5a389a4f4f652edda26c109baf5e595bf6325903
[muen/linux.git] / drivers / acpi / nfit / core.c
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/libnvdimm.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/ndctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/delay.h>
20 #include <linux/list.h>
21 #include <linux/acpi.h>
22 #include <linux/sort.h>
23 #include <linux/io.h>
24 #include <linux/nd.h>
25 #include <asm/cacheflush.h>
26 #include <acpi/nfit.h>
27 #include "intel.h"
28 #include "nfit.h"
29
30 /*
31  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
32  * irrelevant.
33  */
34 #include <linux/io-64-nonatomic-hi-lo.h>
35
36 static bool force_enable_dimms;
37 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
38 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
39
40 static bool disable_vendor_specific;
41 module_param(disable_vendor_specific, bool, S_IRUGO);
42 MODULE_PARM_DESC(disable_vendor_specific,
43                 "Limit commands to the publicly specified set");
44
45 static unsigned long override_dsm_mask;
46 module_param(override_dsm_mask, ulong, S_IRUGO);
47 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
48
49 static int default_dsm_family = -1;
50 module_param(default_dsm_family, int, S_IRUGO);
51 MODULE_PARM_DESC(default_dsm_family,
52                 "Try this DSM type first when identifying NVDIMM family");
53
54 static bool no_init_ars;
55 module_param(no_init_ars, bool, 0644);
56 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
57
58 static bool force_labels;
59 module_param(force_labels, bool, 0444);
60 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods");
61
62 LIST_HEAD(acpi_descs);
63 DEFINE_MUTEX(acpi_desc_lock);
64
65 static struct workqueue_struct *nfit_wq;
66
67 struct nfit_table_prev {
68         struct list_head spas;
69         struct list_head memdevs;
70         struct list_head dcrs;
71         struct list_head bdws;
72         struct list_head idts;
73         struct list_head flushes;
74 };
75
76 static guid_t nfit_uuid[NFIT_UUID_MAX];
77
78 const guid_t *to_nfit_uuid(enum nfit_uuids id)
79 {
80         return &nfit_uuid[id];
81 }
82 EXPORT_SYMBOL(to_nfit_uuid);
83
84 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
85 {
86         struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
87
88         /*
89          * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
90          * acpi_device.
91          */
92         if (!nd_desc->provider_name
93                         || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
94                 return NULL;
95
96         return to_acpi_device(acpi_desc->dev);
97 }
98
99 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
100 {
101         struct nd_cmd_clear_error *clear_err;
102         struct nd_cmd_ars_status *ars_status;
103         u16 flags;
104
105         switch (cmd) {
106         case ND_CMD_ARS_CAP:
107                 if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
108                         return -ENOTTY;
109
110                 /* Command failed */
111                 if (status & 0xffff)
112                         return -EIO;
113
114                 /* No supported scan types for this range */
115                 flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
116                 if ((status >> 16 & flags) == 0)
117                         return -ENOTTY;
118                 return 0;
119         case ND_CMD_ARS_START:
120                 /* ARS is in progress */
121                 if ((status & 0xffff) == NFIT_ARS_START_BUSY)
122                         return -EBUSY;
123
124                 /* Command failed */
125                 if (status & 0xffff)
126                         return -EIO;
127                 return 0;
128         case ND_CMD_ARS_STATUS:
129                 ars_status = buf;
130                 /* Command failed */
131                 if (status & 0xffff)
132                         return -EIO;
133                 /* Check extended status (Upper two bytes) */
134                 if (status == NFIT_ARS_STATUS_DONE)
135                         return 0;
136
137                 /* ARS is in progress */
138                 if (status == NFIT_ARS_STATUS_BUSY)
139                         return -EBUSY;
140
141                 /* No ARS performed for the current boot */
142                 if (status == NFIT_ARS_STATUS_NONE)
143                         return -EAGAIN;
144
145                 /*
146                  * ARS interrupted, either we overflowed or some other
147                  * agent wants the scan to stop.  If we didn't overflow
148                  * then just continue with the returned results.
149                  */
150                 if (status == NFIT_ARS_STATUS_INTR) {
151                         if (ars_status->out_length >= 40 && (ars_status->flags
152                                                 & NFIT_ARS_F_OVERFLOW))
153                                 return -ENOSPC;
154                         return 0;
155                 }
156
157                 /* Unknown status */
158                 if (status >> 16)
159                         return -EIO;
160                 return 0;
161         case ND_CMD_CLEAR_ERROR:
162                 clear_err = buf;
163                 if (status & 0xffff)
164                         return -EIO;
165                 if (!clear_err->cleared)
166                         return -EIO;
167                 if (clear_err->length > clear_err->cleared)
168                         return clear_err->cleared;
169                 return 0;
170         default:
171                 break;
172         }
173
174         /* all other non-zero status results in an error */
175         if (status)
176                 return -EIO;
177         return 0;
178 }
179
180 #define ACPI_LABELS_LOCKED 3
181
182 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
183                 u32 status)
184 {
185         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
186
187         switch (cmd) {
188         case ND_CMD_GET_CONFIG_SIZE:
189                 /*
190                  * In the _LSI, _LSR, _LSW case the locked status is
191                  * communicated via the read/write commands
192                  */
193                 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
194                         break;
195
196                 if (status >> 16 & ND_CONFIG_LOCKED)
197                         return -EACCES;
198                 break;
199         case ND_CMD_GET_CONFIG_DATA:
200                 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
201                                 && status == ACPI_LABELS_LOCKED)
202                         return -EACCES;
203                 break;
204         case ND_CMD_SET_CONFIG_DATA:
205                 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
206                                 && status == ACPI_LABELS_LOCKED)
207                         return -EACCES;
208                 break;
209         default:
210                 break;
211         }
212
213         /* all other non-zero status results in an error */
214         if (status)
215                 return -EIO;
216         return 0;
217 }
218
219 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
220                 u32 status)
221 {
222         if (!nvdimm)
223                 return xlat_bus_status(buf, cmd, status);
224         return xlat_nvdimm_status(nvdimm, buf, cmd, status);
225 }
226
227 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
228 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
229 {
230         int i;
231         void *dst;
232         size_t size = 0;
233         union acpi_object *buf = NULL;
234
235         if (pkg->type != ACPI_TYPE_PACKAGE) {
236                 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
237                                 pkg->type);
238                 goto err;
239         }
240
241         for (i = 0; i < pkg->package.count; i++) {
242                 union acpi_object *obj = &pkg->package.elements[i];
243
244                 if (obj->type == ACPI_TYPE_INTEGER)
245                         size += 4;
246                 else if (obj->type == ACPI_TYPE_BUFFER)
247                         size += obj->buffer.length;
248                 else {
249                         WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
250                                         obj->type);
251                         goto err;
252                 }
253         }
254
255         buf = ACPI_ALLOCATE(sizeof(*buf) + size);
256         if (!buf)
257                 goto err;
258
259         dst = buf + 1;
260         buf->type = ACPI_TYPE_BUFFER;
261         buf->buffer.length = size;
262         buf->buffer.pointer = dst;
263         for (i = 0; i < pkg->package.count; i++) {
264                 union acpi_object *obj = &pkg->package.elements[i];
265
266                 if (obj->type == ACPI_TYPE_INTEGER) {
267                         memcpy(dst, &obj->integer.value, 4);
268                         dst += 4;
269                 } else if (obj->type == ACPI_TYPE_BUFFER) {
270                         memcpy(dst, obj->buffer.pointer, obj->buffer.length);
271                         dst += obj->buffer.length;
272                 }
273         }
274 err:
275         ACPI_FREE(pkg);
276         return buf;
277 }
278
279 static union acpi_object *int_to_buf(union acpi_object *integer)
280 {
281         union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
282         void *dst = NULL;
283
284         if (!buf)
285                 goto err;
286
287         if (integer->type != ACPI_TYPE_INTEGER) {
288                 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
289                                 integer->type);
290                 goto err;
291         }
292
293         dst = buf + 1;
294         buf->type = ACPI_TYPE_BUFFER;
295         buf->buffer.length = 4;
296         buf->buffer.pointer = dst;
297         memcpy(dst, &integer->integer.value, 4);
298 err:
299         ACPI_FREE(integer);
300         return buf;
301 }
302
303 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
304                 u32 len, void *data)
305 {
306         acpi_status rc;
307         struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
308         struct acpi_object_list input = {
309                 .count = 3,
310                 .pointer = (union acpi_object []) {
311                         [0] = {
312                                 .integer.type = ACPI_TYPE_INTEGER,
313                                 .integer.value = offset,
314                         },
315                         [1] = {
316                                 .integer.type = ACPI_TYPE_INTEGER,
317                                 .integer.value = len,
318                         },
319                         [2] = {
320                                 .buffer.type = ACPI_TYPE_BUFFER,
321                                 .buffer.pointer = data,
322                                 .buffer.length = len,
323                         },
324                 },
325         };
326
327         rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
328         if (ACPI_FAILURE(rc))
329                 return NULL;
330         return int_to_buf(buf.pointer);
331 }
332
333 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
334                 u32 len)
335 {
336         acpi_status rc;
337         struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
338         struct acpi_object_list input = {
339                 .count = 2,
340                 .pointer = (union acpi_object []) {
341                         [0] = {
342                                 .integer.type = ACPI_TYPE_INTEGER,
343                                 .integer.value = offset,
344                         },
345                         [1] = {
346                                 .integer.type = ACPI_TYPE_INTEGER,
347                                 .integer.value = len,
348                         },
349                 },
350         };
351
352         rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
353         if (ACPI_FAILURE(rc))
354                 return NULL;
355         return pkg_to_buf(buf.pointer);
356 }
357
358 static union acpi_object *acpi_label_info(acpi_handle handle)
359 {
360         acpi_status rc;
361         struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
362
363         rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
364         if (ACPI_FAILURE(rc))
365                 return NULL;
366         return pkg_to_buf(buf.pointer);
367 }
368
369 static u8 nfit_dsm_revid(unsigned family, unsigned func)
370 {
371         static const u8 revid_table[NVDIMM_FAMILY_MAX+1][32] = {
372                 [NVDIMM_FAMILY_INTEL] = {
373                         [NVDIMM_INTEL_GET_MODES] = 2,
374                         [NVDIMM_INTEL_GET_FWINFO] = 2,
375                         [NVDIMM_INTEL_START_FWUPDATE] = 2,
376                         [NVDIMM_INTEL_SEND_FWUPDATE] = 2,
377                         [NVDIMM_INTEL_FINISH_FWUPDATE] = 2,
378                         [NVDIMM_INTEL_QUERY_FWUPDATE] = 2,
379                         [NVDIMM_INTEL_SET_THRESHOLD] = 2,
380                         [NVDIMM_INTEL_INJECT_ERROR] = 2,
381                         [NVDIMM_INTEL_GET_SECURITY_STATE] = 2,
382                         [NVDIMM_INTEL_SET_PASSPHRASE] = 2,
383                         [NVDIMM_INTEL_DISABLE_PASSPHRASE] = 2,
384                         [NVDIMM_INTEL_UNLOCK_UNIT] = 2,
385                         [NVDIMM_INTEL_FREEZE_LOCK] = 2,
386                         [NVDIMM_INTEL_SECURE_ERASE] = 2,
387                         [NVDIMM_INTEL_OVERWRITE] = 2,
388                         [NVDIMM_INTEL_QUERY_OVERWRITE] = 2,
389                         [NVDIMM_INTEL_SET_MASTER_PASSPHRASE] = 2,
390                         [NVDIMM_INTEL_MASTER_SECURE_ERASE] = 2,
391                 },
392         };
393         u8 id;
394
395         if (family > NVDIMM_FAMILY_MAX)
396                 return 0;
397         if (func > 31)
398                 return 0;
399         id = revid_table[family][func];
400         if (id == 0)
401                 return 1; /* default */
402         return id;
403 }
404
405 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
406 {
407         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
408
409         if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
410                         && func >= NVDIMM_INTEL_GET_SECURITY_STATE
411                         && func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
412                 return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
413         return true;
414 }
415
416 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
417                 struct nd_cmd_pkg *call_pkg)
418 {
419         if (call_pkg) {
420                 int i;
421
422                 if (nfit_mem && nfit_mem->family != call_pkg->nd_family)
423                         return -ENOTTY;
424
425                 for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
426                         if (call_pkg->nd_reserved2[i])
427                                 return -EINVAL;
428                 return call_pkg->nd_command;
429         }
430
431         /* In the !call_pkg case, bus commands == bus functions */
432         if (!nfit_mem)
433                 return cmd;
434
435         /* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
436         if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
437                 return cmd;
438
439         /*
440          * Force function number validation to fail since 0 is never
441          * published as a valid function in dsm_mask.
442          */
443         return 0;
444 }
445
446 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
447                 unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
448 {
449         struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
450         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
451         union acpi_object in_obj, in_buf, *out_obj;
452         const struct nd_cmd_desc *desc = NULL;
453         struct device *dev = acpi_desc->dev;
454         struct nd_cmd_pkg *call_pkg = NULL;
455         const char *cmd_name, *dimm_name;
456         unsigned long cmd_mask, dsm_mask;
457         u32 offset, fw_status = 0;
458         acpi_handle handle;
459         const guid_t *guid;
460         int func, rc, i;
461
462         if (cmd_rc)
463                 *cmd_rc = -EINVAL;
464
465         if (cmd == ND_CMD_CALL)
466                 call_pkg = buf;
467         func = cmd_to_func(nfit_mem, cmd, call_pkg);
468         if (func < 0)
469                 return func;
470
471         if (nvdimm) {
472                 struct acpi_device *adev = nfit_mem->adev;
473
474                 if (!adev)
475                         return -ENOTTY;
476
477                 dimm_name = nvdimm_name(nvdimm);
478                 cmd_name = nvdimm_cmd_name(cmd);
479                 cmd_mask = nvdimm_cmd_mask(nvdimm);
480                 dsm_mask = nfit_mem->dsm_mask;
481                 desc = nd_cmd_dimm_desc(cmd);
482                 guid = to_nfit_uuid(nfit_mem->family);
483                 handle = adev->handle;
484         } else {
485                 struct acpi_device *adev = to_acpi_dev(acpi_desc);
486
487                 cmd_name = nvdimm_bus_cmd_name(cmd);
488                 cmd_mask = nd_desc->cmd_mask;
489                 dsm_mask = nd_desc->bus_dsm_mask;
490                 desc = nd_cmd_bus_desc(cmd);
491                 guid = to_nfit_uuid(NFIT_DEV_BUS);
492                 handle = adev->handle;
493                 dimm_name = "bus";
494         }
495
496         if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
497                 return -ENOTTY;
498
499         /*
500          * Check for a valid command.  For ND_CMD_CALL, we also have to
501          * make sure that the DSM function is supported.
502          */
503         if (cmd == ND_CMD_CALL && !test_bit(func, &dsm_mask))
504                 return -ENOTTY;
505         else if (!test_bit(cmd, &cmd_mask))
506                 return -ENOTTY;
507
508         in_obj.type = ACPI_TYPE_PACKAGE;
509         in_obj.package.count = 1;
510         in_obj.package.elements = &in_buf;
511         in_buf.type = ACPI_TYPE_BUFFER;
512         in_buf.buffer.pointer = buf;
513         in_buf.buffer.length = 0;
514
515         /* libnvdimm has already validated the input envelope */
516         for (i = 0; i < desc->in_num; i++)
517                 in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
518                                 i, buf);
519
520         if (call_pkg) {
521                 /* skip over package wrapper */
522                 in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
523                 in_buf.buffer.length = call_pkg->nd_size_in;
524         }
525
526         dev_dbg(dev, "%s cmd: %d: func: %d input length: %d\n",
527                 dimm_name, cmd, func, in_buf.buffer.length);
528         if (payload_dumpable(nvdimm, func))
529                 print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
530                                 in_buf.buffer.pointer,
531                                 min_t(u32, 256, in_buf.buffer.length), true);
532
533         /* call the BIOS, prefer the named methods over _DSM if available */
534         if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
535                         && test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
536                 out_obj = acpi_label_info(handle);
537         else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
538                         && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
539                 struct nd_cmd_get_config_data_hdr *p = buf;
540
541                 out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
542         } else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
543                         && test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
544                 struct nd_cmd_set_config_hdr *p = buf;
545
546                 out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
547                                 p->in_buf);
548         } else {
549                 u8 revid;
550
551                 if (nvdimm)
552                         revid = nfit_dsm_revid(nfit_mem->family, func);
553                 else
554                         revid = 1;
555                 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
556         }
557
558         if (!out_obj) {
559                 dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
560                 return -EINVAL;
561         }
562
563         if (out_obj->type != ACPI_TYPE_BUFFER) {
564                 dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
565                                 dimm_name, cmd_name, out_obj->type);
566                 rc = -EINVAL;
567                 goto out;
568         }
569
570         if (call_pkg) {
571                 call_pkg->nd_fw_size = out_obj->buffer.length;
572                 memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
573                         out_obj->buffer.pointer,
574                         min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
575
576                 ACPI_FREE(out_obj);
577                 /*
578                  * Need to support FW function w/o known size in advance.
579                  * Caller can determine required size based upon nd_fw_size.
580                  * If we return an error (like elsewhere) then caller wouldn't
581                  * be able to rely upon data returned to make calculation.
582                  */
583                 if (cmd_rc)
584                         *cmd_rc = 0;
585                 return 0;
586         }
587
588         dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
589                         cmd_name, out_obj->buffer.length);
590         print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
591                         out_obj->buffer.pointer,
592                         min_t(u32, 128, out_obj->buffer.length), true);
593
594         for (i = 0, offset = 0; i < desc->out_num; i++) {
595                 u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
596                                 (u32 *) out_obj->buffer.pointer,
597                                 out_obj->buffer.length - offset);
598
599                 if (offset + out_size > out_obj->buffer.length) {
600                         dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
601                                         dimm_name, cmd_name, i);
602                         break;
603                 }
604
605                 if (in_buf.buffer.length + offset + out_size > buf_len) {
606                         dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
607                                         dimm_name, cmd_name, i);
608                         rc = -ENXIO;
609                         goto out;
610                 }
611                 memcpy(buf + in_buf.buffer.length + offset,
612                                 out_obj->buffer.pointer + offset, out_size);
613                 offset += out_size;
614         }
615
616         /*
617          * Set fw_status for all the commands with a known format to be
618          * later interpreted by xlat_status().
619          */
620         if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
621                                         && cmd <= ND_CMD_CLEAR_ERROR)
622                                 || (nvdimm && cmd >= ND_CMD_SMART
623                                         && cmd <= ND_CMD_VENDOR)))
624                 fw_status = *(u32 *) out_obj->buffer.pointer;
625
626         if (offset + in_buf.buffer.length < buf_len) {
627                 if (i >= 1) {
628                         /*
629                          * status valid, return the number of bytes left
630                          * unfilled in the output buffer
631                          */
632                         rc = buf_len - offset - in_buf.buffer.length;
633                         if (cmd_rc)
634                                 *cmd_rc = xlat_status(nvdimm, buf, cmd,
635                                                 fw_status);
636                 } else {
637                         dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
638                                         __func__, dimm_name, cmd_name, buf_len,
639                                         offset);
640                         rc = -ENXIO;
641                 }
642         } else {
643                 rc = 0;
644                 if (cmd_rc)
645                         *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
646         }
647
648  out:
649         ACPI_FREE(out_obj);
650
651         return rc;
652 }
653 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
654
655 static const char *spa_type_name(u16 type)
656 {
657         static const char *to_name[] = {
658                 [NFIT_SPA_VOLATILE] = "volatile",
659                 [NFIT_SPA_PM] = "pmem",
660                 [NFIT_SPA_DCR] = "dimm-control-region",
661                 [NFIT_SPA_BDW] = "block-data-window",
662                 [NFIT_SPA_VDISK] = "volatile-disk",
663                 [NFIT_SPA_VCD] = "volatile-cd",
664                 [NFIT_SPA_PDISK] = "persistent-disk",
665                 [NFIT_SPA_PCD] = "persistent-cd",
666
667         };
668
669         if (type > NFIT_SPA_PCD)
670                 return "unknown";
671
672         return to_name[type];
673 }
674
675 int nfit_spa_type(struct acpi_nfit_system_address *spa)
676 {
677         int i;
678
679         for (i = 0; i < NFIT_UUID_MAX; i++)
680                 if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
681                         return i;
682         return -1;
683 }
684
685 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
686                 struct nfit_table_prev *prev,
687                 struct acpi_nfit_system_address *spa)
688 {
689         struct device *dev = acpi_desc->dev;
690         struct nfit_spa *nfit_spa;
691
692         if (spa->header.length != sizeof(*spa))
693                 return false;
694
695         list_for_each_entry(nfit_spa, &prev->spas, list) {
696                 if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
697                         list_move_tail(&nfit_spa->list, &acpi_desc->spas);
698                         return true;
699                 }
700         }
701
702         nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
703                         GFP_KERNEL);
704         if (!nfit_spa)
705                 return false;
706         INIT_LIST_HEAD(&nfit_spa->list);
707         memcpy(nfit_spa->spa, spa, sizeof(*spa));
708         list_add_tail(&nfit_spa->list, &acpi_desc->spas);
709         dev_dbg(dev, "spa index: %d type: %s\n",
710                         spa->range_index,
711                         spa_type_name(nfit_spa_type(spa)));
712         return true;
713 }
714
715 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
716                 struct nfit_table_prev *prev,
717                 struct acpi_nfit_memory_map *memdev)
718 {
719         struct device *dev = acpi_desc->dev;
720         struct nfit_memdev *nfit_memdev;
721
722         if (memdev->header.length != sizeof(*memdev))
723                 return false;
724
725         list_for_each_entry(nfit_memdev, &prev->memdevs, list)
726                 if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
727                         list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
728                         return true;
729                 }
730
731         nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
732                         GFP_KERNEL);
733         if (!nfit_memdev)
734                 return false;
735         INIT_LIST_HEAD(&nfit_memdev->list);
736         memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
737         list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
738         dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
739                         memdev->device_handle, memdev->range_index,
740                         memdev->region_index, memdev->flags);
741         return true;
742 }
743
744 int nfit_get_smbios_id(u32 device_handle, u16 *flags)
745 {
746         struct acpi_nfit_memory_map *memdev;
747         struct acpi_nfit_desc *acpi_desc;
748         struct nfit_mem *nfit_mem;
749         u16 physical_id;
750
751         mutex_lock(&acpi_desc_lock);
752         list_for_each_entry(acpi_desc, &acpi_descs, list) {
753                 mutex_lock(&acpi_desc->init_mutex);
754                 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
755                         memdev = __to_nfit_memdev(nfit_mem);
756                         if (memdev->device_handle == device_handle) {
757                                 *flags = memdev->flags;
758                                 physical_id = memdev->physical_id;
759                                 mutex_unlock(&acpi_desc->init_mutex);
760                                 mutex_unlock(&acpi_desc_lock);
761                                 return physical_id;
762                         }
763                 }
764                 mutex_unlock(&acpi_desc->init_mutex);
765         }
766         mutex_unlock(&acpi_desc_lock);
767
768         return -ENODEV;
769 }
770 EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
771
772 /*
773  * An implementation may provide a truncated control region if no block windows
774  * are defined.
775  */
776 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
777 {
778         if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
779                                 window_size))
780                 return 0;
781         if (dcr->windows)
782                 return sizeof(*dcr);
783         return offsetof(struct acpi_nfit_control_region, window_size);
784 }
785
786 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
787                 struct nfit_table_prev *prev,
788                 struct acpi_nfit_control_region *dcr)
789 {
790         struct device *dev = acpi_desc->dev;
791         struct nfit_dcr *nfit_dcr;
792
793         if (!sizeof_dcr(dcr))
794                 return false;
795
796         list_for_each_entry(nfit_dcr, &prev->dcrs, list)
797                 if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
798                         list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
799                         return true;
800                 }
801
802         nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
803                         GFP_KERNEL);
804         if (!nfit_dcr)
805                 return false;
806         INIT_LIST_HEAD(&nfit_dcr->list);
807         memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
808         list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
809         dev_dbg(dev, "dcr index: %d windows: %d\n",
810                         dcr->region_index, dcr->windows);
811         return true;
812 }
813
814 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
815                 struct nfit_table_prev *prev,
816                 struct acpi_nfit_data_region *bdw)
817 {
818         struct device *dev = acpi_desc->dev;
819         struct nfit_bdw *nfit_bdw;
820
821         if (bdw->header.length != sizeof(*bdw))
822                 return false;
823         list_for_each_entry(nfit_bdw, &prev->bdws, list)
824                 if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
825                         list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
826                         return true;
827                 }
828
829         nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
830                         GFP_KERNEL);
831         if (!nfit_bdw)
832                 return false;
833         INIT_LIST_HEAD(&nfit_bdw->list);
834         memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
835         list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
836         dev_dbg(dev, "bdw dcr: %d windows: %d\n",
837                         bdw->region_index, bdw->windows);
838         return true;
839 }
840
841 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
842 {
843         if (idt->header.length < sizeof(*idt))
844                 return 0;
845         return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
846 }
847
848 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
849                 struct nfit_table_prev *prev,
850                 struct acpi_nfit_interleave *idt)
851 {
852         struct device *dev = acpi_desc->dev;
853         struct nfit_idt *nfit_idt;
854
855         if (!sizeof_idt(idt))
856                 return false;
857
858         list_for_each_entry(nfit_idt, &prev->idts, list) {
859                 if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
860                         continue;
861
862                 if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
863                         list_move_tail(&nfit_idt->list, &acpi_desc->idts);
864                         return true;
865                 }
866         }
867
868         nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
869                         GFP_KERNEL);
870         if (!nfit_idt)
871                 return false;
872         INIT_LIST_HEAD(&nfit_idt->list);
873         memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
874         list_add_tail(&nfit_idt->list, &acpi_desc->idts);
875         dev_dbg(dev, "idt index: %d num_lines: %d\n",
876                         idt->interleave_index, idt->line_count);
877         return true;
878 }
879
880 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
881 {
882         if (flush->header.length < sizeof(*flush))
883                 return 0;
884         return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
885 }
886
887 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
888                 struct nfit_table_prev *prev,
889                 struct acpi_nfit_flush_address *flush)
890 {
891         struct device *dev = acpi_desc->dev;
892         struct nfit_flush *nfit_flush;
893
894         if (!sizeof_flush(flush))
895                 return false;
896
897         list_for_each_entry(nfit_flush, &prev->flushes, list) {
898                 if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
899                         continue;
900
901                 if (memcmp(nfit_flush->flush, flush,
902                                         sizeof_flush(flush)) == 0) {
903                         list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
904                         return true;
905                 }
906         }
907
908         nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
909                         + sizeof_flush(flush), GFP_KERNEL);
910         if (!nfit_flush)
911                 return false;
912         INIT_LIST_HEAD(&nfit_flush->list);
913         memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
914         list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
915         dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
916                         flush->device_handle, flush->hint_count);
917         return true;
918 }
919
920 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
921                 struct acpi_nfit_capabilities *pcap)
922 {
923         struct device *dev = acpi_desc->dev;
924         u32 mask;
925
926         mask = (1 << (pcap->highest_capability + 1)) - 1;
927         acpi_desc->platform_cap = pcap->capabilities & mask;
928         dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
929         return true;
930 }
931
932 static void *add_table(struct acpi_nfit_desc *acpi_desc,
933                 struct nfit_table_prev *prev, void *table, const void *end)
934 {
935         struct device *dev = acpi_desc->dev;
936         struct acpi_nfit_header *hdr;
937         void *err = ERR_PTR(-ENOMEM);
938
939         if (table >= end)
940                 return NULL;
941
942         hdr = table;
943         if (!hdr->length) {
944                 dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
945                         hdr->type);
946                 return NULL;
947         }
948
949         switch (hdr->type) {
950         case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
951                 if (!add_spa(acpi_desc, prev, table))
952                         return err;
953                 break;
954         case ACPI_NFIT_TYPE_MEMORY_MAP:
955                 if (!add_memdev(acpi_desc, prev, table))
956                         return err;
957                 break;
958         case ACPI_NFIT_TYPE_CONTROL_REGION:
959                 if (!add_dcr(acpi_desc, prev, table))
960                         return err;
961                 break;
962         case ACPI_NFIT_TYPE_DATA_REGION:
963                 if (!add_bdw(acpi_desc, prev, table))
964                         return err;
965                 break;
966         case ACPI_NFIT_TYPE_INTERLEAVE:
967                 if (!add_idt(acpi_desc, prev, table))
968                         return err;
969                 break;
970         case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
971                 if (!add_flush(acpi_desc, prev, table))
972                         return err;
973                 break;
974         case ACPI_NFIT_TYPE_SMBIOS:
975                 dev_dbg(dev, "smbios\n");
976                 break;
977         case ACPI_NFIT_TYPE_CAPABILITIES:
978                 if (!add_platform_cap(acpi_desc, table))
979                         return err;
980                 break;
981         default:
982                 dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
983                 break;
984         }
985
986         return table + hdr->length;
987 }
988
989 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
990                 struct nfit_mem *nfit_mem)
991 {
992         u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
993         u16 dcr = nfit_mem->dcr->region_index;
994         struct nfit_spa *nfit_spa;
995
996         list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
997                 u16 range_index = nfit_spa->spa->range_index;
998                 int type = nfit_spa_type(nfit_spa->spa);
999                 struct nfit_memdev *nfit_memdev;
1000
1001                 if (type != NFIT_SPA_BDW)
1002                         continue;
1003
1004                 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1005                         if (nfit_memdev->memdev->range_index != range_index)
1006                                 continue;
1007                         if (nfit_memdev->memdev->device_handle != device_handle)
1008                                 continue;
1009                         if (nfit_memdev->memdev->region_index != dcr)
1010                                 continue;
1011
1012                         nfit_mem->spa_bdw = nfit_spa->spa;
1013                         return;
1014                 }
1015         }
1016
1017         dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
1018                         nfit_mem->spa_dcr->range_index);
1019         nfit_mem->bdw = NULL;
1020 }
1021
1022 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
1023                 struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
1024 {
1025         u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
1026         struct nfit_memdev *nfit_memdev;
1027         struct nfit_bdw *nfit_bdw;
1028         struct nfit_idt *nfit_idt;
1029         u16 idt_idx, range_index;
1030
1031         list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
1032                 if (nfit_bdw->bdw->region_index != dcr)
1033                         continue;
1034                 nfit_mem->bdw = nfit_bdw->bdw;
1035                 break;
1036         }
1037
1038         if (!nfit_mem->bdw)
1039                 return;
1040
1041         nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
1042
1043         if (!nfit_mem->spa_bdw)
1044                 return;
1045
1046         range_index = nfit_mem->spa_bdw->range_index;
1047         list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1048                 if (nfit_memdev->memdev->range_index != range_index ||
1049                                 nfit_memdev->memdev->region_index != dcr)
1050                         continue;
1051                 nfit_mem->memdev_bdw = nfit_memdev->memdev;
1052                 idt_idx = nfit_memdev->memdev->interleave_index;
1053                 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1054                         if (nfit_idt->idt->interleave_index != idt_idx)
1055                                 continue;
1056                         nfit_mem->idt_bdw = nfit_idt->idt;
1057                         break;
1058                 }
1059                 break;
1060         }
1061 }
1062
1063 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1064                 struct acpi_nfit_system_address *spa)
1065 {
1066         struct nfit_mem *nfit_mem, *found;
1067         struct nfit_memdev *nfit_memdev;
1068         int type = spa ? nfit_spa_type(spa) : 0;
1069
1070         switch (type) {
1071         case NFIT_SPA_DCR:
1072         case NFIT_SPA_PM:
1073                 break;
1074         default:
1075                 if (spa)
1076                         return 0;
1077         }
1078
1079         /*
1080          * This loop runs in two modes, when a dimm is mapped the loop
1081          * adds memdev associations to an existing dimm, or creates a
1082          * dimm. In the unmapped dimm case this loop sweeps for memdev
1083          * instances with an invalid / zero range_index and adds those
1084          * dimms without spa associations.
1085          */
1086         list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1087                 struct nfit_flush *nfit_flush;
1088                 struct nfit_dcr *nfit_dcr;
1089                 u32 device_handle;
1090                 u16 dcr;
1091
1092                 if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1093                         continue;
1094                 if (!spa && nfit_memdev->memdev->range_index)
1095                         continue;
1096                 found = NULL;
1097                 dcr = nfit_memdev->memdev->region_index;
1098                 device_handle = nfit_memdev->memdev->device_handle;
1099                 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1100                         if (__to_nfit_memdev(nfit_mem)->device_handle
1101                                         == device_handle) {
1102                                 found = nfit_mem;
1103                                 break;
1104                         }
1105
1106                 if (found)
1107                         nfit_mem = found;
1108                 else {
1109                         nfit_mem = devm_kzalloc(acpi_desc->dev,
1110                                         sizeof(*nfit_mem), GFP_KERNEL);
1111                         if (!nfit_mem)
1112                                 return -ENOMEM;
1113                         INIT_LIST_HEAD(&nfit_mem->list);
1114                         nfit_mem->acpi_desc = acpi_desc;
1115                         list_add(&nfit_mem->list, &acpi_desc->dimms);
1116                 }
1117
1118                 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1119                         if (nfit_dcr->dcr->region_index != dcr)
1120                                 continue;
1121                         /*
1122                          * Record the control region for the dimm.  For
1123                          * the ACPI 6.1 case, where there are separate
1124                          * control regions for the pmem vs blk
1125                          * interfaces, be sure to record the extended
1126                          * blk details.
1127                          */
1128                         if (!nfit_mem->dcr)
1129                                 nfit_mem->dcr = nfit_dcr->dcr;
1130                         else if (nfit_mem->dcr->windows == 0
1131                                         && nfit_dcr->dcr->windows)
1132                                 nfit_mem->dcr = nfit_dcr->dcr;
1133                         break;
1134                 }
1135
1136                 list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1137                         struct acpi_nfit_flush_address *flush;
1138                         u16 i;
1139
1140                         if (nfit_flush->flush->device_handle != device_handle)
1141                                 continue;
1142                         nfit_mem->nfit_flush = nfit_flush;
1143                         flush = nfit_flush->flush;
1144                         nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1145                                         flush->hint_count,
1146                                         sizeof(struct resource),
1147                                         GFP_KERNEL);
1148                         if (!nfit_mem->flush_wpq)
1149                                 return -ENOMEM;
1150                         for (i = 0; i < flush->hint_count; i++) {
1151                                 struct resource *res = &nfit_mem->flush_wpq[i];
1152
1153                                 res->start = flush->hint_address[i];
1154                                 res->end = res->start + 8 - 1;
1155                         }
1156                         break;
1157                 }
1158
1159                 if (dcr && !nfit_mem->dcr) {
1160                         dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1161                                         spa->range_index, dcr);
1162                         return -ENODEV;
1163                 }
1164
1165                 if (type == NFIT_SPA_DCR) {
1166                         struct nfit_idt *nfit_idt;
1167                         u16 idt_idx;
1168
1169                         /* multiple dimms may share a SPA when interleaved */
1170                         nfit_mem->spa_dcr = spa;
1171                         nfit_mem->memdev_dcr = nfit_memdev->memdev;
1172                         idt_idx = nfit_memdev->memdev->interleave_index;
1173                         list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1174                                 if (nfit_idt->idt->interleave_index != idt_idx)
1175                                         continue;
1176                                 nfit_mem->idt_dcr = nfit_idt->idt;
1177                                 break;
1178                         }
1179                         nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
1180                 } else if (type == NFIT_SPA_PM) {
1181                         /*
1182                          * A single dimm may belong to multiple SPA-PM
1183                          * ranges, record at least one in addition to
1184                          * any SPA-DCR range.
1185                          */
1186                         nfit_mem->memdev_pmem = nfit_memdev->memdev;
1187                 } else
1188                         nfit_mem->memdev_dcr = nfit_memdev->memdev;
1189         }
1190
1191         return 0;
1192 }
1193
1194 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
1195 {
1196         struct nfit_mem *a = container_of(_a, typeof(*a), list);
1197         struct nfit_mem *b = container_of(_b, typeof(*b), list);
1198         u32 handleA, handleB;
1199
1200         handleA = __to_nfit_memdev(a)->device_handle;
1201         handleB = __to_nfit_memdev(b)->device_handle;
1202         if (handleA < handleB)
1203                 return -1;
1204         else if (handleA > handleB)
1205                 return 1;
1206         return 0;
1207 }
1208
1209 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1210 {
1211         struct nfit_spa *nfit_spa;
1212         int rc;
1213
1214
1215         /*
1216          * For each SPA-DCR or SPA-PMEM address range find its
1217          * corresponding MEMDEV(s).  From each MEMDEV find the
1218          * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1219          * try to find a SPA-BDW and a corresponding BDW that references
1220          * the DCR.  Throw it all into an nfit_mem object.  Note, that
1221          * BDWs are optional.
1222          */
1223         list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1224                 rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1225                 if (rc)
1226                         return rc;
1227         }
1228
1229         /*
1230          * If a DIMM has failed to be mapped into SPA there will be no
1231          * SPA entries above. Find and register all the unmapped DIMMs
1232          * for reporting and recovery purposes.
1233          */
1234         rc = __nfit_mem_init(acpi_desc, NULL);
1235         if (rc)
1236                 return rc;
1237
1238         list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1239
1240         return 0;
1241 }
1242
1243 static ssize_t bus_dsm_mask_show(struct device *dev,
1244                 struct device_attribute *attr, char *buf)
1245 {
1246         struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1247         struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1248
1249         return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask);
1250 }
1251 static struct device_attribute dev_attr_bus_dsm_mask =
1252                 __ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1253
1254 static ssize_t revision_show(struct device *dev,
1255                 struct device_attribute *attr, char *buf)
1256 {
1257         struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1258         struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1259         struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1260
1261         return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1262 }
1263 static DEVICE_ATTR_RO(revision);
1264
1265 static ssize_t hw_error_scrub_show(struct device *dev,
1266                 struct device_attribute *attr, char *buf)
1267 {
1268         struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1269         struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1270         struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1271
1272         return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1273 }
1274
1275 /*
1276  * The 'hw_error_scrub' attribute can have the following values written to it:
1277  * '0': Switch to the default mode where an exception will only insert
1278  *      the address of the memory error into the poison and badblocks lists.
1279  * '1': Enable a full scrub to happen if an exception for a memory error is
1280  *      received.
1281  */
1282 static ssize_t hw_error_scrub_store(struct device *dev,
1283                 struct device_attribute *attr, const char *buf, size_t size)
1284 {
1285         struct nvdimm_bus_descriptor *nd_desc;
1286         ssize_t rc;
1287         long val;
1288
1289         rc = kstrtol(buf, 0, &val);
1290         if (rc)
1291                 return rc;
1292
1293         device_lock(dev);
1294         nd_desc = dev_get_drvdata(dev);
1295         if (nd_desc) {
1296                 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1297
1298                 switch (val) {
1299                 case HW_ERROR_SCRUB_ON:
1300                         acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1301                         break;
1302                 case HW_ERROR_SCRUB_OFF:
1303                         acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1304                         break;
1305                 default:
1306                         rc = -EINVAL;
1307                         break;
1308                 }
1309         }
1310         device_unlock(dev);
1311         if (rc)
1312                 return rc;
1313         return size;
1314 }
1315 static DEVICE_ATTR_RW(hw_error_scrub);
1316
1317 /*
1318  * This shows the number of full Address Range Scrubs that have been
1319  * completed since driver load time. Userspace can wait on this using
1320  * select/poll etc. A '+' at the end indicates an ARS is in progress
1321  */
1322 static ssize_t scrub_show(struct device *dev,
1323                 struct device_attribute *attr, char *buf)
1324 {
1325         struct nvdimm_bus_descriptor *nd_desc;
1326         struct acpi_nfit_desc *acpi_desc;
1327         ssize_t rc = -ENXIO;
1328         bool busy;
1329
1330         device_lock(dev);
1331         nd_desc = dev_get_drvdata(dev);
1332         if (!nd_desc) {
1333                 device_unlock(dev);
1334                 return rc;
1335         }
1336         acpi_desc = to_acpi_desc(nd_desc);
1337
1338         mutex_lock(&acpi_desc->init_mutex);
1339         busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags)
1340                 && !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
1341         rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n");
1342         /* Allow an admin to poll the busy state at a higher rate */
1343         if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL,
1344                                 &acpi_desc->scrub_flags)) {
1345                 acpi_desc->scrub_tmo = 1;
1346                 mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ);
1347         }
1348
1349         mutex_unlock(&acpi_desc->init_mutex);
1350         device_unlock(dev);
1351         return rc;
1352 }
1353
1354 static ssize_t scrub_store(struct device *dev,
1355                 struct device_attribute *attr, const char *buf, size_t size)
1356 {
1357         struct nvdimm_bus_descriptor *nd_desc;
1358         ssize_t rc;
1359         long val;
1360
1361         rc = kstrtol(buf, 0, &val);
1362         if (rc)
1363                 return rc;
1364         if (val != 1)
1365                 return -EINVAL;
1366
1367         device_lock(dev);
1368         nd_desc = dev_get_drvdata(dev);
1369         if (nd_desc) {
1370                 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1371
1372                 rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1373         }
1374         device_unlock(dev);
1375         if (rc)
1376                 return rc;
1377         return size;
1378 }
1379 static DEVICE_ATTR_RW(scrub);
1380
1381 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1382 {
1383         struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1384         const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1385                 | 1 << ND_CMD_ARS_STATUS;
1386
1387         return (nd_desc->cmd_mask & mask) == mask;
1388 }
1389
1390 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1391 {
1392         struct device *dev = container_of(kobj, struct device, kobj);
1393         struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1394
1395         if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
1396                 return 0;
1397         return a->mode;
1398 }
1399
1400 static struct attribute *acpi_nfit_attributes[] = {
1401         &dev_attr_revision.attr,
1402         &dev_attr_scrub.attr,
1403         &dev_attr_hw_error_scrub.attr,
1404         &dev_attr_bus_dsm_mask.attr,
1405         NULL,
1406 };
1407
1408 static const struct attribute_group acpi_nfit_attribute_group = {
1409         .name = "nfit",
1410         .attrs = acpi_nfit_attributes,
1411         .is_visible = nfit_visible,
1412 };
1413
1414 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1415         &nvdimm_bus_attribute_group,
1416         &acpi_nfit_attribute_group,
1417         NULL,
1418 };
1419
1420 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1421 {
1422         struct nvdimm *nvdimm = to_nvdimm(dev);
1423         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1424
1425         return __to_nfit_memdev(nfit_mem);
1426 }
1427
1428 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1429 {
1430         struct nvdimm *nvdimm = to_nvdimm(dev);
1431         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1432
1433         return nfit_mem->dcr;
1434 }
1435
1436 static ssize_t handle_show(struct device *dev,
1437                 struct device_attribute *attr, char *buf)
1438 {
1439         struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1440
1441         return sprintf(buf, "%#x\n", memdev->device_handle);
1442 }
1443 static DEVICE_ATTR_RO(handle);
1444
1445 static ssize_t phys_id_show(struct device *dev,
1446                 struct device_attribute *attr, char *buf)
1447 {
1448         struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1449
1450         return sprintf(buf, "%#x\n", memdev->physical_id);
1451 }
1452 static DEVICE_ATTR_RO(phys_id);
1453
1454 static ssize_t vendor_show(struct device *dev,
1455                 struct device_attribute *attr, char *buf)
1456 {
1457         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1458
1459         return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1460 }
1461 static DEVICE_ATTR_RO(vendor);
1462
1463 static ssize_t rev_id_show(struct device *dev,
1464                 struct device_attribute *attr, char *buf)
1465 {
1466         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1467
1468         return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1469 }
1470 static DEVICE_ATTR_RO(rev_id);
1471
1472 static ssize_t device_show(struct device *dev,
1473                 struct device_attribute *attr, char *buf)
1474 {
1475         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1476
1477         return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1478 }
1479 static DEVICE_ATTR_RO(device);
1480
1481 static ssize_t subsystem_vendor_show(struct device *dev,
1482                 struct device_attribute *attr, char *buf)
1483 {
1484         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1485
1486         return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1487 }
1488 static DEVICE_ATTR_RO(subsystem_vendor);
1489
1490 static ssize_t subsystem_rev_id_show(struct device *dev,
1491                 struct device_attribute *attr, char *buf)
1492 {
1493         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1494
1495         return sprintf(buf, "0x%04x\n",
1496                         be16_to_cpu(dcr->subsystem_revision_id));
1497 }
1498 static DEVICE_ATTR_RO(subsystem_rev_id);
1499
1500 static ssize_t subsystem_device_show(struct device *dev,
1501                 struct device_attribute *attr, char *buf)
1502 {
1503         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1504
1505         return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1506 }
1507 static DEVICE_ATTR_RO(subsystem_device);
1508
1509 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1510 {
1511         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1512         int formats = 0;
1513
1514         if (nfit_mem->memdev_pmem)
1515                 formats++;
1516         if (nfit_mem->memdev_bdw)
1517                 formats++;
1518         return formats;
1519 }
1520
1521 static ssize_t format_show(struct device *dev,
1522                 struct device_attribute *attr, char *buf)
1523 {
1524         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1525
1526         return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1527 }
1528 static DEVICE_ATTR_RO(format);
1529
1530 static ssize_t format1_show(struct device *dev,
1531                 struct device_attribute *attr, char *buf)
1532 {
1533         u32 handle;
1534         ssize_t rc = -ENXIO;
1535         struct nfit_mem *nfit_mem;
1536         struct nfit_memdev *nfit_memdev;
1537         struct acpi_nfit_desc *acpi_desc;
1538         struct nvdimm *nvdimm = to_nvdimm(dev);
1539         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1540
1541         nfit_mem = nvdimm_provider_data(nvdimm);
1542         acpi_desc = nfit_mem->acpi_desc;
1543         handle = to_nfit_memdev(dev)->device_handle;
1544
1545         /* assumes DIMMs have at most 2 published interface codes */
1546         mutex_lock(&acpi_desc->init_mutex);
1547         list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1548                 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1549                 struct nfit_dcr *nfit_dcr;
1550
1551                 if (memdev->device_handle != handle)
1552                         continue;
1553
1554                 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1555                         if (nfit_dcr->dcr->region_index != memdev->region_index)
1556                                 continue;
1557                         if (nfit_dcr->dcr->code == dcr->code)
1558                                 continue;
1559                         rc = sprintf(buf, "0x%04x\n",
1560                                         le16_to_cpu(nfit_dcr->dcr->code));
1561                         break;
1562                 }
1563                 if (rc != ENXIO)
1564                         break;
1565         }
1566         mutex_unlock(&acpi_desc->init_mutex);
1567         return rc;
1568 }
1569 static DEVICE_ATTR_RO(format1);
1570
1571 static ssize_t formats_show(struct device *dev,
1572                 struct device_attribute *attr, char *buf)
1573 {
1574         struct nvdimm *nvdimm = to_nvdimm(dev);
1575
1576         return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1577 }
1578 static DEVICE_ATTR_RO(formats);
1579
1580 static ssize_t serial_show(struct device *dev,
1581                 struct device_attribute *attr, char *buf)
1582 {
1583         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1584
1585         return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1586 }
1587 static DEVICE_ATTR_RO(serial);
1588
1589 static ssize_t family_show(struct device *dev,
1590                 struct device_attribute *attr, char *buf)
1591 {
1592         struct nvdimm *nvdimm = to_nvdimm(dev);
1593         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1594
1595         if (nfit_mem->family < 0)
1596                 return -ENXIO;
1597         return sprintf(buf, "%d\n", nfit_mem->family);
1598 }
1599 static DEVICE_ATTR_RO(family);
1600
1601 static ssize_t dsm_mask_show(struct device *dev,
1602                 struct device_attribute *attr, char *buf)
1603 {
1604         struct nvdimm *nvdimm = to_nvdimm(dev);
1605         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1606
1607         if (nfit_mem->family < 0)
1608                 return -ENXIO;
1609         return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1610 }
1611 static DEVICE_ATTR_RO(dsm_mask);
1612
1613 static ssize_t flags_show(struct device *dev,
1614                 struct device_attribute *attr, char *buf)
1615 {
1616         struct nvdimm *nvdimm = to_nvdimm(dev);
1617         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1618         u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1619
1620         if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1621                 flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1622
1623         return sprintf(buf, "%s%s%s%s%s%s%s\n",
1624                 flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1625                 flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1626                 flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1627                 flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1628                 flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1629                 flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1630                 flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1631 }
1632 static DEVICE_ATTR_RO(flags);
1633
1634 static ssize_t id_show(struct device *dev,
1635                 struct device_attribute *attr, char *buf)
1636 {
1637         struct nvdimm *nvdimm = to_nvdimm(dev);
1638         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1639
1640         return sprintf(buf, "%s\n", nfit_mem->id);
1641 }
1642 static DEVICE_ATTR_RO(id);
1643
1644 static ssize_t dirty_shutdown_show(struct device *dev,
1645                 struct device_attribute *attr, char *buf)
1646 {
1647         struct nvdimm *nvdimm = to_nvdimm(dev);
1648         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1649
1650         return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown);
1651 }
1652 static DEVICE_ATTR_RO(dirty_shutdown);
1653
1654 static struct attribute *acpi_nfit_dimm_attributes[] = {
1655         &dev_attr_handle.attr,
1656         &dev_attr_phys_id.attr,
1657         &dev_attr_vendor.attr,
1658         &dev_attr_device.attr,
1659         &dev_attr_rev_id.attr,
1660         &dev_attr_subsystem_vendor.attr,
1661         &dev_attr_subsystem_device.attr,
1662         &dev_attr_subsystem_rev_id.attr,
1663         &dev_attr_format.attr,
1664         &dev_attr_formats.attr,
1665         &dev_attr_format1.attr,
1666         &dev_attr_serial.attr,
1667         &dev_attr_flags.attr,
1668         &dev_attr_id.attr,
1669         &dev_attr_family.attr,
1670         &dev_attr_dsm_mask.attr,
1671         &dev_attr_dirty_shutdown.attr,
1672         NULL,
1673 };
1674
1675 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1676                 struct attribute *a, int n)
1677 {
1678         struct device *dev = container_of(kobj, struct device, kobj);
1679         struct nvdimm *nvdimm = to_nvdimm(dev);
1680         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1681
1682         if (!to_nfit_dcr(dev)) {
1683                 /* Without a dcr only the memdev attributes can be surfaced */
1684                 if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1685                                 || a == &dev_attr_flags.attr
1686                                 || a == &dev_attr_family.attr
1687                                 || a == &dev_attr_dsm_mask.attr)
1688                         return a->mode;
1689                 return 0;
1690         }
1691
1692         if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1693                 return 0;
1694
1695         if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1696                         && a == &dev_attr_dirty_shutdown.attr)
1697                 return 0;
1698
1699         return a->mode;
1700 }
1701
1702 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1703         .name = "nfit",
1704         .attrs = acpi_nfit_dimm_attributes,
1705         .is_visible = acpi_nfit_dimm_attr_visible,
1706 };
1707
1708 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1709         &nvdimm_attribute_group,
1710         &nd_device_attribute_group,
1711         &acpi_nfit_dimm_attribute_group,
1712         NULL,
1713 };
1714
1715 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1716                 u32 device_handle)
1717 {
1718         struct nfit_mem *nfit_mem;
1719
1720         list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1721                 if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1722                         return nfit_mem->nvdimm;
1723
1724         return NULL;
1725 }
1726
1727 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1728 {
1729         struct nfit_mem *nfit_mem;
1730         struct acpi_nfit_desc *acpi_desc;
1731
1732         dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1733                         event);
1734
1735         if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1736                 dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1737                                 event);
1738                 return;
1739         }
1740
1741         acpi_desc = dev_get_drvdata(dev->parent);
1742         if (!acpi_desc)
1743                 return;
1744
1745         /*
1746          * If we successfully retrieved acpi_desc, then we know nfit_mem data
1747          * is still valid.
1748          */
1749         nfit_mem = dev_get_drvdata(dev);
1750         if (nfit_mem && nfit_mem->flags_attr)
1751                 sysfs_notify_dirent(nfit_mem->flags_attr);
1752 }
1753 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1754
1755 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1756 {
1757         struct acpi_device *adev = data;
1758         struct device *dev = &adev->dev;
1759
1760         device_lock(dev->parent);
1761         __acpi_nvdimm_notify(dev, event);
1762         device_unlock(dev->parent);
1763 }
1764
1765 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1766 {
1767         acpi_handle handle;
1768         acpi_status status;
1769
1770         status = acpi_get_handle(adev->handle, method, &handle);
1771
1772         if (ACPI_SUCCESS(status))
1773                 return true;
1774         return false;
1775 }
1776
1777 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1778 {
1779         struct device *dev = &nfit_mem->adev->dev;
1780         struct nd_intel_smart smart = { 0 };
1781         union acpi_object in_buf = {
1782                 .buffer.type = ACPI_TYPE_BUFFER,
1783                 .buffer.length = 0,
1784         };
1785         union acpi_object in_obj = {
1786                 .package.type = ACPI_TYPE_PACKAGE,
1787                 .package.count = 1,
1788                 .package.elements = &in_buf,
1789         };
1790         const u8 func = ND_INTEL_SMART;
1791         const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1792         u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1793         struct acpi_device *adev = nfit_mem->adev;
1794         acpi_handle handle = adev->handle;
1795         union acpi_object *out_obj;
1796
1797         if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1798                 return;
1799
1800         out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
1801         if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER
1802                         || out_obj->buffer.length < sizeof(smart)) {
1803                 dev_dbg(dev->parent, "%s: failed to retrieve initial health\n",
1804                                 dev_name(dev));
1805                 ACPI_FREE(out_obj);
1806                 return;
1807         }
1808         memcpy(&smart, out_obj->buffer.pointer, sizeof(smart));
1809         ACPI_FREE(out_obj);
1810
1811         if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1812                 if (smart.shutdown_state)
1813                         set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1814         }
1815
1816         if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1817                 set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1818                 nfit_mem->dirty_shutdown = smart.shutdown_count;
1819         }
1820 }
1821
1822 static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1823 {
1824         /*
1825          * For DIMMs that provide a dynamic facility to retrieve a
1826          * dirty-shutdown status and/or a dirty-shutdown count, cache
1827          * these values in nfit_mem.
1828          */
1829         if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1830                 nfit_intel_shutdown_status(nfit_mem);
1831 }
1832
1833 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1834                 struct nfit_mem *nfit_mem, u32 device_handle)
1835 {
1836         struct acpi_device *adev, *adev_dimm;
1837         struct device *dev = acpi_desc->dev;
1838         unsigned long dsm_mask, label_mask;
1839         const guid_t *guid;
1840         int i;
1841         int family = -1;
1842         struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1843
1844         /* nfit test assumes 1:1 relationship between commands and dsms */
1845         nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1846         nfit_mem->family = NVDIMM_FAMILY_INTEL;
1847
1848         if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1849                 sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
1850                                 be16_to_cpu(dcr->vendor_id),
1851                                 dcr->manufacturing_location,
1852                                 be16_to_cpu(dcr->manufacturing_date),
1853                                 be32_to_cpu(dcr->serial_number));
1854         else
1855                 sprintf(nfit_mem->id, "%04x-%08x",
1856                                 be16_to_cpu(dcr->vendor_id),
1857                                 be32_to_cpu(dcr->serial_number));
1858
1859         adev = to_acpi_dev(acpi_desc);
1860         if (!adev) {
1861                 /* unit test case */
1862                 populate_shutdown_status(nfit_mem);
1863                 return 0;
1864         }
1865
1866         adev_dimm = acpi_find_child_device(adev, device_handle, false);
1867         nfit_mem->adev = adev_dimm;
1868         if (!adev_dimm) {
1869                 dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1870                                 device_handle);
1871                 return force_enable_dimms ? 0 : -ENODEV;
1872         }
1873
1874         if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1875                 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1876                 dev_err(dev, "%s: notification registration failed\n",
1877                                 dev_name(&adev_dimm->dev));
1878                 return -ENXIO;
1879         }
1880         /*
1881          * Record nfit_mem for the notification path to track back to
1882          * the nfit sysfs attributes for this dimm device object.
1883          */
1884         dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1885
1886         /*
1887          * There are 4 "legacy" NVDIMM command sets
1888          * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before
1889          * an EFI working group was established to constrain this
1890          * proliferation. The nfit driver probes for the supported command
1891          * set by GUID. Note, if you're a platform developer looking to add
1892          * a new command set to this probe, consider using an existing set,
1893          * or otherwise seek approval to publish the command set at
1894          * http://www.uefi.org/RFIC_LIST.
1895          *
1896          * Note, that checking for function0 (bit0) tells us if any commands
1897          * are reachable through this GUID.
1898          */
1899         for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1900                 if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1901                         if (family < 0 || i == default_dsm_family)
1902                                 family = i;
1903
1904         /* limit the supported commands to those that are publicly documented */
1905         nfit_mem->family = family;
1906         if (override_dsm_mask && !disable_vendor_specific)
1907                 dsm_mask = override_dsm_mask;
1908         else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1909                 dsm_mask = NVDIMM_INTEL_CMDMASK;
1910                 if (disable_vendor_specific)
1911                         dsm_mask &= ~(1 << ND_CMD_VENDOR);
1912         } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1913                 dsm_mask = 0x1c3c76;
1914         } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1915                 dsm_mask = 0x1fe;
1916                 if (disable_vendor_specific)
1917                         dsm_mask &= ~(1 << 8);
1918         } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1919                 dsm_mask = 0xffffffff;
1920         } else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) {
1921                 dsm_mask = 0x1f;
1922         } else {
1923                 dev_dbg(dev, "unknown dimm command family\n");
1924                 nfit_mem->family = -1;
1925                 /* DSMs are optional, continue loading the driver... */
1926                 return 0;
1927         }
1928
1929         /*
1930          * Function 0 is the command interrogation function, don't
1931          * export it to potential userspace use, and enable it to be
1932          * used as an error value in acpi_nfit_ctl().
1933          */
1934         dsm_mask &= ~1UL;
1935
1936         guid = to_nfit_uuid(nfit_mem->family);
1937         for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1938                 if (acpi_check_dsm(adev_dimm->handle, guid,
1939                                         nfit_dsm_revid(nfit_mem->family, i),
1940                                         1ULL << i))
1941                         set_bit(i, &nfit_mem->dsm_mask);
1942
1943         /*
1944          * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1945          * due to their better semantics handling locked capacity.
1946          */
1947         label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1948                 | 1 << ND_CMD_SET_CONFIG_DATA;
1949         if (family == NVDIMM_FAMILY_INTEL
1950                         && (dsm_mask & label_mask) == label_mask)
1951                 /* skip _LS{I,R,W} enabling */;
1952         else {
1953                 if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1954                                 && acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1955                         dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1956                         set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1957                 }
1958
1959                 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1960                                 && acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1961                         dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1962                         set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1963                 }
1964
1965                 /*
1966                  * Quirk read-only label configurations to preserve
1967                  * access to label-less namespaces by default.
1968                  */
1969                 if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
1970                                 && !force_labels) {
1971                         dev_dbg(dev, "%s: No _LSW, disable labels\n",
1972                                         dev_name(&adev_dimm->dev));
1973                         clear_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1974                 } else
1975                         dev_dbg(dev, "%s: Force enable labels\n",
1976                                         dev_name(&adev_dimm->dev));
1977         }
1978
1979         populate_shutdown_status(nfit_mem);
1980
1981         return 0;
1982 }
1983
1984 static void shutdown_dimm_notify(void *data)
1985 {
1986         struct acpi_nfit_desc *acpi_desc = data;
1987         struct nfit_mem *nfit_mem;
1988
1989         mutex_lock(&acpi_desc->init_mutex);
1990         /*
1991          * Clear out the nfit_mem->flags_attr and shut down dimm event
1992          * notifications.
1993          */
1994         list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1995                 struct acpi_device *adev_dimm = nfit_mem->adev;
1996
1997                 if (nfit_mem->flags_attr) {
1998                         sysfs_put(nfit_mem->flags_attr);
1999                         nfit_mem->flags_attr = NULL;
2000                 }
2001                 if (adev_dimm) {
2002                         acpi_remove_notify_handler(adev_dimm->handle,
2003                                         ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
2004                         dev_set_drvdata(&adev_dimm->dev, NULL);
2005                 }
2006         }
2007         mutex_unlock(&acpi_desc->init_mutex);
2008 }
2009
2010 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
2011 {
2012         switch (family) {
2013         case NVDIMM_FAMILY_INTEL:
2014                 return intel_security_ops;
2015         default:
2016                 return NULL;
2017         }
2018 }
2019
2020 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
2021 {
2022         struct nfit_mem *nfit_mem;
2023         int dimm_count = 0, rc;
2024         struct nvdimm *nvdimm;
2025
2026         list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2027                 struct acpi_nfit_flush_address *flush;
2028                 unsigned long flags = 0, cmd_mask;
2029                 struct nfit_memdev *nfit_memdev;
2030                 u32 device_handle;
2031                 u16 mem_flags;
2032
2033                 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
2034                 nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
2035                 if (nvdimm) {
2036                         dimm_count++;
2037                         continue;
2038                 }
2039
2040                 if (nfit_mem->bdw && nfit_mem->memdev_pmem)
2041                         set_bit(NDD_ALIASING, &flags);
2042
2043                 /* collate flags across all memdevs for this dimm */
2044                 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2045                         struct acpi_nfit_memory_map *dimm_memdev;
2046
2047                         dimm_memdev = __to_nfit_memdev(nfit_mem);
2048                         if (dimm_memdev->device_handle
2049                                         != nfit_memdev->memdev->device_handle)
2050                                 continue;
2051                         dimm_memdev->flags |= nfit_memdev->memdev->flags;
2052                 }
2053
2054                 mem_flags = __to_nfit_memdev(nfit_mem)->flags;
2055                 if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
2056                         set_bit(NDD_UNARMED, &flags);
2057
2058                 rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
2059                 if (rc)
2060                         continue;
2061
2062                 /*
2063                  * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
2064                  * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
2065                  * userspace interface.
2066                  */
2067                 cmd_mask = 1UL << ND_CMD_CALL;
2068                 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
2069                         /*
2070                          * These commands have a 1:1 correspondence
2071                          * between DSM payload and libnvdimm ioctl
2072                          * payload format.
2073                          */
2074                         cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
2075                 }
2076
2077                 /* Quirk to ignore LOCAL for labels on HYPERV DIMMs */
2078                 if (nfit_mem->family == NVDIMM_FAMILY_HYPERV)
2079                         set_bit(NDD_NOBLK, &flags);
2080
2081                 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
2082                         set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
2083                         set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
2084                 }
2085                 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
2086                         set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
2087
2088                 flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
2089                         : NULL;
2090                 nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
2091                                 acpi_nfit_dimm_attribute_groups,
2092                                 flags, cmd_mask, flush ? flush->hint_count : 0,
2093                                 nfit_mem->flush_wpq, &nfit_mem->id[0],
2094                                 acpi_nfit_get_security_ops(nfit_mem->family));
2095                 if (!nvdimm)
2096                         return -ENOMEM;
2097
2098                 nfit_mem->nvdimm = nvdimm;
2099                 dimm_count++;
2100
2101                 if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
2102                         continue;
2103
2104                 dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n",
2105                                 nvdimm_name(nvdimm),
2106                   mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
2107                   mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
2108                   mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
2109                   mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
2110                   mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
2111
2112         }
2113
2114         rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
2115         if (rc)
2116                 return rc;
2117
2118         /*
2119          * Now that dimms are successfully registered, and async registration
2120          * is flushed, attempt to enable event notification.
2121          */
2122         list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2123                 struct kernfs_node *nfit_kernfs;
2124
2125                 nvdimm = nfit_mem->nvdimm;
2126                 if (!nvdimm)
2127                         continue;
2128
2129                 nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2130                 if (nfit_kernfs)
2131                         nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2132                                         "flags");
2133                 sysfs_put(nfit_kernfs);
2134                 if (!nfit_mem->flags_attr)
2135                         dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2136                                         nvdimm_name(nvdimm));
2137         }
2138
2139         return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2140                         acpi_desc);
2141 }
2142
2143 /*
2144  * These constants are private because there are no kernel consumers of
2145  * these commands.
2146  */
2147 enum nfit_aux_cmds {
2148         NFIT_CMD_TRANSLATE_SPA = 5,
2149         NFIT_CMD_ARS_INJECT_SET = 7,
2150         NFIT_CMD_ARS_INJECT_CLEAR = 8,
2151         NFIT_CMD_ARS_INJECT_GET = 9,
2152 };
2153
2154 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2155 {
2156         struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2157         const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2158         struct acpi_device *adev;
2159         unsigned long dsm_mask;
2160         int i;
2161
2162         nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2163         nd_desc->bus_dsm_mask = acpi_desc->bus_nfit_cmd_force_en;
2164         adev = to_acpi_dev(acpi_desc);
2165         if (!adev)
2166                 return;
2167
2168         for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2169                 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2170                         set_bit(i, &nd_desc->cmd_mask);
2171         set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2172
2173         dsm_mask =
2174                 (1 << ND_CMD_ARS_CAP) |
2175                 (1 << ND_CMD_ARS_START) |
2176                 (1 << ND_CMD_ARS_STATUS) |
2177                 (1 << ND_CMD_CLEAR_ERROR) |
2178                 (1 << NFIT_CMD_TRANSLATE_SPA) |
2179                 (1 << NFIT_CMD_ARS_INJECT_SET) |
2180                 (1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2181                 (1 << NFIT_CMD_ARS_INJECT_GET);
2182         for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2183                 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2184                         set_bit(i, &nd_desc->bus_dsm_mask);
2185 }
2186
2187 static ssize_t range_index_show(struct device *dev,
2188                 struct device_attribute *attr, char *buf)
2189 {
2190         struct nd_region *nd_region = to_nd_region(dev);
2191         struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2192
2193         return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
2194 }
2195 static DEVICE_ATTR_RO(range_index);
2196
2197 static struct attribute *acpi_nfit_region_attributes[] = {
2198         &dev_attr_range_index.attr,
2199         NULL,
2200 };
2201
2202 static const struct attribute_group acpi_nfit_region_attribute_group = {
2203         .name = "nfit",
2204         .attrs = acpi_nfit_region_attributes,
2205 };
2206
2207 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2208         &nd_region_attribute_group,
2209         &nd_mapping_attribute_group,
2210         &nd_device_attribute_group,
2211         &nd_numa_attribute_group,
2212         &acpi_nfit_region_attribute_group,
2213         NULL,
2214 };
2215
2216 /* enough info to uniquely specify an interleave set */
2217 struct nfit_set_info {
2218         struct nfit_set_info_map {
2219                 u64 region_offset;
2220                 u32 serial_number;
2221                 u32 pad;
2222         } mapping[0];
2223 };
2224
2225 struct nfit_set_info2 {
2226         struct nfit_set_info_map2 {
2227                 u64 region_offset;
2228                 u32 serial_number;
2229                 u16 vendor_id;
2230                 u16 manufacturing_date;
2231                 u8  manufacturing_location;
2232                 u8  reserved[31];
2233         } mapping[0];
2234 };
2235
2236 static size_t sizeof_nfit_set_info(int num_mappings)
2237 {
2238         return sizeof(struct nfit_set_info)
2239                 + num_mappings * sizeof(struct nfit_set_info_map);
2240 }
2241
2242 static size_t sizeof_nfit_set_info2(int num_mappings)
2243 {
2244         return sizeof(struct nfit_set_info2)
2245                 + num_mappings * sizeof(struct nfit_set_info_map2);
2246 }
2247
2248 static int cmp_map_compat(const void *m0, const void *m1)
2249 {
2250         const struct nfit_set_info_map *map0 = m0;
2251         const struct nfit_set_info_map *map1 = m1;
2252
2253         return memcmp(&map0->region_offset, &map1->region_offset,
2254                         sizeof(u64));
2255 }
2256
2257 static int cmp_map(const void *m0, const void *m1)
2258 {
2259         const struct nfit_set_info_map *map0 = m0;
2260         const struct nfit_set_info_map *map1 = m1;
2261
2262         if (map0->region_offset < map1->region_offset)
2263                 return -1;
2264         else if (map0->region_offset > map1->region_offset)
2265                 return 1;
2266         return 0;
2267 }
2268
2269 static int cmp_map2(const void *m0, const void *m1)
2270 {
2271         const struct nfit_set_info_map2 *map0 = m0;
2272         const struct nfit_set_info_map2 *map1 = m1;
2273
2274         if (map0->region_offset < map1->region_offset)
2275                 return -1;
2276         else if (map0->region_offset > map1->region_offset)
2277                 return 1;
2278         return 0;
2279 }
2280
2281 /* Retrieve the nth entry referencing this spa */
2282 static struct acpi_nfit_memory_map *memdev_from_spa(
2283                 struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2284 {
2285         struct nfit_memdev *nfit_memdev;
2286
2287         list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2288                 if (nfit_memdev->memdev->range_index == range_index)
2289                         if (n-- == 0)
2290                                 return nfit_memdev->memdev;
2291         return NULL;
2292 }
2293
2294 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2295                 struct nd_region_desc *ndr_desc,
2296                 struct acpi_nfit_system_address *spa)
2297 {
2298         struct device *dev = acpi_desc->dev;
2299         struct nd_interleave_set *nd_set;
2300         u16 nr = ndr_desc->num_mappings;
2301         struct nfit_set_info2 *info2;
2302         struct nfit_set_info *info;
2303         int i;
2304
2305         nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2306         if (!nd_set)
2307                 return -ENOMEM;
2308         guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid);
2309
2310         info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
2311         if (!info)
2312                 return -ENOMEM;
2313
2314         info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
2315         if (!info2)
2316                 return -ENOMEM;
2317
2318         for (i = 0; i < nr; i++) {
2319                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2320                 struct nfit_set_info_map *map = &info->mapping[i];
2321                 struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2322                 struct nvdimm *nvdimm = mapping->nvdimm;
2323                 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2324                 struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
2325                                 spa->range_index, i);
2326                 struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2327
2328                 if (!memdev || !nfit_mem->dcr) {
2329                         dev_err(dev, "%s: failed to find DCR\n", __func__);
2330                         return -ENODEV;
2331                 }
2332
2333                 map->region_offset = memdev->region_offset;
2334                 map->serial_number = dcr->serial_number;
2335
2336                 map2->region_offset = memdev->region_offset;
2337                 map2->serial_number = dcr->serial_number;
2338                 map2->vendor_id = dcr->vendor_id;
2339                 map2->manufacturing_date = dcr->manufacturing_date;
2340                 map2->manufacturing_location = dcr->manufacturing_location;
2341         }
2342
2343         /* v1.1 namespaces */
2344         sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2345                         cmp_map, NULL);
2346         nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2347
2348         /* v1.2 namespaces */
2349         sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
2350                         cmp_map2, NULL);
2351         nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
2352
2353         /* support v1.1 namespaces created with the wrong sort order */
2354         sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2355                         cmp_map_compat, NULL);
2356         nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2357
2358         /* record the result of the sort for the mapping position */
2359         for (i = 0; i < nr; i++) {
2360                 struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2361                 int j;
2362
2363                 for (j = 0; j < nr; j++) {
2364                         struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2365                         struct nvdimm *nvdimm = mapping->nvdimm;
2366                         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2367                         struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2368
2369                         if (map2->serial_number == dcr->serial_number &&
2370                             map2->vendor_id == dcr->vendor_id &&
2371                             map2->manufacturing_date == dcr->manufacturing_date &&
2372                             map2->manufacturing_location
2373                                     == dcr->manufacturing_location) {
2374                                 mapping->position = i;
2375                                 break;
2376                         }
2377                 }
2378         }
2379
2380         ndr_desc->nd_set = nd_set;
2381         devm_kfree(dev, info);
2382         devm_kfree(dev, info2);
2383
2384         return 0;
2385 }
2386
2387 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
2388 {
2389         struct acpi_nfit_interleave *idt = mmio->idt;
2390         u32 sub_line_offset, line_index, line_offset;
2391         u64 line_no, table_skip_count, table_offset;
2392
2393         line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
2394         table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
2395         line_offset = idt->line_offset[line_index]
2396                 * mmio->line_size;
2397         table_offset = table_skip_count * mmio->table_size;
2398
2399         return mmio->base_offset + line_offset + table_offset + sub_line_offset;
2400 }
2401
2402 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
2403 {
2404         struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2405         u64 offset = nfit_blk->stat_offset + mmio->size * bw;
2406         const u32 STATUS_MASK = 0x80000037;
2407
2408         if (mmio->num_lines)
2409                 offset = to_interleave_offset(offset, mmio);
2410
2411         return readl(mmio->addr.base + offset) & STATUS_MASK;
2412 }
2413
2414 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
2415                 resource_size_t dpa, unsigned int len, unsigned int write)
2416 {
2417         u64 cmd, offset;
2418         struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2419
2420         enum {
2421                 BCW_OFFSET_MASK = (1ULL << 48)-1,
2422                 BCW_LEN_SHIFT = 48,
2423                 BCW_LEN_MASK = (1ULL << 8) - 1,
2424                 BCW_CMD_SHIFT = 56,
2425         };
2426
2427         cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
2428         len = len >> L1_CACHE_SHIFT;
2429         cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
2430         cmd |= ((u64) write) << BCW_CMD_SHIFT;
2431
2432         offset = nfit_blk->cmd_offset + mmio->size * bw;
2433         if (mmio->num_lines)
2434                 offset = to_interleave_offset(offset, mmio);
2435
2436         writeq(cmd, mmio->addr.base + offset);
2437         nvdimm_flush(nfit_blk->nd_region);
2438
2439         if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
2440                 readq(mmio->addr.base + offset);
2441 }
2442
2443 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
2444                 resource_size_t dpa, void *iobuf, size_t len, int rw,
2445                 unsigned int lane)
2446 {
2447         struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2448         unsigned int copied = 0;
2449         u64 base_offset;
2450         int rc;
2451
2452         base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
2453                 + lane * mmio->size;
2454         write_blk_ctl(nfit_blk, lane, dpa, len, rw);
2455         while (len) {
2456                 unsigned int c;
2457                 u64 offset;
2458
2459                 if (mmio->num_lines) {
2460                         u32 line_offset;
2461
2462                         offset = to_interleave_offset(base_offset + copied,
2463                                         mmio);
2464                         div_u64_rem(offset, mmio->line_size, &line_offset);
2465                         c = min_t(size_t, len, mmio->line_size - line_offset);
2466                 } else {
2467                         offset = base_offset + nfit_blk->bdw_offset;
2468                         c = len;
2469                 }
2470
2471                 if (rw)
2472                         memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
2473                 else {
2474                         if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
2475                                 arch_invalidate_pmem((void __force *)
2476                                         mmio->addr.aperture + offset, c);
2477
2478                         memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
2479                 }
2480
2481                 copied += c;
2482                 len -= c;
2483         }
2484
2485         if (rw)
2486                 nvdimm_flush(nfit_blk->nd_region);
2487
2488         rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
2489         return rc;
2490 }
2491
2492 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
2493                 resource_size_t dpa, void *iobuf, u64 len, int rw)
2494 {
2495         struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
2496         struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2497         struct nd_region *nd_region = nfit_blk->nd_region;
2498         unsigned int lane, copied = 0;
2499         int rc = 0;
2500
2501         lane = nd_region_acquire_lane(nd_region);
2502         while (len) {
2503                 u64 c = min(len, mmio->size);
2504
2505                 rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
2506                                 iobuf + copied, c, rw, lane);
2507                 if (rc)
2508                         break;
2509
2510                 copied += c;
2511                 len -= c;
2512         }
2513         nd_region_release_lane(nd_region, lane);
2514
2515         return rc;
2516 }
2517
2518 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
2519                 struct acpi_nfit_interleave *idt, u16 interleave_ways)
2520 {
2521         if (idt) {
2522                 mmio->num_lines = idt->line_count;
2523                 mmio->line_size = idt->line_size;
2524                 if (interleave_ways == 0)
2525                         return -ENXIO;
2526                 mmio->table_size = mmio->num_lines * interleave_ways
2527                         * mmio->line_size;
2528         }
2529
2530         return 0;
2531 }
2532
2533 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
2534                 struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
2535 {
2536         struct nd_cmd_dimm_flags flags;
2537         int rc;
2538
2539         memset(&flags, 0, sizeof(flags));
2540         rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
2541                         sizeof(flags), NULL);
2542
2543         if (rc >= 0 && flags.status == 0)
2544                 nfit_blk->dimm_flags = flags.flags;
2545         else if (rc == -ENOTTY) {
2546                 /* fall back to a conservative default */
2547                 nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2548                 rc = 0;
2549         } else
2550                 rc = -ENXIO;
2551
2552         return rc;
2553 }
2554
2555 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2556                 struct device *dev)
2557 {
2558         struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2559         struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2560         struct nfit_blk_mmio *mmio;
2561         struct nfit_blk *nfit_blk;
2562         struct nfit_mem *nfit_mem;
2563         struct nvdimm *nvdimm;
2564         int rc;
2565
2566         nvdimm = nd_blk_region_to_dimm(ndbr);
2567         nfit_mem = nvdimm_provider_data(nvdimm);
2568         if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2569                 dev_dbg(dev, "missing%s%s%s\n",
2570                                 nfit_mem ? "" : " nfit_mem",
2571                                 (nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2572                                 (nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2573                 return -ENXIO;
2574         }
2575
2576         nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2577         if (!nfit_blk)
2578                 return -ENOMEM;
2579         nd_blk_region_set_provider_data(ndbr, nfit_blk);
2580         nfit_blk->nd_region = to_nd_region(dev);
2581
2582         /* map block aperture memory */
2583         nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2584         mmio = &nfit_blk->mmio[BDW];
2585         mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2586                         nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2587         if (!mmio->addr.base) {
2588                 dev_dbg(dev, "%s failed to map bdw\n",
2589                                 nvdimm_name(nvdimm));
2590                 return -ENOMEM;
2591         }
2592         mmio->size = nfit_mem->bdw->size;
2593         mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2594         mmio->idt = nfit_mem->idt_bdw;
2595         mmio->spa = nfit_mem->spa_bdw;
2596         rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2597                         nfit_mem->memdev_bdw->interleave_ways);
2598         if (rc) {
2599                 dev_dbg(dev, "%s failed to init bdw interleave\n",
2600                                 nvdimm_name(nvdimm));
2601                 return rc;
2602         }
2603
2604         /* map block control memory */
2605         nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2606         nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2607         mmio = &nfit_blk->mmio[DCR];
2608         mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2609                         nfit_mem->spa_dcr->length);
2610         if (!mmio->addr.base) {
2611                 dev_dbg(dev, "%s failed to map dcr\n",
2612                                 nvdimm_name(nvdimm));
2613                 return -ENOMEM;
2614         }
2615         mmio->size = nfit_mem->dcr->window_size;
2616         mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2617         mmio->idt = nfit_mem->idt_dcr;
2618         mmio->spa = nfit_mem->spa_dcr;
2619         rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2620                         nfit_mem->memdev_dcr->interleave_ways);
2621         if (rc) {
2622                 dev_dbg(dev, "%s failed to init dcr interleave\n",
2623                                 nvdimm_name(nvdimm));
2624                 return rc;
2625         }
2626
2627         rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2628         if (rc < 0) {
2629                 dev_dbg(dev, "%s failed get DIMM flags\n",
2630                                 nvdimm_name(nvdimm));
2631                 return rc;
2632         }
2633
2634         if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2635                 dev_warn(dev, "unable to guarantee persistence of writes\n");
2636
2637         if (mmio->line_size == 0)
2638                 return 0;
2639
2640         if ((u32) nfit_blk->cmd_offset % mmio->line_size
2641                         + 8 > mmio->line_size) {
2642                 dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2643                 return -ENXIO;
2644         } else if ((u32) nfit_blk->stat_offset % mmio->line_size
2645                         + 8 > mmio->line_size) {
2646                 dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2647                 return -ENXIO;
2648         }
2649
2650         return 0;
2651 }
2652
2653 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2654                 struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2655 {
2656         struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2657         struct acpi_nfit_system_address *spa = nfit_spa->spa;
2658         int cmd_rc, rc;
2659
2660         cmd->address = spa->address;
2661         cmd->length = spa->length;
2662         rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2663                         sizeof(*cmd), &cmd_rc);
2664         if (rc < 0)
2665                 return rc;
2666         return cmd_rc;
2667 }
2668
2669 static int ars_start(struct acpi_nfit_desc *acpi_desc,
2670                 struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2671 {
2672         int rc;
2673         int cmd_rc;
2674         struct nd_cmd_ars_start ars_start;
2675         struct acpi_nfit_system_address *spa = nfit_spa->spa;
2676         struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2677
2678         memset(&ars_start, 0, sizeof(ars_start));
2679         ars_start.address = spa->address;
2680         ars_start.length = spa->length;
2681         if (req_type == ARS_REQ_SHORT)
2682                 ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2683         if (nfit_spa_type(spa) == NFIT_SPA_PM)
2684                 ars_start.type = ND_ARS_PERSISTENT;
2685         else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2686                 ars_start.type = ND_ARS_VOLATILE;
2687         else
2688                 return -ENOTTY;
2689
2690         rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2691                         sizeof(ars_start), &cmd_rc);
2692
2693         if (rc < 0)
2694                 return rc;
2695         if (cmd_rc < 0)
2696                 return cmd_rc;
2697         set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2698         return 0;
2699 }
2700
2701 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2702 {
2703         int rc, cmd_rc;
2704         struct nd_cmd_ars_start ars_start;
2705         struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2706         struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2707
2708         ars_start = (struct nd_cmd_ars_start) {
2709                 .address = ars_status->restart_address,
2710                 .length = ars_status->restart_length,
2711                 .type = ars_status->type,
2712         };
2713         rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2714                         sizeof(ars_start), &cmd_rc);
2715         if (rc < 0)
2716                 return rc;
2717         return cmd_rc;
2718 }
2719
2720 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2721 {
2722         struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2723         struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2724         int rc, cmd_rc;
2725
2726         rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2727                         acpi_desc->max_ars, &cmd_rc);
2728         if (rc < 0)
2729                 return rc;
2730         return cmd_rc;
2731 }
2732
2733 static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2734                 struct nfit_spa *nfit_spa)
2735 {
2736         struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2737         struct acpi_nfit_system_address *spa = nfit_spa->spa;
2738         struct nd_region *nd_region = nfit_spa->nd_region;
2739         struct device *dev;
2740
2741         lockdep_assert_held(&acpi_desc->init_mutex);
2742         /*
2743          * Only advance the ARS state for ARS runs initiated by the
2744          * kernel, ignore ARS results from BIOS initiated runs for scrub
2745          * completion tracking.
2746          */
2747         if (acpi_desc->scrub_spa != nfit_spa)
2748                 return;
2749
2750         if ((ars_status->address >= spa->address && ars_status->address
2751                                 < spa->address + spa->length)
2752                         || (ars_status->address < spa->address)) {
2753                 /*
2754                  * Assume that if a scrub starts at an offset from the
2755                  * start of nfit_spa that we are in the continuation
2756                  * case.
2757                  *
2758                  * Otherwise, if the scrub covers the spa range, mark
2759                  * any pending request complete.
2760                  */
2761                 if (ars_status->address + ars_status->length
2762                                 >= spa->address + spa->length)
2763                                 /* complete */;
2764                 else
2765                         return;
2766         } else
2767                 return;
2768
2769         acpi_desc->scrub_spa = NULL;
2770         if (nd_region) {
2771                 dev = nd_region_dev(nd_region);
2772                 nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2773         } else
2774                 dev = acpi_desc->dev;
2775         dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2776 }
2777
2778 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2779 {
2780         struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2781         struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2782         int rc;
2783         u32 i;
2784
2785         /*
2786          * First record starts at 44 byte offset from the start of the
2787          * payload.
2788          */
2789         if (ars_status->out_length < 44)
2790                 return 0;
2791
2792         /*
2793          * Ignore potentially stale results that are only refreshed
2794          * after a start-ARS event.
2795          */
2796         if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) {
2797                 dev_dbg(acpi_desc->dev, "skip %d stale records\n",
2798                                 ars_status->num_records);
2799                 return 0;
2800         }
2801
2802         for (i = 0; i < ars_status->num_records; i++) {
2803                 /* only process full records */
2804                 if (ars_status->out_length
2805                                 < 44 + sizeof(struct nd_ars_record) * (i + 1))
2806                         break;
2807                 rc = nvdimm_bus_add_badrange(nvdimm_bus,
2808                                 ars_status->records[i].err_address,
2809                                 ars_status->records[i].length);
2810                 if (rc)
2811                         return rc;
2812         }
2813         if (i < ars_status->num_records)
2814                 dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2815
2816         return 0;
2817 }
2818
2819 static void acpi_nfit_remove_resource(void *data)
2820 {
2821         struct resource *res = data;
2822
2823         remove_resource(res);
2824 }
2825
2826 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2827                 struct nd_region_desc *ndr_desc)
2828 {
2829         struct resource *res, *nd_res = ndr_desc->res;
2830         int is_pmem, ret;
2831
2832         /* No operation if the region is already registered as PMEM */
2833         is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2834                                 IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2835         if (is_pmem == REGION_INTERSECTS)
2836                 return 0;
2837
2838         res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2839         if (!res)
2840                 return -ENOMEM;
2841
2842         res->name = "Persistent Memory";
2843         res->start = nd_res->start;
2844         res->end = nd_res->end;
2845         res->flags = IORESOURCE_MEM;
2846         res->desc = IORES_DESC_PERSISTENT_MEMORY;
2847
2848         ret = insert_resource(&iomem_resource, res);
2849         if (ret)
2850                 return ret;
2851
2852         ret = devm_add_action_or_reset(acpi_desc->dev,
2853                                         acpi_nfit_remove_resource,
2854                                         res);
2855         if (ret)
2856                 return ret;
2857
2858         return 0;
2859 }
2860
2861 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2862                 struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2863                 struct acpi_nfit_memory_map *memdev,
2864                 struct nfit_spa *nfit_spa)
2865 {
2866         struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2867                         memdev->device_handle);
2868         struct acpi_nfit_system_address *spa = nfit_spa->spa;
2869         struct nd_blk_region_desc *ndbr_desc;
2870         struct nfit_mem *nfit_mem;
2871         int rc;
2872
2873         if (!nvdimm) {
2874                 dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2875                                 spa->range_index, memdev->device_handle);
2876                 return -ENODEV;
2877         }
2878
2879         mapping->nvdimm = nvdimm;
2880         switch (nfit_spa_type(spa)) {
2881         case NFIT_SPA_PM:
2882         case NFIT_SPA_VOLATILE:
2883                 mapping->start = memdev->address;
2884                 mapping->size = memdev->region_size;
2885                 break;
2886         case NFIT_SPA_DCR:
2887                 nfit_mem = nvdimm_provider_data(nvdimm);
2888                 if (!nfit_mem || !nfit_mem->bdw) {
2889                         dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2890                                         spa->range_index, nvdimm_name(nvdimm));
2891                         break;
2892                 }
2893
2894                 mapping->size = nfit_mem->bdw->capacity;
2895                 mapping->start = nfit_mem->bdw->start_address;
2896                 ndr_desc->num_lanes = nfit_mem->bdw->windows;
2897                 ndr_desc->mapping = mapping;
2898                 ndr_desc->num_mappings = 1;
2899                 ndbr_desc = to_blk_region_desc(ndr_desc);
2900                 ndbr_desc->enable = acpi_nfit_blk_region_enable;
2901                 ndbr_desc->do_io = acpi_desc->blk_do_io;
2902                 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2903                 if (rc)
2904                         return rc;
2905                 nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2906                                 ndr_desc);
2907                 if (!nfit_spa->nd_region)
2908                         return -ENOMEM;
2909                 break;
2910         }
2911
2912         return 0;
2913 }
2914
2915 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2916 {
2917         return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2918                 nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2919                 nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2920                 nfit_spa_type(spa) == NFIT_SPA_PCD);
2921 }
2922
2923 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2924 {
2925         return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2926                 nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2927                 nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2928 }
2929
2930 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2931                 struct nfit_spa *nfit_spa)
2932 {
2933         static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2934         struct acpi_nfit_system_address *spa = nfit_spa->spa;
2935         struct nd_blk_region_desc ndbr_desc;
2936         struct nd_region_desc *ndr_desc;
2937         struct nfit_memdev *nfit_memdev;
2938         struct nvdimm_bus *nvdimm_bus;
2939         struct resource res;
2940         int count = 0, rc;
2941
2942         if (nfit_spa->nd_region)
2943                 return 0;
2944
2945         if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2946                 dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2947                 return 0;
2948         }
2949
2950         memset(&res, 0, sizeof(res));
2951         memset(&mappings, 0, sizeof(mappings));
2952         memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2953         res.start = spa->address;
2954         res.end = res.start + spa->length - 1;
2955         ndr_desc = &ndbr_desc.ndr_desc;
2956         ndr_desc->res = &res;
2957         ndr_desc->provider_data = nfit_spa;
2958         ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2959         if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) {
2960                 ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2961                                                 spa->proximity_domain);
2962                 ndr_desc->target_node = acpi_map_pxm_to_node(
2963                                 spa->proximity_domain);
2964         } else {
2965                 ndr_desc->numa_node = NUMA_NO_NODE;
2966                 ndr_desc->target_node = NUMA_NO_NODE;
2967         }
2968
2969         /*
2970          * Persistence domain bits are hierarchical, if
2971          * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
2972          * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
2973          */
2974         if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2975                 set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2976         else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2977                 set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2978
2979         list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2980                 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2981                 struct nd_mapping_desc *mapping;
2982
2983                 if (memdev->range_index != spa->range_index)
2984                         continue;
2985                 if (count >= ND_MAX_MAPPINGS) {
2986                         dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2987                                         spa->range_index, ND_MAX_MAPPINGS);
2988                         return -ENXIO;
2989                 }
2990                 mapping = &mappings[count++];
2991                 rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2992                                 memdev, nfit_spa);
2993                 if (rc)
2994                         goto out;
2995         }
2996
2997         ndr_desc->mapping = mappings;
2998         ndr_desc->num_mappings = count;
2999         rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
3000         if (rc)
3001                 goto out;
3002
3003         nvdimm_bus = acpi_desc->nvdimm_bus;
3004         if (nfit_spa_type(spa) == NFIT_SPA_PM) {
3005                 rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
3006                 if (rc) {
3007                         dev_warn(acpi_desc->dev,
3008                                 "failed to insert pmem resource to iomem: %d\n",
3009                                 rc);
3010                         goto out;
3011                 }
3012
3013                 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
3014                                 ndr_desc);
3015                 if (!nfit_spa->nd_region)
3016                         rc = -ENOMEM;
3017         } else if (nfit_spa_is_volatile(spa)) {
3018                 nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
3019                                 ndr_desc);
3020                 if (!nfit_spa->nd_region)
3021                         rc = -ENOMEM;
3022         } else if (nfit_spa_is_virtual(spa)) {
3023                 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
3024                                 ndr_desc);
3025                 if (!nfit_spa->nd_region)
3026                         rc = -ENOMEM;
3027         }
3028
3029  out:
3030         if (rc)
3031                 dev_err(acpi_desc->dev, "failed to register spa range %d\n",
3032                                 nfit_spa->spa->range_index);
3033         return rc;
3034 }
3035
3036 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
3037 {
3038         struct device *dev = acpi_desc->dev;
3039         struct nd_cmd_ars_status *ars_status;
3040
3041         if (acpi_desc->ars_status) {
3042                 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3043                 return 0;
3044         }
3045
3046         ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
3047         if (!ars_status)
3048                 return -ENOMEM;
3049         acpi_desc->ars_status = ars_status;
3050         return 0;
3051 }
3052
3053 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
3054 {
3055         int rc;
3056
3057         if (ars_status_alloc(acpi_desc))
3058                 return -ENOMEM;
3059
3060         rc = ars_get_status(acpi_desc);
3061
3062         if (rc < 0 && rc != -ENOSPC)
3063                 return rc;
3064
3065         if (ars_status_process_records(acpi_desc))
3066                 dev_err(acpi_desc->dev, "Failed to process ARS records\n");
3067
3068         return rc;
3069 }
3070
3071 static int ars_register(struct acpi_nfit_desc *acpi_desc,
3072                 struct nfit_spa *nfit_spa)
3073 {
3074         int rc;
3075
3076         if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3077                 return acpi_nfit_register_region(acpi_desc, nfit_spa);
3078
3079         set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3080         if (!no_init_ars)
3081                 set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
3082
3083         switch (acpi_nfit_query_poison(acpi_desc)) {
3084         case 0:
3085         case -ENOSPC:
3086         case -EAGAIN:
3087                 rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
3088                 /* shouldn't happen, try again later */
3089                 if (rc == -EBUSY)
3090                         break;
3091                 if (rc) {
3092                         set_bit(ARS_FAILED, &nfit_spa->ars_state);
3093                         break;
3094                 }
3095                 clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3096                 rc = acpi_nfit_query_poison(acpi_desc);
3097                 if (rc)
3098                         break;
3099                 acpi_desc->scrub_spa = nfit_spa;
3100                 ars_complete(acpi_desc, nfit_spa);
3101                 /*
3102                  * If ars_complete() says we didn't complete the
3103                  * short scrub, we'll try again with a long
3104                  * request.
3105                  */
3106                 acpi_desc->scrub_spa = NULL;
3107                 break;
3108         case -EBUSY:
3109         case -ENOMEM:
3110                 /*
3111                  * BIOS was using ARS, wait for it to complete (or
3112                  * resources to become available) and then perform our
3113                  * own scrubs.
3114                  */
3115                 break;
3116         default:
3117                 set_bit(ARS_FAILED, &nfit_spa->ars_state);
3118                 break;
3119         }
3120
3121         return acpi_nfit_register_region(acpi_desc, nfit_spa);
3122 }
3123
3124 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
3125 {
3126         struct nfit_spa *nfit_spa;
3127
3128         list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3129                 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3130                         continue;
3131                 ars_complete(acpi_desc, nfit_spa);
3132         }
3133 }
3134
3135 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
3136                 int query_rc)
3137 {
3138         unsigned int tmo = acpi_desc->scrub_tmo;
3139         struct device *dev = acpi_desc->dev;
3140         struct nfit_spa *nfit_spa;
3141
3142         lockdep_assert_held(&acpi_desc->init_mutex);
3143
3144         if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags))
3145                 return 0;
3146
3147         if (query_rc == -EBUSY) {
3148                 dev_dbg(dev, "ARS: ARS busy\n");
3149                 return min(30U * 60U, tmo * 2);
3150         }
3151         if (query_rc == -ENOSPC) {
3152                 dev_dbg(dev, "ARS: ARS continue\n");
3153                 ars_continue(acpi_desc);
3154                 return 1;
3155         }
3156         if (query_rc && query_rc != -EAGAIN) {
3157                 unsigned long long addr, end;
3158
3159                 addr = acpi_desc->ars_status->address;
3160                 end = addr + acpi_desc->ars_status->length;
3161                 dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
3162                                 query_rc);
3163         }
3164
3165         ars_complete_all(acpi_desc);
3166         list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3167                 enum nfit_ars_state req_type;
3168                 int rc;
3169
3170                 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3171                         continue;
3172
3173                 /* prefer short ARS requests first */
3174                 if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
3175                         req_type = ARS_REQ_SHORT;
3176                 else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
3177                         req_type = ARS_REQ_LONG;
3178                 else
3179                         continue;
3180                 rc = ars_start(acpi_desc, nfit_spa, req_type);
3181
3182                 dev = nd_region_dev(nfit_spa->nd_region);
3183                 dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
3184                                 nfit_spa->spa->range_index,
3185                                 req_type == ARS_REQ_SHORT ? "short" : "long",
3186                                 rc);
3187                 /*
3188                  * Hmm, we raced someone else starting ARS? Try again in
3189                  * a bit.
3190                  */
3191                 if (rc == -EBUSY)
3192                         return 1;
3193                 if (rc == 0) {
3194                         dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
3195                                         "scrub start while range %d active\n",
3196                                         acpi_desc->scrub_spa->spa->range_index);
3197                         clear_bit(req_type, &nfit_spa->ars_state);
3198                         acpi_desc->scrub_spa = nfit_spa;
3199                         /*
3200                          * Consider this spa last for future scrub
3201                          * requests
3202                          */
3203                         list_move_tail(&nfit_spa->list, &acpi_desc->spas);
3204                         return 1;
3205                 }
3206
3207                 dev_err(dev, "ARS: range %d ARS failed (%d)\n",
3208                                 nfit_spa->spa->range_index, rc);
3209                 set_bit(ARS_FAILED, &nfit_spa->ars_state);
3210         }
3211         return 0;
3212 }
3213
3214 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
3215 {
3216         lockdep_assert_held(&acpi_desc->init_mutex);
3217
3218         set_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3219         /* note this should only be set from within the workqueue */
3220         if (tmo)
3221                 acpi_desc->scrub_tmo = tmo;
3222         queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
3223 }
3224
3225 static void sched_ars(struct acpi_nfit_desc *acpi_desc)
3226 {
3227         __sched_ars(acpi_desc, 0);
3228 }
3229
3230 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
3231 {
3232         lockdep_assert_held(&acpi_desc->init_mutex);
3233
3234         clear_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3235         acpi_desc->scrub_count++;
3236         if (acpi_desc->scrub_count_state)
3237                 sysfs_notify_dirent(acpi_desc->scrub_count_state);
3238 }
3239
3240 static void acpi_nfit_scrub(struct work_struct *work)
3241 {
3242         struct acpi_nfit_desc *acpi_desc;
3243         unsigned int tmo;
3244         int query_rc;
3245
3246         acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
3247         mutex_lock(&acpi_desc->init_mutex);
3248         query_rc = acpi_nfit_query_poison(acpi_desc);
3249         tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
3250         if (tmo)
3251                 __sched_ars(acpi_desc, tmo);
3252         else
3253                 notify_ars_done(acpi_desc);
3254         memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3255         clear_bit(ARS_POLL, &acpi_desc->scrub_flags);
3256         mutex_unlock(&acpi_desc->init_mutex);
3257 }
3258
3259 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
3260                 struct nfit_spa *nfit_spa)
3261 {
3262         int type = nfit_spa_type(nfit_spa->spa);
3263         struct nd_cmd_ars_cap ars_cap;
3264         int rc;
3265
3266         set_bit(ARS_FAILED, &nfit_spa->ars_state);
3267         memset(&ars_cap, 0, sizeof(ars_cap));
3268         rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
3269         if (rc < 0)
3270                 return;
3271         /* check that the supported scrub types match the spa type */
3272         if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
3273                                 & ND_ARS_VOLATILE) == 0)
3274                 return;
3275         if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
3276                                 & ND_ARS_PERSISTENT) == 0)
3277                 return;
3278
3279         nfit_spa->max_ars = ars_cap.max_ars_out;
3280         nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
3281         acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
3282         clear_bit(ARS_FAILED, &nfit_spa->ars_state);
3283 }
3284
3285 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
3286 {
3287         struct nfit_spa *nfit_spa;
3288         int rc;
3289
3290         set_bit(ARS_VALID, &acpi_desc->scrub_flags);
3291         list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3292                 switch (nfit_spa_type(nfit_spa->spa)) {
3293                 case NFIT_SPA_VOLATILE:
3294                 case NFIT_SPA_PM:
3295                         acpi_nfit_init_ars(acpi_desc, nfit_spa);
3296                         break;
3297                 }
3298         }
3299
3300         list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
3301                 switch (nfit_spa_type(nfit_spa->spa)) {
3302                 case NFIT_SPA_VOLATILE:
3303                 case NFIT_SPA_PM:
3304                         /* register regions and kick off initial ARS run */
3305                         rc = ars_register(acpi_desc, nfit_spa);
3306                         if (rc)
3307                                 return rc;
3308                         break;
3309                 case NFIT_SPA_BDW:
3310                         /* nothing to register */
3311                         break;
3312                 case NFIT_SPA_DCR:
3313                 case NFIT_SPA_VDISK:
3314                 case NFIT_SPA_VCD:
3315                 case NFIT_SPA_PDISK:
3316                 case NFIT_SPA_PCD:
3317                         /* register known regions that don't support ARS */
3318                         rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3319                         if (rc)
3320                                 return rc;
3321                         break;
3322                 default:
3323                         /* don't register unknown regions */
3324                         break;
3325                 }