2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * Zhi Wang <zhi.a.wang@intel.com>
27 * Ping Gao <ping.a.gao@intel.com>
28 * Tina Zhang <tina.zhang@intel.com>
29 * Chanbin Du <changbin.du@intel.com>
30 * Min He <min.he@intel.com>
31 * Bing Niu <bing.niu@intel.com>
32 * Zhenyu Wang <zhenyuw@linux.intel.com>
36 #include <linux/kthread.h>
41 #define RING_CTX_OFF(x) \
42 offsetof(struct execlist_ring_context, x)
44 static void set_context_pdp_root_pointer(
45 struct execlist_ring_context *ring_context,
50 for (i = 0; i < 8; i++)
51 ring_context->pdps[i].val = pdp[7 - i];
54 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
56 struct drm_i915_gem_object *ctx_obj =
57 workload->req->hw_context->state->obj;
58 struct execlist_ring_context *shadow_ring_context;
61 if (WARN_ON(!workload->shadow_mm))
64 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
67 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
68 shadow_ring_context = kmap(page);
69 set_context_pdp_root_pointer(shadow_ring_context,
70 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
75 * when populating shadow ctx from guest, we should not overrride oa related
76 * registers, so that they will not be overlapped by guest oa configs. Thus
77 * made it possible to capture oa data from host for both host and guests.
79 static void sr_oa_regs(struct intel_vgpu_workload *workload,
80 u32 *reg_state, bool save)
82 struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
83 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
84 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
87 i915_mmio_reg_offset(EU_PERF_CNTL0),
88 i915_mmio_reg_offset(EU_PERF_CNTL1),
89 i915_mmio_reg_offset(EU_PERF_CNTL2),
90 i915_mmio_reg_offset(EU_PERF_CNTL3),
91 i915_mmio_reg_offset(EU_PERF_CNTL4),
92 i915_mmio_reg_offset(EU_PERF_CNTL5),
93 i915_mmio_reg_offset(EU_PERF_CNTL6),
96 if (workload->ring_id != RCS)
100 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
102 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
103 u32 state_offset = ctx_flexeu0 + i * 2;
105 workload->flex_mmio[i] = reg_state[state_offset + 1];
108 reg_state[ctx_oactxctrl] =
109 i915_mmio_reg_offset(GEN8_OACTXCONTROL);
110 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
112 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
113 u32 state_offset = ctx_flexeu0 + i * 2;
114 u32 mmio = flex_mmio[i];
116 reg_state[state_offset] = mmio;
117 reg_state[state_offset + 1] = workload->flex_mmio[i];
122 static int populate_shadow_context(struct intel_vgpu_workload *workload)
124 struct intel_vgpu *vgpu = workload->vgpu;
125 struct intel_gvt *gvt = vgpu->gvt;
126 int ring_id = workload->ring_id;
127 struct drm_i915_gem_object *ctx_obj =
128 workload->req->hw_context->state->obj;
129 struct execlist_ring_context *shadow_ring_context;
132 unsigned long context_gpa, context_page_num;
135 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
136 shadow_ring_context = kmap(page);
138 sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
139 #define COPY_REG(name) \
140 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
141 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
142 #define COPY_REG_MASKED(name) {\
143 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
144 + RING_CTX_OFF(name.val),\
145 &shadow_ring_context->name.val, 4);\
146 shadow_ring_context->name.val |= 0xffff << 16;\
149 COPY_REG_MASKED(ctx_ctrl);
150 COPY_REG(ctx_timestamp);
152 if (ring_id == RCS) {
153 COPY_REG(bb_per_ctx_ptr);
154 COPY_REG(rcs_indirect_ctx);
155 COPY_REG(rcs_indirect_ctx_offset);
158 #undef COPY_REG_MASKED
160 intel_gvt_hypervisor_read_gpa(vgpu,
161 workload->ring_context_gpa +
162 sizeof(*shadow_ring_context),
163 (void *)shadow_ring_context +
164 sizeof(*shadow_ring_context),
165 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
167 sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
170 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
173 gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
174 workload->ctx_desc.lrca);
176 context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
178 context_page_num = context_page_num >> PAGE_SHIFT;
180 if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
181 context_page_num = 19;
184 while (i < context_page_num) {
185 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
186 (u32)((workload->ctx_desc.lrca + i) <<
187 I915_GTT_PAGE_SHIFT));
188 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
189 gvt_vgpu_err("Invalid guest context descriptor\n");
193 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
195 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
203 static inline bool is_gvt_request(struct i915_request *req)
205 return i915_gem_context_force_single_submission(req->gem_context);
208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
210 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
211 u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
214 reg = RING_INSTDONE(ring_base);
215 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
216 reg = RING_ACTHD(ring_base);
217 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
218 reg = RING_ACTHD_UDW(ring_base);
219 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
222 static int shadow_context_status_change(struct notifier_block *nb,
223 unsigned long action, void *data)
225 struct i915_request *req = data;
226 struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
227 shadow_ctx_notifier_block[req->engine->id]);
228 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
229 enum intel_engine_id ring_id = req->engine->id;
230 struct intel_vgpu_workload *workload;
233 if (!is_gvt_request(req)) {
234 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
235 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
236 scheduler->engine_owner[ring_id]) {
237 /* Switch ring from vGPU to host. */
238 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
240 scheduler->engine_owner[ring_id] = NULL;
242 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
247 workload = scheduler->current_workload[ring_id];
248 if (unlikely(!workload))
252 case INTEL_CONTEXT_SCHEDULE_IN:
253 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
254 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
255 /* Switch ring from host to vGPU or vGPU to vGPU. */
256 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
257 workload->vgpu, ring_id);
258 scheduler->engine_owner[ring_id] = workload->vgpu;
260 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
261 ring_id, workload->vgpu->id);
262 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
263 atomic_set(&workload->shadow_ctx_active, 1);
265 case INTEL_CONTEXT_SCHEDULE_OUT:
266 save_ring_hw_state(workload->vgpu, ring_id);
267 atomic_set(&workload->shadow_ctx_active, 0);
269 case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
270 save_ring_hw_state(workload->vgpu, ring_id);
276 wake_up(&workload->shadow_ctx_status_wq);
280 static void shadow_context_descriptor_update(struct intel_context *ce)
286 /* Update bits 0-11 of the context descriptor which includes flags
287 * like GEN8_CTX_* cached in desc_template
289 desc &= U64_MAX << 12;
290 desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
297 struct intel_vgpu *vgpu = workload->vgpu;
298 struct i915_request *req = workload->req;
299 void *shadow_ring_buffer_va;
302 if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915))
303 && is_inhibit_context(req->hw_context))
304 intel_vgpu_restore_inhibit_context(vgpu, req);
306 /* allocate shadow ring buffer */
307 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
309 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n",
314 shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
316 /* get shadow ring buffer va */
317 workload->shadow_ring_buffer_va = cs;
319 memcpy(cs, shadow_ring_buffer_va,
322 cs += workload->rb_len / sizeof(u32);
323 intel_ring_advance(workload->req, cs);
328 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
330 if (!wa_ctx->indirect_ctx.obj)
333 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
334 i915_gem_object_put(wa_ctx->indirect_ctx.obj);
338 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
339 * shadow it as well, include ringbuffer,wa_ctx and ctx.
340 * @workload: an abstract entity for each execlist submission.
342 * This function is called before the workload submitting to i915, to make
343 * sure the content of the workload is valid.
345 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
347 struct intel_vgpu *vgpu = workload->vgpu;
348 struct intel_vgpu_submission *s = &vgpu->submission;
349 struct i915_gem_context *shadow_ctx = s->shadow_ctx;
350 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
351 struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
352 struct intel_context *ce;
353 struct i915_request *rq;
356 lockdep_assert_held(&dev_priv->drm.struct_mutex);
361 /* pin shadow context by gvt even the shadow context will be pinned
362 * when i915 alloc request. That is because gvt will update the guest
363 * context from shadow context when workload is completed, and at that
364 * moment, i915 may already unpined the shadow context to make the
365 * shadow_ctx pages invalid. So gvt need to pin itself. After update
366 * the guest context, gvt can unpin the shadow_ctx safely.
368 ce = intel_context_pin(shadow_ctx, engine);
370 gvt_vgpu_err("fail to pin shadow context\n");
374 shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
375 shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
376 GEN8_CTX_ADDRESSING_MODE_SHIFT;
378 if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
379 shadow_context_descriptor_update(ce);
381 ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
385 if ((workload->ring_id == RCS) &&
386 (workload->wa_ctx.indirect_ctx.size != 0)) {
387 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
392 rq = i915_request_alloc(engine, shadow_ctx);
394 gvt_vgpu_err("fail to allocate gem request\n");
398 workload->req = i915_request_get(rq);
400 ret = populate_shadow_context(workload);
406 rq = fetch_and_zero(&workload->req);
407 i915_request_put(rq);
409 release_shadow_wa_ctx(&workload->wa_ctx);
411 intel_context_unpin(ce);
415 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
417 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
419 struct intel_gvt *gvt = workload->vgpu->gvt;
420 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
421 struct intel_vgpu_shadow_bb *bb;
424 list_for_each_entry(bb, &workload->shadow_bb, list) {
425 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
426 * is only updated into ring_scan_buffer, not real ring address
427 * allocated in later copy_workload_to_ring_buffer. pls be noted
428 * shadow_ring_buffer_va is now pointed to real ring buffer va
429 * in copy_workload_to_ring_buffer.
433 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
437 /* for non-priv bb, scan&shadow is only for
438 * debugging purpose, so the content of shadow bb
439 * is the same as original bb. Therefore,
440 * here, rather than switch to shadow bb's gma
441 * address, we directly use original batch buffer's
442 * gma address, and send original bb to hardware
445 if (bb->clflush & CLFLUSH_AFTER) {
446 drm_clflush_virt_range(bb->va,
448 bb->clflush &= ~CLFLUSH_AFTER;
450 i915_gem_obj_finish_shmem_access(bb->obj);
451 bb->accessing = false;
454 bb->vma = i915_gem_object_ggtt_pin(bb->obj,
456 if (IS_ERR(bb->vma)) {
457 ret = PTR_ERR(bb->vma);
461 /* relocate shadow batch buffer */
462 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
463 if (gmadr_bytes == 8)
464 bb->bb_start_cmd_va[2] = 0;
466 /* No one is going to touch shadow bb from now on. */
467 if (bb->clflush & CLFLUSH_AFTER) {
468 drm_clflush_virt_range(bb->va,
470 bb->clflush &= ~CLFLUSH_AFTER;
473 ret = i915_gem_object_set_to_gtt_domain(bb->obj,
478 i915_gem_obj_finish_shmem_access(bb->obj);
479 bb->accessing = false;
481 ret = i915_vma_move_to_active(bb->vma,
490 release_shadow_batch_buffer(workload);
494 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
496 struct intel_vgpu_workload *workload =
497 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
498 struct i915_request *rq = workload->req;
499 struct execlist_ring_context *shadow_ring_context =
500 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
502 shadow_ring_context->bb_per_ctx_ptr.val =
503 (shadow_ring_context->bb_per_ctx_ptr.val &
504 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
505 shadow_ring_context->rcs_indirect_ctx.val =
506 (shadow_ring_context->rcs_indirect_ctx.val &
507 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
510 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
512 struct i915_vma *vma;
513 unsigned char *per_ctx_va =
514 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
515 wa_ctx->indirect_ctx.size;
517 if (wa_ctx->indirect_ctx.size == 0)
520 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
521 0, CACHELINE_BYTES, 0);
525 /* FIXME: we are not tracking our pinned VMA leaving it
526 * up to the core to fix up the stray pin_count upon
530 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
532 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
533 memset(per_ctx_va, 0, CACHELINE_BYTES);
535 update_wa_ctx_2_shadow_ctx(wa_ctx);
539 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
541 struct intel_vgpu *vgpu = workload->vgpu;
542 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
543 struct intel_vgpu_shadow_bb *bb, *pos;
545 if (list_empty(&workload->shadow_bb))
548 bb = list_first_entry(&workload->shadow_bb,
549 struct intel_vgpu_shadow_bb, list);
551 mutex_lock(&dev_priv->drm.struct_mutex);
553 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
556 i915_gem_obj_finish_shmem_access(bb->obj);
558 if (bb->va && !IS_ERR(bb->va))
559 i915_gem_object_unpin_map(bb->obj);
561 if (bb->vma && !IS_ERR(bb->vma)) {
562 i915_vma_unpin(bb->vma);
563 i915_vma_close(bb->vma);
565 __i915_gem_object_release_unless_active(bb->obj);
571 mutex_unlock(&dev_priv->drm.struct_mutex);
574 static int prepare_workload(struct intel_vgpu_workload *workload)
576 struct intel_vgpu *vgpu = workload->vgpu;
579 ret = intel_vgpu_pin_mm(workload->shadow_mm);
581 gvt_vgpu_err("fail to vgpu pin mm\n");
585 update_shadow_pdps(workload);
587 ret = intel_vgpu_sync_oos_pages(workload->vgpu);
589 gvt_vgpu_err("fail to vgpu sync oos pages\n");
593 ret = intel_vgpu_flush_post_shadow(workload->vgpu);
595 gvt_vgpu_err("fail to flush post shadow\n");
599 ret = copy_workload_to_ring_buffer(workload);
601 gvt_vgpu_err("fail to generate request\n");
605 ret = prepare_shadow_batch_buffer(workload);
607 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
611 ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
613 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
614 goto err_shadow_batch;
617 if (workload->prepare) {
618 ret = workload->prepare(workload);
620 goto err_shadow_wa_ctx;
625 release_shadow_wa_ctx(&workload->wa_ctx);
627 release_shadow_batch_buffer(workload);
629 intel_vgpu_unpin_mm(workload->shadow_mm);
633 static int dispatch_workload(struct intel_vgpu_workload *workload)
635 struct intel_vgpu *vgpu = workload->vgpu;
636 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
637 int ring_id = workload->ring_id;
640 gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
643 mutex_lock(&vgpu->vgpu_lock);
644 mutex_lock(&dev_priv->drm.struct_mutex);
646 ret = intel_gvt_scan_and_shadow_workload(workload);
650 ret = prepare_workload(workload);
654 workload->status = ret;
656 if (!IS_ERR_OR_NULL(workload->req)) {
657 gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
658 ring_id, workload->req);
659 i915_request_add(workload->req);
660 workload->dispatched = true;
663 mutex_unlock(&dev_priv->drm.struct_mutex);
664 mutex_unlock(&vgpu->vgpu_lock);
668 static struct intel_vgpu_workload *pick_next_workload(
669 struct intel_gvt *gvt, int ring_id)
671 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
672 struct intel_vgpu_workload *workload = NULL;
674 mutex_lock(&gvt->sched_lock);
677 * no current vgpu / will be scheduled out / no workload
680 if (!scheduler->current_vgpu) {
681 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
685 if (scheduler->need_reschedule) {
686 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
690 if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
694 * still have current workload, maybe the workload disptacher
695 * fail to submit it for some reason, resubmit it.
697 if (scheduler->current_workload[ring_id]) {
698 workload = scheduler->current_workload[ring_id];
699 gvt_dbg_sched("ring id %d still have current workload %p\n",
705 * pick a workload as current workload
706 * once current workload is set, schedule policy routines
707 * will wait the current workload is finished when trying to
708 * schedule out a vgpu.
710 scheduler->current_workload[ring_id] = container_of(
711 workload_q_head(scheduler->current_vgpu, ring_id)->next,
712 struct intel_vgpu_workload, list);
714 workload = scheduler->current_workload[ring_id];
716 gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
718 atomic_inc(&workload->vgpu->submission.running_workload_num);
720 mutex_unlock(&gvt->sched_lock);
724 static void update_guest_context(struct intel_vgpu_workload *workload)
726 struct i915_request *rq = workload->req;
727 struct intel_vgpu *vgpu = workload->vgpu;
728 struct intel_gvt *gvt = vgpu->gvt;
729 struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
730 struct execlist_ring_context *shadow_ring_context;
733 unsigned long context_gpa, context_page_num;
736 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
737 workload->ctx_desc.lrca);
739 context_page_num = rq->engine->context_size;
740 context_page_num = context_page_num >> PAGE_SHIFT;
742 if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS)
743 context_page_num = 19;
747 while (i < context_page_num) {
748 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
749 (u32)((workload->ctx_desc.lrca + i) <<
750 I915_GTT_PAGE_SHIFT));
751 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
752 gvt_vgpu_err("invalid guest context descriptor\n");
756 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
758 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
764 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
765 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
767 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
768 shadow_ring_context = kmap(page);
770 #define COPY_REG(name) \
771 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
772 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
775 COPY_REG(ctx_timestamp);
779 intel_gvt_hypervisor_write_gpa(vgpu,
780 workload->ring_context_gpa +
781 sizeof(*shadow_ring_context),
782 (void *)shadow_ring_context +
783 sizeof(*shadow_ring_context),
784 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
789 static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask)
791 struct intel_vgpu_submission *s = &vgpu->submission;
792 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
793 struct intel_engine_cs *engine;
794 struct intel_vgpu_workload *pos, *n;
797 /* free the unsubmited workloads in the queues. */
798 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
799 list_for_each_entry_safe(pos, n,
800 &s->workload_q_head[engine->id], list) {
801 list_del_init(&pos->list);
802 intel_vgpu_destroy_workload(pos);
804 clear_bit(engine->id, s->shadow_ctx_desc_updated);
808 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
810 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
811 struct intel_vgpu_workload *workload =
812 scheduler->current_workload[ring_id];
813 struct intel_vgpu *vgpu = workload->vgpu;
814 struct intel_vgpu_submission *s = &vgpu->submission;
815 struct i915_request *rq = workload->req;
818 mutex_lock(&vgpu->vgpu_lock);
819 mutex_lock(&gvt->sched_lock);
821 /* For the workload w/ request, needs to wait for the context
822 * switch to make sure request is completed.
823 * For the workload w/o request, directly complete the workload.
826 wait_event(workload->shadow_ctx_status_wq,
827 !atomic_read(&workload->shadow_ctx_active));
829 /* If this request caused GPU hang, req->fence.error will
830 * be set to -EIO. Use -EIO to set workload status so
831 * that when this request caused GPU hang, didn't trigger
832 * context switch interrupt to guest.
834 if (likely(workload->status == -EINPROGRESS)) {
835 if (workload->req->fence.error == -EIO)
836 workload->status = -EIO;
838 workload->status = 0;
841 if (!workload->status && !(vgpu->resetting_eng &
842 ENGINE_MASK(ring_id))) {
843 update_guest_context(workload);
845 for_each_set_bit(event, workload->pending_events,
847 intel_vgpu_trigger_virtual_event(vgpu, event);
850 /* unpin shadow ctx as the shadow_ctx update is done */
851 mutex_lock(&rq->i915->drm.struct_mutex);
852 intel_context_unpin(rq->hw_context);
853 mutex_unlock(&rq->i915->drm.struct_mutex);
855 i915_request_put(fetch_and_zero(&workload->req));
858 gvt_dbg_sched("ring id %d complete workload %p status %d\n",
859 ring_id, workload, workload->status);
861 scheduler->current_workload[ring_id] = NULL;
863 list_del_init(&workload->list);
865 if (!workload->status) {
866 release_shadow_batch_buffer(workload);
867 release_shadow_wa_ctx(&workload->wa_ctx);
870 if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
871 /* if workload->status is not successful means HW GPU
872 * has occurred GPU hang or something wrong with i915/GVT,
873 * and GVT won't inject context switch interrupt to guest.
874 * So this error is a vGPU hang actually to the guest.
875 * According to this we should emunlate a vGPU hang. If
876 * there are pending workloads which are already submitted
877 * from guest, we should clean them up like HW GPU does.
879 * if it is in middle of engine resetting, the pending
880 * workloads won't be submitted to HW GPU and will be
881 * cleaned up during the resetting process later, so doing
882 * the workload clean up here doesn't have any impact.
884 clean_workloads(vgpu, ENGINE_MASK(ring_id));
887 workload->complete(workload);
889 atomic_dec(&s->running_workload_num);
890 wake_up(&scheduler->workload_complete_wq);
892 if (gvt->scheduler.need_reschedule)
893 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
895 mutex_unlock(&gvt->sched_lock);
896 mutex_unlock(&vgpu->vgpu_lock);
899 struct workload_thread_param {
900 struct intel_gvt *gvt;
904 static int workload_thread(void *priv)
906 struct workload_thread_param *p = (struct workload_thread_param *)priv;
907 struct intel_gvt *gvt = p->gvt;
908 int ring_id = p->ring_id;
909 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
910 struct intel_vgpu_workload *workload = NULL;
911 struct intel_vgpu *vgpu = NULL;
913 bool need_force_wake = IS_SKYLAKE(gvt->dev_priv)
914 || IS_KABYLAKE(gvt->dev_priv)
915 || IS_BROXTON(gvt->dev_priv);
916 DEFINE_WAIT_FUNC(wait, woken_wake_function);
920 gvt_dbg_core("workload thread for ring %d started\n", ring_id);
922 while (!kthread_should_stop()) {
923 add_wait_queue(&scheduler->waitq[ring_id], &wait);
925 workload = pick_next_workload(gvt, ring_id);
928 wait_woken(&wait, TASK_INTERRUPTIBLE,
929 MAX_SCHEDULE_TIMEOUT);
930 } while (!kthread_should_stop());
931 remove_wait_queue(&scheduler->waitq[ring_id], &wait);
936 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
937 workload->ring_id, workload,
940 intel_runtime_pm_get(gvt->dev_priv);
942 gvt_dbg_sched("ring id %d will dispatch workload %p\n",
943 workload->ring_id, workload);
946 intel_uncore_forcewake_get(gvt->dev_priv,
949 ret = dispatch_workload(workload);
952 vgpu = workload->vgpu;
953 gvt_vgpu_err("fail to dispatch workload, skip\n");
957 gvt_dbg_sched("ring id %d wait workload %p\n",
958 workload->ring_id, workload);
959 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
962 gvt_dbg_sched("will complete workload %p, status: %d\n",
963 workload, workload->status);
965 complete_current_workload(gvt, ring_id);
968 intel_uncore_forcewake_put(gvt->dev_priv,
971 intel_runtime_pm_put(gvt->dev_priv);
972 if (ret && (vgpu_is_vm_unhealthy(ret)))
973 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
978 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
980 struct intel_vgpu_submission *s = &vgpu->submission;
981 struct intel_gvt *gvt = vgpu->gvt;
982 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
984 if (atomic_read(&s->running_workload_num)) {
985 gvt_dbg_sched("wait vgpu idle\n");
987 wait_event(scheduler->workload_complete_wq,
988 !atomic_read(&s->running_workload_num));
992 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
994 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
995 struct intel_engine_cs *engine;
996 enum intel_engine_id i;
998 gvt_dbg_core("clean workload scheduler\n");
1000 for_each_engine(engine, gvt->dev_priv, i) {
1001 atomic_notifier_chain_unregister(
1002 &engine->context_status_notifier,
1003 &gvt->shadow_ctx_notifier_block[i]);
1004 kthread_stop(scheduler->thread[i]);
1008 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1010 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1011 struct workload_thread_param *param = NULL;
1012 struct intel_engine_cs *engine;
1013 enum intel_engine_id i;
1016 gvt_dbg_core("init workload scheduler\n");
1018 init_waitqueue_head(&scheduler->workload_complete_wq);
1020 for_each_engine(engine, gvt->dev_priv, i) {
1021 init_waitqueue_head(&scheduler->waitq[i]);
1023 param = kzalloc(sizeof(*param), GFP_KERNEL);
1032 scheduler->thread[i] = kthread_run(workload_thread, param,
1033 "gvt workload %d", i);
1034 if (IS_ERR(scheduler->thread[i])) {
1035 gvt_err("fail to create workload thread\n");
1036 ret = PTR_ERR(scheduler->thread[i]);
1040 gvt->shadow_ctx_notifier_block[i].notifier_call =
1041 shadow_context_status_change;
1042 atomic_notifier_chain_register(&engine->context_status_notifier,
1043 &gvt->shadow_ctx_notifier_block[i]);
1047 intel_gvt_clean_workload_scheduler(gvt);
1054 * intel_vgpu_clean_submission - free submission-related resource for vGPU
1057 * This function is called when a vGPU is being destroyed.
1060 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1062 struct intel_vgpu_submission *s = &vgpu->submission;
1064 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1065 i915_gem_context_put(s->shadow_ctx);
1066 kmem_cache_destroy(s->workloads);
1071 * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1073 * @engine_mask: engines expected to be reset
1075 * This function is called when a vGPU is being destroyed.
1078 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1079 unsigned long engine_mask)
1081 struct intel_vgpu_submission *s = &vgpu->submission;
1086 clean_workloads(vgpu, engine_mask);
1087 s->ops->reset(vgpu, engine_mask);
1091 * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1094 * This function is called when a vGPU is being created.
1097 * Zero on success, negative error code if failed.
1100 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1102 struct intel_vgpu_submission *s = &vgpu->submission;
1103 enum intel_engine_id i;
1104 struct intel_engine_cs *engine;
1107 s->shadow_ctx = i915_gem_context_create_gvt(
1108 &vgpu->gvt->dev_priv->drm);
1109 if (IS_ERR(s->shadow_ctx))
1110 return PTR_ERR(s->shadow_ctx);
1112 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1114 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1115 sizeof(struct intel_vgpu_workload), 0,
1117 offsetof(struct intel_vgpu_workload, rb_tail),
1118 sizeof_field(struct intel_vgpu_workload, rb_tail),
1121 if (!s->workloads) {
1123 goto out_shadow_ctx;
1126 for_each_engine(engine, vgpu->gvt->dev_priv, i)
1127 INIT_LIST_HEAD(&s->workload_q_head[i]);
1129 atomic_set(&s->running_workload_num, 0);
1130 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1135 i915_gem_context_put(s->shadow_ctx);
1140 * intel_vgpu_select_submission_ops - select virtual submission interface
1142 * @engine_mask: either ALL_ENGINES or target engine mask
1143 * @interface: expected vGPU virtual submission interface
1145 * This function is called when guest configures submission interface.
1148 * Zero on success, negative error code if failed.
1151 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1152 unsigned long engine_mask,
1153 unsigned int interface)
1155 struct intel_vgpu_submission *s = &vgpu->submission;
1156 const struct intel_vgpu_submission_ops *ops[] = {
1157 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1158 &intel_vgpu_execlist_submission_ops,
1162 if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1165 if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1169 s->ops->clean(vgpu, engine_mask);
1171 if (interface == 0) {
1173 s->virtual_submission_interface = 0;
1175 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1179 ret = ops[interface]->init(vgpu, engine_mask);
1183 s->ops = ops[interface];
1184 s->virtual_submission_interface = interface;
1187 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1188 vgpu->id, s->ops->name);
1194 * intel_vgpu_destroy_workload - destroy a vGPU workload
1195 * @workload: workload to destroy
1197 * This function is called when destroy a vGPU workload.
1200 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1202 struct intel_vgpu_submission *s = &workload->vgpu->submission;
1204 if (workload->shadow_mm)
1205 intel_vgpu_mm_put(workload->shadow_mm);
1207 kmem_cache_free(s->workloads, workload);
1210 static struct intel_vgpu_workload *
1211 alloc_workload(struct intel_vgpu *vgpu)
1213 struct intel_vgpu_submission *s = &vgpu->submission;
1214 struct intel_vgpu_workload *workload;
1216 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1218 return ERR_PTR(-ENOMEM);
1220 INIT_LIST_HEAD(&workload->list);
1221 INIT_LIST_HEAD(&workload->shadow_bb);
1223 init_waitqueue_head(&workload->shadow_ctx_status_wq);
1224 atomic_set(&workload->shadow_ctx_active, 0);
1226 workload->status = -EINPROGRESS;
1227 workload->vgpu = vgpu;
1232 #define RING_CTX_OFF(x) \
1233 offsetof(struct execlist_ring_context, x)
1235 static void read_guest_pdps(struct intel_vgpu *vgpu,
1236 u64 ring_context_gpa, u32 pdp[8])
1241 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1243 for (i = 0; i < 8; i++)
1244 intel_gvt_hypervisor_read_gpa(vgpu,
1245 gpa + i * 8, &pdp[7 - i], 4);
1248 static int prepare_mm(struct intel_vgpu_workload *workload)
1250 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1251 struct intel_vgpu_mm *mm;
1252 struct intel_vgpu *vgpu = workload->vgpu;
1253 intel_gvt_gtt_type_t root_entry_type;
1254 u64 pdps[GVT_RING_CTX_NR_PDPS];
1256 switch (desc->addressing_mode) {
1257 case 1: /* legacy 32-bit */
1258 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1260 case 3: /* legacy 64-bit */
1261 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1264 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1268 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1270 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1274 workload->shadow_mm = mm;
1278 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1279 ((a)->lrca == (b)->lrca))
1281 #define get_last_workload(q) \
1282 (list_empty(q) ? NULL : container_of(q->prev, \
1283 struct intel_vgpu_workload, list))
1285 * intel_vgpu_create_workload - create a vGPU workload
1287 * @ring_id: ring index
1288 * @desc: a guest context descriptor
1290 * This function is called when creating a vGPU workload.
1293 * struct intel_vgpu_workload * on success, negative error code in
1294 * pointer if failed.
1297 struct intel_vgpu_workload *
1298 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1299 struct execlist_ctx_descriptor_format *desc)
1301 struct intel_vgpu_submission *s = &vgpu->submission;
1302 struct list_head *q = workload_q_head(vgpu, ring_id);
1303 struct intel_vgpu_workload *last_workload = get_last_workload(q);
1304 struct intel_vgpu_workload *workload = NULL;
1305 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1306 u64 ring_context_gpa;
1307 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1310 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1311 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1312 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1313 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1314 return ERR_PTR(-EINVAL);
1317 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1318 RING_CTX_OFF(ring_header.val), &head, 4);
1320 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1321 RING_CTX_OFF(ring_tail.val), &tail, 4);
1323 head &= RB_HEAD_OFF_MASK;
1324 tail &= RB_TAIL_OFF_MASK;
1326 if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1327 gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1328 gvt_dbg_el("ctx head %x real head %lx\n", head,
1329 last_workload->rb_tail);
1331 * cannot use guest context head pointer here,
1332 * as it might not be updated at this time
1334 head = last_workload->rb_tail;
1337 gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1339 /* record some ring buffer register values for scan and shadow */
1340 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1341 RING_CTX_OFF(rb_start.val), &start, 4);
1342 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1343 RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1344 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1345 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1347 workload = alloc_workload(vgpu);
1348 if (IS_ERR(workload))
1351 workload->ring_id = ring_id;
1352 workload->ctx_desc = *desc;
1353 workload->ring_context_gpa = ring_context_gpa;
1354 workload->rb_head = head;
1355 workload->rb_tail = tail;
1356 workload->rb_start = start;
1357 workload->rb_ctl = ctl;
1359 if (ring_id == RCS) {
1360 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1361 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1362 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1363 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1365 workload->wa_ctx.indirect_ctx.guest_gma =
1366 indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1367 workload->wa_ctx.indirect_ctx.size =
1368 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1370 workload->wa_ctx.per_ctx.guest_gma =
1371 per_ctx & PER_CTX_ADDR_MASK;
1372 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1375 gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1376 workload, ring_id, head, tail, start, ctl);
1378 ret = prepare_mm(workload);
1380 kmem_cache_free(s->workloads, workload);
1381 return ERR_PTR(ret);
1384 /* Only scan and shadow the first workload in the queue
1385 * as there is only one pre-allocated buf-obj for shadow.
1387 if (list_empty(workload_q_head(vgpu, ring_id))) {
1388 intel_runtime_pm_get(dev_priv);
1389 mutex_lock(&dev_priv->drm.struct_mutex);
1390 ret = intel_gvt_scan_and_shadow_workload(workload);
1391 mutex_unlock(&dev_priv->drm.struct_mutex);
1392 intel_runtime_pm_put(dev_priv);
1395 if (ret && (vgpu_is_vm_unhealthy(ret))) {
1396 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1397 intel_vgpu_destroy_workload(workload);
1398 return ERR_PTR(ret);
1405 * intel_vgpu_queue_workload - Qeue a vGPU workload
1406 * @workload: the workload to queue in
1408 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1410 list_add_tail(&workload->list,
1411 workload_q_head(workload->vgpu, workload->ring_id));
1412 intel_gvt_kick_schedule(workload->vgpu->gvt);
1413 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);