2 * libata-core.c - helper library for ATA
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/driver-api/libata.rst
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <asm/unaligned.h>
70 #include <linux/cdrom.h>
71 #include <linux/ratelimit.h>
72 #include <linux/leds.h>
73 #include <linux/pm_runtime.h>
74 #include <linux/platform_device.h>
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/libata.h>
80 #include "libata-transport.h"
82 /* debounce timing parameters in msecs { interval, duration, timeout } */
83 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
84 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
85 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
87 const struct ata_port_operations ata_base_port_ops = {
88 .prereset = ata_std_prereset,
89 .postreset = ata_std_postreset,
90 .error_handler = ata_std_error_handler,
91 .sched_eh = ata_std_sched_eh,
92 .end_eh = ata_std_end_eh,
95 const struct ata_port_operations sata_port_ops = {
96 .inherits = &ata_base_port_ops,
98 .qc_defer = ata_std_qc_defer,
99 .hardreset = sata_std_hardreset,
102 static unsigned int ata_dev_init_params(struct ata_device *dev,
103 u16 heads, u16 sectors);
104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105 static void ata_dev_xfermask(struct ata_device *dev);
106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
108 atomic_t ata_print_id = ATOMIC_INIT(0);
110 struct ata_force_param {
114 unsigned long xfer_mask;
115 unsigned int horkage_on;
116 unsigned int horkage_off;
120 struct ata_force_ent {
123 struct ata_force_param param;
126 static struct ata_force_ent *ata_force_tbl;
127 static int ata_force_tbl_size;
129 static char ata_force_param_buf[PAGE_SIZE] __initdata;
130 /* param_buf is thrown away after initialization, disallow read */
131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
134 static int atapi_enabled = 1;
135 module_param(atapi_enabled, int, 0444);
136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
138 static int atapi_dmadir = 0;
139 module_param(atapi_dmadir, int, 0444);
140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
142 int atapi_passthru16 = 1;
143 module_param(atapi_passthru16, int, 0444);
144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
147 module_param_named(fua, libata_fua, int, 0444);
148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
150 static int ata_ignore_hpa;
151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155 module_param_named(dma, libata_dma_mask, int, 0444);
156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
158 static int ata_probe_timeout;
159 module_param(ata_probe_timeout, int, 0444);
160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
162 int libata_noacpi = 0;
163 module_param_named(noacpi, libata_noacpi, int, 0444);
164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
166 int libata_allow_tpm = 0;
167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
171 module_param(atapi_an, int, 0444);
172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
174 MODULE_AUTHOR("Jeff Garzik");
175 MODULE_DESCRIPTION("Library module for ATA devices");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
180 static bool ata_sstatus_online(u32 sstatus)
182 return (sstatus & 0xf) == 0x3;
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
192 * Host lock or EH context.
195 * Pointer to the next link.
197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 enum ata_link_iter_mode mode)
200 BUG_ON(mode != ATA_LITER_EDGE &&
201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
203 /* NULL link indicates start of iteration */
207 case ATA_LITER_PMP_FIRST:
208 if (sata_pmp_attached(ap))
211 case ATA_LITER_HOST_FIRST:
215 /* we just iterated over the host link, what's next? */
216 if (link == &ap->link)
218 case ATA_LITER_HOST_FIRST:
219 if (sata_pmp_attached(ap))
222 case ATA_LITER_PMP_FIRST:
223 if (unlikely(ap->slave_link))
224 return ap->slave_link;
230 /* slave_link excludes PMP */
231 if (unlikely(link == ap->slave_link))
234 /* we were over a PMP link */
235 if (++link < ap->pmp_link + ap->nr_pmp_links)
238 if (mode == ATA_LITER_PMP_FIRST)
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
251 * Host lock or EH context.
254 * Pointer to the next device.
256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 enum ata_dev_iter_mode mode)
259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
262 /* NULL dev indicates start of iteration */
265 case ATA_DITER_ENABLED:
269 case ATA_DITER_ENABLED_REVERSE:
270 case ATA_DITER_ALL_REVERSE:
271 dev = link->device + ata_link_max_devices(link) - 1;
276 /* move to the next one */
278 case ATA_DITER_ENABLED:
280 if (++dev < link->device + ata_link_max_devices(link))
283 case ATA_DITER_ENABLED_REVERSE:
284 case ATA_DITER_ALL_REVERSE:
285 if (--dev >= link->device)
291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 !ata_dev_enabled(dev))
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
309 * Pointer to the found physical link.
311 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
313 struct ata_port *ap = dev->link->ap;
319 return ap->slave_link;
323 * ata_force_cbl - force cable type according to libata.force
324 * @ap: ATA port of interest
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
335 void ata_force_cbl(struct ata_port *ap)
339 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 const struct ata_force_ent *fe = &ata_force_tbl[i];
342 if (fe->port != -1 && fe->port != ap->print_id)
345 if (fe->param.cbl == ATA_CBL_NONE)
348 ap->cbl = fe->param.cbl;
349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
355 * ata_force_link_limits - force link limits according to libata.force
356 * @link: ATA link of interest
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
370 static void ata_force_link_limits(struct ata_link *link)
372 bool did_spd = false;
373 int linkno = link->pmp;
376 if (ata_is_host_link(link))
379 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 const struct ata_force_ent *fe = &ata_force_tbl[i];
382 if (fe->port != -1 && fe->port != link->ap->print_id)
385 if (fe->device != -1 && fe->device != linkno)
388 /* only honor the first spd limit */
389 if (!did_spd && fe->param.spd_limit) {
390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
396 /* let lflags stack */
397 if (fe->param.lflags) {
398 link->flags |= fe->param.lflags;
399 ata_link_notice(link,
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe->param.lflags, link->flags);
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
417 static void ata_force_xfermask(struct ata_device *dev)
419 int devno = dev->link->pmp + dev->devno;
420 int alt_devno = devno;
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev->link))
427 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 const struct ata_force_ent *fe = &ata_force_tbl[i];
429 unsigned long pio_mask, mwdma_mask, udma_mask;
431 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
434 if (fe->device != -1 && fe->device != devno &&
435 fe->device != alt_devno)
438 if (!fe->param.xfer_mask)
441 ata_unpack_xfermask(fe->param.xfer_mask,
442 &pio_mask, &mwdma_mask, &udma_mask);
444 dev->udma_mask = udma_mask;
445 else if (mwdma_mask) {
447 dev->mwdma_mask = mwdma_mask;
451 dev->pio_mask = pio_mask;
454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
471 static void ata_force_horkage(struct ata_device *dev)
473 int devno = dev->link->pmp + dev->devno;
474 int alt_devno = devno;
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev->link))
481 for (i = 0; i < ata_force_tbl_size; i++) {
482 const struct ata_force_ent *fe = &ata_force_tbl[i];
484 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
487 if (fe->device != -1 && fe->device != devno &&
488 fe->device != alt_devno)
491 if (!(~dev->horkage & fe->param.horkage_on) &&
492 !(dev->horkage & fe->param.horkage_off))
495 dev->horkage |= fe->param.horkage_on;
496 dev->horkage &= ~fe->param.horkage_off;
498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
507 * Determine ATAPI command type from @opcode.
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
515 int atapi_cmd_type(u8 opcode)
524 case GPCMD_WRITE_AND_VERIFY_10:
528 case GPCMD_READ_CD_MSF:
529 return ATAPI_READ_CD;
533 if (atapi_passthru16)
534 return ATAPI_PASS_THRU;
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
544 * @pmp: Port multiplier port
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
552 * Inherited from caller.
554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
556 fis[0] = 0x27; /* Register - Host to Device FIS */
557 fis[1] = pmp & 0xf; /* Port multiplier number*/
559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
561 fis[2] = tf->command;
562 fis[3] = tf->feature;
569 fis[8] = tf->hob_lbal;
570 fis[9] = tf->hob_lbam;
571 fis[10] = tf->hob_lbah;
572 fis[11] = tf->hob_feature;
575 fis[13] = tf->hob_nsect;
579 fis[16] = tf->auxiliary & 0xff;
580 fis[17] = (tf->auxiliary >> 8) & 0xff;
581 fis[18] = (tf->auxiliary >> 16) & 0xff;
582 fis[19] = (tf->auxiliary >> 24) & 0xff;
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
593 * Inherited from caller.
596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
611 tf->hob_nsect = fis[13];
614 static const u8 ata_rw_cmds[] = {
618 ATA_CMD_READ_MULTI_EXT,
619 ATA_CMD_WRITE_MULTI_EXT,
623 ATA_CMD_WRITE_MULTI_FUA_EXT,
627 ATA_CMD_PIO_READ_EXT,
628 ATA_CMD_PIO_WRITE_EXT,
641 ATA_CMD_WRITE_FUA_EXT
645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
649 * Examine the device configuration and tf->flags to calculate
650 * the proper read/write commands and protocol to use.
655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
659 int index, fua, lba48, write;
661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
665 if (dev->flags & ATA_DFLAG_PIO) {
666 tf->protocol = ATA_PROT_PIO;
667 index = dev->multi_count ? 0 : 8;
668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
669 /* Unable to use DMA due to host limitation */
670 tf->protocol = ATA_PROT_PIO;
671 index = dev->multi_count ? 0 : 8;
673 tf->protocol = ATA_PROT_DMA;
677 cmd = ata_rw_cmds[index + fua + lba48 + write];
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
698 * Block address read from @tf.
700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
704 if (tf->flags & ATA_TFLAG_LBA) {
705 if (tf->flags & ATA_TFLAG_LBA48) {
706 block |= (u64)tf->hob_lbah << 40;
707 block |= (u64)tf->hob_lbam << 32;
708 block |= (u64)tf->hob_lbal << 24;
710 block |= (tf->device & 0xf) << 24;
712 block |= tf->lbah << 16;
713 block |= tf->lbam << 8;
718 cyl = tf->lbam | (tf->lbah << 8);
719 head = tf->device & 0xf;
724 "device reported invalid CHS sector 0\n");
728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
742 * @class: IO priority class
747 * Build ATA taskfile @tf for read/write request described by
748 * @block, @n_block, @tf_flags and @tag on @dev.
752 * 0 on success, -ERANGE if the request is too large for @dev,
753 * -EINVAL if the request is invalid.
755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 u64 block, u32 n_block, unsigned int tf_flags,
757 unsigned int tag, int class)
759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 tf->flags |= tf_flags;
762 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
764 if (!lba_48_ok(block, n_block))
767 tf->protocol = ATA_PROT_NCQ;
768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
770 if (tf->flags & ATA_TFLAG_WRITE)
771 tf->command = ATA_CMD_FPDMA_WRITE;
773 tf->command = ATA_CMD_FPDMA_READ;
775 tf->nsect = tag << 3;
776 tf->hob_feature = (n_block >> 8) & 0xff;
777 tf->feature = n_block & 0xff;
779 tf->hob_lbah = (block >> 40) & 0xff;
780 tf->hob_lbam = (block >> 32) & 0xff;
781 tf->hob_lbal = (block >> 24) & 0xff;
782 tf->lbah = (block >> 16) & 0xff;
783 tf->lbam = (block >> 8) & 0xff;
784 tf->lbal = block & 0xff;
786 tf->device = ATA_LBA;
787 if (tf->flags & ATA_TFLAG_FUA)
788 tf->device |= 1 << 7;
790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
791 if (class == IOPRIO_CLASS_RT)
792 tf->hob_nsect |= ATA_PRIO_HIGH <<
795 } else if (dev->flags & ATA_DFLAG_LBA) {
796 tf->flags |= ATA_TFLAG_LBA;
798 if (lba_28_ok(block, n_block)) {
800 tf->device |= (block >> 24) & 0xf;
801 } else if (lba_48_ok(block, n_block)) {
802 if (!(dev->flags & ATA_DFLAG_LBA48))
806 tf->flags |= ATA_TFLAG_LBA48;
808 tf->hob_nsect = (n_block >> 8) & 0xff;
810 tf->hob_lbah = (block >> 40) & 0xff;
811 tf->hob_lbam = (block >> 32) & 0xff;
812 tf->hob_lbal = (block >> 24) & 0xff;
814 /* request too large even for LBA48 */
817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
820 tf->nsect = n_block & 0xff;
822 tf->lbah = (block >> 16) & 0xff;
823 tf->lbam = (block >> 8) & 0xff;
824 tf->lbal = block & 0xff;
826 tf->device |= ATA_LBA;
829 u32 sect, head, cyl, track;
831 /* The request -may- be too large for CHS addressing. */
832 if (!lba_28_ok(block, n_block))
835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
838 /* Convert LBA to CHS */
839 track = (u32)block / dev->sectors;
840 cyl = track / dev->heads;
841 head = track % dev->heads;
842 sect = (u32)block % dev->sectors + 1;
844 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 (u32)block, track, cyl, head, sect);
847 /* Check whether the converted CHS can fit.
851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866 * @pio_mask: pio_mask
867 * @mwdma_mask: mwdma_mask
868 * @udma_mask: udma_mask
870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871 * unsigned int xfer_mask.
879 unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 unsigned long mwdma_mask,
881 unsigned long udma_mask)
883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890 * @xfer_mask: xfer_mask to unpack
891 * @pio_mask: resulting pio_mask
892 * @mwdma_mask: resulting mwdma_mask
893 * @udma_mask: resulting udma_mask
895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
896 * Any NULL destination masks will be ignored.
898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 unsigned long *mwdma_mask, unsigned long *udma_mask)
902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
909 static const struct ata_xfer_ent {
913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921 * @xfer_mask: xfer_mask of interest
923 * Return matching XFER_* value for @xfer_mask. Only the highest
924 * bit of @xfer_mask is considered.
930 * Matching XFER_* value, 0xff if no match found.
932 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
934 int highbit = fls(xfer_mask) - 1;
935 const struct ata_xfer_ent *ent;
937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 return ent->base + highbit - ent->shift;
944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945 * @xfer_mode: XFER_* of interest
947 * Return matching xfer_mask for @xfer_mode.
953 * Matching xfer_mask, 0 if no match found.
955 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
957 const struct ata_xfer_ent *ent;
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 & ~((1 << ent->shift) - 1);
967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968 * @xfer_mode: XFER_* of interest
970 * Return matching xfer_shift for @xfer_mode.
976 * Matching xfer_shift, -1 if no match found.
978 int ata_xfer_mode2shift(unsigned long xfer_mode)
980 const struct ata_xfer_ent *ent;
982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
989 * ata_mode_string - convert xfer_mask to string
990 * @xfer_mask: mask of bits supported; only highest bit counts.
992 * Determine string which represents the highest speed
993 * (highest bit in @modemask).
999 * Constant C string representing highest speed listed in
1000 * @mode_mask, or the constant C string "<n/a>".
1002 const char *ata_mode_string(unsigned long xfer_mask)
1004 static const char * const xfer_mode_str[] = {
1028 highbit = fls(xfer_mask) - 1;
1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 return xfer_mode_str[highbit];
1034 const char *sata_spd_string(unsigned int spd)
1036 static const char * const spd_str[] = {
1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1044 return spd_str[spd - 1];
1048 * ata_dev_classify - determine device type based on ATA-spec signature
1049 * @tf: ATA taskfile register set for device to be identified
1051 * Determine from taskfile register contents whether a device is
1052 * ATA or ATAPI, as per "Signature and persistence" section
1053 * of ATA/PI spec (volume 1, sect 5.14).
1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1064 /* Apple's open source Darwin code hints that some devices only
1065 * put a proper signature into the LBA mid/high registers,
1066 * So, we only check those. It's sufficient for uniqueness.
1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1071 * spec has never mentioned about using different signatures
1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1073 * Multiplier specification began to use 0x69/0x96 to identify
1074 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 * 0x69/0x96 shortly and described them as reserved for
1079 * We follow the current spec and consider that 0x69/0x96
1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 * SEMB signature. This is worked around in
1083 * ata_dev_read_id().
1085 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1086 DPRINTK("found ATA device by sig\n");
1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1091 DPRINTK("found ATAPI device by sig\n");
1092 return ATA_DEV_ATAPI;
1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 DPRINTK("found PMP device by sig\n");
1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1101 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 return ATA_DEV_SEMB;
1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 DPRINTK("found ZAC device by sig\n");
1110 DPRINTK("unknown device\n");
1111 return ATA_DEV_UNKNOWN;
1115 * ata_id_string - Convert IDENTIFY DEVICE page into string
1116 * @id: IDENTIFY DEVICE results we will examine
1117 * @s: string into which data is output
1118 * @ofs: offset into identify device page
1119 * @len: length of string to return. must be an even number.
1121 * The strings in the IDENTIFY DEVICE page are broken up into
1122 * 16-bit chunks. Run through the string, and output each
1123 * 8-bit chunk linearly, regardless of platform.
1129 void ata_id_string(const u16 *id, unsigned char *s,
1130 unsigned int ofs, unsigned int len)
1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1157 * This function is identical to ata_id_string except that it
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1164 void ata_id_c_string(const u16 *id, unsigned char *s,
1165 unsigned int ofs, unsigned int len)
1169 ata_id_string(id, s, ofs, len - 1);
1171 p = s + strnlen(s, len - 1);
1172 while (p > s && p[-1] == ' ')
1177 static u64 ata_id_n_sectors(const u16 *id)
1179 if (ata_id_has_lba(id)) {
1180 if (ata_id_has_lba48(id))
1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1185 if (ata_id_current_chs_valid(id))
1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 id[ATA_ID_CUR_SECTORS];
1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1201 sectors |= (tf->lbah & 0xff) << 16;
1202 sectors |= (tf->lbam & 0xff) << 8;
1203 sectors |= (tf->lbal & 0xff);
1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1212 sectors |= (tf->device & 0x0f) << 24;
1213 sectors |= (tf->lbah & 0xff) << 16;
1214 sectors |= (tf->lbam & 0xff) << 8;
1215 sectors |= (tf->lbal & 0xff);
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1234 unsigned int err_mask;
1235 struct ata_taskfile tf;
1236 int lba48 = ata_id_has_lba48(dev->id);
1238 ata_tf_init(dev, &tf);
1240 /* always clear all address registers */
1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 tf.flags |= ATA_TFLAG_LBA48;
1247 tf.command = ATA_CMD_READ_NATIVE_MAX;
1249 tf.protocol = ATA_PROT_NODATA;
1250 tf.device |= ATA_LBA;
1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1255 "failed to read native max address (err_mask=0x%x)\n",
1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1263 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1265 *max_sectors = ata_tf_to_lba(&tf) + 1;
1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
1274 * @new_sectors: new max sectors value to set for the device
1276 * Set max sectors of @dev to @new_sectors.
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1285 unsigned int err_mask;
1286 struct ata_taskfile tf;
1287 int lba48 = ata_id_has_lba48(dev->id);
1291 ata_tf_init(dev, &tf);
1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1296 tf.command = ATA_CMD_SET_MAX_EXT;
1297 tf.flags |= ATA_TFLAG_LBA48;
1299 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1303 tf.command = ATA_CMD_SET_MAX;
1305 tf.device |= (new_sectors >> 24) & 0xf;
1308 tf.protocol = ATA_PROT_NODATA;
1309 tf.device |= ATA_LBA;
1311 tf.lbal = (new_sectors >> 0) & 0xff;
1312 tf.lbam = (new_sectors >> 8) & 0xff;
1313 tf.lbah = (new_sectors >> 16) & 0xff;
1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1318 "failed to set max address (err_mask=0x%x)\n",
1320 if (err_mask == AC_ERR_DEV &&
1321 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1330 * ata_hpa_resize - Resize a device with an HPA set
1331 * @dev: Device to resize
1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 * it if required to the full size of the media. The caller must check
1335 * the drive has the HPA feature set enabled.
1338 * 0 on success, -errno on failure.
1340 static int ata_hpa_resize(struct ata_device *dev)
1342 struct ata_eh_context *ehc = &dev->link->eh_context;
1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1345 u64 sectors = ata_id_n_sectors(dev->id);
1349 /* do we need to do it? */
1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1355 /* read native max address */
1356 rc = ata_read_native_max_address(dev, &native_sectors);
1358 /* If device aborted the command or HPA isn't going to
1359 * be unlocked, skip HPA resizing.
1361 if (rc == -EACCES || !unlock_hpa) {
1363 "HPA support seems broken, skipping HPA handling\n");
1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1366 /* we can continue if device aborted the command */
1373 dev->n_native_sectors = native_sectors;
1375 /* nothing to do? */
1376 if (native_sectors <= sectors || !unlock_hpa) {
1377 if (!print_info || native_sectors == sectors)
1380 if (native_sectors > sectors)
1382 "HPA detected: current %llu, native %llu\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 else if (native_sectors < sectors)
1387 "native sectors (%llu) is smaller than sectors (%llu)\n",
1388 (unsigned long long)native_sectors,
1389 (unsigned long long)sectors);
1393 /* let's unlock HPA */
1394 rc = ata_set_max_sectors(dev, native_sectors);
1395 if (rc == -EACCES) {
1396 /* if device aborted the command, skip HPA resizing */
1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)native_sectors);
1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1406 /* re-read IDENTIFY data */
1407 rc = ata_dev_reread_id(dev, 0);
1410 "failed to re-read IDENTIFY data after HPA resizing\n");
1415 u64 new_sectors = ata_id_n_sectors(dev->id);
1417 "HPA unlocked: %llu -> %llu, native %llu\n",
1418 (unsigned long long)sectors,
1419 (unsigned long long)new_sectors,
1420 (unsigned long long)native_sectors);
1427 * ata_dump_id - IDENTIFY DEVICE info debugging output
1428 * @id: IDENTIFY DEVICE page to dump
1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1437 static inline void ata_dump_id(const u16 *id)
1439 DPRINTK("49==0x%04x "
1449 DPRINTK("80==0x%04x "
1459 DPRINTK("88==0x%04x "
1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 * @id: IDENTIFY data to compute xfer mask from
1469 * Compute the xfermask for this device. This is not as trivial
1470 * as it seems if we must consider early devices correctly.
1472 * FIXME: pre IDE drive timing (do we care ?).
1480 unsigned long ata_id_xfermask(const u16 *id)
1482 unsigned long pio_mask, mwdma_mask, udma_mask;
1484 /* Usual case. Word 53 indicates word 64 is valid */
1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1490 /* If word 64 isn't valid then Word 51 high byte holds
1491 * the PIO timing number for the maximum. Turn it into
1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1495 if (mode < 5) /* Valid PIO range */
1496 pio_mask = (2 << mode) - 1;
1500 /* But wait.. there's more. Design your standards by
1501 * committee and you too can get a free iordy field to
1502 * process. However its the speeds not the modes that
1503 * are supported... Note drivers using the timing API
1504 * will get this right anyway
1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1510 if (ata_id_is_cfa(id)) {
1512 * Process compact flash extended modes
1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1518 pio_mask |= (1 << 5);
1520 pio_mask |= (1 << 6);
1522 mwdma_mask |= (1 << 3);
1524 mwdma_mask |= (1 << 4);
1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1536 struct completion *waiting = qc->private_data;
1542 * ata_exec_internal_sg - execute libata internal command
1543 * @dev: Device to which the command is sent
1544 * @tf: Taskfile registers for the command and the result
1545 * @cdb: CDB for packet command
1546 * @dma_dir: Data transfer direction of the command
1547 * @sgl: sg list for the data buffer of the command
1548 * @n_elem: Number of sg entries
1549 * @timeout: Timeout in msecs (0 for default)
1551 * Executes libata internal command with timeout. @tf contains
1552 * command on entry and result on return. Timeout and error
1553 * conditions are reported via return value. No recovery action
1554 * is taken after a command times out. It's caller's duty to
1555 * clean up after timeout.
1558 * None. Should be called with kernel context, might sleep.
1561 * Zero on success, AC_ERR_* mask on failure
1563 unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 struct ata_taskfile *tf, const u8 *cdb,
1565 int dma_dir, struct scatterlist *sgl,
1566 unsigned int n_elem, unsigned long timeout)
1568 struct ata_link *link = dev->link;
1569 struct ata_port *ap = link->ap;
1570 u8 command = tf->command;
1571 int auto_timeout = 0;
1572 struct ata_queued_cmd *qc;
1573 unsigned int tag, preempted_tag;
1574 u32 preempted_sactive, preempted_qc_active;
1575 int preempted_nr_active_links;
1576 DECLARE_COMPLETION_ONSTACK(wait);
1577 unsigned long flags;
1578 unsigned int err_mask;
1581 spin_lock_irqsave(ap->lock, flags);
1583 /* no internal command while frozen */
1584 if (ap->pflags & ATA_PFLAG_FROZEN) {
1585 spin_unlock_irqrestore(ap->lock, flags);
1586 return AC_ERR_SYSTEM;
1589 /* initialize internal qc */
1591 /* XXX: Tag 0 is used for drivers with legacy EH as some
1592 * drivers choke if any other tag is given. This breaks
1593 * ata_tag_internal() test for those drivers. Don't use new
1594 * EH stuff without converting to it.
1596 if (ap->ops->error_handler)
1597 tag = ATA_TAG_INTERNAL;
1601 qc = __ata_qc_from_tag(ap, tag);
1609 preempted_tag = link->active_tag;
1610 preempted_sactive = link->sactive;
1611 preempted_qc_active = ap->qc_active;
1612 preempted_nr_active_links = ap->nr_active_links;
1613 link->active_tag = ATA_TAG_POISON;
1616 ap->nr_active_links = 0;
1618 /* prepare & issue qc */
1621 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1623 /* some SATA bridges need us to indicate data xfer direction */
1624 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625 dma_dir == DMA_FROM_DEVICE)
1626 qc->tf.feature |= ATAPI_DMADIR;
1628 qc->flags |= ATA_QCFLAG_RESULT_TF;
1629 qc->dma_dir = dma_dir;
1630 if (dma_dir != DMA_NONE) {
1631 unsigned int i, buflen = 0;
1632 struct scatterlist *sg;
1634 for_each_sg(sgl, sg, n_elem, i)
1635 buflen += sg->length;
1637 ata_sg_init(qc, sgl, n_elem);
1638 qc->nbytes = buflen;
1641 qc->private_data = &wait;
1642 qc->complete_fn = ata_qc_complete_internal;
1646 spin_unlock_irqrestore(ap->lock, flags);
1649 if (ata_probe_timeout)
1650 timeout = ata_probe_timeout * 1000;
1652 timeout = ata_internal_cmd_timeout(dev, command);
1657 if (ap->ops->error_handler)
1660 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1662 if (ap->ops->error_handler)
1665 ata_sff_flush_pio_task(ap);
1668 spin_lock_irqsave(ap->lock, flags);
1670 /* We're racing with irq here. If we lose, the
1671 * following test prevents us from completing the qc
1672 * twice. If we win, the port is frozen and will be
1673 * cleaned up by ->post_internal_cmd().
1675 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1676 qc->err_mask |= AC_ERR_TIMEOUT;
1678 if (ap->ops->error_handler)
1679 ata_port_freeze(ap);
1681 ata_qc_complete(qc);
1683 if (ata_msg_warn(ap))
1684 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1688 spin_unlock_irqrestore(ap->lock, flags);
1691 /* do post_internal_cmd */
1692 if (ap->ops->post_internal_cmd)
1693 ap->ops->post_internal_cmd(qc);
1695 /* perform minimal error analysis */
1696 if (qc->flags & ATA_QCFLAG_FAILED) {
1697 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698 qc->err_mask |= AC_ERR_DEV;
1701 qc->err_mask |= AC_ERR_OTHER;
1703 if (qc->err_mask & ~AC_ERR_OTHER)
1704 qc->err_mask &= ~AC_ERR_OTHER;
1705 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1706 qc->result_tf.command |= ATA_SENSE;
1710 spin_lock_irqsave(ap->lock, flags);
1712 *tf = qc->result_tf;
1713 err_mask = qc->err_mask;
1716 link->active_tag = preempted_tag;
1717 link->sactive = preempted_sactive;
1718 ap->qc_active = preempted_qc_active;
1719 ap->nr_active_links = preempted_nr_active_links;
1721 spin_unlock_irqrestore(ap->lock, flags);
1723 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1724 ata_internal_cmd_timed_out(dev, command);
1730 * ata_exec_internal - execute libata internal command
1731 * @dev: Device to which the command is sent
1732 * @tf: Taskfile registers for the command and the result
1733 * @cdb: CDB for packet command
1734 * @dma_dir: Data transfer direction of the command
1735 * @buf: Data buffer of the command
1736 * @buflen: Length of data buffer
1737 * @timeout: Timeout in msecs (0 for default)
1739 * Wrapper around ata_exec_internal_sg() which takes simple
1740 * buffer instead of sg list.
1743 * None. Should be called with kernel context, might sleep.
1746 * Zero on success, AC_ERR_* mask on failure
1748 unsigned ata_exec_internal(struct ata_device *dev,
1749 struct ata_taskfile *tf, const u8 *cdb,
1750 int dma_dir, void *buf, unsigned int buflen,
1751 unsigned long timeout)
1753 struct scatterlist *psg = NULL, sg;
1754 unsigned int n_elem = 0;
1756 if (dma_dir != DMA_NONE) {
1758 sg_init_one(&sg, buf, buflen);
1763 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1768 * ata_pio_need_iordy - check if iordy needed
1771 * Check if the current speed of the device requires IORDY. Used
1772 * by various controllers for chip configuration.
1774 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1776 /* Don't set IORDY if we're preparing for reset. IORDY may
1777 * lead to controller lock up on certain controllers if the
1778 * port is not occupied. See bko#11703 for details.
1780 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1782 /* Controller doesn't support IORDY. Probably a pointless
1783 * check as the caller should know this.
1785 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1787 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1788 if (ata_id_is_cfa(adev->id)
1789 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1791 /* PIO3 and higher it is mandatory */
1792 if (adev->pio_mode > XFER_PIO_2)
1794 /* We turn it on when possible */
1795 if (ata_id_has_iordy(adev->id))
1801 * ata_pio_mask_no_iordy - Return the non IORDY mask
1804 * Compute the highest mode possible if we are not using iordy. Return
1805 * -1 if no iordy mode is available.
1807 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1809 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1810 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1811 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1812 /* Is the speed faster than the drive allows non IORDY ? */
1814 /* This is cycle times not frequency - watch the logic! */
1815 if (pio > 240) /* PIO2 is 240nS per cycle */
1816 return 3 << ATA_SHIFT_PIO;
1817 return 7 << ATA_SHIFT_PIO;
1820 return 3 << ATA_SHIFT_PIO;
1824 * ata_do_dev_read_id - default ID read method
1826 * @tf: proposed taskfile
1829 * Issue the identify taskfile and hand back the buffer containing
1830 * identify data. For some RAID controllers and for pre ATA devices
1831 * this function is wrapped or replaced by the driver
1833 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1834 struct ata_taskfile *tf, u16 *id)
1836 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1837 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1841 * ata_dev_read_id - Read ID data from the specified device
1842 * @dev: target device
1843 * @p_class: pointer to class of the target device (may be changed)
1844 * @flags: ATA_READID_* flags
1845 * @id: buffer to read IDENTIFY data into
1847 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1848 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1849 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1850 * for pre-ATA4 drives.
1852 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1853 * now we abort if we hit that case.
1856 * Kernel thread context (may sleep)
1859 * 0 on success, -errno otherwise.
1861 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1862 unsigned int flags, u16 *id)
1864 struct ata_port *ap = dev->link->ap;
1865 unsigned int class = *p_class;
1866 struct ata_taskfile tf;
1867 unsigned int err_mask = 0;
1869 bool is_semb = class == ATA_DEV_SEMB;
1870 int may_fallback = 1, tried_spinup = 0;
1873 if (ata_msg_ctl(ap))
1874 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1877 ata_tf_init(dev, &tf);
1881 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1885 tf.command = ATA_CMD_ID_ATA;
1888 tf.command = ATA_CMD_ID_ATAPI;
1892 reason = "unsupported class";
1896 tf.protocol = ATA_PROT_PIO;
1898 /* Some devices choke if TF registers contain garbage. Make
1899 * sure those are properly initialized.
1901 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1903 /* Device presence detection is unreliable on some
1904 * controllers. Always poll IDENTIFY if available.
1906 tf.flags |= ATA_TFLAG_POLLING;
1908 if (ap->ops->read_id)
1909 err_mask = ap->ops->read_id(dev, &tf, id);
1911 err_mask = ata_do_dev_read_id(dev, &tf, id);
1914 if (err_mask & AC_ERR_NODEV_HINT) {
1915 ata_dev_dbg(dev, "NODEV after polling detection\n");
1921 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1922 /* SEMB is not supported yet */
1923 *p_class = ATA_DEV_SEMB_UNSUP;
1927 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1928 /* Device or controller might have reported
1929 * the wrong device class. Give a shot at the
1930 * other IDENTIFY if the current one is
1931 * aborted by the device.
1936 if (class == ATA_DEV_ATA)
1937 class = ATA_DEV_ATAPI;
1939 class = ATA_DEV_ATA;
1943 /* Control reaches here iff the device aborted
1944 * both flavors of IDENTIFYs which happens
1945 * sometimes with phantom devices.
1948 "both IDENTIFYs aborted, assuming NODEV\n");
1953 reason = "I/O error";
1957 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1958 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1959 "class=%d may_fallback=%d tried_spinup=%d\n",
1960 class, may_fallback, tried_spinup);
1961 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1962 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1965 /* Falling back doesn't make sense if ID data was read
1966 * successfully at least once.
1970 swap_buf_le16(id, ATA_ID_WORDS);
1974 reason = "device reports invalid type";
1976 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1977 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1979 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1980 ata_id_is_ata(id)) {
1982 "host indicates ignore ATA devices, ignored\n");
1986 if (ata_id_is_ata(id))
1990 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1993 * Drive powered-up in standby mode, and requires a specific
1994 * SET_FEATURES spin-up subcommand before it will accept
1995 * anything other than the original IDENTIFY command.
1997 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1998 if (err_mask && id[2] != 0x738c) {
2000 reason = "SPINUP failed";
2004 * If the drive initially returned incomplete IDENTIFY info,
2005 * we now must reissue the IDENTIFY command.
2007 if (id[2] == 0x37c8)
2011 if ((flags & ATA_READID_POSTRESET) &&
2012 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2014 * The exact sequence expected by certain pre-ATA4 drives is:
2016 * IDENTIFY (optional in early ATA)
2017 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2019 * Some drives were very specific about that exact sequence.
2021 * Note that ATA4 says lba is mandatory so the second check
2022 * should never trigger.
2024 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2025 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2028 reason = "INIT_DEV_PARAMS failed";
2032 /* current CHS translation info (id[53-58]) might be
2033 * changed. reread the identify device info.
2035 flags &= ~ATA_READID_POSTRESET;
2045 if (ata_msg_warn(ap))
2046 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2052 * ata_read_log_page - read a specific log page
2053 * @dev: target device
2055 * @page: page to read
2056 * @buf: buffer to store read page
2057 * @sectors: number of sectors to read
2059 * Read log page using READ_LOG_EXT command.
2062 * Kernel thread context (may sleep).
2065 * 0 on success, AC_ERR_* mask otherwise.
2067 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2068 u8 page, void *buf, unsigned int sectors)
2070 unsigned long ap_flags = dev->link->ap->flags;
2071 struct ata_taskfile tf;
2072 unsigned int err_mask;
2075 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2078 * Return error without actually issuing the command on controllers
2079 * which e.g. lockup on a read log page.
2081 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2085 ata_tf_init(dev, &tf);
2086 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2087 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2088 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2089 tf.protocol = ATA_PROT_DMA;
2092 tf.command = ATA_CMD_READ_LOG_EXT;
2093 tf.protocol = ATA_PROT_PIO;
2099 tf.hob_nsect = sectors >> 8;
2100 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2102 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2103 buf, sectors * ATA_SECT_SIZE, 0);
2105 if (err_mask && dma) {
2106 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2107 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2111 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2115 static bool ata_log_supported(struct ata_device *dev, u8 log)
2117 struct ata_port *ap = dev->link->ap;
2119 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2121 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2124 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2126 struct ata_port *ap = dev->link->ap;
2127 unsigned int err, i;
2129 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2130 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2135 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2138 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2142 "failed to get Device Identify Log Emask 0x%x\n",
2147 for (i = 0; i < ap->sector_buf[8]; i++) {
2148 if (ap->sector_buf[9 + i] == page)
2155 static int ata_do_link_spd_horkage(struct ata_device *dev)
2157 struct ata_link *plink = ata_dev_phys_link(dev);
2158 u32 target, target_limit;
2160 if (!sata_scr_valid(plink))
2163 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2168 target_limit = (1 << target) - 1;
2170 /* if already on stricter limit, no need to push further */
2171 if (plink->sata_spd_limit <= target_limit)
2174 plink->sata_spd_limit = target_limit;
2176 /* Request another EH round by returning -EAGAIN if link is
2177 * going faster than the target speed. Forward progress is
2178 * guaranteed by setting sata_spd_limit to target_limit above.
2180 if (plink->sata_spd > target) {
2181 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2182 sata_spd_string(target));
2188 static inline u8 ata_dev_knobble(struct ata_device *dev)
2190 struct ata_port *ap = dev->link->ap;
2192 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2195 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2198 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2200 struct ata_port *ap = dev->link->ap;
2201 unsigned int err_mask;
2203 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2204 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2207 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2208 0, ap->sector_buf, 1);
2211 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2214 u8 *cmds = dev->ncq_send_recv_cmds;
2216 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2217 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2219 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2220 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2221 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2222 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2227 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2229 struct ata_port *ap = dev->link->ap;
2230 unsigned int err_mask;
2232 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2234 "NCQ Send/Recv Log not supported\n");
2237 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2238 0, ap->sector_buf, 1);
2241 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2244 u8 *cmds = dev->ncq_non_data_cmds;
2246 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2250 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2252 struct ata_port *ap = dev->link->ap;
2253 unsigned int err_mask;
2255 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2256 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2260 err_mask = ata_read_log_page(dev,
2261 ATA_LOG_IDENTIFY_DEVICE,
2262 ATA_LOG_SATA_SETTINGS,
2267 "failed to get Identify Device data, Emask 0x%x\n",
2272 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2273 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2275 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2276 ata_dev_dbg(dev, "SATA page does not support priority\n");
2281 static int ata_dev_config_ncq(struct ata_device *dev,
2282 char *desc, size_t desc_sz)
2284 struct ata_port *ap = dev->link->ap;
2285 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2286 unsigned int err_mask;
2289 if (!ata_id_has_ncq(dev->id)) {
2293 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2294 snprintf(desc, desc_sz, "NCQ (not used)");
2297 if (ap->flags & ATA_FLAG_NCQ) {
2298 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2299 dev->flags |= ATA_DFLAG_NCQ;
2302 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2303 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2304 ata_id_has_fpdma_aa(dev->id)) {
2305 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2309 "failed to enable AA (error_mask=0x%x)\n",
2311 if (err_mask != AC_ERR_DEV) {
2312 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2319 if (hdepth >= ddepth)
2320 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2322 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2325 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2326 if (ata_id_has_ncq_send_and_recv(dev->id))
2327 ata_dev_config_ncq_send_recv(dev);
2328 if (ata_id_has_ncq_non_data(dev->id))
2329 ata_dev_config_ncq_non_data(dev);
2330 if (ata_id_has_ncq_prio(dev->id))
2331 ata_dev_config_ncq_prio(dev);
2337 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2339 unsigned int err_mask;
2341 if (!ata_id_has_sense_reporting(dev->id))
2344 if (ata_id_sense_reporting_enabled(dev->id))
2347 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2350 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2355 static void ata_dev_config_zac(struct ata_device *dev)
2357 struct ata_port *ap = dev->link->ap;
2358 unsigned int err_mask;
2359 u8 *identify_buf = ap->sector_buf;
2361 dev->zac_zones_optimal_open = U32_MAX;
2362 dev->zac_zones_optimal_nonseq = U32_MAX;
2363 dev->zac_zones_max_open = U32_MAX;
2366 * Always set the 'ZAC' flag for Host-managed devices.
2368 if (dev->class == ATA_DEV_ZAC)
2369 dev->flags |= ATA_DFLAG_ZAC;
2370 else if (ata_id_zoned_cap(dev->id) == 0x01)
2372 * Check for host-aware devices.
2374 dev->flags |= ATA_DFLAG_ZAC;
2376 if (!(dev->flags & ATA_DFLAG_ZAC))
2379 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2381 "ATA Zoned Information Log not supported\n");
2386 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2388 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2389 ATA_LOG_ZONED_INFORMATION,
2392 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2394 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2395 if ((zoned_cap >> 63))
2396 dev->zac_zoned_cap = (zoned_cap & 1);
2397 opt_open = get_unaligned_le64(&identify_buf[24]);
2398 if ((opt_open >> 63))
2399 dev->zac_zones_optimal_open = (u32)opt_open;
2400 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2401 if ((opt_nonseq >> 63))
2402 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2403 max_open = get_unaligned_le64(&identify_buf[40]);
2404 if ((max_open >> 63))
2405 dev->zac_zones_max_open = (u32)max_open;
2409 static void ata_dev_config_trusted(struct ata_device *dev)
2411 struct ata_port *ap = dev->link->ap;
2415 if (!ata_id_has_trusted(dev->id))
2418 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2420 "Security Log not supported\n");
2424 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2428 "failed to read Security Log, Emask 0x%x\n", err);
2432 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2433 if (!(trusted_cap & (1ULL << 63))) {
2435 "Trusted Computing capability qword not valid!\n");
2439 if (trusted_cap & (1 << 0))
2440 dev->flags |= ATA_DFLAG_TRUSTED;
2444 * ata_dev_configure - Configure the specified ATA/ATAPI device
2445 * @dev: Target device to configure
2447 * Configure @dev according to @dev->id. Generic and low-level
2448 * driver specific fixups are also applied.
2451 * Kernel thread context (may sleep)
2454 * 0 on success, -errno otherwise
2456 int ata_dev_configure(struct ata_device *dev)
2458 struct ata_port *ap = dev->link->ap;
2459 struct ata_eh_context *ehc = &dev->link->eh_context;
2460 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2461 const u16 *id = dev->id;
2462 unsigned long xfer_mask;
2463 unsigned int err_mask;
2464 char revbuf[7]; /* XYZ-99\0 */
2465 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2466 char modelbuf[ATA_ID_PROD_LEN+1];
2469 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2470 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2474 if (ata_msg_probe(ap))
2475 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2478 dev->horkage |= ata_dev_blacklisted(dev);
2479 ata_force_horkage(dev);
2481 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2482 ata_dev_info(dev, "unsupported device, disabling\n");
2483 ata_dev_disable(dev);
2487 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2488 dev->class == ATA_DEV_ATAPI) {
2489 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2490 atapi_enabled ? "not supported with this driver"
2492 ata_dev_disable(dev);
2496 rc = ata_do_link_spd_horkage(dev);
2500 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2501 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2502 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2503 dev->horkage |= ATA_HORKAGE_NOLPM;
2505 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2506 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2507 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2510 /* let ACPI work its magic */
2511 rc = ata_acpi_on_devcfg(dev);
2515 /* massage HPA, do it early as it might change IDENTIFY data */
2516 rc = ata_hpa_resize(dev);
2520 /* print device capabilities */
2521 if (ata_msg_probe(ap))
2523 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2524 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2526 id[49], id[82], id[83], id[84],
2527 id[85], id[86], id[87], id[88]);
2529 /* initialize to-be-configured parameters */
2530 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2531 dev->max_sectors = 0;
2537 dev->multi_count = 0;
2540 * common ATA, ATAPI feature tests
2543 /* find max transfer mode; for printk only */
2544 xfer_mask = ata_id_xfermask(id);
2546 if (ata_msg_probe(ap))
2549 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2550 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2553 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2556 /* ATA-specific feature tests */
2557 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2558 if (ata_id_is_cfa(id)) {
2559 /* CPRM may make this media unusable */
2560 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2562 "supports DRM functions and may not be fully accessible\n");
2563 snprintf(revbuf, 7, "CFA");
2565 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2566 /* Warn the user if the device has TPM extensions */
2567 if (ata_id_has_tpm(id))
2569 "supports DRM functions and may not be fully accessible\n");
2572 dev->n_sectors = ata_id_n_sectors(id);
2574 /* get current R/W Multiple count setting */
2575 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2576 unsigned int max = dev->id[47] & 0xff;
2577 unsigned int cnt = dev->id[59] & 0xff;
2578 /* only recognize/allow powers of two here */
2579 if (is_power_of_2(max) && is_power_of_2(cnt))
2581 dev->multi_count = cnt;
2584 if (ata_id_has_lba(id)) {
2585 const char *lba_desc;
2589 dev->flags |= ATA_DFLAG_LBA;
2590 if (ata_id_has_lba48(id)) {
2591 dev->flags |= ATA_DFLAG_LBA48;
2594 if (dev->n_sectors >= (1UL << 28) &&
2595 ata_id_has_flush_ext(id))
2596 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2600 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2604 /* print device info to dmesg */
2605 if (ata_msg_drv(ap) && print_info) {
2606 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2607 revbuf, modelbuf, fwrevbuf,
2608 ata_mode_string(xfer_mask));
2610 "%llu sectors, multi %u: %s %s\n",
2611 (unsigned long long)dev->n_sectors,
2612 dev->multi_count, lba_desc, ncq_desc);
2617 /* Default translation */
2618 dev->cylinders = id[1];
2620 dev->sectors = id[6];
2622 if (ata_id_current_chs_valid(id)) {
2623 /* Current CHS translation is valid. */
2624 dev->cylinders = id[54];
2625 dev->heads = id[55];
2626 dev->sectors = id[56];
2629 /* print device info to dmesg */
2630 if (ata_msg_drv(ap) && print_info) {
2631 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2632 revbuf, modelbuf, fwrevbuf,
2633 ata_mode_string(xfer_mask));
2635 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2636 (unsigned long long)dev->n_sectors,
2637 dev->multi_count, dev->cylinders,
2638 dev->heads, dev->sectors);
2642 /* Check and mark DevSlp capability. Get DevSlp timing variables
2643 * from SATA Settings page of Identify Device Data Log.
2645 if (ata_id_has_devslp(dev->id)) {
2646 u8 *sata_setting = ap->sector_buf;
2649 dev->flags |= ATA_DFLAG_DEVSLP;
2650 err_mask = ata_read_log_page(dev,
2651 ATA_LOG_IDENTIFY_DEVICE,
2652 ATA_LOG_SATA_SETTINGS,
2657 "failed to get Identify Device Data, Emask 0x%x\n",
2660 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2661 j = ATA_LOG_DEVSLP_OFFSET + i;
2662 dev->devslp_timing[i] = sata_setting[j];
2665 ata_dev_config_sense_reporting(dev);
2666 ata_dev_config_zac(dev);
2667 ata_dev_config_trusted(dev);
2671 /* ATAPI-specific feature tests */
2672 else if (dev->class == ATA_DEV_ATAPI) {
2673 const char *cdb_intr_string = "";
2674 const char *atapi_an_string = "";
2675 const char *dma_dir_string = "";
2678 rc = atapi_cdb_len(id);
2679 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2680 if (ata_msg_warn(ap))
2681 ata_dev_warn(dev, "unsupported CDB len\n");
2685 dev->cdb_len = (unsigned int) rc;
2687 /* Enable ATAPI AN if both the host and device have
2688 * the support. If PMP is attached, SNTF is required
2689 * to enable ATAPI AN to discern between PHY status
2690 * changed notifications and ATAPI ANs.
2693 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2694 (!sata_pmp_attached(ap) ||
2695 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2696 /* issue SET feature command to turn this on */
2697 err_mask = ata_dev_set_feature(dev,
2698 SETFEATURES_SATA_ENABLE, SATA_AN);
2701 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2704 dev->flags |= ATA_DFLAG_AN;
2705 atapi_an_string = ", ATAPI AN";
2709 if (ata_id_cdb_intr(dev->id)) {
2710 dev->flags |= ATA_DFLAG_CDB_INTR;
2711 cdb_intr_string = ", CDB intr";
2714 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2715 dev->flags |= ATA_DFLAG_DMADIR;
2716 dma_dir_string = ", DMADIR";
2719 if (ata_id_has_da(dev->id)) {
2720 dev->flags |= ATA_DFLAG_DA;
2724 /* print device info to dmesg */
2725 if (ata_msg_drv(ap) && print_info)
2727 "ATAPI: %s, %s, max %s%s%s%s\n",
2729 ata_mode_string(xfer_mask),
2730 cdb_intr_string, atapi_an_string,
2734 /* determine max_sectors */
2735 dev->max_sectors = ATA_MAX_SECTORS;
2736 if (dev->flags & ATA_DFLAG_LBA48)
2737 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2739 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2741 if (ata_dev_knobble(dev)) {
2742 if (ata_msg_drv(ap) && print_info)
2743 ata_dev_info(dev, "applying bridge limits\n");
2744 dev->udma_mask &= ATA_UDMA5;
2745 dev->max_sectors = ATA_MAX_SECTORS;
2748 if ((dev->class == ATA_DEV_ATAPI) &&
2749 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2750 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2751 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2754 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2755 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2758 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2759 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2762 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2763 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2765 if (ap->ops->dev_config)
2766 ap->ops->dev_config(dev);
2768 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2769 /* Let the user know. We don't want to disallow opens for
2770 rescue purposes, or in case the vendor is just a blithering
2771 idiot. Do this after the dev_config call as some controllers
2772 with buggy firmware may want to avoid reporting false device
2777 "Drive reports diagnostics failure. This may indicate a drive\n");
2779 "fault or invalid emulation. Contact drive vendor for information.\n");
2783 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2784 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2785 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2791 if (ata_msg_probe(ap))
2792 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2797 * ata_cable_40wire - return 40 wire cable type
2800 * Helper method for drivers which want to hardwire 40 wire cable
2804 int ata_cable_40wire(struct ata_port *ap)
2806 return ATA_CBL_PATA40;
2810 * ata_cable_80wire - return 80 wire cable type
2813 * Helper method for drivers which want to hardwire 80 wire cable
2817 int ata_cable_80wire(struct ata_port *ap)
2819 return ATA_CBL_PATA80;
2823 * ata_cable_unknown - return unknown PATA cable.
2826 * Helper method for drivers which have no PATA cable detection.
2829 int ata_cable_unknown(struct ata_port *ap)
2831 return ATA_CBL_PATA_UNK;
2835 * ata_cable_ignore - return ignored PATA cable.
2838 * Helper method for drivers which don't use cable type to limit
2841 int ata_cable_ignore(struct ata_port *ap)
2843 return ATA_CBL_PATA_IGN;
2847 * ata_cable_sata - return SATA cable type
2850 * Helper method for drivers which have SATA cables
2853 int ata_cable_sata(struct ata_port *ap)
2855 return ATA_CBL_SATA;
2859 * ata_bus_probe - Reset and probe ATA bus
2862 * Master ATA bus probing function. Initiates a hardware-dependent
2863 * bus reset, then attempts to identify any devices found on
2867 * PCI/etc. bus probe sem.
2870 * Zero on success, negative errno otherwise.
2873 int ata_bus_probe(struct ata_port *ap)
2875 unsigned int classes[ATA_MAX_DEVICES];
2876 int tries[ATA_MAX_DEVICES];
2878 struct ata_device *dev;
2880 ata_for_each_dev(dev, &ap->link, ALL)
2881 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2884 ata_for_each_dev(dev, &ap->link, ALL) {
2885 /* If we issue an SRST then an ATA drive (not ATAPI)
2886 * may change configuration and be in PIO0 timing. If
2887 * we do a hard reset (or are coming from power on)
2888 * this is true for ATA or ATAPI. Until we've set a
2889 * suitable controller mode we should not touch the
2890 * bus as we may be talking too fast.
2892 dev->pio_mode = XFER_PIO_0;
2893 dev->dma_mode = 0xff;
2895 /* If the controller has a pio mode setup function
2896 * then use it to set the chipset to rights. Don't
2897 * touch the DMA setup as that will be dealt with when
2898 * configuring devices.
2900 if (ap->ops->set_piomode)
2901 ap->ops->set_piomode(ap, dev);
2904 /* reset and determine device classes */
2905 ap->ops->phy_reset(ap);
2907 ata_for_each_dev(dev, &ap->link, ALL) {
2908 if (dev->class != ATA_DEV_UNKNOWN)
2909 classes[dev->devno] = dev->class;
2911 classes[dev->devno] = ATA_DEV_NONE;
2913 dev->class = ATA_DEV_UNKNOWN;
2916 /* read IDENTIFY page and configure devices. We have to do the identify
2917 specific sequence bass-ackwards so that PDIAG- is released by
2920 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2921 if (tries[dev->devno])
2922 dev->class = classes[dev->devno];
2924 if (!ata_dev_enabled(dev))
2927 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2933 /* Now ask for the cable type as PDIAG- should have been released */
2934 if (ap->ops->cable_detect)
2935 ap->cbl = ap->ops->cable_detect(ap);
2937 /* We may have SATA bridge glue hiding here irrespective of
2938 * the reported cable types and sensed types. When SATA
2939 * drives indicate we have a bridge, we don't know which end
2940 * of the link the bridge is which is a problem.
2942 ata_for_each_dev(dev, &ap->link, ENABLED)
2943 if (ata_id_is_sata(dev->id))
2944 ap->cbl = ATA_CBL_SATA;
2946 /* After the identify sequence we can now set up the devices. We do
2947 this in the normal order so that the user doesn't get confused */
2949 ata_for_each_dev(dev, &ap->link, ENABLED) {
2950 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2951 rc = ata_dev_configure(dev);
2952 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2957 /* configure transfer mode */
2958 rc = ata_set_mode(&ap->link, &dev);
2962 ata_for_each_dev(dev, &ap->link, ENABLED)
2968 tries[dev->devno]--;
2972 /* eeek, something went very wrong, give up */
2973 tries[dev->devno] = 0;
2977 /* give it just one more chance */
2978 tries[dev->devno] = min(tries[dev->devno], 1);
2981 if (tries[dev->devno] == 1) {
2982 /* This is the last chance, better to slow
2983 * down than lose it.
2985 sata_down_spd_limit(&ap->link, 0);
2986 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2990 if (!tries[dev->devno])
2991 ata_dev_disable(dev);
2997 * sata_print_link_status - Print SATA link status
2998 * @link: SATA link to printk link status about
3000 * This function prints link speed and status of a SATA link.
3005 static void sata_print_link_status(struct ata_link *link)
3007 u32 sstatus, scontrol, tmp;
3009 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3011 sata_scr_read(link, SCR_CONTROL, &scontrol);
3013 if (ata_phys_link_online(link)) {
3014 tmp = (sstatus >> 4) & 0xf;
3015 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3016 sata_spd_string(tmp), sstatus, scontrol);
3018 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3024 * ata_dev_pair - return other device on cable
3027 * Obtain the other device on the same cable, or if none is
3028 * present NULL is returned
3031 struct ata_device *ata_dev_pair(struct ata_device *adev)
3033 struct ata_link *link = adev->link;
3034 struct ata_device *pair = &link->device[1 - adev->devno];
3035 if (!ata_dev_enabled(pair))
3041 * sata_down_spd_limit - adjust SATA spd limit downward
3042 * @link: Link to adjust SATA spd limit for
3043 * @spd_limit: Additional limit
3045 * Adjust SATA spd limit of @link downward. Note that this
3046 * function only adjusts the limit. The change must be applied
3047 * using sata_set_spd().
3049 * If @spd_limit is non-zero, the speed is limited to equal to or
3050 * lower than @spd_limit if such speed is supported. If
3051 * @spd_limit is slower than any supported speed, only the lowest
3052 * supported speed is allowed.
3055 * Inherited from caller.
3058 * 0 on success, negative errno on failure
3060 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3062 u32 sstatus, spd, mask;
3065 if (!sata_scr_valid(link))
3068 /* If SCR can be read, use it to determine the current SPD.
3069 * If not, use cached value in link->sata_spd.
3071 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3072 if (rc == 0 && ata_sstatus_online(sstatus))
3073 spd = (sstatus >> 4) & 0xf;
3075 spd = link->sata_spd;
3077 mask = link->sata_spd_limit;
3081 /* unconditionally mask off the highest bit */
3082 bit = fls(mask) - 1;
3083 mask &= ~(1 << bit);
3086 * Mask off all speeds higher than or equal to the current one. At
3087 * this point, if current SPD is not available and we previously
3088 * recorded the link speed from SStatus, the driver has already
3089 * masked off the highest bit so mask should already be 1 or 0.
3090 * Otherwise, we should not force 1.5Gbps on a link where we have
3091 * not previously recorded speed from SStatus. Just return in this
3095 mask &= (1 << (spd - 1)) - 1;
3099 /* were we already at the bottom? */
3104 if (mask & ((1 << spd_limit) - 1))
3105 mask &= (1 << spd_limit) - 1;
3107 bit = ffs(mask) - 1;
3112 link->sata_spd_limit = mask;
3114 ata_link_warn(link, "limiting SATA link speed to %s\n",
3115 sata_spd_string(fls(mask)));
3120 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3122 struct ata_link *host_link = &link->ap->link;
3123 u32 limit, target, spd;
3125 limit = link->sata_spd_limit;
3127 /* Don't configure downstream link faster than upstream link.
3128 * It doesn't speed up anything and some PMPs choke on such
3131 if (!ata_is_host_link(link) && host_link->sata_spd)
3132 limit &= (1 << host_link->sata_spd) - 1;
3134 if (limit == UINT_MAX)
3137 target = fls(limit);
3139 spd = (*scontrol >> 4) & 0xf;
3140 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3142 return spd != target;
3146 * sata_set_spd_needed - is SATA spd configuration needed
3147 * @link: Link in question
3149 * Test whether the spd limit in SControl matches
3150 * @link->sata_spd_limit. This function is used to determine
3151 * whether hardreset is necessary to apply SATA spd
3155 * Inherited from caller.
3158 * 1 if SATA spd configuration is needed, 0 otherwise.
3160 static int sata_set_spd_needed(struct ata_link *link)
3164 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3167 return __sata_set_spd_needed(link, &scontrol);
3171 * sata_set_spd - set SATA spd according to spd limit
3172 * @link: Link to set SATA spd for
3174 * Set SATA spd of @link according to sata_spd_limit.
3177 * Inherited from caller.
3180 * 0 if spd doesn't need to be changed, 1 if spd has been
3181 * changed. Negative errno if SCR registers are inaccessible.
3183 int sata_set_spd(struct ata_link *link)
3188 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3191 if (!__sata_set_spd_needed(link, &scontrol))
3194 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3201 * This mode timing computation functionality is ported over from
3202 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3205 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3206 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3207 * for UDMA6, which is currently supported only by Maxtor drives.
3209 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3212 static const struct ata_timing ata_timing[] = {
3213 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3214 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3215 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3216 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3217 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3218 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3219 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3220 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3222 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3223 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3224 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3226 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3227 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3228 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3229 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3230 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3232 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3233 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3234 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3235 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3236 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3237 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3238 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3239 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3244 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3245 #define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
3247 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3249 q->setup = EZ(t->setup, T);
3250 q->act8b = EZ(t->act8b, T);
3251 q->rec8b = EZ(t->rec8b, T);
3252 q->cyc8b = EZ(t->cyc8b, T);
3253 q->active = EZ(t->active, T);
3254 q->recover = EZ(t->recover, T);
3255 q->dmack_hold = EZ(t->dmack_hold, T);
3256 q->cycle = EZ(t->cycle, T);
3257 q->udma = EZ(t->udma, UT);
3260 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3261 struct ata_timing *m, unsigned int what)
3263 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3264 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3265 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3266 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3267 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3268 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3269 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3270 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3271 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3274 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3276 const struct ata_timing *t = ata_timing;
3278 while (xfer_mode > t->mode)
3281 if (xfer_mode == t->mode)
3284 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3285 __func__, xfer_mode);
3290 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3291 struct ata_timing *t, int T, int UT)
3293 const u16 *id = adev->id;
3294 const struct ata_timing *s;
3295 struct ata_timing p;
3301 if (!(s = ata_timing_find_mode(speed)))
3304 memcpy(t, s, sizeof(*s));
3307 * If the drive is an EIDE drive, it can tell us it needs extended
3308 * PIO/MW_DMA cycle timing.
3311 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3312 memset(&p, 0, sizeof(p));
3314 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3315 if (speed <= XFER_PIO_2)
3316 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3317 else if ((speed <= XFER_PIO_4) ||
3318 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3319 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3320 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3321 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3323 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3327 * Convert the timing to bus clock counts.
3330 ata_timing_quantize(t, t, T, UT);
3333 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3334 * S.M.A.R.T * and some other commands. We have to ensure that the
3335 * DMA cycle timing is slower/equal than the fastest PIO timing.
3338 if (speed > XFER_PIO_6) {
3339 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3340 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3344 * Lengthen active & recovery time so that cycle time is correct.