont
385 #define pr_pde pr_info
387 p4d = p4d_offset(pgd, address);
388 pud = pud_offset(p4d, address);
389 pmd = pmd_offset(pud, address);
390 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
394 * We must not directly access the pte in the highpte
395 * case if the page table is located in highmem.
396 * And let's rather not kmap-atomic the pte, just in case
397 * it's allocated already:
399 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
402 pte = pte_offset_kernel(pmd, address);
403 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
408 #else /* CONFIG_X86_64: */
410 void vmalloc_sync_all(void)
412 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
418 * Handle a fault on the vmalloc area
420 static noinline int vmalloc_fault(unsigned long address)
428 /* Make sure we are in vmalloc area: */
429 if (!(address >= VMALLOC_START && address < VMALLOC_END))
432 WARN_ON_ONCE(in_nmi());
435 * Copy kernel mappings over when needed. This can also
436 * happen within a race in page table update. In the later
439 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
440 pgd_k = pgd_offset_k(address);
441 if (pgd_none(*pgd_k))
444 if (pgtable_l5_enabled()) {
445 if (pgd_none(*pgd)) {
446 set_pgd(pgd, *pgd_k);
447 arch_flush_lazy_mmu_mode();
449 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
453 /* With 4-level paging, copying happens on the p4d level. */
454 p4d = p4d_offset(pgd, address);
455 p4d_k = p4d_offset(pgd_k, address);
456 if (p4d_none(*p4d_k))
459 if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
460 set_p4d(p4d, *p4d_k);
461 arch_flush_lazy_mmu_mode();
463 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
466 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
468 pud = pud_offset(p4d, address);
475 pmd = pmd_offset(pud, address);
482 pte = pte_offset_kernel(pmd, address);
483 if (!pte_present(*pte))
488 NOKPROBE_SYMBOL(vmalloc_fault);
490 #ifdef CONFIG_CPU_SUP_AMD
491 static const char errata93_warning[] =
493 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
494 "******* Working around it, but it may cause SEGVs or burn power.\n"
495 "******* Please consider a BIOS update.\n"
496 "******* Disabling USB legacy in the BIOS may also help.\n";
500 * No vm86 mode in 64-bit mode:
503 check_v8086_mode(struct pt_regs *regs, unsigned long address,
504 struct task_struct *tsk)
508 static int bad_address(void *p)
512 return probe_kernel_address((unsigned long *)p, dummy);
515 static void dump_pagetable(unsigned long address)
517 pgd_t *base = __va(read_cr3_pa());
518 pgd_t *pgd = base + pgd_index(address);
524 if (bad_address(pgd))
527 pr_info("PGD %lx ", pgd_val(*pgd));
529 if (!pgd_present(*pgd))
532 p4d = p4d_offset(pgd, address);
533 if (bad_address(p4d))
536 pr_cont("P4D %lx ", p4d_val(*p4d));
537 if (!p4d_present(*p4d) || p4d_large(*p4d))
540 pud = pud_offset(p4d, address);
541 if (bad_address(pud))
544 pr_cont("PUD %lx ", pud_val(*pud));
545 if (!pud_present(*pud) || pud_large(*pud))
548 pmd = pmd_offset(pud, address);
549 if (bad_address(pmd))
552 pr_cont("PMD %lx ", pmd_val(*pmd));
553 if (!pmd_present(*pmd) || pmd_large(*pmd))
556 pte = pte_offset_kernel(pmd, address);
557 if (bad_address(pte))
560 pr_cont("PTE %lx", pte_val(*pte));
568 #endif /* CONFIG_X86_64 */
571 * Workaround for K8 erratum #93 & buggy BIOS.
573 * BIOS SMM functions are required to use a specific workaround
574 * to avoid corruption of the 64bit RIP register on C stepping K8.
576 * A lot of BIOS that didn't get tested properly miss this.
578 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
579 * Try to work around it here.
581 * Note we only handle faults in kernel here.
582 * Does nothing on 32-bit.
584 static int is_errata93(struct pt_regs *regs, unsigned long address)
586 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
587 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
588 || boot_cpu_data.x86 != 0xf)
591 if (address != regs->ip)
594 if ((address >> 32) != 0)
597 address |= 0xffffffffUL << 32;
598 if ((address >= (u64)_stext && address <= (u64)_etext) ||
599 (address >= MODULES_VADDR && address <= MODULES_END)) {
600 printk_once(errata93_warning);
609 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
610 * to illegal addresses >4GB.
612 * We catch this in the page fault handler because these addresses
613 * are not reachable. Just detect this case and return. Any code
614 * segment in LDT is compatibility mode.
616 static int is_errata100(struct pt_regs *regs, unsigned long address)
619 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
625 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
627 #ifdef CONFIG_X86_F00F_BUG
631 * Pentium F0 0F C7 C8 bug workaround:
633 if (boot_cpu_has_bug(X86_BUG_F00F)) {
634 nr = (address - idt_descr.address) >> 3;
637 do_invalid_op(regs, 0);
646 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
647 unsigned long address)
649 if (!oops_may_print())
652 if (error_code & X86_PF_INSTR) {
657 pgd = __va(read_cr3_pa());
658 pgd += pgd_index(address);
660 pte = lookup_address_in_pgd(pgd, address, &level);
662 if (pte && pte_present(*pte) && !pte_exec(*pte))
663 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
664 from_kuid(&init_user_ns, current_uid()));
665 if (pte && pte_present(*pte) && pte_exec(*pte) &&
666 (pgd_flags(*pgd) & _PAGE_USER) &&
667 (__read_cr4() & X86_CR4_SMEP))
668 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
669 from_kuid(&init_user_ns, current_uid()));
672 pr_alert("BUG: unable to handle kernel %s at %px\n",
673 address < PAGE_SIZE ? "NULL pointer dereference" : "paging request",
676 dump_pagetable(address);
680 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
681 unsigned long address)
683 struct task_struct *tsk;
687 flags = oops_begin();
691 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
693 dump_pagetable(address);
695 tsk->thread.cr2 = address;
696 tsk->thread.trap_nr = X86_TRAP_PF;
697 tsk->thread.error_code = error_code;
699 if (__die("Bad pagetable", regs, error_code))
702 oops_end(flags, regs, sig);
706 no_context(struct pt_regs *regs, unsigned long error_code,
707 unsigned long address, int signal, int si_code)
709 struct task_struct *tsk = current;
713 /* Are we prepared to handle this kernel fault? */
714 if (fixup_exception(regs, X86_TRAP_PF)) {
716 * Any interrupt that takes a fault gets the fixup. This makes
717 * the below recursive fault logic only apply to a faults from
724 * Per the above we're !in_interrupt(), aka. task context.
726 * In this case we need to make sure we're not recursively
727 * faulting through the emulate_vsyscall() logic.
729 if (current->thread.sig_on_uaccess_err && signal) {
730 tsk->thread.trap_nr = X86_TRAP_PF;
731 tsk->thread.error_code = error_code | X86_PF_USER;
732 tsk->thread.cr2 = address;
734 /* XXX: hwpoison faults will set the wrong code. */
735 force_sig_info_fault(signal, si_code, address,
740 * Barring that, we can do the fixup and be happy.
745 #ifdef CONFIG_VMAP_STACK
747 * Stack overflow? During boot, we can fault near the initial
748 * stack in the direct map, but that's not an overflow -- check
749 * that we're in vmalloc space to avoid this.
751 if (is_vmalloc_addr((void *)address) &&
752 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
753 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
754 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
756 * We're likely to be running with very little stack space
757 * left. It's plausible that we'd hit this condition but
758 * double-fault even before we get this far, in which case
759 * we're fine: the double-fault handler will deal with it.
761 * We don't want to make it all the way into the oops code
762 * and then double-fault, though, because we're likely to
763 * break the console driver and lose most of the stack dump.
765 asm volatile ("movq %[stack], %%rsp\n\t"
766 "call handle_stack_overflow\n\t"
768 : ASM_CALL_CONSTRAINT
769 : "D" ("kernel stack overflow (page fault)"),
770 "S" (regs), "d" (address),
771 [stack] "rm" (stack));
779 * Valid to do another page fault here, because if this fault
780 * had been triggered by is_prefetch fixup_exception would have
785 * Hall of shame of CPU/BIOS bugs.
787 if (is_prefetch(regs, error_code, address))
790 if (is_errata93(regs, address))
794 * Buggy firmware could access regions which might page fault, try to
795 * recover from such faults.
797 if (IS_ENABLED(CONFIG_EFI))
798 efi_recover_from_page_fault(address);
801 * Oops. The kernel tried to access some bad page. We'll have to
802 * terminate things with extreme prejudice:
804 flags = oops_begin();
806 show_fault_oops(regs, error_code, address);
808 if (task_stack_end_corrupted(tsk))
809 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
811 tsk->thread.cr2 = address;
812 tsk->thread.trap_nr = X86_TRAP_PF;
813 tsk->thread.error_code = error_code;
816 if (__die("Oops", regs, error_code))
819 /* Executive summary in case the body of the oops scrolled away */
820 printk(KERN_DEFAULT "CR2: %016lx\n", address);
822 oops_end(flags, regs, sig);
826 * Print out info about fatal segfaults, if the show_unhandled_signals
830 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
831 unsigned long address, struct task_struct *tsk)
833 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
835 if (!unhandled_signal(tsk, SIGSEGV))
838 if (!printk_ratelimit())
841 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
842 loglvl, tsk->comm, task_pid_nr(tsk), address,
843 (void *)regs->ip, (void *)regs->sp, error_code);
845 print_vma_addr(KERN_CONT " in ", regs->ip);
847 printk(KERN_CONT "\n");
849 show_opcodes(regs, loglvl);
853 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
854 unsigned long address, u32 *pkey, int si_code)
856 struct task_struct *tsk = current;
858 /* User mode accesses just cause a SIGSEGV */
859 if (error_code & X86_PF_USER) {
861 * It's possible to have interrupts off here:
866 * Valid to do another page fault here because this one came
869 if (is_prefetch(regs, error_code, address))
872 if (is_errata100(regs, address))
877 * Instruction fetch faults in the vsyscall page might need
880 if (unlikely((error_code & X86_PF_INSTR) &&
881 ((address & ~0xfff) == VSYSCALL_ADDR))) {
882 if (emulate_vsyscall(regs, address))
888 * To avoid leaking information about the kernel page table
889 * layout, pretend that user-mode accesses to kernel addresses
890 * are always protection faults.
892 if (address >= TASK_SIZE_MAX)
893 error_code |= X86_PF_PROT;
895 if (likely(show_unhandled_signals))
896 show_signal_msg(regs, error_code, address, tsk);
898 tsk->thread.cr2 = address;
899 tsk->thread.error_code = error_code;
900 tsk->thread.trap_nr = X86_TRAP_PF;
902 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
907 if (is_f00f_bug(regs, address))
910 no_context(regs, error_code, address, SIGSEGV, si_code);
914 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
915 unsigned long address, u32 *pkey)
917 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
921 __bad_area(struct pt_regs *regs, unsigned long error_code,
922 unsigned long address, struct vm_area_struct *vma, int si_code)
924 struct mm_struct *mm = current->mm;
928 pkey = vma_pkey(vma);
931 * Something tried to access memory that isn't in our memory map..
932 * Fix it, but check if it's kernel or user first..
934 up_read(&mm->mmap_sem);
936 __bad_area_nosemaphore(regs, error_code, address,
937 (vma) ? &pkey : NULL, si_code);
941 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
943 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
946 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
947 struct vm_area_struct *vma)
949 /* This code is always called on the current mm */
950 bool foreign = false;
952 if (!boot_cpu_has(X86_FEATURE_OSPKE))
954 if (error_code & X86_PF_PK)
956 /* this checks permission keys on the VMA: */
957 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
958 (error_code & X86_PF_INSTR), foreign))
964 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
965 unsigned long address, struct vm_area_struct *vma)
968 * This OSPKE check is not strictly necessary at runtime.
969 * But, doing it this way allows compiler optimizations
970 * if pkeys are compiled out.
972 if (bad_area_access_from_pkeys(error_code, vma))
973 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
975 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
979 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
980 u32 *pkey, unsigned int fault)
982 struct task_struct *tsk = current;
983 int code = BUS_ADRERR;
985 /* Kernel mode? Handle exceptions or die: */
986 if (!(error_code & X86_PF_USER)) {
987 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
991 /* User-space => ok to do another page fault: */
992 if (is_prefetch(regs, error_code, address))
995 tsk->thread.cr2 = address;
996 tsk->thread.error_code = error_code;
997 tsk->thread.trap_nr = X86_TRAP_PF;
999 #ifdef CONFIG_MEMORY_FAILURE
1000 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1002 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1003 tsk->comm, tsk->pid, address);
1004 code = BUS_MCEERR_AR;
1007 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1010 static noinline void
1011 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1012 unsigned long address, u32 *pkey, vm_fault_t fault)
1014 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1015 no_context(regs, error_code, address, 0, 0);
1019 if (fault & VM_FAULT_OOM) {
1020 /* Kernel mode? Handle exceptions or die: */
1021 if (!(error_code & X86_PF_USER)) {
1022 no_context(regs, error_code, address,
1023 SIGSEGV, SEGV_MAPERR);
1028 * We ran out of memory, call the OOM killer, and return the
1029 * userspace (which will retry the fault, or kill us if we got
1032 pagefault_out_of_memory();
1034 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1035 VM_FAULT_HWPOISON_LARGE))
1036 do_sigbus(regs, error_code, address, pkey, fault);
1037 else if (fault & VM_FAULT_SIGSEGV)
1038 bad_area_nosemaphore(regs, error_code, address, pkey);
1044 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1046 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1049 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1052 * Note: We do not do lazy flushing on protection key
1053 * changes, so no spurious fault will ever set X86_PF_PK.
1055 if ((error_code & X86_PF_PK))
1062 * Handle a spurious fault caused by a stale TLB entry.
1064 * This allows us to lazily refresh the TLB when increasing the
1065 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1066 * eagerly is very expensive since that implies doing a full
1067 * cross-processor TLB flush, even if no stale TLB entries exist
1068 * on other processors.
1070 * Spurious faults may only occur if the TLB contains an entry with
1071 * fewer permission than the page table entry. Non-present (P = 0)
1072 * and reserved bit (R = 1) faults are never spurious.
1074 * There are no security implications to leaving a stale TLB when
1075 * increasing the permissions on a page.
1077 * Returns non-zero if a spurious fault was handled, zero otherwise.
1079 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1080 * (Optional Invalidation).
1083 spurious_fault(unsigned long error_code, unsigned long address)
1093 * Only writes to RO or instruction fetches from NX may cause
1096 * These could be from user or supervisor accesses but the TLB
1097 * is only lazily flushed after a kernel mapping protection
1098 * change, so user accesses are not expected to cause spurious
1101 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1102 error_code != (X86_PF_INSTR | X86_PF_PROT))
1105 pgd = init_mm.pgd + pgd_index(address);
1106 if (!pgd_present(*pgd))
1109 p4d = p4d_offset(pgd, address);
1110 if (!p4d_present(*p4d))
1113 if (p4d_large(*p4d))
1114 return spurious_fault_check(error_code, (pte_t *) p4d);
1116 pud = pud_offset(p4d, address);
1117 if (!pud_present(*pud))
1120 if (pud_large(*pud))
1121 return spurious_fault_check(error_code, (pte_t *) pud);
1123 pmd = pmd_offset(pud, address);
1124 if (!pmd_present(*pmd))
1127 if (pmd_large(*pmd))
1128 return spurious_fault_check(error_code, (pte_t *) pmd);
1130 pte = pte_offset_kernel(pmd, address);
1131 if (!pte_present(*pte))
1134 ret = spurious_fault_check(error_code, pte);
1139 * Make sure we have permissions in PMD.
1140 * If not, then there's a bug in the page tables:
1142 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1143 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1147 NOKPROBE_SYMBOL(spurious_fault);
1149 int show_unhandled_signals = 1;
1152 access_error(unsigned long error_code, struct vm_area_struct *vma)
1154 /* This is only called for the current mm, so: */
1155 bool foreign = false;
1158 * Read or write was blocked by protection keys. This is
1159 * always an unconditional error and can never result in
1160 * a follow-up action to resolve the fault, like a COW.
1162 if (error_code & X86_PF_PK)
1166 * Make sure to check the VMA so that we do not perform
1167 * faults just to hit a X86_PF_PK as soon as we fill in a
1170 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1171 (error_code & X86_PF_INSTR), foreign))
1174 if (error_code & X86_PF_WRITE) {
1175 /* write, present and write, not present: */
1176 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1181 /* read, present: */
1182 if (unlikely(error_code & X86_PF_PROT))
1185 /* read, not present: */
1186 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1192 static int fault_in_kernel_space(unsigned long address)
1194 return address >= TASK_SIZE_MAX;
1197 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1199 if (!IS_ENABLED(CONFIG_X86_SMAP))
1202 if (!static_cpu_has(X86_FEATURE_SMAP))
1205 if (error_code & X86_PF_USER)
1208 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1215 * This routine handles page faults. It determines the address,
1216 * and the problem, and then passes it off to one of the appropriate
1219 static noinline void
1220 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1221 unsigned long address)
1223 struct vm_area_struct *vma;
1224 struct task_struct *tsk;
1225 struct mm_struct *mm;
1226 vm_fault_t fault, major = 0;
1227 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1233 prefetchw(&mm->mmap_sem);
1235 if (unlikely(kmmio_fault(regs, address)))
1239 * We fault-in kernel-space virtual memory on-demand. The
1240 * 'reference' page table is init_mm.pgd.
1242 * NOTE! We MUST NOT take any locks for this case. We may
1243 * be in an interrupt or a critical region, and should
1244 * only copy the information from the master page table,
1247 * This verifies that the fault happens in kernel space
1248 * (error_code & 4) == 0, and that the fault was not a
1249 * protection error (error_code & 9) == 0.
1251 if (unlikely(fault_in_kernel_space(address))) {
1252 if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1253 if (vmalloc_fault(address) >= 0)
1257 /* Can handle a stale RO->RW TLB: */
1258 if (spurious_fault(error_code, address))
1261 /* kprobes don't want to hook the spurious faults: */
1262 if (kprobes_fault(regs))
1265 * Don't take the mm semaphore here. If we fixup a prefetch
1266 * fault we could otherwise deadlock:
1268 bad_area_nosemaphore(regs, error_code, address, NULL);
1273 /* kprobes don't want to hook the spurious faults: */
1274 if (unlikely(kprobes_fault(regs)))
1277 if (unlikely(error_code & X86_PF_RSVD))
1278 pgtable_bad(regs, error_code, address);
1280 if (unlikely(smap_violation(error_code, regs))) {
1281 bad_area_nosemaphore(regs, error_code, address, NULL);
1286 * If we're in an interrupt, have no user context or are running
1287 * in a region with pagefaults disabled then we must not take the fault
1289 if (unlikely(faulthandler_disabled() || !mm)) {
1290 bad_area_nosemaphore(regs, error_code, address, NULL);
1295 * It's safe to allow irq's after cr2 has been saved and the
1296 * vmalloc fault has been handled.
1298 * User-mode registers count as a user access even for any
1299 * potential system fault or CPU buglet:
1301 if (user_mode(regs)) {
1303 error_code |= X86_PF_USER;
1304 flags |= FAULT_FLAG_USER;
1306 if (regs->flags & X86_EFLAGS_IF)
1310 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1312 if (error_code & X86_PF_WRITE)
1313 flags |= FAULT_FLAG_WRITE;
1314 if (error_code & X86_PF_INSTR)
1315 flags |= FAULT_FLAG_INSTRUCTION;
1318 * When running in the kernel we expect faults to occur only to
1319 * addresses in user space. All other faults represent errors in
1320 * the kernel and should generate an OOPS. Unfortunately, in the
1321 * case of an erroneous fault occurring in a code path which already
1322 * holds mmap_sem we will deadlock attempting to validate the fault
1323 * against the address space. Luckily the kernel only validly
1324 * references user space from well defined areas of code, which are
1325 * listed in the exceptions table.
1327 * As the vast majority of faults will be valid we will only perform
1328 * the source reference check when there is a possibility of a
1329 * deadlock. Attempt to lock the address space, if we cannot we then
1330 * validate the source. If this is invalid we can skip the address
1331 * space check, thus avoiding the deadlock:
1333 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1334 if (!(error_code & X86_PF_USER) &&
1335 !search_exception_tables(regs->ip)) {
1336 bad_area_nosemaphore(regs, error_code, address, NULL);
1340 down_read(&mm->mmap_sem);
1343 * The above down_read_trylock() might have succeeded in
1344 * which case we'll have missed the might_sleep() from
1350 vma = find_vma(mm, address);
1351 if (unlikely(!vma)) {
1352 bad_area(regs, error_code, address);
1355 if (likely(vma->vm_start <= address))
1357 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1358 bad_area(regs, error_code, address);
1361 if (error_code & X86_PF_USER) {
1363 * Accessing the stack below %sp is always a bug.
1364 * The large cushion allows instructions like enter
1365 * and pusha to work. ("enter $65535, $31" pushes
1366 * 32 pointers and then decrements %sp by 65535.)
1368 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1369 bad_area(regs, error_code, address);
1373 if (unlikely(expand_stack(vma, address))) {
1374 bad_area(regs, error_code, address);
1379 * Ok, we have a good vm_area for this memory access, so
1380 * we can handle it..
1383 if (unlikely(access_error(error_code, vma))) {
1384 bad_area_access_error(regs, error_code, address, vma);
1389 * If for any reason at all we couldn't handle the fault,
1390 * make sure we exit gracefully rather than endlessly redo
1391 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1392 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1394 * Note that handle_userfault() may also release and reacquire mmap_sem
1395 * (and not return with VM_FAULT_RETRY), when returning to userland to
1396 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1397 * (potentially after handling any pending signal during the return to
1398 * userland). The return to userland is identified whenever
1399 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1400 * Thus we have to be careful about not touching vma after handling the
1401 * fault, so we read the pkey beforehand.
1403 pkey = vma_pkey(vma);
1404 fault = handle_mm_fault(vma, address, flags);
1405 major |= fault & VM_FAULT_MAJOR;
1408 * If we need to retry the mmap_sem has already been released,
1409 * and if there is a fatal signal pending there is no guarantee
1410 * that we made any progress. Handle this case first.
1412 if (unlikely(fault & VM_FAULT_RETRY)) {
1413 /* Retry at most once */
1414 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1415 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1416 flags |= FAULT_FLAG_TRIED;
1417 if (!fatal_signal_pending(tsk))
1421 /* User mode? Just return to handle the fatal exception */
1422 if (flags & FAULT_FLAG_USER)
1425 /* Not returning to user mode? Handle exceptions or die: */
1426 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1430 up_read(&mm->mmap_sem);
1431 if (unlikely(fault & VM_FAULT_ERROR)) {
1432 mm_fault_error(regs, error_code, address, &pkey, fault);
1437 * Major/minor page fault accounting. If any of the events
1438 * returned VM_FAULT_MAJOR, we account it as a major fault.
1442 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1445 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1448 check_v8086_mode(regs, address, tsk);
1450 NOKPROBE_SYMBOL(__do_page_fault);
1452 static nokprobe_inline void
1453 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1454 unsigned long error_code)
1456 if (user_mode(regs))
1457 trace_page_fault_user(address, regs, error_code);
1459 trace_page_fault_kernel(address, regs, error_code);
1463 * We must have this function blacklisted from kprobes, tagged with notrace
1464 * and call read_cr2() before calling anything else. To avoid calling any
1465 * kind of tracing machinery before we've observed the CR2 value.
1467 * exception_{enter,exit}() contains all sorts of tracepoints.
1469 dotraplinkage void notrace
1470 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1472 unsigned long address = read_cr2(); /* Get the faulting address */
1473 enum ctx_state prev_state;
1475 prev_state = exception_enter();
1476 if (trace_pagefault_enabled())
1477 trace_page_fault_entries(address, regs, error_code);
1479 __do_page_fault(regs, error_code, address);
1480 exception_exit(prev_state);
1482 NOKPROBE_SYMBOL(do_page_fault);