Merge tag 'acpi-extra-4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafae...
[muen/linux.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <asm/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "internal.h"
49
50 #define _COMPONENT              ACPI_OS_SERVICES
51 ACPI_MODULE_NAME("osl");
52
53 struct acpi_os_dpc {
54         acpi_osd_exec_callback function;
55         void *context;
56         struct work_struct work;
57 };
58
59 #ifdef ENABLE_DEBUGGER
60 #include <linux/kdb.h>
61
62 /* stuff for debugger support */
63 int acpi_in_debugger;
64 EXPORT_SYMBOL(acpi_in_debugger);
65 #endif                          /*ENABLE_DEBUGGER */
66
67 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68                                       u32 pm1b_ctrl);
69 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70                                       u32 val_b);
71
72 static acpi_osd_handler acpi_irq_handler;
73 static void *acpi_irq_context;
74 static struct workqueue_struct *kacpid_wq;
75 static struct workqueue_struct *kacpi_notify_wq;
76 static struct workqueue_struct *kacpi_hotplug_wq;
77 static bool acpi_os_initialized;
78 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79
80 /*
81  * This list of permanent mappings is for memory that may be accessed from
82  * interrupt context, where we can't do the ioremap().
83  */
84 struct acpi_ioremap {
85         struct list_head list;
86         void __iomem *virt;
87         acpi_physical_address phys;
88         acpi_size size;
89         unsigned long refcount;
90 };
91
92 static LIST_HEAD(acpi_ioremaps);
93 static DEFINE_MUTEX(acpi_ioremap_lock);
94
95 static void __init acpi_request_region (struct acpi_generic_address *gas,
96         unsigned int length, char *desc)
97 {
98         u64 addr;
99
100         /* Handle possible alignment issues */
101         memcpy(&addr, &gas->address, sizeof(addr));
102         if (!addr || !length)
103                 return;
104
105         /* Resources are never freed */
106         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
107                 request_region(addr, length, desc);
108         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
109                 request_mem_region(addr, length, desc);
110 }
111
112 static int __init acpi_reserve_resources(void)
113 {
114         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
115                 "ACPI PM1a_EVT_BLK");
116
117         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
118                 "ACPI PM1b_EVT_BLK");
119
120         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
121                 "ACPI PM1a_CNT_BLK");
122
123         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
124                 "ACPI PM1b_CNT_BLK");
125
126         if (acpi_gbl_FADT.pm_timer_length == 4)
127                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
128
129         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
130                 "ACPI PM2_CNT_BLK");
131
132         /* Length of GPE blocks must be a non-negative multiple of 2 */
133
134         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
135                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
136                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
137
138         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
139                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
140                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
141
142         return 0;
143 }
144 fs_initcall_sync(acpi_reserve_resources);
145
146 void acpi_os_printf(const char *fmt, ...)
147 {
148         va_list args;
149         va_start(args, fmt);
150         acpi_os_vprintf(fmt, args);
151         va_end(args);
152 }
153 EXPORT_SYMBOL(acpi_os_printf);
154
155 void acpi_os_vprintf(const char *fmt, va_list args)
156 {
157         static char buffer[512];
158
159         vsprintf(buffer, fmt, args);
160
161 #ifdef ENABLE_DEBUGGER
162         if (acpi_in_debugger) {
163                 kdb_printf("%s", buffer);
164         } else {
165                 if (printk_get_level(buffer))
166                         printk("%s", buffer);
167                 else
168                         printk(KERN_CONT "%s", buffer);
169         }
170 #else
171         if (acpi_debugger_write_log(buffer) < 0) {
172                 if (printk_get_level(buffer))
173                         printk("%s", buffer);
174                 else
175                         printk(KERN_CONT "%s", buffer);
176         }
177 #endif
178 }
179
180 #ifdef CONFIG_KEXEC
181 static unsigned long acpi_rsdp;
182 static int __init setup_acpi_rsdp(char *arg)
183 {
184         if (kstrtoul(arg, 16, &acpi_rsdp))
185                 return -EINVAL;
186         return 0;
187 }
188 early_param("acpi_rsdp", setup_acpi_rsdp);
189 #endif
190
191 acpi_physical_address __init acpi_os_get_root_pointer(void)
192 {
193 #ifdef CONFIG_KEXEC
194         if (acpi_rsdp)
195                 return acpi_rsdp;
196 #endif
197
198         if (efi_enabled(EFI_CONFIG_TABLES)) {
199                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
200                         return efi.acpi20;
201                 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
202                         return efi.acpi;
203                 else {
204                         printk(KERN_ERR PREFIX
205                                "System description tables not found\n");
206                         return 0;
207                 }
208         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
209                 acpi_physical_address pa = 0;
210
211                 acpi_find_root_pointer(&pa);
212                 return pa;
213         }
214
215         return 0;
216 }
217
218 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
219 static struct acpi_ioremap *
220 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
221 {
222         struct acpi_ioremap *map;
223
224         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
225                 if (map->phys <= phys &&
226                     phys + size <= map->phys + map->size)
227                         return map;
228
229         return NULL;
230 }
231
232 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
233 static void __iomem *
234 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
235 {
236         struct acpi_ioremap *map;
237
238         map = acpi_map_lookup(phys, size);
239         if (map)
240                 return map->virt + (phys - map->phys);
241
242         return NULL;
243 }
244
245 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
246 {
247         struct acpi_ioremap *map;
248         void __iomem *virt = NULL;
249
250         mutex_lock(&acpi_ioremap_lock);
251         map = acpi_map_lookup(phys, size);
252         if (map) {
253                 virt = map->virt + (phys - map->phys);
254                 map->refcount++;
255         }
256         mutex_unlock(&acpi_ioremap_lock);
257         return virt;
258 }
259 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
260
261 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
262 static struct acpi_ioremap *
263 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
264 {
265         struct acpi_ioremap *map;
266
267         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
268                 if (map->virt <= virt &&
269                     virt + size <= map->virt + map->size)
270                         return map;
271
272         return NULL;
273 }
274
275 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
276 /* ioremap will take care of cache attributes */
277 #define should_use_kmap(pfn)   0
278 #else
279 #define should_use_kmap(pfn)   page_is_ram(pfn)
280 #endif
281
282 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
283 {
284         unsigned long pfn;
285
286         pfn = pg_off >> PAGE_SHIFT;
287         if (should_use_kmap(pfn)) {
288                 if (pg_sz > PAGE_SIZE)
289                         return NULL;
290                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
291         } else
292                 return acpi_os_ioremap(pg_off, pg_sz);
293 }
294
295 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
296 {
297         unsigned long pfn;
298
299         pfn = pg_off >> PAGE_SHIFT;
300         if (should_use_kmap(pfn))
301                 kunmap(pfn_to_page(pfn));
302         else
303                 iounmap(vaddr);
304 }
305
306 /**
307  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
308  * @phys: Start of the physical address range to map.
309  * @size: Size of the physical address range to map.
310  *
311  * Look up the given physical address range in the list of existing ACPI memory
312  * mappings.  If found, get a reference to it and return a pointer to it (its
313  * virtual address).  If not found, map it, add it to that list and return a
314  * pointer to it.
315  *
316  * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
317  * routine simply calls __acpi_map_table() to get the job done.
318  */
319 void __iomem *__ref
320 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
321 {
322         struct acpi_ioremap *map;
323         void __iomem *virt;
324         acpi_physical_address pg_off;
325         acpi_size pg_sz;
326
327         if (phys > ULONG_MAX) {
328                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
329                 return NULL;
330         }
331
332         if (!acpi_gbl_permanent_mmap)
333                 return __acpi_map_table((unsigned long)phys, size);
334
335         mutex_lock(&acpi_ioremap_lock);
336         /* Check if there's a suitable mapping already. */
337         map = acpi_map_lookup(phys, size);
338         if (map) {
339                 map->refcount++;
340                 goto out;
341         }
342
343         map = kzalloc(sizeof(*map), GFP_KERNEL);
344         if (!map) {
345                 mutex_unlock(&acpi_ioremap_lock);
346                 return NULL;
347         }
348
349         pg_off = round_down(phys, PAGE_SIZE);
350         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
351         virt = acpi_map(pg_off, pg_sz);
352         if (!virt) {
353                 mutex_unlock(&acpi_ioremap_lock);
354                 kfree(map);
355                 return NULL;
356         }
357
358         INIT_LIST_HEAD(&map->list);
359         map->virt = virt;
360         map->phys = pg_off;
361         map->size = pg_sz;
362         map->refcount = 1;
363
364         list_add_tail_rcu(&map->list, &acpi_ioremaps);
365
366 out:
367         mutex_unlock(&acpi_ioremap_lock);
368         return map->virt + (phys - map->phys);
369 }
370 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
371
372 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
373 {
374         return (void *)acpi_os_map_iomem(phys, size);
375 }
376 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
377
378 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
379 {
380         if (!--map->refcount)
381                 list_del_rcu(&map->list);
382 }
383
384 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
385 {
386         if (!map->refcount) {
387                 synchronize_rcu_expedited();
388                 acpi_unmap(map->phys, map->virt);
389                 kfree(map);
390         }
391 }
392
393 /**
394  * acpi_os_unmap_iomem - Drop a memory mapping reference.
395  * @virt: Start of the address range to drop a reference to.
396  * @size: Size of the address range to drop a reference to.
397  *
398  * Look up the given virtual address range in the list of existing ACPI memory
399  * mappings, drop a reference to it and unmap it if there are no more active
400  * references to it.
401  *
402  * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
403  * routine simply calls __acpi_unmap_table() to get the job done.  Since
404  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
405  * here.
406  */
407 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
408 {
409         struct acpi_ioremap *map;
410
411         if (!acpi_gbl_permanent_mmap) {
412                 __acpi_unmap_table(virt, size);
413                 return;
414         }
415
416         mutex_lock(&acpi_ioremap_lock);
417         map = acpi_map_lookup_virt(virt, size);
418         if (!map) {
419                 mutex_unlock(&acpi_ioremap_lock);
420                 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
421                 return;
422         }
423         acpi_os_drop_map_ref(map);
424         mutex_unlock(&acpi_ioremap_lock);
425
426         acpi_os_map_cleanup(map);
427 }
428 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
429
430 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
431 {
432         return acpi_os_unmap_iomem((void __iomem *)virt, size);
433 }
434 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
435
436 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
437 {
438         if (!acpi_gbl_permanent_mmap)
439                 __acpi_unmap_table(virt, size);
440 }
441
442 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
443 {
444         u64 addr;
445         void __iomem *virt;
446
447         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
448                 return 0;
449
450         /* Handle possible alignment issues */
451         memcpy(&addr, &gas->address, sizeof(addr));
452         if (!addr || !gas->bit_width)
453                 return -EINVAL;
454
455         virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
456         if (!virt)
457                 return -EIO;
458
459         return 0;
460 }
461 EXPORT_SYMBOL(acpi_os_map_generic_address);
462
463 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
464 {
465         u64 addr;
466         struct acpi_ioremap *map;
467
468         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
469                 return;
470
471         /* Handle possible alignment issues */
472         memcpy(&addr, &gas->address, sizeof(addr));
473         if (!addr || !gas->bit_width)
474                 return;
475
476         mutex_lock(&acpi_ioremap_lock);
477         map = acpi_map_lookup(addr, gas->bit_width / 8);
478         if (!map) {
479                 mutex_unlock(&acpi_ioremap_lock);
480                 return;
481         }
482         acpi_os_drop_map_ref(map);
483         mutex_unlock(&acpi_ioremap_lock);
484
485         acpi_os_map_cleanup(map);
486 }
487 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
488
489 #ifdef ACPI_FUTURE_USAGE
490 acpi_status
491 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
492 {
493         if (!phys || !virt)
494                 return AE_BAD_PARAMETER;
495
496         *phys = virt_to_phys(virt);
497
498         return AE_OK;
499 }
500 #endif
501
502 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
503 static bool acpi_rev_override;
504
505 int __init acpi_rev_override_setup(char *str)
506 {
507         acpi_rev_override = true;
508         return 1;
509 }
510 __setup("acpi_rev_override", acpi_rev_override_setup);
511 #else
512 #define acpi_rev_override       false
513 #endif
514
515 #define ACPI_MAX_OVERRIDE_LEN 100
516
517 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
518
519 acpi_status
520 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
521                             acpi_string *new_val)
522 {
523         if (!init_val || !new_val)
524                 return AE_BAD_PARAMETER;
525
526         *new_val = NULL;
527         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
528                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
529                        acpi_os_name);
530                 *new_val = acpi_os_name;
531         }
532
533         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
534                 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
535                 *new_val = (char *)5;
536         }
537
538         return AE_OK;
539 }
540
541 static irqreturn_t acpi_irq(int irq, void *dev_id)
542 {
543         u32 handled;
544
545         handled = (*acpi_irq_handler) (acpi_irq_context);
546
547         if (handled) {
548                 acpi_irq_handled++;
549                 return IRQ_HANDLED;
550         } else {
551                 acpi_irq_not_handled++;
552                 return IRQ_NONE;
553         }
554 }
555
556 acpi_status
557 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558                                   void *context)
559 {
560         unsigned int irq;
561
562         acpi_irq_stats_init();
563
564         /*
565          * ACPI interrupts different from the SCI in our copy of the FADT are
566          * not supported.
567          */
568         if (gsi != acpi_gbl_FADT.sci_interrupt)
569                 return AE_BAD_PARAMETER;
570
571         if (acpi_irq_handler)
572                 return AE_ALREADY_ACQUIRED;
573
574         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
576                        gsi);
577                 return AE_OK;
578         }
579
580         acpi_irq_handler = handler;
581         acpi_irq_context = context;
582         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
583                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
584                 acpi_irq_handler = NULL;
585                 return AE_NOT_ACQUIRED;
586         }
587         acpi_sci_irq = irq;
588
589         return AE_OK;
590 }
591
592 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593 {
594         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595                 return AE_BAD_PARAMETER;
596
597         free_irq(acpi_sci_irq, acpi_irq);
598         acpi_irq_handler = NULL;
599         acpi_sci_irq = INVALID_ACPI_IRQ;
600
601         return AE_OK;
602 }
603
604 /*
605  * Running in interpreter thread context, safe to sleep
606  */
607
608 void acpi_os_sleep(u64 ms)
609 {
610         msleep(ms);
611 }
612
613 void acpi_os_stall(u32 us)
614 {
615         while (us) {
616                 u32 delay = 1000;
617
618                 if (delay > us)
619                         delay = us;
620                 udelay(delay);
621                 touch_nmi_watchdog();
622                 us -= delay;
623         }
624 }
625
626 /*
627  * Support ACPI 3.0 AML Timer operand
628  * Returns 64-bit free-running, monotonically increasing timer
629  * with 100ns granularity
630  */
631 u64 acpi_os_get_timer(void)
632 {
633         u64 time_ns = ktime_to_ns(ktime_get());
634         do_div(time_ns, 100);
635         return time_ns;
636 }
637
638 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
639 {
640         u32 dummy;
641
642         if (!value)
643                 value = &dummy;
644
645         *value = 0;
646         if (width <= 8) {
647                 *(u8 *) value = inb(port);
648         } else if (width <= 16) {
649                 *(u16 *) value = inw(port);
650         } else if (width <= 32) {
651                 *(u32 *) value = inl(port);
652         } else {
653                 BUG();
654         }
655
656         return AE_OK;
657 }
658
659 EXPORT_SYMBOL(acpi_os_read_port);
660
661 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
662 {
663         if (width <= 8) {
664                 outb(value, port);
665         } else if (width <= 16) {
666                 outw(value, port);
667         } else if (width <= 32) {
668                 outl(value, port);
669         } else {
670                 BUG();
671         }
672
673         return AE_OK;
674 }
675
676 EXPORT_SYMBOL(acpi_os_write_port);
677
678 acpi_status
679 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
680 {
681         void __iomem *virt_addr;
682         unsigned int size = width / 8;
683         bool unmap = false;
684         u64 dummy;
685
686         rcu_read_lock();
687         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
688         if (!virt_addr) {
689                 rcu_read_unlock();
690                 virt_addr = acpi_os_ioremap(phys_addr, size);
691                 if (!virt_addr)
692                         return AE_BAD_ADDRESS;
693                 unmap = true;
694         }
695
696         if (!value)
697                 value = &dummy;
698
699         switch (width) {
700         case 8:
701                 *(u8 *) value = readb(virt_addr);
702                 break;
703         case 16:
704                 *(u16 *) value = readw(virt_addr);
705                 break;
706         case 32:
707                 *(u32 *) value = readl(virt_addr);
708                 break;
709         case 64:
710                 *(u64 *) value = readq(virt_addr);
711                 break;
712         default:
713                 BUG();
714         }
715
716         if (unmap)
717                 iounmap(virt_addr);
718         else
719                 rcu_read_unlock();
720
721         return AE_OK;
722 }
723
724 acpi_status
725 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
726 {
727         void __iomem *virt_addr;
728         unsigned int size = width / 8;
729         bool unmap = false;
730
731         rcu_read_lock();
732         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
733         if (!virt_addr) {
734                 rcu_read_unlock();
735                 virt_addr = acpi_os_ioremap(phys_addr, size);
736                 if (!virt_addr)
737                         return AE_BAD_ADDRESS;
738                 unmap = true;
739         }
740
741         switch (width) {
742         case 8:
743                 writeb(value, virt_addr);
744                 break;
745         case 16:
746                 writew(value, virt_addr);
747                 break;
748         case 32:
749                 writel(value, virt_addr);
750                 break;
751         case 64:
752                 writeq(value, virt_addr);
753                 break;
754         default:
755                 BUG();
756         }
757
758         if (unmap)
759                 iounmap(virt_addr);
760         else
761                 rcu_read_unlock();
762
763         return AE_OK;
764 }
765
766 acpi_status
767 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
768                                u64 *value, u32 width)
769 {
770         int result, size;
771         u32 value32;
772
773         if (!value)
774                 return AE_BAD_PARAMETER;
775
776         switch (width) {
777         case 8:
778                 size = 1;
779                 break;
780         case 16:
781                 size = 2;
782                 break;
783         case 32:
784                 size = 4;
785                 break;
786         default:
787                 return AE_ERROR;
788         }
789
790         result = raw_pci_read(pci_id->segment, pci_id->bus,
791                                 PCI_DEVFN(pci_id->device, pci_id->function),
792                                 reg, size, &value32);
793         *value = value32;
794
795         return (result ? AE_ERROR : AE_OK);
796 }
797
798 acpi_status
799 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
800                                 u64 value, u32 width)
801 {
802         int result, size;
803
804         switch (width) {
805         case 8:
806                 size = 1;
807                 break;
808         case 16:
809                 size = 2;
810                 break;
811         case 32:
812                 size = 4;
813                 break;
814         default:
815                 return AE_ERROR;
816         }
817
818         result = raw_pci_write(pci_id->segment, pci_id->bus,
819                                 PCI_DEVFN(pci_id->device, pci_id->function),
820                                 reg, size, value);
821
822         return (result ? AE_ERROR : AE_OK);
823 }
824
825 static void acpi_os_execute_deferred(struct work_struct *work)
826 {
827         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
828
829         dpc->function(dpc->context);
830         kfree(dpc);
831 }
832
833 #ifdef CONFIG_ACPI_DEBUGGER
834 static struct acpi_debugger acpi_debugger;
835 static bool acpi_debugger_initialized;
836
837 int acpi_register_debugger(struct module *owner,
838                            const struct acpi_debugger_ops *ops)
839 {
840         int ret = 0;
841
842         mutex_lock(&acpi_debugger.lock);
843         if (acpi_debugger.ops) {
844                 ret = -EBUSY;
845                 goto err_lock;
846         }
847
848         acpi_debugger.owner = owner;
849         acpi_debugger.ops = ops;
850
851 err_lock:
852         mutex_unlock(&acpi_debugger.lock);
853         return ret;
854 }
855 EXPORT_SYMBOL(acpi_register_debugger);
856
857 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
858 {
859         mutex_lock(&acpi_debugger.lock);
860         if (ops == acpi_debugger.ops) {
861                 acpi_debugger.ops = NULL;
862                 acpi_debugger.owner = NULL;
863         }
864         mutex_unlock(&acpi_debugger.lock);
865 }
866 EXPORT_SYMBOL(acpi_unregister_debugger);
867
868 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
869 {
870         int ret;
871         int (*func)(acpi_osd_exec_callback, void *);
872         struct module *owner;
873
874         if (!acpi_debugger_initialized)
875                 return -ENODEV;
876         mutex_lock(&acpi_debugger.lock);
877         if (!acpi_debugger.ops) {
878                 ret = -ENODEV;
879                 goto err_lock;
880         }
881         if (!try_module_get(acpi_debugger.owner)) {
882                 ret = -ENODEV;
883                 goto err_lock;
884         }
885         func = acpi_debugger.ops->create_thread;
886         owner = acpi_debugger.owner;
887         mutex_unlock(&acpi_debugger.lock);
888
889         ret = func(function, context);
890
891         mutex_lock(&acpi_debugger.lock);
892         module_put(owner);
893 err_lock:
894         mutex_unlock(&acpi_debugger.lock);
895         return ret;
896 }
897
898 ssize_t acpi_debugger_write_log(const char *msg)
899 {
900         ssize_t ret;
901         ssize_t (*func)(const char *);
902         struct module *owner;
903
904         if (!acpi_debugger_initialized)
905                 return -ENODEV;
906         mutex_lock(&acpi_debugger.lock);
907         if (!acpi_debugger.ops) {
908                 ret = -ENODEV;
909                 goto err_lock;
910         }
911         if (!try_module_get(acpi_debugger.owner)) {
912                 ret = -ENODEV;
913                 goto err_lock;
914         }
915         func = acpi_debugger.ops->write_log;
916         owner = acpi_debugger.owner;
917         mutex_unlock(&acpi_debugger.lock);
918
919         ret = func(msg);
920
921         mutex_lock(&acpi_debugger.lock);
922         module_put(owner);
923 err_lock:
924         mutex_unlock(&acpi_debugger.lock);
925         return ret;
926 }
927
928 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
929 {
930         ssize_t ret;
931         ssize_t (*func)(char *, size_t);
932         struct module *owner;
933
934         if (!acpi_debugger_initialized)
935                 return -ENODEV;
936         mutex_lock(&acpi_debugger.lock);
937         if (!acpi_debugger.ops) {
938                 ret = -ENODEV;
939                 goto err_lock;
940         }
941         if (!try_module_get(acpi_debugger.owner)) {
942                 ret = -ENODEV;
943                 goto err_lock;
944         }
945         func = acpi_debugger.ops->read_cmd;
946         owner = acpi_debugger.owner;
947         mutex_unlock(&acpi_debugger.lock);
948
949         ret = func(buffer, buffer_length);
950
951         mutex_lock(&acpi_debugger.lock);
952         module_put(owner);
953 err_lock:
954         mutex_unlock(&acpi_debugger.lock);
955         return ret;
956 }
957
958 int acpi_debugger_wait_command_ready(void)
959 {
960         int ret;
961         int (*func)(bool, char *, size_t);
962         struct module *owner;
963
964         if (!acpi_debugger_initialized)
965                 return -ENODEV;
966         mutex_lock(&acpi_debugger.lock);
967         if (!acpi_debugger.ops) {
968                 ret = -ENODEV;
969                 goto err_lock;
970         }
971         if (!try_module_get(acpi_debugger.owner)) {
972                 ret = -ENODEV;
973                 goto err_lock;
974         }
975         func = acpi_debugger.ops->wait_command_ready;
976         owner = acpi_debugger.owner;
977         mutex_unlock(&acpi_debugger.lock);
978
979         ret = func(acpi_gbl_method_executing,
980                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
981
982         mutex_lock(&acpi_debugger.lock);
983         module_put(owner);
984 err_lock:
985         mutex_unlock(&acpi_debugger.lock);
986         return ret;
987 }
988
989 int acpi_debugger_notify_command_complete(void)
990 {
991         int ret;
992         int (*func)(void);
993         struct module *owner;
994
995         if (!acpi_debugger_initialized)
996                 return -ENODEV;
997         mutex_lock(&acpi_debugger.lock);
998         if (!acpi_debugger.ops) {
999                 ret = -ENODEV;
1000                 goto err_lock;
1001         }
1002         if (!try_module_get(acpi_debugger.owner)) {
1003                 ret = -ENODEV;
1004                 goto err_lock;
1005         }
1006         func = acpi_debugger.ops->notify_command_complete;
1007         owner = acpi_debugger.owner;
1008         mutex_unlock(&acpi_debugger.lock);
1009
1010         ret = func();
1011
1012         mutex_lock(&acpi_debugger.lock);
1013         module_put(owner);
1014 err_lock:
1015         mutex_unlock(&acpi_debugger.lock);
1016         return ret;
1017 }
1018
1019 int __init acpi_debugger_init(void)
1020 {
1021         mutex_init(&acpi_debugger.lock);
1022         acpi_debugger_initialized = true;
1023         return 0;
1024 }
1025 #endif
1026
1027 /*******************************************************************************
1028  *
1029  * FUNCTION:    acpi_os_execute
1030  *
1031  * PARAMETERS:  Type               - Type of the callback
1032  *              Function           - Function to be executed
1033  *              Context            - Function parameters
1034  *
1035  * RETURN:      Status
1036  *
1037  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1038  *              immediately executes function on a separate thread.
1039  *
1040  ******************************************************************************/
1041
1042 acpi_status acpi_os_execute(acpi_execute_type type,
1043                             acpi_osd_exec_callback function, void *context)
1044 {
1045         acpi_status status = AE_OK;
1046         struct acpi_os_dpc *dpc;
1047         struct workqueue_struct *queue;
1048         int ret;
1049         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1050                           "Scheduling function [%p(%p)] for deferred execution.\n",
1051                           function, context));
1052
1053         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1054                 ret = acpi_debugger_create_thread(function, context);
1055                 if (ret) {
1056                         pr_err("Call to kthread_create() failed.\n");
1057                         status = AE_ERROR;
1058                 }
1059                 goto out_thread;
1060         }
1061
1062         /*
1063          * Allocate/initialize DPC structure.  Note that this memory will be
1064          * freed by the callee.  The kernel handles the work_struct list  in a
1065          * way that allows us to also free its memory inside the callee.
1066          * Because we may want to schedule several tasks with different
1067          * parameters we can't use the approach some kernel code uses of
1068          * having a static work_struct.
1069          */
1070
1071         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1072         if (!dpc)
1073                 return AE_NO_MEMORY;
1074
1075         dpc->function = function;
1076         dpc->context = context;
1077
1078         /*
1079          * To prevent lockdep from complaining unnecessarily, make sure that
1080          * there is a different static lockdep key for each workqueue by using
1081          * INIT_WORK() for each of them separately.
1082          */
1083         if (type == OSL_NOTIFY_HANDLER) {
1084                 queue = kacpi_notify_wq;
1085                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1086         } else if (type == OSL_GPE_HANDLER) {
1087                 queue = kacpid_wq;
1088                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1089         } else {
1090                 pr_err("Unsupported os_execute type %d.\n", type);
1091                 status = AE_ERROR;
1092         }
1093
1094         if (ACPI_FAILURE(status))
1095                 goto err_workqueue;
1096
1097         /*
1098          * On some machines, a software-initiated SMI causes corruption unless
1099          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1100          * typically it's done in GPE-related methods that are run via
1101          * workqueues, so we can avoid the known corruption cases by always
1102          * queueing on CPU 0.
1103          */
1104         ret = queue_work_on(0, queue, &dpc->work);
1105         if (!ret) {
1106                 printk(KERN_ERR PREFIX
1107                           "Call to queue_work() failed.\n");
1108                 status = AE_ERROR;
1109         }
1110 err_workqueue:
1111         if (ACPI_FAILURE(status))
1112                 kfree(dpc);
1113 out_thread:
1114         return status;
1115 }
1116 EXPORT_SYMBOL(acpi_os_execute);
1117
1118 void acpi_os_wait_events_complete(void)
1119 {
1120         /*
1121          * Make sure the GPE handler or the fixed event handler is not used
1122          * on another CPU after removal.
1123          */
1124         if (acpi_sci_irq_valid())
1125                 synchronize_hardirq(acpi_sci_irq);
1126         flush_workqueue(kacpid_wq);
1127         flush_workqueue(kacpi_notify_wq);
1128 }
1129
1130 struct acpi_hp_work {
1131         struct work_struct work;
1132         struct acpi_device *adev;
1133         u32 src;
1134 };
1135
1136 static void acpi_hotplug_work_fn(struct work_struct *work)
1137 {
1138         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1139
1140         acpi_os_wait_events_complete();
1141         acpi_device_hotplug(hpw->adev, hpw->src);
1142         kfree(hpw);
1143 }
1144
1145 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1146 {
1147         struct acpi_hp_work *hpw;
1148
1149         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1150                   "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1151                   adev, src));
1152
1153         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1154         if (!hpw)
1155                 return AE_NO_MEMORY;
1156
1157         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1158         hpw->adev = adev;
1159         hpw->src = src;
1160         /*
1161          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1162          * the hotplug code may call driver .remove() functions, which may
1163          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1164          * these workqueues.
1165          */
1166         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1167                 kfree(hpw);
1168                 return AE_ERROR;
1169         }
1170         return AE_OK;
1171 }
1172
1173 bool acpi_queue_hotplug_work(struct work_struct *work)
1174 {
1175         return queue_work(kacpi_hotplug_wq, work);
1176 }
1177
1178 acpi_status
1179 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1180 {
1181         struct semaphore *sem = NULL;
1182
1183         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1184         if (!sem)
1185                 return AE_NO_MEMORY;
1186
1187         sema_init(sem, initial_units);
1188
1189         *handle = (acpi_handle *) sem;
1190
1191         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1192                           *handle, initial_units));
1193
1194         return AE_OK;
1195 }
1196
1197 /*
1198  * TODO: A better way to delete semaphores?  Linux doesn't have a
1199  * 'delete_semaphore()' function -- may result in an invalid
1200  * pointer dereference for non-synchronized consumers.  Should
1201  * we at least check for blocked threads and signal/cancel them?
1202  */
1203
1204 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1205 {
1206         struct semaphore *sem = (struct semaphore *)handle;
1207
1208         if (!sem)
1209                 return AE_BAD_PARAMETER;
1210
1211         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1212
1213         BUG_ON(!list_empty(&sem->wait_list));
1214         kfree(sem);
1215         sem = NULL;
1216
1217         return AE_OK;
1218 }
1219
1220 /*
1221  * TODO: Support for units > 1?
1222  */
1223 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1224 {
1225         acpi_status status = AE_OK;
1226         struct semaphore *sem = (struct semaphore *)handle;
1227         long jiffies;
1228         int ret = 0;
1229
1230         if (!acpi_os_initialized)
1231                 return AE_OK;
1232
1233         if (!sem || (units < 1))
1234                 return AE_BAD_PARAMETER;
1235
1236         if (units > 1)
1237                 return AE_SUPPORT;
1238
1239         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1240                           handle, units, timeout));
1241
1242         if (timeout == ACPI_WAIT_FOREVER)
1243                 jiffies = MAX_SCHEDULE_TIMEOUT;
1244         else
1245                 jiffies = msecs_to_jiffies(timeout);
1246
1247         ret = down_timeout(sem, jiffies);
1248         if (ret)
1249                 status = AE_TIME;
1250
1251         if (ACPI_FAILURE(status)) {
1252                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1253                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1254                                   handle, units, timeout,
1255                                   acpi_format_exception(status)));
1256         } else {
1257                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1258                                   "Acquired semaphore[%p|%d|%d]", handle,
1259                                   units, timeout));
1260         }
1261
1262         return status;
1263 }
1264
1265 /*
1266  * TODO: Support for units > 1?
1267  */
1268 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1269 {
1270         struct semaphore *sem = (struct semaphore *)handle;
1271
1272         if (!acpi_os_initialized)
1273                 return AE_OK;
1274
1275         if (!sem || (units < 1))
1276                 return AE_BAD_PARAMETER;
1277
1278         if (units > 1)
1279                 return AE_SUPPORT;
1280
1281         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1282                           units));
1283
1284         up(sem);
1285
1286         return AE_OK;
1287 }
1288
1289 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1290 {
1291 #ifdef ENABLE_DEBUGGER
1292         if (acpi_in_debugger) {
1293                 u32 chars;
1294
1295                 kdb_read(buffer, buffer_length);
1296
1297                 /* remove the CR kdb includes */
1298                 chars = strlen(buffer) - 1;
1299                 buffer[chars] = '\0';
1300         }
1301 #else
1302         int ret;
1303
1304         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1305         if (ret < 0)
1306                 return AE_ERROR;
1307         if (bytes_read)
1308                 *bytes_read = ret;
1309 #endif
1310
1311         return AE_OK;
1312 }
1313 EXPORT_SYMBOL(acpi_os_get_line);
1314
1315 acpi_status acpi_os_wait_command_ready(void)
1316 {
1317         int ret;
1318
1319         ret = acpi_debugger_wait_command_ready();
1320         if (ret < 0)
1321                 return AE_ERROR;
1322         return AE_OK;
1323 }
1324
1325 acpi_status acpi_os_notify_command_complete(void)
1326 {
1327         int ret;
1328
1329         ret = acpi_debugger_notify_command_complete();
1330         if (ret < 0)
1331                 return AE_ERROR;
1332         return AE_OK;
1333 }
1334
1335 acpi_status acpi_os_signal(u32 function, void *info)
1336 {
1337         switch (function) {
1338         case ACPI_SIGNAL_FATAL:
1339                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1340                 break;
1341         case ACPI_SIGNAL_BREAKPOINT:
1342                 /*
1343                  * AML Breakpoint
1344                  * ACPI spec. says to treat it as a NOP unless
1345                  * you are debugging.  So if/when we integrate
1346                  * AML debugger into the kernel debugger its
1347                  * hook will go here.  But until then it is
1348                  * not useful to print anything on breakpoints.
1349                  */
1350                 break;
1351         default:
1352                 break;
1353         }
1354
1355         return AE_OK;
1356 }
1357
1358 static int __init acpi_os_name_setup(char *str)
1359 {
1360         char *p = acpi_os_name;
1361         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1362
1363         if (!str || !*str)
1364                 return 0;
1365
1366         for (; count-- && *str; str++) {
1367                 if (isalnum(*str) || *str == ' ' || *str == ':')
1368                         *p++ = *str;
1369                 else if (*str == '\'' || *str == '"')
1370                         continue;
1371                 else
1372                         break;
1373         }
1374         *p = 0;
1375
1376         return 1;
1377
1378 }
1379
1380 __setup("acpi_os_name=", acpi_os_name_setup);
1381
1382 /*
1383  * Disable the auto-serialization of named objects creation methods.
1384  *
1385  * This feature is enabled by default.  It marks the AML control methods
1386  * that contain the opcodes to create named objects as "Serialized".
1387  */
1388 static int __init acpi_no_auto_serialize_setup(char *str)
1389 {
1390         acpi_gbl_auto_serialize_methods = FALSE;
1391         pr_info("ACPI: auto-serialization disabled\n");
1392
1393         return 1;
1394 }
1395
1396 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1397
1398 /* Check of resource interference between native drivers and ACPI
1399  * OperationRegions (SystemIO and System Memory only).
1400  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1401  * in arbitrary AML code and can interfere with legacy drivers.
1402  * acpi_enforce_resources= can be set to:
1403  *
1404  *   - strict (default) (2)
1405  *     -> further driver trying to access the resources will not load
1406  *   - lax              (1)
1407  *     -> further driver trying to access the resources will load, but you
1408  *     get a system message that something might go wrong...
1409  *
1410  *   - no               (0)
1411  *     -> ACPI Operation Region resources will not be registered
1412  *
1413  */
1414 #define ENFORCE_RESOURCES_STRICT 2
1415 #define ENFORCE_RESOURCES_LAX    1
1416 #define ENFORCE_RESOURCES_NO     0
1417
1418 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1419
1420 static int __init acpi_enforce_resources_setup(char *str)
1421 {
1422         if (str == NULL || *str == '\0')
1423                 return 0;
1424
1425         if (!strcmp("strict", str))
1426                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1427         else if (!strcmp("lax", str))
1428                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1429         else if (!strcmp("no", str))
1430                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1431
1432         return 1;
1433 }
1434
1435 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1436
1437 /* Check for resource conflicts between ACPI OperationRegions and native
1438  * drivers */
1439 int acpi_check_resource_conflict(const struct resource *res)
1440 {
1441         acpi_adr_space_type space_id;
1442         acpi_size length;
1443         u8 warn = 0;
1444         int clash = 0;
1445
1446         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1447                 return 0;
1448         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1449                 return 0;
1450
1451         if (res->flags & IORESOURCE_IO)
1452                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1453         else
1454                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1455
1456         length = resource_size(res);
1457         if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1458                 warn = 1;
1459         clash = acpi_check_address_range(space_id, res->start, length, warn);
1460
1461         if (clash) {
1462                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1463                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1464                                 printk(KERN_NOTICE "ACPI: This conflict may"
1465                                        " cause random problems and system"
1466                                        " instability\n");
1467                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1468                                " for this device, you should use it instead of"
1469                                " the native driver\n");
1470                 }
1471                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1472                         return -EBUSY;
1473         }
1474         return 0;
1475 }
1476 EXPORT_SYMBOL(acpi_check_resource_conflict);
1477
1478 int acpi_check_region(resource_size_t start, resource_size_t n,
1479                       const char *name)
1480 {
1481         struct resource res = {
1482                 .start = start,
1483                 .end   = start + n - 1,
1484                 .name  = name,
1485                 .flags = IORESOURCE_IO,
1486         };
1487
1488         return acpi_check_resource_conflict(&res);
1489 }
1490 EXPORT_SYMBOL(acpi_check_region);
1491
1492 /*
1493  * Let drivers know whether the resource checks are effective
1494  */
1495 int acpi_resources_are_enforced(void)
1496 {
1497         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1498 }
1499 EXPORT_SYMBOL(acpi_resources_are_enforced);
1500
1501 /*
1502  * Deallocate the memory for a spinlock.
1503  */
1504 void acpi_os_delete_lock(acpi_spinlock handle)
1505 {
1506         ACPI_FREE(handle);
1507 }
1508
1509 /*
1510  * Acquire a spinlock.
1511  *
1512  * handle is a pointer to the spinlock_t.
1513  */
1514
1515 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1516 {
1517         acpi_cpu_flags flags;
1518         spin_lock_irqsave(lockp, flags);
1519         return flags;
1520 }
1521
1522 /*
1523  * Release a spinlock. See above.
1524  */
1525
1526 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1527 {
1528         spin_unlock_irqrestore(lockp, flags);
1529 }
1530
1531 #ifndef ACPI_USE_LOCAL_CACHE
1532
1533 /*******************************************************************************
1534  *
1535  * FUNCTION:    acpi_os_create_cache
1536  *
1537  * PARAMETERS:  name      - Ascii name for the cache
1538  *              size      - Size of each cached object
1539  *              depth     - Maximum depth of the cache (in objects) <ignored>
1540  *              cache     - Where the new cache object is returned
1541  *
1542  * RETURN:      status
1543  *
1544  * DESCRIPTION: Create a cache object
1545  *
1546  ******************************************************************************/
1547
1548 acpi_status
1549 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1550 {
1551         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1552         if (*cache == NULL)
1553                 return AE_ERROR;
1554         else
1555                 return AE_OK;
1556 }
1557
1558 /*******************************************************************************
1559  *
1560  * FUNCTION:    acpi_os_purge_cache
1561  *
1562  * PARAMETERS:  Cache           - Handle to cache object
1563  *
1564  * RETURN:      Status
1565  *
1566  * DESCRIPTION: Free all objects within the requested cache.
1567  *
1568  ******************************************************************************/
1569
1570 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1571 {
1572         kmem_cache_shrink(cache);
1573         return (AE_OK);
1574 }
1575
1576 /*******************************************************************************
1577  *
1578  * FUNCTION:    acpi_os_delete_cache
1579  *
1580  * PARAMETERS:  Cache           - Handle to cache object
1581  *
1582  * RETURN:      Status
1583  *
1584  * DESCRIPTION: Free all objects within the requested cache and delete the
1585  *              cache object.
1586  *
1587  ******************************************************************************/
1588
1589 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1590 {
1591         kmem_cache_destroy(cache);
1592         return (AE_OK);
1593 }
1594
1595 /*******************************************************************************
1596  *
1597  * FUNCTION:    acpi_os_release_object
1598  *
1599  * PARAMETERS:  Cache       - Handle to cache object
1600  *              Object      - The object to be released
1601  *
1602  * RETURN:      None
1603  *
1604  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1605  *              the object is deleted.
1606  *
1607  ******************************************************************************/
1608
1609 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1610 {
1611         kmem_cache_free(cache, object);
1612         return (AE_OK);
1613 }
1614 #endif
1615
1616 static int __init acpi_no_static_ssdt_setup(char *s)
1617 {
1618         acpi_gbl_disable_ssdt_table_install = TRUE;
1619         pr_info("ACPI: static SSDT installation disabled\n");
1620
1621         return 0;
1622 }
1623
1624 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1625
1626 static int __init acpi_disable_return_repair(char *s)
1627 {
1628         printk(KERN_NOTICE PREFIX
1629                "ACPI: Predefined validation mechanism disabled\n");
1630         acpi_gbl_disable_auto_repair = TRUE;
1631
1632         return 1;
1633 }
1634
1635 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1636
1637 acpi_status __init acpi_os_initialize(void)
1638 {
1639         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1640         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1641         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1642         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1643         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1644                 /*
1645                  * Use acpi_os_map_generic_address to pre-map the reset
1646                  * register if it's in system memory.
1647                  */
1648                 int rv;
1649
1650                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1651                 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1652         }
1653         acpi_os_initialized = true;
1654
1655         return AE_OK;
1656 }
1657
1658 acpi_status __init acpi_os_initialize1(void)
1659 {
1660         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1661         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1662         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1663         BUG_ON(!kacpid_wq);
1664         BUG_ON(!kacpi_notify_wq);
1665         BUG_ON(!kacpi_hotplug_wq);
1666         acpi_osi_init();
1667         return AE_OK;
1668 }
1669
1670 acpi_status acpi_os_terminate(void)
1671 {
1672         if (acpi_irq_handler) {
1673                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1674                                                  acpi_irq_handler);
1675         }
1676
1677         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1678         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1679         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1680         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1681         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1682                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1683
1684         destroy_workqueue(kacpid_wq);
1685         destroy_workqueue(kacpi_notify_wq);
1686         destroy_workqueue(kacpi_hotplug_wq);
1687
1688         return AE_OK;
1689 }
1690
1691 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1692                                   u32 pm1b_control)
1693 {
1694         int rc = 0;
1695         if (__acpi_os_prepare_sleep)
1696                 rc = __acpi_os_prepare_sleep(sleep_state,
1697                                              pm1a_control, pm1b_control);
1698         if (rc < 0)
1699                 return AE_ERROR;
1700         else if (rc > 0)
1701                 return AE_CTRL_SKIP;
1702
1703         return AE_OK;
1704 }
1705
1706 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1707                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1708 {
1709         __acpi_os_prepare_sleep = func;
1710 }
1711
1712 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1713                                   u32 val_b)
1714 {
1715         int rc = 0;
1716         if (__acpi_os_prepare_extended_sleep)
1717                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1718                                              val_a, val_b);
1719         if (rc < 0)
1720                 return AE_ERROR;
1721         else if (rc > 0)
1722                 return AE_CTRL_SKIP;
1723
1724         return AE_OK;
1725 }
1726
1727 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1728                                u32 val_a, u32 val_b))
1729 {
1730         __acpi_os_prepare_extended_sleep = func;
1731 }