bfe2f250d011eceb5017878af79336a194ceb5dd
[muen/linux.git] / drivers / base / regmap / regmap.c
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23 #include <linux/hwspinlock.h>
24
25 #define CREATE_TRACE_POINTS
26 #include "trace.h"
27
28 #include "internal.h"
29
30 /*
31  * Sometimes for failures during very early init the trace
32  * infrastructure isn't available early enough to be used.  For this
33  * sort of problem defining LOG_DEVICE will add printks for basic
34  * register I/O on a specific device.
35  */
36 #undef LOG_DEVICE
37
38 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
39                                unsigned int mask, unsigned int val,
40                                bool *change, bool force_write);
41
42 static int _regmap_bus_reg_read(void *context, unsigned int reg,
43                                 unsigned int *val);
44 static int _regmap_bus_read(void *context, unsigned int reg,
45                             unsigned int *val);
46 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
47                                        unsigned int val);
48 static int _regmap_bus_reg_write(void *context, unsigned int reg,
49                                  unsigned int val);
50 static int _regmap_bus_raw_write(void *context, unsigned int reg,
51                                  unsigned int val);
52
53 bool regmap_reg_in_ranges(unsigned int reg,
54                           const struct regmap_range *ranges,
55                           unsigned int nranges)
56 {
57         const struct regmap_range *r;
58         int i;
59
60         for (i = 0, r = ranges; i < nranges; i++, r++)
61                 if (regmap_reg_in_range(reg, r))
62                         return true;
63         return false;
64 }
65 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
66
67 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
68                               const struct regmap_access_table *table)
69 {
70         /* Check "no ranges" first */
71         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
72                 return false;
73
74         /* In case zero "yes ranges" are supplied, any reg is OK */
75         if (!table->n_yes_ranges)
76                 return true;
77
78         return regmap_reg_in_ranges(reg, table->yes_ranges,
79                                     table->n_yes_ranges);
80 }
81 EXPORT_SYMBOL_GPL(regmap_check_range_table);
82
83 bool regmap_writeable(struct regmap *map, unsigned int reg)
84 {
85         if (map->max_register && reg > map->max_register)
86                 return false;
87
88         if (map->writeable_reg)
89                 return map->writeable_reg(map->dev, reg);
90
91         if (map->wr_table)
92                 return regmap_check_range_table(map, reg, map->wr_table);
93
94         return true;
95 }
96
97 bool regmap_cached(struct regmap *map, unsigned int reg)
98 {
99         int ret;
100         unsigned int val;
101
102         if (map->cache == REGCACHE_NONE)
103                 return false;
104
105         if (!map->cache_ops)
106                 return false;
107
108         if (map->max_register && reg > map->max_register)
109                 return false;
110
111         map->lock(map->lock_arg);
112         ret = regcache_read(map, reg, &val);
113         map->unlock(map->lock_arg);
114         if (ret)
115                 return false;
116
117         return true;
118 }
119
120 bool regmap_readable(struct regmap *map, unsigned int reg)
121 {
122         if (!map->reg_read)
123                 return false;
124
125         if (map->max_register && reg > map->max_register)
126                 return false;
127
128         if (map->format.format_write)
129                 return false;
130
131         if (map->readable_reg)
132                 return map->readable_reg(map->dev, reg);
133
134         if (map->rd_table)
135                 return regmap_check_range_table(map, reg, map->rd_table);
136
137         return true;
138 }
139
140 bool regmap_volatile(struct regmap *map, unsigned int reg)
141 {
142         if (!map->format.format_write && !regmap_readable(map, reg))
143                 return false;
144
145         if (map->volatile_reg)
146                 return map->volatile_reg(map->dev, reg);
147
148         if (map->volatile_table)
149                 return regmap_check_range_table(map, reg, map->volatile_table);
150
151         if (map->cache_ops)
152                 return false;
153         else
154                 return true;
155 }
156
157 bool regmap_precious(struct regmap *map, unsigned int reg)
158 {
159         if (!regmap_readable(map, reg))
160                 return false;
161
162         if (map->precious_reg)
163                 return map->precious_reg(map->dev, reg);
164
165         if (map->precious_table)
166                 return regmap_check_range_table(map, reg, map->precious_table);
167
168         return false;
169 }
170
171 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
172         size_t num)
173 {
174         unsigned int i;
175
176         for (i = 0; i < num; i++)
177                 if (!regmap_volatile(map, reg + i))
178                         return false;
179
180         return true;
181 }
182
183 static void regmap_format_2_6_write(struct regmap *map,
184                                      unsigned int reg, unsigned int val)
185 {
186         u8 *out = map->work_buf;
187
188         *out = (reg << 6) | val;
189 }
190
191 static void regmap_format_4_12_write(struct regmap *map,
192                                      unsigned int reg, unsigned int val)
193 {
194         __be16 *out = map->work_buf;
195         *out = cpu_to_be16((reg << 12) | val);
196 }
197
198 static void regmap_format_7_9_write(struct regmap *map,
199                                     unsigned int reg, unsigned int val)
200 {
201         __be16 *out = map->work_buf;
202         *out = cpu_to_be16((reg << 9) | val);
203 }
204
205 static void regmap_format_10_14_write(struct regmap *map,
206                                     unsigned int reg, unsigned int val)
207 {
208         u8 *out = map->work_buf;
209
210         out[2] = val;
211         out[1] = (val >> 8) | (reg << 6);
212         out[0] = reg >> 2;
213 }
214
215 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
216 {
217         u8 *b = buf;
218
219         b[0] = val << shift;
220 }
221
222 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
223 {
224         __be16 *b = buf;
225
226         b[0] = cpu_to_be16(val << shift);
227 }
228
229 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
230 {
231         __le16 *b = buf;
232
233         b[0] = cpu_to_le16(val << shift);
234 }
235
236 static void regmap_format_16_native(void *buf, unsigned int val,
237                                     unsigned int shift)
238 {
239         *(u16 *)buf = val << shift;
240 }
241
242 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
243 {
244         u8 *b = buf;
245
246         val <<= shift;
247
248         b[0] = val >> 16;
249         b[1] = val >> 8;
250         b[2] = val;
251 }
252
253 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
254 {
255         __be32 *b = buf;
256
257         b[0] = cpu_to_be32(val << shift);
258 }
259
260 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
261 {
262         __le32 *b = buf;
263
264         b[0] = cpu_to_le32(val << shift);
265 }
266
267 static void regmap_format_32_native(void *buf, unsigned int val,
268                                     unsigned int shift)
269 {
270         *(u32 *)buf = val << shift;
271 }
272
273 #ifdef CONFIG_64BIT
274 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
275 {
276         __be64 *b = buf;
277
278         b[0] = cpu_to_be64((u64)val << shift);
279 }
280
281 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
282 {
283         __le64 *b = buf;
284
285         b[0] = cpu_to_le64((u64)val << shift);
286 }
287
288 static void regmap_format_64_native(void *buf, unsigned int val,
289                                     unsigned int shift)
290 {
291         *(u64 *)buf = (u64)val << shift;
292 }
293 #endif
294
295 static void regmap_parse_inplace_noop(void *buf)
296 {
297 }
298
299 static unsigned int regmap_parse_8(const void *buf)
300 {
301         const u8 *b = buf;
302
303         return b[0];
304 }
305
306 static unsigned int regmap_parse_16_be(const void *buf)
307 {
308         const __be16 *b = buf;
309
310         return be16_to_cpu(b[0]);
311 }
312
313 static unsigned int regmap_parse_16_le(const void *buf)
314 {
315         const __le16 *b = buf;
316
317         return le16_to_cpu(b[0]);
318 }
319
320 static void regmap_parse_16_be_inplace(void *buf)
321 {
322         __be16 *b = buf;
323
324         b[0] = be16_to_cpu(b[0]);
325 }
326
327 static void regmap_parse_16_le_inplace(void *buf)
328 {
329         __le16 *b = buf;
330
331         b[0] = le16_to_cpu(b[0]);
332 }
333
334 static unsigned int regmap_parse_16_native(const void *buf)
335 {
336         return *(u16 *)buf;
337 }
338
339 static unsigned int regmap_parse_24(const void *buf)
340 {
341         const u8 *b = buf;
342         unsigned int ret = b[2];
343         ret |= ((unsigned int)b[1]) << 8;
344         ret |= ((unsigned int)b[0]) << 16;
345
346         return ret;
347 }
348
349 static unsigned int regmap_parse_32_be(const void *buf)
350 {
351         const __be32 *b = buf;
352
353         return be32_to_cpu(b[0]);
354 }
355
356 static unsigned int regmap_parse_32_le(const void *buf)
357 {
358         const __le32 *b = buf;
359
360         return le32_to_cpu(b[0]);
361 }
362
363 static void regmap_parse_32_be_inplace(void *buf)
364 {
365         __be32 *b = buf;
366
367         b[0] = be32_to_cpu(b[0]);
368 }
369
370 static void regmap_parse_32_le_inplace(void *buf)
371 {
372         __le32 *b = buf;
373
374         b[0] = le32_to_cpu(b[0]);
375 }
376
377 static unsigned int regmap_parse_32_native(const void *buf)
378 {
379         return *(u32 *)buf;
380 }
381
382 #ifdef CONFIG_64BIT
383 static unsigned int regmap_parse_64_be(const void *buf)
384 {
385         const __be64 *b = buf;
386
387         return be64_to_cpu(b[0]);
388 }
389
390 static unsigned int regmap_parse_64_le(const void *buf)
391 {
392         const __le64 *b = buf;
393
394         return le64_to_cpu(b[0]);
395 }
396
397 static void regmap_parse_64_be_inplace(void *buf)
398 {
399         __be64 *b = buf;
400
401         b[0] = be64_to_cpu(b[0]);
402 }
403
404 static void regmap_parse_64_le_inplace(void *buf)
405 {
406         __le64 *b = buf;
407
408         b[0] = le64_to_cpu(b[0]);
409 }
410
411 static unsigned int regmap_parse_64_native(const void *buf)
412 {
413         return *(u64 *)buf;
414 }
415 #endif
416
417 #ifdef REGMAP_HWSPINLOCK
418 static void regmap_lock_hwlock(void *__map)
419 {
420         struct regmap *map = __map;
421
422         hwspin_lock_timeout(map->hwlock, UINT_MAX);
423 }
424
425 static void regmap_lock_hwlock_irq(void *__map)
426 {
427         struct regmap *map = __map;
428
429         hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
430 }
431
432 static void regmap_lock_hwlock_irqsave(void *__map)
433 {
434         struct regmap *map = __map;
435
436         hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
437                                     &map->spinlock_flags);
438 }
439
440 static void regmap_unlock_hwlock(void *__map)
441 {
442         struct regmap *map = __map;
443
444         hwspin_unlock(map->hwlock);
445 }
446
447 static void regmap_unlock_hwlock_irq(void *__map)
448 {
449         struct regmap *map = __map;
450
451         hwspin_unlock_irq(map->hwlock);
452 }
453
454 static void regmap_unlock_hwlock_irqrestore(void *__map)
455 {
456         struct regmap *map = __map;
457
458         hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
459 }
460 #endif
461
462 static void regmap_lock_mutex(void *__map)
463 {
464         struct regmap *map = __map;
465         mutex_lock(&map->mutex);
466 }
467
468 static void regmap_unlock_mutex(void *__map)
469 {
470         struct regmap *map = __map;
471         mutex_unlock(&map->mutex);
472 }
473
474 static void regmap_lock_spinlock(void *__map)
475 __acquires(&map->spinlock)
476 {
477         struct regmap *map = __map;
478         unsigned long flags;
479
480         spin_lock_irqsave(&map->spinlock, flags);
481         map->spinlock_flags = flags;
482 }
483
484 static void regmap_unlock_spinlock(void *__map)
485 __releases(&map->spinlock)
486 {
487         struct regmap *map = __map;
488         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
489 }
490
491 static void dev_get_regmap_release(struct device *dev, void *res)
492 {
493         /*
494          * We don't actually have anything to do here; the goal here
495          * is not to manage the regmap but to provide a simple way to
496          * get the regmap back given a struct device.
497          */
498 }
499
500 static bool _regmap_range_add(struct regmap *map,
501                               struct regmap_range_node *data)
502 {
503         struct rb_root *root = &map->range_tree;
504         struct rb_node **new = &(root->rb_node), *parent = NULL;
505
506         while (*new) {
507                 struct regmap_range_node *this =
508                         rb_entry(*new, struct regmap_range_node, node);
509
510                 parent = *new;
511                 if (data->range_max < this->range_min)
512                         new = &((*new)->rb_left);
513                 else if (data->range_min > this->range_max)
514                         new = &((*new)->rb_right);
515                 else
516                         return false;
517         }
518
519         rb_link_node(&data->node, parent, new);
520         rb_insert_color(&data->node, root);
521
522         return true;
523 }
524
525 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
526                                                       unsigned int reg)
527 {
528         struct rb_node *node = map->range_tree.rb_node;
529
530         while (node) {
531                 struct regmap_range_node *this =
532                         rb_entry(node, struct regmap_range_node, node);
533
534                 if (reg < this->range_min)
535                         node = node->rb_left;
536                 else if (reg > this->range_max)
537                         node = node->rb_right;
538                 else
539                         return this;
540         }
541
542         return NULL;
543 }
544
545 static void regmap_range_exit(struct regmap *map)
546 {
547         struct rb_node *next;
548         struct regmap_range_node *range_node;
549
550         next = rb_first(&map->range_tree);
551         while (next) {
552                 range_node = rb_entry(next, struct regmap_range_node, node);
553                 next = rb_next(&range_node->node);
554                 rb_erase(&range_node->node, &map->range_tree);
555                 kfree(range_node);
556         }
557
558         kfree(map->selector_work_buf);
559 }
560
561 int regmap_attach_dev(struct device *dev, struct regmap *map,
562                       const struct regmap_config *config)
563 {
564         struct regmap **m;
565
566         map->dev = dev;
567
568         regmap_debugfs_init(map, config->name);
569
570         /* Add a devres resource for dev_get_regmap() */
571         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
572         if (!m) {
573                 regmap_debugfs_exit(map);
574                 return -ENOMEM;
575         }
576         *m = map;
577         devres_add(dev, m);
578
579         return 0;
580 }
581 EXPORT_SYMBOL_GPL(regmap_attach_dev);
582
583 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
584                                         const struct regmap_config *config)
585 {
586         enum regmap_endian endian;
587
588         /* Retrieve the endianness specification from the regmap config */
589         endian = config->reg_format_endian;
590
591         /* If the regmap config specified a non-default value, use that */
592         if (endian != REGMAP_ENDIAN_DEFAULT)
593                 return endian;
594
595         /* Retrieve the endianness specification from the bus config */
596         if (bus && bus->reg_format_endian_default)
597                 endian = bus->reg_format_endian_default;
598
599         /* If the bus specified a non-default value, use that */
600         if (endian != REGMAP_ENDIAN_DEFAULT)
601                 return endian;
602
603         /* Use this if no other value was found */
604         return REGMAP_ENDIAN_BIG;
605 }
606
607 enum regmap_endian regmap_get_val_endian(struct device *dev,
608                                          const struct regmap_bus *bus,
609                                          const struct regmap_config *config)
610 {
611         struct device_node *np;
612         enum regmap_endian endian;
613
614         /* Retrieve the endianness specification from the regmap config */
615         endian = config->val_format_endian;
616
617         /* If the regmap config specified a non-default value, use that */
618         if (endian != REGMAP_ENDIAN_DEFAULT)
619                 return endian;
620
621         /* If the dev and dev->of_node exist try to get endianness from DT */
622         if (dev && dev->of_node) {
623                 np = dev->of_node;
624
625                 /* Parse the device's DT node for an endianness specification */
626                 if (of_property_read_bool(np, "big-endian"))
627                         endian = REGMAP_ENDIAN_BIG;
628                 else if (of_property_read_bool(np, "little-endian"))
629                         endian = REGMAP_ENDIAN_LITTLE;
630                 else if (of_property_read_bool(np, "native-endian"))
631                         endian = REGMAP_ENDIAN_NATIVE;
632
633                 /* If the endianness was specified in DT, use that */
634                 if (endian != REGMAP_ENDIAN_DEFAULT)
635                         return endian;
636         }
637
638         /* Retrieve the endianness specification from the bus config */
639         if (bus && bus->val_format_endian_default)
640                 endian = bus->val_format_endian_default;
641
642         /* If the bus specified a non-default value, use that */
643         if (endian != REGMAP_ENDIAN_DEFAULT)
644                 return endian;
645
646         /* Use this if no other value was found */
647         return REGMAP_ENDIAN_BIG;
648 }
649 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
650
651 struct regmap *__regmap_init(struct device *dev,
652                              const struct regmap_bus *bus,
653                              void *bus_context,
654                              const struct regmap_config *config,
655                              struct lock_class_key *lock_key,
656                              const char *lock_name)
657 {
658         struct regmap *map;
659         int ret = -EINVAL;
660         enum regmap_endian reg_endian, val_endian;
661         int i, j;
662
663         if (!config)
664                 goto err;
665
666         map = kzalloc(sizeof(*map), GFP_KERNEL);
667         if (map == NULL) {
668                 ret = -ENOMEM;
669                 goto err;
670         }
671
672         if (config->lock && config->unlock) {
673                 map->lock = config->lock;
674                 map->unlock = config->unlock;
675                 map->lock_arg = config->lock_arg;
676         } else if (config->hwlock_id) {
677 #ifdef REGMAP_HWSPINLOCK
678                 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
679                 if (!map->hwlock) {
680                         ret = -ENXIO;
681                         goto err_map;
682                 }
683
684                 switch (config->hwlock_mode) {
685                 case HWLOCK_IRQSTATE:
686                         map->lock = regmap_lock_hwlock_irqsave;
687                         map->unlock = regmap_unlock_hwlock_irqrestore;
688                         break;
689                 case HWLOCK_IRQ:
690                         map->lock = regmap_lock_hwlock_irq;
691                         map->unlock = regmap_unlock_hwlock_irq;
692                         break;
693                 default:
694                         map->lock = regmap_lock_hwlock;
695                         map->unlock = regmap_unlock_hwlock;
696                         break;
697                 }
698
699                 map->lock_arg = map;
700 #else
701                 ret = -EINVAL;
702                 goto err;
703 #endif
704         } else {
705                 if ((bus && bus->fast_io) ||
706                     config->fast_io) {
707                         spin_lock_init(&map->spinlock);
708                         map->lock = regmap_lock_spinlock;
709                         map->unlock = regmap_unlock_spinlock;
710                         lockdep_set_class_and_name(&map->spinlock,
711                                                    lock_key, lock_name);
712                 } else {
713                         mutex_init(&map->mutex);
714                         map->lock = regmap_lock_mutex;
715                         map->unlock = regmap_unlock_mutex;
716                         lockdep_set_class_and_name(&map->mutex,
717                                                    lock_key, lock_name);
718                 }
719                 map->lock_arg = map;
720         }
721
722         /*
723          * When we write in fast-paths with regmap_bulk_write() don't allocate
724          * scratch buffers with sleeping allocations.
725          */
726         if ((bus && bus->fast_io) || config->fast_io)
727                 map->alloc_flags = GFP_ATOMIC;
728         else
729                 map->alloc_flags = GFP_KERNEL;
730
731         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
732         map->format.pad_bytes = config->pad_bits / 8;
733         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
734         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
735                         config->val_bits + config->pad_bits, 8);
736         map->reg_shift = config->pad_bits % 8;
737         if (config->reg_stride)
738                 map->reg_stride = config->reg_stride;
739         else
740                 map->reg_stride = 1;
741         if (is_power_of_2(map->reg_stride))
742                 map->reg_stride_order = ilog2(map->reg_stride);
743         else
744                 map->reg_stride_order = -1;
745         map->use_single_read = config->use_single_rw || !bus || !bus->read;
746         map->use_single_write = config->use_single_rw || !bus || !bus->write;
747         map->can_multi_write = config->can_multi_write && bus && bus->write;
748         if (bus) {
749                 map->max_raw_read = bus->max_raw_read;
750                 map->max_raw_write = bus->max_raw_write;
751         }
752         map->dev = dev;
753         map->bus = bus;
754         map->bus_context = bus_context;
755         map->max_register = config->max_register;
756         map->wr_table = config->wr_table;
757         map->rd_table = config->rd_table;
758         map->volatile_table = config->volatile_table;
759         map->precious_table = config->precious_table;
760         map->writeable_reg = config->writeable_reg;
761         map->readable_reg = config->readable_reg;
762         map->volatile_reg = config->volatile_reg;
763         map->precious_reg = config->precious_reg;
764         map->cache_type = config->cache_type;
765         map->name = config->name;
766
767         spin_lock_init(&map->async_lock);
768         INIT_LIST_HEAD(&map->async_list);
769         INIT_LIST_HEAD(&map->async_free);
770         init_waitqueue_head(&map->async_waitq);
771
772         if (config->read_flag_mask || config->write_flag_mask) {
773                 map->read_flag_mask = config->read_flag_mask;
774                 map->write_flag_mask = config->write_flag_mask;
775         } else if (bus) {
776                 map->read_flag_mask = bus->read_flag_mask;
777         }
778
779         if (!bus) {
780                 map->reg_read  = config->reg_read;
781                 map->reg_write = config->reg_write;
782
783                 map->defer_caching = false;
784                 goto skip_format_initialization;
785         } else if (!bus->read || !bus->write) {
786                 map->reg_read = _regmap_bus_reg_read;
787                 map->reg_write = _regmap_bus_reg_write;
788
789                 map->defer_caching = false;
790                 goto skip_format_initialization;
791         } else {
792                 map->reg_read  = _regmap_bus_read;
793                 map->reg_update_bits = bus->reg_update_bits;
794         }
795
796         reg_endian = regmap_get_reg_endian(bus, config);
797         val_endian = regmap_get_val_endian(dev, bus, config);
798
799         switch (config->reg_bits + map->reg_shift) {
800         case 2:
801                 switch (config->val_bits) {
802                 case 6:
803                         map->format.format_write = regmap_format_2_6_write;
804                         break;
805                 default:
806                         goto err_hwlock;
807                 }
808                 break;
809
810         case 4:
811                 switch (config->val_bits) {
812                 case 12:
813                         map->format.format_write = regmap_format_4_12_write;
814                         break;
815                 default:
816                         goto err_hwlock;
817                 }
818                 break;
819
820         case 7:
821                 switch (config->val_bits) {
822                 case 9:
823                         map->format.format_write = regmap_format_7_9_write;
824                         break;
825                 default:
826                         goto err_hwlock;
827                 }
828                 break;
829
830         case 10:
831                 switch (config->val_bits) {
832                 case 14:
833                         map->format.format_write = regmap_format_10_14_write;
834                         break;
835                 default:
836                         goto err_hwlock;
837                 }
838                 break;
839
840         case 8:
841                 map->format.format_reg = regmap_format_8;
842                 break;
843
844         case 16:
845                 switch (reg_endian) {
846                 case REGMAP_ENDIAN_BIG:
847                         map->format.format_reg = regmap_format_16_be;
848                         break;
849                 case REGMAP_ENDIAN_LITTLE:
850                         map->format.format_reg = regmap_format_16_le;
851                         break;
852                 case REGMAP_ENDIAN_NATIVE:
853                         map->format.format_reg = regmap_format_16_native;
854                         break;
855                 default:
856                         goto err_hwlock;
857                 }
858                 break;
859
860         case 24:
861                 if (reg_endian != REGMAP_ENDIAN_BIG)
862                         goto err_hwlock;
863                 map->format.format_reg = regmap_format_24;
864                 break;
865
866         case 32:
867                 switch (reg_endian) {
868                 case REGMAP_ENDIAN_BIG:
869                         map->format.format_reg = regmap_format_32_be;
870                         break;
871                 case REGMAP_ENDIAN_LITTLE:
872                         map->format.format_reg = regmap_format_32_le;
873                         break;
874                 case REGMAP_ENDIAN_NATIVE:
875                         map->format.format_reg = regmap_format_32_native;
876                         break;
877                 default:
878                         goto err_hwlock;
879                 }
880                 break;
881
882 #ifdef CONFIG_64BIT
883         case 64:
884                 switch (reg_endian) {
885                 case REGMAP_ENDIAN_BIG:
886                         map->format.format_reg = regmap_format_64_be;
887                         break;
888                 case REGMAP_ENDIAN_LITTLE:
889                         map->format.format_reg = regmap_format_64_le;
890                         break;
891                 case REGMAP_ENDIAN_NATIVE:
892                         map->format.format_reg = regmap_format_64_native;
893                         break;
894                 default:
895                         goto err_hwlock;
896                 }
897                 break;
898 #endif
899
900         default:
901                 goto err_hwlock;
902         }
903
904         if (val_endian == REGMAP_ENDIAN_NATIVE)
905                 map->format.parse_inplace = regmap_parse_inplace_noop;
906
907         switch (config->val_bits) {
908         case 8:
909                 map->format.format_val = regmap_format_8;
910                 map->format.parse_val = regmap_parse_8;
911                 map->format.parse_inplace = regmap_parse_inplace_noop;
912                 break;
913         case 16:
914                 switch (val_endian) {
915                 case REGMAP_ENDIAN_BIG:
916                         map->format.format_val = regmap_format_16_be;
917                         map->format.parse_val = regmap_parse_16_be;
918                         map->format.parse_inplace = regmap_parse_16_be_inplace;
919                         break;
920                 case REGMAP_ENDIAN_LITTLE:
921                         map->format.format_val = regmap_format_16_le;
922                         map->format.parse_val = regmap_parse_16_le;
923                         map->format.parse_inplace = regmap_parse_16_le_inplace;
924                         break;
925                 case REGMAP_ENDIAN_NATIVE:
926                         map->format.format_val = regmap_format_16_native;
927                         map->format.parse_val = regmap_parse_16_native;
928                         break;
929                 default:
930                         goto err_hwlock;
931                 }
932                 break;
933         case 24:
934                 if (val_endian != REGMAP_ENDIAN_BIG)
935                         goto err_hwlock;
936                 map->format.format_val = regmap_format_24;
937                 map->format.parse_val = regmap_parse_24;
938                 break;
939         case 32:
940                 switch (val_endian) {
941                 case REGMAP_ENDIAN_BIG:
942                         map->format.format_val = regmap_format_32_be;
943                         map->format.parse_val = regmap_parse_32_be;
944                         map->format.parse_inplace = regmap_parse_32_be_inplace;
945                         break;
946                 case REGMAP_ENDIAN_LITTLE:
947                         map->format.format_val = regmap_format_32_le;
948                         map->format.parse_val = regmap_parse_32_le;
949                         map->format.parse_inplace = regmap_parse_32_le_inplace;
950                         break;
951                 case REGMAP_ENDIAN_NATIVE:
952                         map->format.format_val = regmap_format_32_native;
953                         map->format.parse_val = regmap_parse_32_native;
954                         break;
955                 default:
956                         goto err_hwlock;
957                 }
958                 break;
959 #ifdef CONFIG_64BIT
960         case 64:
961                 switch (val_endian) {
962                 case REGMAP_ENDIAN_BIG:
963                         map->format.format_val = regmap_format_64_be;
964                         map->format.parse_val = regmap_parse_64_be;
965                         map->format.parse_inplace = regmap_parse_64_be_inplace;
966                         break;
967                 case REGMAP_ENDIAN_LITTLE:
968                         map->format.format_val = regmap_format_64_le;
969                         map->format.parse_val = regmap_parse_64_le;
970                         map->format.parse_inplace = regmap_parse_64_le_inplace;
971                         break;
972                 case REGMAP_ENDIAN_NATIVE:
973                         map->format.format_val = regmap_format_64_native;
974                         map->format.parse_val = regmap_parse_64_native;
975                         break;
976                 default:
977                         goto err_hwlock;
978                 }
979                 break;
980 #endif
981         }
982
983         if (map->format.format_write) {
984                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
985                     (val_endian != REGMAP_ENDIAN_BIG))
986                         goto err_hwlock;
987                 map->use_single_write = true;
988         }
989
990         if (!map->format.format_write &&
991             !(map->format.format_reg && map->format.format_val))
992                 goto err_hwlock;
993
994         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
995         if (map->work_buf == NULL) {
996                 ret = -ENOMEM;
997                 goto err_hwlock;
998         }
999
1000         if (map->format.format_write) {
1001                 map->defer_caching = false;
1002                 map->reg_write = _regmap_bus_formatted_write;
1003         } else if (map->format.format_val) {
1004                 map->defer_caching = true;
1005                 map->reg_write = _regmap_bus_raw_write;
1006         }
1007
1008 skip_format_initialization:
1009
1010         map->range_tree = RB_ROOT;
1011         for (i = 0; i < config->num_ranges; i++) {
1012                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1013                 struct regmap_range_node *new;
1014
1015                 /* Sanity check */
1016                 if (range_cfg->range_max < range_cfg->range_min) {
1017                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1018                                 range_cfg->range_max, range_cfg->range_min);
1019                         goto err_range;
1020                 }
1021
1022                 if (range_cfg->range_max > map->max_register) {
1023                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1024                                 range_cfg->range_max, map->max_register);
1025                         goto err_range;
1026                 }
1027
1028                 if (range_cfg->selector_reg > map->max_register) {
1029                         dev_err(map->dev,
1030                                 "Invalid range %d: selector out of map\n", i);
1031                         goto err_range;
1032                 }
1033
1034                 if (range_cfg->window_len == 0) {
1035                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
1036                                 i);
1037                         goto err_range;
1038                 }
1039
1040                 /* Make sure, that this register range has no selector
1041                    or data window within its boundary */
1042                 for (j = 0; j < config->num_ranges; j++) {
1043                         unsigned sel_reg = config->ranges[j].selector_reg;
1044                         unsigned win_min = config->ranges[j].window_start;
1045                         unsigned win_max = win_min +
1046                                            config->ranges[j].window_len - 1;
1047
1048                         /* Allow data window inside its own virtual range */
1049                         if (j == i)
1050                                 continue;
1051
1052                         if (range_cfg->range_min <= sel_reg &&
1053                             sel_reg <= range_cfg->range_max) {
1054                                 dev_err(map->dev,
1055                                         "Range %d: selector for %d in window\n",
1056                                         i, j);
1057                                 goto err_range;
1058                         }
1059
1060                         if (!(win_max < range_cfg->range_min ||
1061                               win_min > range_cfg->range_max)) {
1062                                 dev_err(map->dev,
1063                                         "Range %d: window for %d in window\n",
1064                                         i, j);
1065                                 goto err_range;
1066                         }
1067                 }
1068
1069                 new = kzalloc(sizeof(*new), GFP_KERNEL);
1070                 if (new == NULL) {
1071                         ret = -ENOMEM;
1072                         goto err_range;
1073                 }
1074
1075                 new->map = map;
1076                 new->name = range_cfg->name;
1077                 new->range_min = range_cfg->range_min;
1078                 new->range_max = range_cfg->range_max;
1079                 new->selector_reg = range_cfg->selector_reg;
1080                 new->selector_mask = range_cfg->selector_mask;
1081                 new->selector_shift = range_cfg->selector_shift;
1082                 new->window_start = range_cfg->window_start;
1083                 new->window_len = range_cfg->window_len;
1084
1085                 if (!_regmap_range_add(map, new)) {
1086                         dev_err(map->dev, "Failed to add range %d\n", i);
1087                         kfree(new);
1088                         goto err_range;
1089                 }
1090
1091                 if (map->selector_work_buf == NULL) {
1092                         map->selector_work_buf =
1093                                 kzalloc(map->format.buf_size, GFP_KERNEL);
1094                         if (map->selector_work_buf == NULL) {
1095                                 ret = -ENOMEM;
1096                                 goto err_range;
1097                         }
1098                 }
1099         }
1100
1101         ret = regcache_init(map, config);
1102         if (ret != 0)
1103                 goto err_range;
1104
1105         if (dev) {
1106                 ret = regmap_attach_dev(dev, map, config);
1107                 if (ret != 0)
1108                         goto err_regcache;
1109         }
1110
1111         return map;
1112
1113 err_regcache:
1114         regcache_exit(map);
1115 err_range:
1116         regmap_range_exit(map);
1117         kfree(map->work_buf);
1118 err_hwlock:
1119         if (IS_ENABLED(REGMAP_HWSPINLOCK) && map->hwlock)
1120                 hwspin_lock_free(map->hwlock);
1121 err_map:
1122         kfree(map);
1123 err:
1124         return ERR_PTR(ret);
1125 }
1126 EXPORT_SYMBOL_GPL(__regmap_init);
1127
1128 static void devm_regmap_release(struct device *dev, void *res)
1129 {
1130         regmap_exit(*(struct regmap **)res);
1131 }
1132
1133 struct regmap *__devm_regmap_init(struct device *dev,
1134                                   const struct regmap_bus *bus,
1135                                   void *bus_context,
1136                                   const struct regmap_config *config,
1137                                   struct lock_class_key *lock_key,
1138                                   const char *lock_name)
1139 {
1140         struct regmap **ptr, *regmap;
1141
1142         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1143         if (!ptr)
1144                 return ERR_PTR(-ENOMEM);
1145
1146         regmap = __regmap_init(dev, bus, bus_context, config,
1147                                lock_key, lock_name);
1148         if (!IS_ERR(regmap)) {
1149                 *ptr = regmap;
1150                 devres_add(dev, ptr);
1151         } else {
1152                 devres_free(ptr);
1153         }
1154
1155         return regmap;
1156 }
1157 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1158
1159 static void regmap_field_init(struct regmap_field *rm_field,
1160         struct regmap *regmap, struct reg_field reg_field)
1161 {
1162         rm_field->regmap = regmap;
1163         rm_field->reg = reg_field.reg;
1164         rm_field->shift = reg_field.lsb;
1165         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1166         rm_field->id_size = reg_field.id_size;
1167         rm_field->id_offset = reg_field.id_offset;
1168 }
1169
1170 /**
1171  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1172  *
1173  * @dev: Device that will be interacted with
1174  * @regmap: regmap bank in which this register field is located.
1175  * @reg_field: Register field with in the bank.
1176  *
1177  * The return value will be an ERR_PTR() on error or a valid pointer
1178  * to a struct regmap_field. The regmap_field will be automatically freed
1179  * by the device management code.
1180  */
1181 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1182                 struct regmap *regmap, struct reg_field reg_field)
1183 {
1184         struct regmap_field *rm_field = devm_kzalloc(dev,
1185                                         sizeof(*rm_field), GFP_KERNEL);
1186         if (!rm_field)
1187                 return ERR_PTR(-ENOMEM);
1188
1189         regmap_field_init(rm_field, regmap, reg_field);
1190
1191         return rm_field;
1192
1193 }
1194 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1195
1196 /**
1197  * devm_regmap_field_free() - Free a register field allocated using
1198  *                            devm_regmap_field_alloc.
1199  *
1200  * @dev: Device that will be interacted with
1201  * @field: regmap field which should be freed.
1202  *
1203  * Free register field allocated using devm_regmap_field_alloc(). Usually
1204  * drivers need not call this function, as the memory allocated via devm
1205  * will be freed as per device-driver life-cyle.
1206  */
1207 void devm_regmap_field_free(struct device *dev,
1208         struct regmap_field *field)
1209 {
1210         devm_kfree(dev, field);
1211 }
1212 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1213
1214 /**
1215  * regmap_field_alloc() - Allocate and initialise a register field.
1216  *
1217  * @regmap: regmap bank in which this register field is located.
1218  * @reg_field: Register field with in the bank.
1219  *
1220  * The return value will be an ERR_PTR() on error or a valid pointer
1221  * to a struct regmap_field. The regmap_field should be freed by the
1222  * user once its finished working with it using regmap_field_free().
1223  */
1224 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1225                 struct reg_field reg_field)
1226 {
1227         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1228
1229         if (!rm_field)
1230                 return ERR_PTR(-ENOMEM);
1231
1232         regmap_field_init(rm_field, regmap, reg_field);
1233
1234         return rm_field;
1235 }
1236 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1237
1238 /**
1239  * regmap_field_free() - Free register field allocated using
1240  *                       regmap_field_alloc.
1241  *
1242  * @field: regmap field which should be freed.
1243  */
1244 void regmap_field_free(struct regmap_field *field)
1245 {
1246         kfree(field);
1247 }
1248 EXPORT_SYMBOL_GPL(regmap_field_free);
1249
1250 /**
1251  * regmap_reinit_cache() - Reinitialise the current register cache
1252  *
1253  * @map: Register map to operate on.
1254  * @config: New configuration.  Only the cache data will be used.
1255  *
1256  * Discard any existing register cache for the map and initialize a
1257  * new cache.  This can be used to restore the cache to defaults or to
1258  * update the cache configuration to reflect runtime discovery of the
1259  * hardware.
1260  *
1261  * No explicit locking is done here, the user needs to ensure that
1262  * this function will not race with other calls to regmap.
1263  */
1264 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1265 {
1266         regcache_exit(map);
1267         regmap_debugfs_exit(map);
1268
1269         map->max_register = config->max_register;
1270         map->writeable_reg = config->writeable_reg;
1271         map->readable_reg = config->readable_reg;
1272         map->volatile_reg = config->volatile_reg;
1273         map->precious_reg = config->precious_reg;
1274         map->cache_type = config->cache_type;
1275
1276         regmap_debugfs_init(map, config->name);
1277
1278         map->cache_bypass = false;
1279         map->cache_only = false;
1280
1281         return regcache_init(map, config);
1282 }
1283 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1284
1285 /**
1286  * regmap_exit() - Free a previously allocated register map
1287  *
1288  * @map: Register map to operate on.
1289  */
1290 void regmap_exit(struct regmap *map)
1291 {
1292         struct regmap_async *async;
1293
1294         regcache_exit(map);
1295         regmap_debugfs_exit(map);
1296         regmap_range_exit(map);
1297         if (map->bus && map->bus->free_context)
1298                 map->bus->free_context(map->bus_context);
1299         kfree(map->work_buf);
1300         while (!list_empty(&map->async_free)) {
1301                 async = list_first_entry_or_null(&map->async_free,
1302                                                  struct regmap_async,
1303                                                  list);
1304                 list_del(&async->list);
1305                 kfree(async->work_buf);
1306                 kfree(async);
1307         }
1308         if (IS_ENABLED(REGMAP_HWSPINLOCK) && map->hwlock)
1309                 hwspin_lock_free(map->hwlock);
1310         kfree(map);
1311 }
1312 EXPORT_SYMBOL_GPL(regmap_exit);
1313
1314 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1315 {
1316         struct regmap **r = res;
1317         if (!r || !*r) {
1318                 WARN_ON(!r || !*r);
1319                 return 0;
1320         }
1321
1322         /* If the user didn't specify a name match any */
1323         if (data)
1324                 return (*r)->name == data;
1325         else
1326                 return 1;
1327 }
1328
1329 /**
1330  * dev_get_regmap() - Obtain the regmap (if any) for a device
1331  *
1332  * @dev: Device to retrieve the map for
1333  * @name: Optional name for the register map, usually NULL.
1334  *
1335  * Returns the regmap for the device if one is present, or NULL.  If
1336  * name is specified then it must match the name specified when
1337  * registering the device, if it is NULL then the first regmap found
1338  * will be used.  Devices with multiple register maps are very rare,
1339  * generic code should normally not need to specify a name.
1340  */
1341 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1342 {
1343         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1344                                         dev_get_regmap_match, (void *)name);
1345
1346         if (!r)
1347                 return NULL;
1348         return *r;
1349 }
1350 EXPORT_SYMBOL_GPL(dev_get_regmap);
1351
1352 /**
1353  * regmap_get_device() - Obtain the device from a regmap
1354  *
1355  * @map: Register map to operate on.
1356  *
1357  * Returns the underlying device that the regmap has been created for.
1358  */
1359 struct device *regmap_get_device(struct regmap *map)
1360 {
1361         return map->dev;
1362 }
1363 EXPORT_SYMBOL_GPL(regmap_get_device);
1364
1365 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1366                                struct regmap_range_node *range,
1367                                unsigned int val_num)
1368 {
1369         void *orig_work_buf;
1370         unsigned int win_offset;
1371         unsigned int win_page;
1372         bool page_chg;
1373         int ret;
1374
1375         win_offset = (*reg - range->range_min) % range->window_len;
1376         win_page = (*reg - range->range_min) / range->window_len;
1377
1378         if (val_num > 1) {
1379                 /* Bulk write shouldn't cross range boundary */
1380                 if (*reg + val_num - 1 > range->range_max)
1381                         return -EINVAL;
1382
1383                 /* ... or single page boundary */
1384                 if (val_num > range->window_len - win_offset)
1385                         return -EINVAL;
1386         }
1387
1388         /* It is possible to have selector register inside data window.
1389            In that case, selector register is located on every page and
1390            it needs no page switching, when accessed alone. */
1391         if (val_num > 1 ||
1392             range->window_start + win_offset != range->selector_reg) {
1393                 /* Use separate work_buf during page switching */
1394                 orig_work_buf = map->work_buf;
1395                 map->work_buf = map->selector_work_buf;
1396
1397                 ret = _regmap_update_bits(map, range->selector_reg,
1398                                           range->selector_mask,
1399                                           win_page << range->selector_shift,
1400                                           &page_chg, false);
1401
1402                 map->work_buf = orig_work_buf;
1403
1404                 if (ret != 0)
1405                         return ret;
1406         }
1407
1408         *reg = range->window_start + win_offset;
1409
1410         return 0;
1411 }
1412
1413 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1414                                           unsigned long mask)
1415 {
1416         u8 *buf;
1417         int i;
1418
1419         if (!mask || !map->work_buf)
1420                 return;
1421
1422         buf = map->work_buf;
1423
1424         for (i = 0; i < max_bytes; i++)
1425                 buf[i] |= (mask >> (8 * i)) & 0xff;
1426 }
1427
1428 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1429                       const void *val, size_t val_len)
1430 {
1431         struct regmap_range_node *range;
1432         unsigned long flags;
1433         void *work_val = map->work_buf + map->format.reg_bytes +
1434                 map->format.pad_bytes;
1435         void *buf;
1436         int ret = -ENOTSUPP;
1437         size_t len;
1438         int i;
1439
1440         WARN_ON(!map->bus);
1441
1442         /* Check for unwritable registers before we start */
1443         if (map->writeable_reg)
1444                 for (i = 0; i < val_len / map->format.val_bytes; i++)
1445                         if (!map->writeable_reg(map->dev,
1446                                                reg + regmap_get_offset(map, i)))
1447                                 return -EINVAL;
1448
1449         if (!map->cache_bypass && map->format.parse_val) {
1450                 unsigned int ival;
1451                 int val_bytes = map->format.val_bytes;
1452                 for (i = 0; i < val_len / val_bytes; i++) {
1453                         ival = map->format.parse_val(val + (i * val_bytes));
1454                         ret = regcache_write(map,
1455                                              reg + regmap_get_offset(map, i),
1456                                              ival);
1457                         if (ret) {
1458                                 dev_err(map->dev,
1459                                         "Error in caching of register: %x ret: %d\n",
1460                                         reg + i, ret);
1461                                 return ret;
1462                         }
1463                 }
1464                 if (map->cache_only) {
1465                         map->cache_dirty = true;
1466                         return 0;
1467                 }
1468         }
1469
1470         range = _regmap_range_lookup(map, reg);
1471         if (range) {
1472                 int val_num = val_len / map->format.val_bytes;
1473                 int win_offset = (reg - range->range_min) % range->window_len;
1474                 int win_residue = range->window_len - win_offset;
1475
1476                 /* If the write goes beyond the end of the window split it */
1477                 while (val_num > win_residue) {
1478                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1479                                 win_residue, val_len / map->format.val_bytes);
1480                         ret = _regmap_raw_write(map, reg, val, win_residue *
1481                                                 map->format.val_bytes);
1482                         if (ret != 0)
1483                                 return ret;
1484
1485                         reg += win_residue;
1486                         val_num -= win_residue;
1487                         val += win_residue * map->format.val_bytes;
1488                         val_len -= win_residue * map->format.val_bytes;
1489
1490                         win_offset = (reg - range->range_min) %
1491                                 range->window_len;
1492                         win_residue = range->window_len - win_offset;
1493                 }
1494
1495                 ret = _regmap_select_page(map, &reg, range, val_num);
1496                 if (ret != 0)
1497                         return ret;
1498         }
1499
1500         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1501         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1502                                       map->write_flag_mask);
1503
1504         /*
1505          * Essentially all I/O mechanisms will be faster with a single
1506          * buffer to write.  Since register syncs often generate raw
1507          * writes of single registers optimise that case.
1508          */
1509         if (val != work_val && val_len == map->format.val_bytes) {
1510                 memcpy(work_val, val, map->format.val_bytes);
1511                 val = work_val;
1512         }
1513
1514         if (map->async && map->bus->async_write) {
1515                 struct regmap_async *async;
1516
1517                 trace_regmap_async_write_start(map, reg, val_len);
1518
1519                 spin_lock_irqsave(&map->async_lock, flags);
1520                 async = list_first_entry_or_null(&map->async_free,
1521                                                  struct regmap_async,
1522                                                  list);
1523                 if (async)
1524                         list_del(&async->list);
1525                 spin_unlock_irqrestore(&map->async_lock, flags);
1526
1527                 if (!async) {
1528                         async = map->bus->async_alloc();
1529                         if (!async)
1530                                 return -ENOMEM;
1531
1532                         async->work_buf = kzalloc(map->format.buf_size,
1533                                                   GFP_KERNEL | GFP_DMA);
1534                         if (!async->work_buf) {
1535                                 kfree(async);
1536                                 return -ENOMEM;
1537                         }
1538                 }
1539
1540                 async->map = map;
1541
1542                 /* If the caller supplied the value we can use it safely. */
1543                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1544                        map->format.reg_bytes + map->format.val_bytes);
1545
1546                 spin_lock_irqsave(&map->async_lock, flags);
1547                 list_add_tail(&async->list, &map->async_list);
1548                 spin_unlock_irqrestore(&map->async_lock, flags);
1549
1550                 if (val != work_val)
1551                         ret = map->bus->async_write(map->bus_context,
1552                                                     async->work_buf,
1553                                                     map->format.reg_bytes +
1554                                                     map->format.pad_bytes,
1555                                                     val, val_len, async);
1556                 else
1557                         ret = map->bus->async_write(map->bus_context,
1558                                                     async->work_buf,
1559                                                     map->format.reg_bytes +
1560                                                     map->format.pad_bytes +
1561                                                     val_len, NULL, 0, async);
1562
1563                 if (ret != 0) {
1564                         dev_err(map->dev, "Failed to schedule write: %d\n",
1565                                 ret);
1566
1567                         spin_lock_irqsave(&map->async_lock, flags);
1568                         list_move(&async->list, &map->async_free);
1569                         spin_unlock_irqrestore(&map->async_lock, flags);
1570                 }
1571
1572                 return ret;
1573         }
1574
1575         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1576
1577         /* If we're doing a single register write we can probably just
1578          * send the work_buf directly, otherwise try to do a gather
1579          * write.
1580          */
1581         if (val == work_val)
1582                 ret = map->bus->write(map->bus_context, map->work_buf,
1583                                       map->format.reg_bytes +
1584                                       map->format.pad_bytes +
1585                                       val_len);
1586         else if (map->bus->gather_write)
1587                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1588                                              map->format.reg_bytes +
1589                                              map->format.pad_bytes,
1590                                              val, val_len);
1591
1592         /* If that didn't work fall back on linearising by hand. */
1593         if (ret == -ENOTSUPP) {
1594                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1595                 buf = kzalloc(len, GFP_KERNEL);
1596                 if (!buf)
1597                         return -ENOMEM;
1598
1599                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1600                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1601                        val, val_len);
1602                 ret = map->bus->write(map->bus_context, buf, len);
1603
1604                 kfree(buf);
1605         } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1606                 /* regcache_drop_region() takes lock that we already have,
1607                  * thus call map->cache_ops->drop() directly
1608                  */
1609                 if (map->cache_ops && map->cache_ops->drop)
1610                         map->cache_ops->drop(map, reg, reg + 1);
1611         }
1612
1613         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1614
1615         return ret;
1616 }
1617
1618 /**
1619  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1620  *
1621  * @map: Map to check.
1622  */
1623 bool regmap_can_raw_write(struct regmap *map)
1624 {
1625         return map->bus && map->bus->write && map->format.format_val &&
1626                 map->format.format_reg;
1627 }
1628 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1629
1630 /**
1631  * regmap_get_raw_read_max - Get the maximum size we can read
1632  *
1633  * @map: Map to check.
1634  */
1635 size_t regmap_get_raw_read_max(struct regmap *map)
1636 {
1637         return map->max_raw_read;
1638 }
1639 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1640
1641 /**
1642  * regmap_get_raw_write_max - Get the maximum size we can read
1643  *
1644  * @map: Map to check.
1645  */
1646 size_t regmap_get_raw_write_max(struct regmap *map)
1647 {
1648         return map->max_raw_write;
1649 }
1650 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1651
1652 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1653                                        unsigned int val)
1654 {
1655         int ret;
1656         struct regmap_range_node *range;
1657         struct regmap *map = context;
1658
1659         WARN_ON(!map->bus || !map->format.format_write);
1660
1661         range = _regmap_range_lookup(map, reg);
1662         if (range) {
1663                 ret = _regmap_select_page(map, &reg, range, 1);
1664                 if (ret != 0)
1665                         return ret;
1666         }
1667
1668         map->format.format_write(map, reg, val);
1669
1670         trace_regmap_hw_write_start(map, reg, 1);
1671
1672         ret = map->bus->write(map->bus_context, map->work_buf,
1673                               map->format.buf_size);
1674
1675         trace_regmap_hw_write_done(map, reg, 1);
1676
1677         return ret;
1678 }
1679
1680 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1681                                  unsigned int val)
1682 {
1683         struct regmap *map = context;
1684
1685         return map->bus->reg_write(map->bus_context, reg, val);
1686 }
1687
1688 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1689                                  unsigned int val)
1690 {
1691         struct regmap *map = context;
1692
1693         WARN_ON(!map->bus || !map->format.format_val);
1694
1695         map->format.format_val(map->work_buf + map->format.reg_bytes
1696                                + map->format.pad_bytes, val, 0);
1697         return _regmap_raw_write(map, reg,
1698                                  map->work_buf +
1699                                  map->format.reg_bytes +
1700                                  map->format.pad_bytes,
1701                                  map->format.val_bytes);
1702 }
1703
1704 static inline void *_regmap_map_get_context(struct regmap *map)
1705 {
1706         return (map->bus) ? map : map->bus_context;
1707 }
1708
1709 int _regmap_write(struct regmap *map, unsigned int reg,
1710                   unsigned int val)
1711 {
1712         int ret;
1713         void *context = _regmap_map_get_context(map);
1714
1715         if (!regmap_writeable(map, reg))
1716                 return -EIO;
1717
1718         if (!map->cache_bypass && !map->defer_caching) {
1719                 ret = regcache_write(map, reg, val);
1720                 if (ret != 0)
1721                         return ret;
1722                 if (map->cache_only) {
1723                         map->cache_dirty = true;
1724                         return 0;
1725                 }
1726         }
1727
1728 #ifdef LOG_DEVICE
1729         if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1730                 dev_info(map->dev, "%x <= %x\n", reg, val);
1731 #endif
1732
1733         trace_regmap_reg_write(map, reg, val);
1734
1735         return map->reg_write(context, reg, val);
1736 }
1737
1738 /**
1739  * regmap_write() - Write a value to a single register
1740  *
1741  * @map: Register map to write to
1742  * @reg: Register to write to
1743  * @val: Value to be written
1744  *
1745  * A value of zero will be returned on success, a negative errno will
1746  * be returned in error cases.
1747  */
1748 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1749 {
1750         int ret;
1751
1752         if (!IS_ALIGNED(reg, map->reg_stride))
1753                 return -EINVAL;
1754
1755         map->lock(map->lock_arg);
1756
1757         ret = _regmap_write(map, reg, val);
1758
1759         map->unlock(map->lock_arg);
1760
1761         return ret;
1762 }
1763 EXPORT_SYMBOL_GPL(regmap_write);
1764
1765 /**
1766  * regmap_write_async() - Write a value to a single register asynchronously
1767  *
1768  * @map: Register map to write to
1769  * @reg: Register to write to
1770  * @val: Value to be written
1771  *
1772  * A value of zero will be returned on success, a negative errno will
1773  * be returned in error cases.
1774  */
1775 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1776 {
1777         int ret;
1778
1779         if (!IS_ALIGNED(reg, map->reg_stride))
1780                 return -EINVAL;
1781
1782         map->lock(map->lock_arg);
1783
1784         map->async = true;
1785
1786         ret = _regmap_write(map, reg, val);
1787
1788         map->async = false;
1789
1790         map->unlock(map->lock_arg);
1791
1792         return ret;
1793 }
1794 EXPORT_SYMBOL_GPL(regmap_write_async);
1795
1796 /**
1797  * regmap_raw_write() - Write raw values to one or more registers
1798  *
1799  * @map: Register map to write to
1800  * @reg: Initial register to write to
1801  * @val: Block of data to be written, laid out for direct transmission to the
1802  *       device
1803  * @val_len: Length of data pointed to by val.
1804  *
1805  * This function is intended to be used for things like firmware
1806  * download where a large block of data needs to be transferred to the
1807  * device.  No formatting will be done on the data provided.
1808  *
1809  * A value of zero will be returned on success, a negative errno will
1810  * be returned in error cases.
1811  */
1812 int regmap_raw_write(struct regmap *map, unsigned int reg,
1813                      const void *val, size_t val_len)
1814 {
1815         int ret;
1816
1817         if (!regmap_can_raw_write(map))
1818                 return -EINVAL;
1819         if (val_len % map->format.val_bytes)
1820                 return -EINVAL;
1821         if (map->max_raw_write && map->max_raw_write > val_len)
1822                 return -E2BIG;
1823
1824         map->lock(map->lock_arg);
1825
1826         ret = _regmap_raw_write(map, reg, val, val_len);
1827
1828         map->unlock(map->lock_arg);
1829
1830         return ret;
1831 }
1832 EXPORT_SYMBOL_GPL(regmap_raw_write);
1833
1834 /**
1835  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1836  *                                   register field.
1837  *
1838  * @field: Register field to write to
1839  * @mask: Bitmask to change
1840  * @val: Value to be written
1841  * @change: Boolean indicating if a write was done
1842  * @async: Boolean indicating asynchronously
1843  * @force: Boolean indicating use force update
1844  *
1845  * Perform a read/modify/write cycle on the register field with change,
1846  * async, force option.
1847  *
1848  * A value of zero will be returned on success, a negative errno will
1849  * be returned in error cases.
1850  */
1851 int regmap_field_update_bits_base(struct regmap_field *field,
1852                                   unsigned int mask, unsigned int val,
1853                                   bool *change, bool async, bool force)
1854 {
1855         mask = (mask << field->shift) & field->mask;
1856
1857         return regmap_update_bits_base(field->regmap, field->reg,
1858                                        mask, val << field->shift,
1859                                        change, async, force);
1860 }
1861 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1862
1863 /**
1864  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1865  *                                    register field with port ID
1866  *
1867  * @field: Register field to write to
1868  * @id: port ID
1869  * @mask: Bitmask to change
1870  * @val: Value to be written
1871  * @change: Boolean indicating if a write was done
1872  * @async: Boolean indicating asynchronously
1873  * @force: Boolean indicating use force update
1874  *
1875  * A value of zero will be returned on success, a negative errno will
1876  * be returned in error cases.
1877  */
1878 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1879                                    unsigned int mask, unsigned int val,
1880                                    bool *change, bool async, bool force)
1881 {
1882         if (id >= field->id_size)
1883                 return -EINVAL;
1884
1885         mask = (mask << field->shift) & field->mask;
1886
1887         return regmap_update_bits_base(field->regmap,
1888                                        field->reg + (field->id_offset * id),
1889                                        mask, val << field->shift,
1890                                        change, async, force);
1891 }
1892 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1893
1894 /**
1895  * regmap_bulk_write() - Write multiple registers to the device
1896  *
1897  * @map: Register map to write to
1898  * @reg: First register to be write from
1899  * @val: Block of data to be written, in native register size for device
1900  * @val_count: Number of registers to write
1901  *
1902  * This function is intended to be used for writing a large block of
1903  * data to the device either in single transfer or multiple transfer.
1904  *
1905  * A value of zero will be returned on success, a negative errno will
1906  * be returned in error cases.
1907  */
1908 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1909                      size_t val_count)
1910 {
1911         int ret = 0, i;
1912         size_t val_bytes = map->format.val_bytes;
1913         size_t total_size = val_bytes * val_count;
1914
1915         if (!IS_ALIGNED(reg, map->reg_stride))
1916                 return -EINVAL;
1917
1918         /*
1919          * Some devices don't support bulk write, for
1920          * them we have a series of single write operations in the first two if
1921          * blocks.
1922          *
1923          * The first if block is used for memory mapped io. It does not allow
1924          * val_bytes of 3 for example.
1925          * The second one is for busses that do not provide raw I/O.
1926          * The third one is used for busses which do not have these limitations
1927          * and can write arbitrary value lengths.
1928          */
1929         if (!map->bus) {
1930                 map->lock(map->lock_arg);
1931                 for (i = 0; i < val_count; i++) {
1932                         unsigned int ival;
1933
1934                         switch (val_bytes) {
1935                         case 1:
1936                                 ival = *(u8 *)(val + (i * val_bytes));
1937                                 break;
1938                         case 2:
1939                                 ival = *(u16 *)(val + (i * val_bytes));
1940                                 break;
1941                         case 4:
1942                                 ival = *(u32 *)(val + (i * val_bytes));
1943                                 break;
1944 #ifdef CONFIG_64BIT
1945                         case 8:
1946                                 ival = *(u64 *)(val + (i * val_bytes));
1947                                 break;
1948 #endif
1949                         default:
1950                                 ret = -EINVAL;
1951                                 goto out;
1952                         }
1953
1954                         ret = _regmap_write(map,
1955                                             reg + regmap_get_offset(map, i),
1956                                             ival);
1957                         if (ret != 0)
1958                                 goto out;
1959                 }
1960 out:
1961                 map->unlock(map->lock_arg);
1962         } else if (map->bus && !map->format.parse_inplace) {
1963                 const u8 *u8 = val;
1964                 const u16 *u16 = val;
1965                 const u32 *u32 = val;
1966                 unsigned int ival;
1967
1968                 for (i = 0; i < val_count; i++) {
1969                         switch (map->format.val_bytes) {
1970                         case 4:
1971                                 ival = u32[i];
1972                                 break;
1973                         case 2:
1974                                 ival = u16[i];
1975                                 break;
1976                         case 1:
1977                                 ival = u8[i];
1978                                 break;
1979                         default:
1980                                 return -EINVAL;
1981                         }
1982
1983                         ret = regmap_write(map, reg + (i * map->reg_stride),
1984                                            ival);
1985                         if (ret)
1986                                 return ret;
1987                 }
1988         } else if (map->use_single_write ||
1989                    (map->max_raw_write && map->max_raw_write < total_size)) {
1990                 int chunk_stride = map->reg_stride;
1991                 size_t chunk_size = val_bytes;
1992                 size_t chunk_count = val_count;
1993
1994                 if (!map->use_single_write) {
1995                         chunk_size = map->max_raw_write;
1996                         if (chunk_size % val_bytes)
1997                                 chunk_size -= chunk_size % val_bytes;
1998                         chunk_count = total_size / chunk_size;
1999                         chunk_stride *= chunk_size / val_bytes;
2000                 }
2001
2002                 map->lock(map->lock_arg);
2003                 /* Write as many bytes as possible with chunk_size */
2004                 for (i = 0; i < chunk_count; i++) {
2005                         ret = _regmap_raw_write(map,
2006                                                 reg + (i * chunk_stride),
2007                                                 val + (i * chunk_size),
2008                                                 chunk_size);
2009                         if (ret)
2010                                 break;
2011                 }
2012
2013                 /* Write remaining bytes */
2014                 if (!ret && chunk_size * i < total_size) {
2015                         ret = _regmap_raw_write(map, reg + (i * chunk_stride),
2016                                                 val + (i * chunk_size),
2017                                                 total_size - i * chunk_size);
2018                 }
2019                 map->unlock(map->lock_arg);
2020         } else {
2021                 void *wval;
2022
2023                 if (!val_count)
2024                         return -EINVAL;
2025
2026                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2027                 if (!wval) {
2028                         dev_err(map->dev, "Error in memory allocation\n");
2029                         return -ENOMEM;
2030                 }
2031                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2032                         map->format.parse_inplace(wval + i);
2033
2034                 map->lock(map->lock_arg);
2035                 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
2036                 map->unlock(map->lock_arg);
2037
2038                 kfree(wval);
2039         }
2040         return ret;
2041 }
2042 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2043
2044 /*
2045  * _regmap_raw_multi_reg_write()
2046  *
2047  * the (register,newvalue) pairs in regs have not been formatted, but
2048  * they are all in the same page and have been changed to being page
2049  * relative. The page register has been written if that was necessary.
2050  */
2051 static int _regmap_raw_multi_reg_write(struct regmap *map,
2052                                        const struct reg_sequence *regs,
2053                                        size_t num_regs)
2054 {
2055         int ret;
2056         void *buf;
2057         int i;
2058         u8 *u8;
2059         size_t val_bytes = map->format.val_bytes;
2060         size_t reg_bytes = map->format.reg_bytes;
2061         size_t pad_bytes = map->format.pad_bytes;
2062         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2063         size_t len = pair_size * num_regs;
2064
2065         if (!len)
2066                 return -EINVAL;
2067
2068         buf = kzalloc(len, GFP_KERNEL);
2069         if (!buf)
2070                 return -ENOMEM;
2071
2072         /* We have to linearise by hand. */
2073
2074         u8 = buf;
2075
2076         for (i = 0; i < num_regs; i++) {
2077                 unsigned int reg = regs[i].reg;
2078                 unsigned int val = regs[i].def;
2079                 trace_regmap_hw_write_start(map, reg, 1);
2080                 map->format.format_reg(u8, reg, map->reg_shift);
2081                 u8 += reg_bytes + pad_bytes;
2082                 map->format.format_val(u8, val, 0);
2083                 u8 += val_bytes;
2084         }
2085         u8 = buf;
2086         *u8 |= map->write_flag_mask;
2087
2088         ret = map->bus->write(map->bus_context, buf, len);
2089
2090         kfree(buf);
2091
2092         for (i = 0; i < num_regs; i++) {
2093                 int reg = regs[i].reg;
2094                 trace_regmap_hw_write_done(map, reg, 1);
2095         }
2096         return ret;
2097 }
2098
2099 static unsigned int _regmap_register_page(struct regmap *map,
2100                                           unsigned int reg,
2101                                           struct regmap_range_node *range)
2102 {
2103         unsigned int win_page = (reg - range->range_min) / range->window_len;
2104
2105         return win_page;
2106 }
2107
2108 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2109                                                struct reg_sequence *regs,
2110                                                size_t num_regs)
2111 {
2112         int ret;
2113         int i, n;
2114         struct reg_sequence *base;
2115         unsigned int this_page = 0;
2116         unsigned int page_change = 0;
2117         /*
2118          * the set of registers are not neccessarily in order, but
2119          * since the order of write must be preserved this algorithm
2120          * chops the set each time the page changes. This also applies
2121          * if there is a delay required at any point in the sequence.
2122          */
2123         base = regs;
2124         for (i = 0, n = 0; i < num_regs; i++, n++) {
2125                 unsigned int reg = regs[i].reg;
2126                 struct regmap_range_node *range;
2127
2128                 range = _regmap_range_lookup(map, reg);
2129                 if (range) {
2130                         unsigned int win_page = _regmap_register_page(map, reg,
2131                                                                       range);
2132
2133                         if (i == 0)
2134                                 this_page = win_page;
2135                         if (win_page != this_page) {
2136                                 this_page = win_page;
2137                                 page_change = 1;
2138                         }
2139                 }
2140
2141                 /* If we have both a page change and a delay make sure to
2142                  * write the regs and apply the delay before we change the
2143                  * page.
2144                  */
2145
2146                 if (page_change || regs[i].delay_us) {
2147
2148                                 /* For situations where the first write requires
2149                                  * a delay we need to make sure we don't call
2150                                  * raw_multi_reg_write with n=0
2151                                  * This can't occur with page breaks as we
2152                                  * never write on the first iteration
2153                                  */
2154                                 if (regs[i].delay_us && i == 0)
2155                                         n = 1;
2156
2157                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2158                                 if (ret != 0)
2159                                         return ret;
2160
2161                                 if (regs[i].delay_us)
2162                                         udelay(regs[i].delay_us);
2163
2164                                 base += n;
2165                                 n = 0;
2166
2167                                 if (page_change) {
2168                                         ret = _regmap_select_page(map,
2169                                                                   &base[n].reg,
2170                                                                   range, 1);
2171                                         if (ret != 0)
2172                                                 return ret;
2173
2174                                         page_change = 0;
2175                                 }
2176
2177                 }
2178
2179         }
2180         if (n > 0)
2181                 return _regmap_raw_multi_reg_write(map, base, n);
2182         return 0;
2183 }
2184
2185 static int _regmap_multi_reg_write(struct regmap *map,
2186                                    const struct reg_sequence *regs,
2187                                    size_t num_regs)
2188 {
2189         int i;
2190         int ret;
2191
2192         if (!map->can_multi_write) {
2193                 for (i = 0; i < num_regs; i++) {
2194                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2195                         if (ret != 0)
2196                                 return ret;
2197
2198                         if (regs[i].delay_us)
2199                                 udelay(regs[i].delay_us);
2200                 }
2201                 return 0;
2202         }
2203
2204         if (!map->format.parse_inplace)
2205                 return -EINVAL;
2206
2207         if (map->writeable_reg)
2208                 for (i = 0; i < num_regs; i++) {
2209                         int reg = regs[i].reg;
2210                         if (!map->writeable_reg(map->dev, reg))
2211                                 return -EINVAL;
2212                         if (!IS_ALIGNED(reg, map->reg_stride))
2213                                 return -EINVAL;
2214                 }
2215
2216         if (!map->cache_bypass) {
2217                 for (i = 0; i < num_regs; i++) {
2218                         unsigned int val = regs[i].def;
2219                         unsigned int reg = regs[i].reg;
2220                         ret = regcache_write(map, reg, val);
2221                         if (ret) {
2222                                 dev_err(map->dev,
2223                                 "Error in caching of register: %x ret: %d\n",
2224                                                                 reg, ret);
2225                                 return ret;
2226                         }
2227                 }
2228                 if (map->cache_only) {
2229                         map->cache_dirty = true;
2230                         return 0;
2231                 }
2232         }
2233
2234         WARN_ON(!map->bus);
2235
2236         for (i = 0; i < num_regs; i++) {
2237                 unsigned int reg = regs[i].reg;
2238                 struct regmap_range_node *range;
2239
2240                 /* Coalesce all the writes between a page break or a delay
2241                  * in a sequence
2242                  */
2243                 range = _regmap_range_lookup(map, reg);
2244                 if (range || regs[i].delay_us) {
2245                         size_t len = sizeof(struct reg_sequence)*num_regs;
2246                         struct reg_sequence *base = kmemdup(regs, len,
2247                                                            GFP_KERNEL);
2248                         if (!base)
2249                                 return -ENOMEM;
2250                         ret = _regmap_range_multi_paged_reg_write(map, base,
2251                                                                   num_regs);
2252                         kfree(base);
2253
2254                         return ret;
2255                 }
2256         }
2257         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2258 }
2259
2260 /**
2261  * regmap_multi_reg_write() - Write multiple registers to the device
2262  *
2263  * @map: Register map to write to
2264  * @regs: Array of structures containing register,value to be written
2265  * @num_regs: Number of registers to write
2266  *
2267  * Write multiple registers to the device where the set of register, value
2268  * pairs are supplied in any order, possibly not all in a single range.
2269  *
2270  * The 'normal' block write mode will send ultimately send data on the
2271  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2272  * addressed. However, this alternative block multi write mode will send
2273  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2274  * must of course support the mode.
2275  *
2276  * A value of zero will be returned on success, a negative errno will be
2277  * returned in error cases.
2278  */
2279 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2280                            int num_regs)
2281 {
2282         int ret;
2283
2284         map->lock(map->lock_arg);
2285
2286         ret = _regmap_multi_reg_write(map, regs, num_regs);
2287
2288         map->unlock(map->lock_arg);
2289
2290         return ret;
2291 }
2292 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2293
2294 /**
2295  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2296  *                                     device but not the cache
2297  *
2298  * @map: Register map to write to
2299  * @regs: Array of structures containing register,value to be written
2300  * @num_regs: Number of registers to write
2301  *
2302  * Write multiple registers to the device but not the cache where the set
2303  * of register are supplied in any order.
2304  *
2305  * This function is intended to be used for writing a large block of data
2306  * atomically to the device in single transfer for those I2C client devices
2307  * that implement this alternative block write mode.
2308  *
2309  * A value of zero will be returned on success, a negative errno will
2310  * be returned in error cases.
2311  */
2312 int regmap_multi_reg_write_bypassed(struct regmap *map,
2313                                     const struct reg_sequence *regs,
2314                                     int num_regs)
2315 {
2316         int ret;
2317         bool bypass;
2318
2319         map->lock(map->lock_arg);
2320
2321         bypass = map->cache_bypass;
2322         map->cache_bypass = true;
2323
2324         ret = _regmap_multi_reg_write(map, regs, num_regs);
2325
2326         map->cache_bypass = bypass;
2327
2328         map->unlock(map->lock_arg);
2329
2330         return ret;
2331 }
2332 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2333
2334 /**
2335  * regmap_raw_write_async() - Write raw values to one or more registers
2336  *                            asynchronously
2337  *
2338  * @map: Register map to write to
2339  * @reg: Initial register to write to
2340  * @val: Block of data to be written, laid out for direct transmission to the
2341  *       device.  Must be valid until regmap_async_complete() is called.
2342  * @val_len: Length of data pointed to by val.
2343  *
2344  * This function is intended to be used for things like firmware
2345  * download where a large block of data needs to be transferred to the
2346  * device.  No formatting will be done on the data provided.
2347  *
2348  * If supported by the underlying bus the write will be scheduled
2349  * asynchronously, helping maximise I/O speed on higher speed buses
2350  * like SPI.  regmap_async_complete() can be called to ensure that all
2351  * asynchrnous writes have been completed.
2352  *
2353  * A value of zero will be returned on success, a negative errno will
2354  * be returned in error cases.
2355  */
2356 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2357                            const void *val, size_t val_len)
2358 {
2359         int ret;
2360
2361         if (val_len % map->format.val_bytes)
2362                 return -EINVAL;
2363         if (!IS_ALIGNED(reg, map->reg_stride))
2364                 return -EINVAL;
2365
2366         map->lock(map->lock_arg);
2367
2368         map->async = true;
2369
2370         ret = _regmap_raw_write(map, reg, val, val_len);
2371
2372         map->async = false;
2373
2374         map->unlock(map->lock_arg);
2375
2376         return ret;
2377 }
2378 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2379
2380 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2381                             unsigned int val_len)
2382 {
2383         struct regmap_range_node *range;
2384         int ret;
2385
2386         WARN_ON(!map->bus);
2387
2388         if (!map->bus || !map->bus->read)
2389                 return -EINVAL;
2390
2391         range = _regmap_range_lookup(map, reg);
2392         if (range) {
2393                 ret = _regmap_select_page(map, &reg, range,
2394                                           val_len / map->format.val_bytes);
2395                 if (ret != 0)
2396                         return ret;
2397         }
2398
2399         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2400         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2401                                       map->read_flag_mask);
2402         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2403
2404         ret = map->bus->read(map->bus_context, map->work_buf,
2405                              map->format.reg_bytes + map->format.pad_bytes,
2406                              val, val_len);
2407
2408         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2409
2410         return ret;
2411 }
2412
2413 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2414                                 unsigned int *val)
2415 {
2416         struct regmap *map = context;
2417
2418         return map->bus->reg_read(map->bus_context, reg, val);
2419 }
2420
2421 static int _regmap_bus_read(void *context, unsigned int reg,
2422                             unsigned int *val)
2423 {
2424         int ret;
2425         struct regmap *map = context;
2426
2427         if (!map->format.parse_val)
2428                 return -EINVAL;
2429
2430         ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2431         if (ret == 0)
2432                 *val = map->format.parse_val(map->work_buf);
2433
2434         return ret;
2435 }
2436
2437 static int _regmap_read(struct regmap *map, unsigned int reg,
2438                         unsigned int *val)
2439 {
2440         int ret;
2441         void *context = _regmap_map_get_context(map);
2442
2443         if (!map->cache_bypass) {
2444                 ret = regcache_read(map, reg, val);
2445                 if (ret == 0)
2446                         return 0;
2447         }
2448
2449         if (map->cache_only)
2450                 return -EBUSY;
2451
2452         if (!regmap_readable(map, reg))
2453                 return -EIO;
2454
2455         ret = map->reg_read(context, reg, val);
2456         if (ret == 0) {
2457 #ifdef LOG_DEVICE
2458                 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2459                         dev_info(map->dev, "%x => %x\n", reg, *val);
2460 #endif
2461
2462                 trace_regmap_reg_read(map, reg, *val);
2463
2464                 if (!map->cache_bypass)
2465                         regcache_write(map, reg, *val);
2466         }
2467
2468         return ret;
2469 }
2470
2471 /**
2472  * regmap_read() - Read a value from a single register
2473  *
2474  * @map: Register map to read from
2475  * @reg: Register to be read from
2476  * @val: Pointer to store read value
2477  *
2478  * A value of zero will be returned on success, a negative errno will
2479  * be returned in error cases.
2480  */
2481 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2482 {
2483         int ret;
2484
2485         if (!IS_ALIGNED(reg, map->reg_stride))
2486                 return -EINVAL;
2487
2488         map->lock(map->lock_arg);
2489
2490         ret = _regmap_read(map, reg, val);
2491
2492         map->unlock(map->lock_arg);
2493
2494         return ret;
2495 }
2496 EXPORT_SYMBOL_GPL(regmap_read);
2497
2498 /**
2499  * regmap_raw_read() - Read raw data from the device
2500  *
2501  * @map: Register map to read from
2502  * @reg: First register to be read from
2503  * @val: Pointer to store read value
2504  * @val_len: Size of data to read
2505  *
2506  * A value of zero will be returned on success, a negative errno will
2507  * be returned in error cases.
2508  */
2509 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2510                     size_t val_len)
2511 {
2512         size_t val_bytes = map->format.val_bytes;
2513         size_t val_count = val_len / val_bytes;
2514         unsigned int v;
2515         int ret, i;
2516
2517         if (!map->bus)
2518                 return -EINVAL;
2519         if (val_len % map->format.val_bytes)
2520                 return -EINVAL;
2521         if (!IS_ALIGNED(reg, map->reg_stride))
2522                 return -EINVAL;
2523         if (val_count == 0)
2524                 return -EINVAL;
2525
2526         map->lock(map->lock_arg);
2527
2528         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2529             map->cache_type == REGCACHE_NONE) {
2530                 if (!map->bus->read) {
2531                         ret = -ENOTSUPP;
2532                         goto out;
2533                 }
2534                 if (map->max_raw_read && map->max_raw_read < val_len) {
2535                         ret = -E2BIG;
2536                         goto out;
2537                 }
2538
2539                 /* Physical block read if there's no cache involved */
2540                 ret = _regmap_raw_read(map, reg, val, val_len);
2541
2542         } else {
2543                 /* Otherwise go word by word for the cache; should be low
2544                  * cost as we expect to hit the cache.
2545                  */
2546                 for (i = 0; i < val_count; i++) {
2547                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2548                                            &v);
2549                         if (ret != 0)
2550                                 goto out;
2551
2552                         map->format.format_val(val + (i * val_bytes), v, 0);
2553                 }
2554         }
2555
2556  out:
2557         map->unlock(map->lock_arg);
2558
2559         return ret;
2560 }
2561 EXPORT_SYMBOL_GPL(regmap_raw_read);
2562
2563 /**
2564  * regmap_field_read() - Read a value to a single register field
2565  *
2566  * @field: Register field to read from
2567  * @val: Pointer to store read value
2568  *
2569  * A value of zero will be returned on success, a negative errno will
2570  * be returned in error cases.
2571  */
2572 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2573 {
2574         int ret;
2575         unsigned int reg_val;
2576         ret = regmap_read(field->regmap, field->reg, &reg_val);
2577         if (ret != 0)
2578                 return ret;
2579
2580         reg_val &= field->mask;
2581         reg_val >>= field->shift;
2582         *val = reg_val;
2583
2584         return ret;
2585 }
2586 EXPORT_SYMBOL_GPL(regmap_field_read);
2587
2588 /**
2589  * regmap_fields_read() - Read a value to a single register field with port ID
2590  *
2591  * @field: Register field to read from
2592  * @id: port ID
2593  * @val: Pointer to store read value
2594  *
2595  * A value of zero will be returned on success, a negative errno will
2596  * be returned in error cases.
2597  */
2598 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2599                        unsigned int *val)
2600 {
2601         int ret;
2602         unsigned int reg_val;
2603
2604         if (id >= field->id_size)
2605                 return -EINVAL;
2606
2607         ret = regmap_read(field->regmap,
2608                           field->reg + (field->id_offset * id),
2609                           &reg_val);
2610         if (ret != 0)
2611                 return ret;
2612
2613         reg_val &= field->mask;
2614         reg_val >>= field->shift;
2615         *val = reg_val;
2616
2617         return ret;
2618 }
2619 EXPORT_SYMBOL_GPL(regmap_fields_read);
2620
2621 /**
2622  * regmap_bulk_read() - Read multiple registers from the device
2623  *
2624  * @map: Register map to read from
2625  * @reg: First register to be read from
2626  * @val: Pointer to store read value, in native register size for device
2627  * @val_count: Number of registers to read
2628  *
2629  * A value of zero will be returned on success, a negative errno will
2630  * be returned in error cases.
2631  */
2632 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2633                      size_t val_count)
2634 {
2635         int ret, i;
2636         size_t val_bytes = map->format.val_bytes;
2637         bool vol = regmap_volatile_range(map, reg, val_count);
2638
2639         if (!IS_ALIGNED(reg, map->reg_stride))
2640                 return -EINVAL;
2641
2642         if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2643                 /*
2644                  * Some devices does not support bulk read, for
2645                  * them we have a series of single read operations.
2646                  */
2647                 size_t total_size = val_bytes * val_count;
2648
2649                 if (!map->use_single_read &&
2650                     (!map->max_raw_read || map->max_raw_read > total_size)) {
2651                         ret = regmap_raw_read(map, reg, val,
2652                                               val_bytes * val_count);
2653                         if (ret != 0)
2654                                 return ret;
2655                 } else {
2656                         /*
2657                          * Some devices do not support bulk read or do not
2658                          * support large bulk reads, for them we have a series
2659                          * of read operations.
2660                          */
2661                         int chunk_stride = map->reg_stride;
2662                         size_t chunk_size = val_bytes;
2663                         size_t chunk_count = val_count;
2664
2665                         if (!map->use_single_read) {
2666                                 chunk_size = map->max_raw_read;
2667                                 if (chunk_size % val_bytes)
2668                                         chunk_size -= chunk_size % val_bytes;
2669                                 chunk_count = total_size / chunk_size;
2670                                 chunk_stride *= chunk_size / val_bytes;
2671                         }
2672
2673                         /* Read bytes that fit into a multiple of chunk_size */
2674                         for (i = 0; i < chunk_count; i++) {
2675                                 ret = regmap_raw_read(map,
2676                                                       reg + (i * chunk_stride),
2677                                                       val + (i * chunk_size),
2678                                                       chunk_size);
2679                                 if (ret != 0)
2680                                         return ret;
2681                         }
2682
2683                         /* Read remaining bytes */
2684                         if (chunk_size * i < total_size) {
2685                                 ret = regmap_raw_read(map,
2686                                                       reg + (i * chunk_stride),
2687                                                       val + (i * chunk_size),
2688                                                       total_size - i * chunk_size);
2689                                 if (ret != 0)
2690                                         return ret;
2691                         }
2692                 }
2693
2694                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2695                         map->format.parse_inplace(val + i);
2696         } else {
2697                 for (i = 0; i < val_count; i++) {
2698                         unsigned int ival;
2699                         ret = regmap_read(map, reg + regmap_get_offset(map, i),
2700                                           &ival);
2701                         if (ret != 0)
2702                                 return ret;
2703
2704                         if (map->format.format_val) {
2705                                 map->format.format_val(val + (i * val_bytes), ival, 0);
2706                         } else {
2707                                 /* Devices providing read and write
2708                                  * operations can use the bulk I/O
2709                                  * functions if they define a val_bytes,
2710                                  * we assume that the values are native
2711                                  * endian.
2712                                  */
2713 #ifdef CONFIG_64BIT
2714                                 u64 *u64 = val;
2715 #endif
2716                                 u32 *u32 = val;
2717                                 u16 *u16 = val;
2718                                 u8 *u8 = val;
2719
2720                                 switch (map->format.val_bytes) {
2721 #ifdef CONFIG_64BIT
2722                                 case 8:
2723                                         u64[i] = ival;
2724                                         break;
2725 #endif
2726                                 case 4:
2727                                         u32[i] = ival;
2728                                         break;
2729                                 case 2:
2730                                         u16[i] = ival;
2731                                         break;
2732                                 case 1:
2733                                         u8[i] = ival;
2734                                         break;
2735                                 default:
2736                                         return -EINVAL;
2737                                 }
2738                         }
2739                 }
2740         }
2741
2742         return 0;
2743 }
2744 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2745
2746 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2747                                unsigned int mask, unsigned int val,
2748                                bool *change, bool force_write)
2749 {
2750         int ret;
2751         unsigned int tmp, orig;
2752
2753         if (change)
2754                 *change = false;
2755
2756         if (regmap_volatile(map, reg) && map->reg_update_bits) {
2757                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2758                 if (ret == 0 && change)
2759                         *change = true;
2760         } else {
2761                 ret = _regmap_read(map, reg, &orig);
2762                 if (ret != 0)
2763                         return ret;
2764
2765                 tmp = orig & ~mask;
2766                 tmp |= val & mask;
2767
2768                 if (force_write || (tmp != orig)) {
2769                         ret = _regmap_write(map, reg, tmp);
2770                         if (ret == 0 && change)
2771                                 *change = true;
2772                 }
2773         }
2774
2775         return ret;
2776 }
2777
2778 /**
2779  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2780  *
2781  * @map: Register map to update
2782  * @reg: Register to update
2783  * @mask: Bitmask to change
2784  * @val: New value for bitmask
2785  * @change: Boolean indicating if a write was done
2786  * @async: Boolean indicating asynchronously
2787  * @force: Boolean indicating use force update
2788  *
2789  * Perform a read/modify/write cycle on a register map with change, async, force
2790  * options.
2791  *
2792  * If async is true:
2793  *
2794  * With most buses the read must be done synchronously so this is most useful
2795  * for devices with a cache which do not need to interact with the hardware to
2796  * determine the current register value.
2797  *
2798  * Returns zero for success, a negative number on error.
2799  */
2800 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2801                             unsigned int mask, unsigned int val,
2802                             bool *change, bool async, bool force)
2803 {
2804         int ret;
2805
2806         map->lock(map->lock_arg);
2807
2808         map->async = async;
2809
2810         ret = _regmap_update_bits(map, reg, mask, val, change, force);
2811
2812         map->async = false;
2813
2814         map->unlock(map->lock_arg);
2815
2816         return ret;
2817 }
2818 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2819
2820 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2821 {
2822         struct regmap *map = async->map;
2823         bool wake;
2824
2825         trace_regmap_async_io_complete(map);
2826
2827         spin_lock(&map->async_lock);
2828         list_move(&async->list, &map->async_free);
2829         wake = list_empty(&map->async_list);
2830
2831         if (ret != 0)
2832                 map->async_ret = ret;
2833
2834         spin_unlock(&map->async_lock);
2835
2836         if (wake)
2837                 wake_up(&map->async_waitq);
2838 }
2839 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2840
2841 static int regmap_async_is_done(struct regmap *map)
2842 {
2843         unsigned long flags;
2844         int ret;
2845
2846         spin_lock_irqsave(&map->async_lock, flags);
2847         ret = list_empty(&map->async_list);
2848         spin_unlock_irqrestore(&map->async_lock, flags);
2849
2850         return ret;
2851 }
2852
2853 /**
2854  * regmap_async_complete - Ensure all asynchronous I/O has completed.
2855  *
2856  * @map: Map to operate on.
2857  *
2858  * Blocks until any pending asynchronous I/O has completed.  Returns
2859  * an error code for any failed I/O operations.
2860  */
2861 int regmap_async_complete(struct regmap *map)
2862 {
2863         unsigned long flags;
2864         int ret;
2865
2866         /* Nothing to do with no async support */
2867         if (!map->bus || !map->bus->async_write)
2868                 return 0;
2869
2870         trace_regmap_async_complete_start(map);
2871
2872         wait_event(map->async_waitq, regmap_async_is_done(map));
2873
2874         spin_lock_irqsave(&map->async_lock, flags);
2875         ret = map->async_ret;
2876         map->async_ret = 0;
2877         spin_unlock_irqrestore(&map->async_lock, flags);
2878
2879         trace_regmap_async_complete_done(map);
2880
2881         return ret;
2882 }
2883 EXPORT_SYMBOL_GPL(regmap_async_complete);
2884
2885 /**
2886  * regmap_register_patch - Register and apply register updates to be applied
2887  *                         on device initialistion
2888  *
2889  * @map: Register map to apply updates to.
2890  * @regs: Values to update.
2891  * @num_regs: Number of entries in regs.
2892  *
2893  * Register a set of register updates to be applied to the device
2894  * whenever the device registers are synchronised with the cache and
2895  * apply them immediately.  Typically this is used to apply
2896  * corrections to be applied to the device defaults on startup, such
2897  * as the updates some vendors provide to undocumented registers.
2898  *
2899  * The caller must ensure that this function cannot be called
2900  * concurrently with either itself or regcache_sync().
2901  */
2902 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2903                           int num_regs)
2904 {
2905         struct reg_sequence *p;
2906         int ret;
2907         bool bypass;
2908
2909         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2910             num_regs))
2911                 return 0;
2912
2913         p = krealloc(map->patch,
2914                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2915                      GFP_KERNEL);
2916         if (p) {
2917                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2918                 map->patch = p;
2919                 map->patch_regs += num_regs;
2920         } else {
2921                 return -ENOMEM;
2922         }
2923
2924         map->lock(map->lock_arg);
2925
2926         bypass = map->cache_bypass;
2927
2928         map->cache_bypass = true;
2929         map->async = true;
2930
2931         ret = _regmap_multi_reg_write(map, regs, num_regs);
2932
2933         map->async = false;
2934         map->cache_bypass = bypass;
2935
2936         map->unlock(map->lock_arg);
2937
2938         regmap_async_complete(map);
2939
2940         return ret;
2941 }
2942 EXPORT_SYMBOL_GPL(regmap_register_patch);
2943
2944 /**
2945  * regmap_get_val_bytes() - Report the size of a register value
2946  *
2947  * @map: Register map to operate on.
2948  *
2949  * Report the size of a register value, mainly intended to for use by
2950  * generic infrastructure built on top of regmap.
2951  */
2952 int regmap_get_val_bytes(struct regmap *map)
2953 {
2954         if (map->format.format_write)
2955                 return -EINVAL;
2956
2957         return map->format.val_bytes;
2958 }
2959 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2960
2961 /**
2962  * regmap_get_max_register() - Report the max register value
2963  *
2964  * @map: Register map to operate on.
2965  *
2966  * Report the max register value, mainly intended to for use by
2967  * generic infrastructure built on top of regmap.
2968  */
2969 int regmap_get_max_register(struct regmap *map)
2970 {
2971         return map->max_register ? map->max_register : -EINVAL;
2972 }
2973 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2974
2975 /**
2976  * regmap_get_reg_stride() - Report the register address stride
2977  *
2978  * @map: Register map to operate on.
2979  *
2980  * Report the register address stride, mainly intended to for use by
2981  * generic infrastructure built on top of regmap.
2982  */
2983 int regmap_get_reg_stride(struct regmap *map)
2984 {
2985         return map->reg_stride;
2986 }
2987 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2988
2989 int regmap_parse_val(struct regmap *map, const void *buf,
2990                         unsigned int *val)
2991 {
2992         if (!map->format.parse_val)
2993                 return -EINVAL;
2994
2995         *val = map->format.parse_val(buf);
2996
2997         return 0;
2998 }
2999 EXPORT_SYMBOL_GPL(regmap_parse_val);
3000
3001 static int __init regmap_initcall(void)
3002 {
3003         regmap_debugfs_initcall();
3004
3005         return 0;
3006 }
3007 postcore_initcall(regmap_initcall);