1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
35 #include <drm/i915_drm.h>
37 #include "i915_trace.h"
38 #include "intel_drv.h"
41 * DOC: interrupt handling
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
118 static const u32 hpd_gen11[HPD_NUM_PINS] = {
119 [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
120 [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
121 [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
122 [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
125 static const u32 hpd_icp[HPD_NUM_PINS] = {
126 [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
127 [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
128 [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
129 [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
130 [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
131 [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
134 /* IIR can theoretically queue up two events. Be paranoid. */
135 #define GEN8_IRQ_RESET_NDX(type, which) do { \
136 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
137 POSTING_READ(GEN8_##type##_IMR(which)); \
138 I915_WRITE(GEN8_##type##_IER(which), 0); \
139 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
140 POSTING_READ(GEN8_##type##_IIR(which)); \
141 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
142 POSTING_READ(GEN8_##type##_IIR(which)); \
145 #define GEN3_IRQ_RESET(type) do { \
146 I915_WRITE(type##IMR, 0xffffffff); \
147 POSTING_READ(type##IMR); \
148 I915_WRITE(type##IER, 0); \
149 I915_WRITE(type##IIR, 0xffffffff); \
150 POSTING_READ(type##IIR); \
151 I915_WRITE(type##IIR, 0xffffffff); \
152 POSTING_READ(type##IIR); \
155 #define GEN2_IRQ_RESET(type) do { \
156 I915_WRITE16(type##IMR, 0xffff); \
157 POSTING_READ16(type##IMR); \
158 I915_WRITE16(type##IER, 0); \
159 I915_WRITE16(type##IIR, 0xffff); \
160 POSTING_READ16(type##IIR); \
161 I915_WRITE16(type##IIR, 0xffff); \
162 POSTING_READ16(type##IIR); \
166 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
168 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
171 u32 val = I915_READ(reg);
176 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177 i915_mmio_reg_offset(reg), val);
178 I915_WRITE(reg, 0xffffffff);
180 I915_WRITE(reg, 0xffffffff);
184 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
187 u16 val = I915_READ16(reg);
192 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
193 i915_mmio_reg_offset(reg), val);
194 I915_WRITE16(reg, 0xffff);
196 I915_WRITE16(reg, 0xffff);
200 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
201 gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
202 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
203 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
204 POSTING_READ(GEN8_##type##_IMR(which)); \
207 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
208 gen3_assert_iir_is_zero(dev_priv, type##IIR); \
209 I915_WRITE(type##IER, (ier_val)); \
210 I915_WRITE(type##IMR, (imr_val)); \
211 POSTING_READ(type##IMR); \
214 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
215 gen2_assert_iir_is_zero(dev_priv, type##IIR); \
216 I915_WRITE16(type##IER, (ier_val)); \
217 I915_WRITE16(type##IMR, (imr_val)); \
218 POSTING_READ16(type##IMR); \
221 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
222 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
224 /* For display hotplug interrupt */
226 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
232 lockdep_assert_held(&dev_priv->irq_lock);
233 WARN_ON(bits & ~mask);
235 val = I915_READ(PORT_HOTPLUG_EN);
238 I915_WRITE(PORT_HOTPLUG_EN, val);
242 * i915_hotplug_interrupt_update - update hotplug interrupt enable
243 * @dev_priv: driver private
244 * @mask: bits to update
245 * @bits: bits to enable
246 * NOTE: the HPD enable bits are modified both inside and outside
247 * of an interrupt context. To avoid that read-modify-write cycles
248 * interfer, these bits are protected by a spinlock. Since this
249 * function is usually not called from a context where the lock is
250 * held already, this function acquires the lock itself. A non-locking
251 * version is also available.
253 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
257 spin_lock_irq(&dev_priv->irq_lock);
258 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
259 spin_unlock_irq(&dev_priv->irq_lock);
263 gen11_gt_engine_identity(struct drm_i915_private * const i915,
264 const unsigned int bank, const unsigned int bit);
266 bool gen11_reset_one_iir(struct drm_i915_private * const i915,
267 const unsigned int bank,
268 const unsigned int bit)
270 void __iomem * const regs = i915->regs;
273 lockdep_assert_held(&i915->irq_lock);
275 dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
278 * According to the BSpec, DW_IIR bits cannot be cleared without
279 * first servicing the Selector & Shared IIR registers.
281 gen11_gt_engine_identity(i915, bank, bit);
284 * We locked GT INT DW by reading it. If we want to (try
285 * to) recover from this succesfully, we need to clear
286 * our bit, otherwise we are locking the register for
289 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
298 * ilk_update_display_irq - update DEIMR
299 * @dev_priv: driver private
300 * @interrupt_mask: mask of interrupt bits to update
301 * @enabled_irq_mask: mask of interrupt bits to enable
303 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
304 uint32_t interrupt_mask,
305 uint32_t enabled_irq_mask)
309 lockdep_assert_held(&dev_priv->irq_lock);
311 WARN_ON(enabled_irq_mask & ~interrupt_mask);
313 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
316 new_val = dev_priv->irq_mask;
317 new_val &= ~interrupt_mask;
318 new_val |= (~enabled_irq_mask & interrupt_mask);
320 if (new_val != dev_priv->irq_mask) {
321 dev_priv->irq_mask = new_val;
322 I915_WRITE(DEIMR, dev_priv->irq_mask);
328 * ilk_update_gt_irq - update GTIMR
329 * @dev_priv: driver private
330 * @interrupt_mask: mask of interrupt bits to update
331 * @enabled_irq_mask: mask of interrupt bits to enable
333 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
334 uint32_t interrupt_mask,
335 uint32_t enabled_irq_mask)
337 lockdep_assert_held(&dev_priv->irq_lock);
339 WARN_ON(enabled_irq_mask & ~interrupt_mask);
341 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
344 dev_priv->gt_irq_mask &= ~interrupt_mask;
345 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
346 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
349 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
351 ilk_update_gt_irq(dev_priv, mask, mask);
352 POSTING_READ_FW(GTIMR);
355 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
357 ilk_update_gt_irq(dev_priv, mask, 0);
360 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
362 WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
364 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
367 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
369 if (INTEL_GEN(dev_priv) >= 11)
370 return GEN11_GPM_WGBOXPERF_INTR_MASK;
371 else if (INTEL_GEN(dev_priv) >= 8)
372 return GEN8_GT_IMR(2);
377 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
379 if (INTEL_GEN(dev_priv) >= 11)
380 return GEN11_GPM_WGBOXPERF_INTR_ENABLE;
381 else if (INTEL_GEN(dev_priv) >= 8)
382 return GEN8_GT_IER(2);
388 * snb_update_pm_irq - update GEN6_PMIMR
389 * @dev_priv: driver private
390 * @interrupt_mask: mask of interrupt bits to update
391 * @enabled_irq_mask: mask of interrupt bits to enable
393 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
394 uint32_t interrupt_mask,
395 uint32_t enabled_irq_mask)
399 WARN_ON(enabled_irq_mask & ~interrupt_mask);
401 lockdep_assert_held(&dev_priv->irq_lock);
403 new_val = dev_priv->pm_imr;
404 new_val &= ~interrupt_mask;
405 new_val |= (~enabled_irq_mask & interrupt_mask);
407 if (new_val != dev_priv->pm_imr) {
408 dev_priv->pm_imr = new_val;
409 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
410 POSTING_READ(gen6_pm_imr(dev_priv));
414 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
416 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
419 snb_update_pm_irq(dev_priv, mask, mask);
422 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
424 snb_update_pm_irq(dev_priv, mask, 0);
427 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
429 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
432 __gen6_mask_pm_irq(dev_priv, mask);
435 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
437 i915_reg_t reg = gen6_pm_iir(dev_priv);
439 lockdep_assert_held(&dev_priv->irq_lock);
441 I915_WRITE(reg, reset_mask);
442 I915_WRITE(reg, reset_mask);
446 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
448 lockdep_assert_held(&dev_priv->irq_lock);
450 dev_priv->pm_ier |= enable_mask;
451 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
452 gen6_unmask_pm_irq(dev_priv, enable_mask);
453 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
456 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
458 lockdep_assert_held(&dev_priv->irq_lock);
460 dev_priv->pm_ier &= ~disable_mask;
461 __gen6_mask_pm_irq(dev_priv, disable_mask);
462 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
463 /* though a barrier is missing here, but don't really need a one */
466 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
468 spin_lock_irq(&dev_priv->irq_lock);
470 while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
473 dev_priv->gt_pm.rps.pm_iir = 0;
475 spin_unlock_irq(&dev_priv->irq_lock);
478 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
480 spin_lock_irq(&dev_priv->irq_lock);
481 gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
482 dev_priv->gt_pm.rps.pm_iir = 0;
483 spin_unlock_irq(&dev_priv->irq_lock);
486 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
488 struct intel_rps *rps = &dev_priv->gt_pm.rps;
490 if (READ_ONCE(rps->interrupts_enabled))
493 spin_lock_irq(&dev_priv->irq_lock);
494 WARN_ON_ONCE(rps->pm_iir);
496 if (INTEL_GEN(dev_priv) >= 11)
497 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
499 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
501 rps->interrupts_enabled = true;
502 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
504 spin_unlock_irq(&dev_priv->irq_lock);
507 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
509 struct intel_rps *rps = &dev_priv->gt_pm.rps;
511 if (!READ_ONCE(rps->interrupts_enabled))
514 spin_lock_irq(&dev_priv->irq_lock);
515 rps->interrupts_enabled = false;
517 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
519 gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
521 spin_unlock_irq(&dev_priv->irq_lock);
522 synchronize_irq(dev_priv->drm.irq);
524 /* Now that we will not be generating any more work, flush any
525 * outstanding tasks. As we are called on the RPS idle path,
526 * we will reset the GPU to minimum frequencies, so the current
527 * state of the worker can be discarded.
529 cancel_work_sync(&rps->work);
530 if (INTEL_GEN(dev_priv) >= 11)
531 gen11_reset_rps_interrupts(dev_priv);
533 gen6_reset_rps_interrupts(dev_priv);
536 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
538 assert_rpm_wakelock_held(dev_priv);
540 spin_lock_irq(&dev_priv->irq_lock);
541 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
542 spin_unlock_irq(&dev_priv->irq_lock);
545 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
547 assert_rpm_wakelock_held(dev_priv);
549 spin_lock_irq(&dev_priv->irq_lock);
550 if (!dev_priv->guc.interrupts_enabled) {
551 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
552 dev_priv->pm_guc_events);
553 dev_priv->guc.interrupts_enabled = true;
554 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
556 spin_unlock_irq(&dev_priv->irq_lock);
559 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
561 assert_rpm_wakelock_held(dev_priv);
563 spin_lock_irq(&dev_priv->irq_lock);
564 dev_priv->guc.interrupts_enabled = false;
566 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
568 spin_unlock_irq(&dev_priv->irq_lock);
569 synchronize_irq(dev_priv->drm.irq);
571 gen9_reset_guc_interrupts(dev_priv);
575 * bdw_update_port_irq - update DE port interrupt
576 * @dev_priv: driver private
577 * @interrupt_mask: mask of interrupt bits to update
578 * @enabled_irq_mask: mask of interrupt bits to enable
580 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
581 uint32_t interrupt_mask,
582 uint32_t enabled_irq_mask)
587 lockdep_assert_held(&dev_priv->irq_lock);
589 WARN_ON(enabled_irq_mask & ~interrupt_mask);
591 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
594 old_val = I915_READ(GEN8_DE_PORT_IMR);
597 new_val &= ~interrupt_mask;
598 new_val |= (~enabled_irq_mask & interrupt_mask);
600 if (new_val != old_val) {
601 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
602 POSTING_READ(GEN8_DE_PORT_IMR);
607 * bdw_update_pipe_irq - update DE pipe interrupt
608 * @dev_priv: driver private
609 * @pipe: pipe whose interrupt to update
610 * @interrupt_mask: mask of interrupt bits to update
611 * @enabled_irq_mask: mask of interrupt bits to enable
613 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
615 uint32_t interrupt_mask,
616 uint32_t enabled_irq_mask)
620 lockdep_assert_held(&dev_priv->irq_lock);
622 WARN_ON(enabled_irq_mask & ~interrupt_mask);
624 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
627 new_val = dev_priv->de_irq_mask[pipe];
628 new_val &= ~interrupt_mask;
629 new_val |= (~enabled_irq_mask & interrupt_mask);
631 if (new_val != dev_priv->de_irq_mask[pipe]) {
632 dev_priv->de_irq_mask[pipe] = new_val;
633 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
634 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
639 * ibx_display_interrupt_update - update SDEIMR
640 * @dev_priv: driver private
641 * @interrupt_mask: mask of interrupt bits to update
642 * @enabled_irq_mask: mask of interrupt bits to enable
644 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
645 uint32_t interrupt_mask,
646 uint32_t enabled_irq_mask)
648 uint32_t sdeimr = I915_READ(SDEIMR);
649 sdeimr &= ~interrupt_mask;
650 sdeimr |= (~enabled_irq_mask & interrupt_mask);
652 WARN_ON(enabled_irq_mask & ~interrupt_mask);
654 lockdep_assert_held(&dev_priv->irq_lock);
656 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
659 I915_WRITE(SDEIMR, sdeimr);
660 POSTING_READ(SDEIMR);
663 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
666 u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
667 u32 enable_mask = status_mask << 16;
669 lockdep_assert_held(&dev_priv->irq_lock);
671 if (INTEL_GEN(dev_priv) < 5)
675 * On pipe A we don't support the PSR interrupt yet,
676 * on pipe B and C the same bit MBZ.
678 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
681 * On pipe B and C we don't support the PSR interrupt yet, on pipe
682 * A the same bit is for perf counters which we don't use either.
684 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
687 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
688 SPRITE0_FLIP_DONE_INT_EN_VLV |
689 SPRITE1_FLIP_DONE_INT_EN_VLV);
690 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
691 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
692 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
693 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
696 WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
697 status_mask & ~PIPESTAT_INT_STATUS_MASK,
698 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
699 pipe_name(pipe), enable_mask, status_mask);
704 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
705 enum pipe pipe, u32 status_mask)
707 i915_reg_t reg = PIPESTAT(pipe);
710 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
711 "pipe %c: status_mask=0x%x\n",
712 pipe_name(pipe), status_mask);
714 lockdep_assert_held(&dev_priv->irq_lock);
715 WARN_ON(!intel_irqs_enabled(dev_priv));
717 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
720 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
721 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
723 I915_WRITE(reg, enable_mask | status_mask);
727 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
728 enum pipe pipe, u32 status_mask)
730 i915_reg_t reg = PIPESTAT(pipe);
733 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
734 "pipe %c: status_mask=0x%x\n",
735 pipe_name(pipe), status_mask);
737 lockdep_assert_held(&dev_priv->irq_lock);
738 WARN_ON(!intel_irqs_enabled(dev_priv));
740 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
743 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
744 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
746 I915_WRITE(reg, enable_mask | status_mask);
751 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
752 * @dev_priv: i915 device private
754 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
756 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
759 spin_lock_irq(&dev_priv->irq_lock);
761 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
762 if (INTEL_GEN(dev_priv) >= 4)
763 i915_enable_pipestat(dev_priv, PIPE_A,
764 PIPE_LEGACY_BLC_EVENT_STATUS);
766 spin_unlock_irq(&dev_priv->irq_lock);
770 * This timing diagram depicts the video signal in and
771 * around the vertical blanking period.
773 * Assumptions about the fictitious mode used in this example:
775 * vsync_start = vblank_start + 1
776 * vsync_end = vblank_start + 2
777 * vtotal = vblank_start + 3
780 * latch double buffered registers
781 * increment frame counter (ctg+)
782 * generate start of vblank interrupt (gen4+)
785 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
786 * | may be shifted forward 1-3 extra lines via PIPECONF
788 * | | start of vsync:
789 * | | generate vsync interrupt
791 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
792 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
793 * ----va---> <-----------------vb--------------------> <--------va-------------
794 * | | <----vs-----> |
795 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
796 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
797 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
799 * last visible pixel first visible pixel
800 * | increment frame counter (gen3/4)
801 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
803 * x = horizontal active
804 * _ = horizontal blanking
805 * hs = horizontal sync
806 * va = vertical active
807 * vb = vertical blanking
809 * vbs = vblank_start (number)
812 * - most events happen at the start of horizontal sync
813 * - frame start happens at the start of horizontal blank, 1-4 lines
814 * (depending on PIPECONF settings) after the start of vblank
815 * - gen3/4 pixel and frame counter are synchronized with the start
816 * of horizontal active on the first line of vertical active
819 /* Called from drm generic code, passed a 'crtc', which
820 * we use as a pipe index
822 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
824 struct drm_i915_private *dev_priv = to_i915(dev);
825 i915_reg_t high_frame, low_frame;
826 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
827 const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
828 unsigned long irqflags;
830 htotal = mode->crtc_htotal;
831 hsync_start = mode->crtc_hsync_start;
832 vbl_start = mode->crtc_vblank_start;
833 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
834 vbl_start = DIV_ROUND_UP(vbl_start, 2);
836 /* Convert to pixel count */
839 /* Start of vblank event occurs at start of hsync */
840 vbl_start -= htotal - hsync_start;
842 high_frame = PIPEFRAME(pipe);
843 low_frame = PIPEFRAMEPIXEL(pipe);
845 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
848 * High & low register fields aren't synchronized, so make sure
849 * we get a low value that's stable across two reads of the high
853 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
854 low = I915_READ_FW(low_frame);
855 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
856 } while (high1 != high2);
858 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
860 high1 >>= PIPE_FRAME_HIGH_SHIFT;
861 pixel = low & PIPE_PIXEL_MASK;
862 low >>= PIPE_FRAME_LOW_SHIFT;
865 * The frame counter increments at beginning of active.
866 * Cook up a vblank counter by also checking the pixel
867 * counter against vblank start.
869 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
872 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
874 struct drm_i915_private *dev_priv = to_i915(dev);
876 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
880 * On certain encoders on certain platforms, pipe
881 * scanline register will not work to get the scanline,
882 * since the timings are driven from the PORT or issues
883 * with scanline register updates.
884 * This function will use Framestamp and current
885 * timestamp registers to calculate the scanline.
887 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
889 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
890 struct drm_vblank_crtc *vblank =
891 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
892 const struct drm_display_mode *mode = &vblank->hwmode;
893 u32 vblank_start = mode->crtc_vblank_start;
894 u32 vtotal = mode->crtc_vtotal;
895 u32 htotal = mode->crtc_htotal;
896 u32 clock = mode->crtc_clock;
897 u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
900 * To avoid the race condition where we might cross into the
901 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
902 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
903 * during the same frame.
907 * This field provides read back of the display
908 * pipe frame time stamp. The time stamp value
909 * is sampled at every start of vertical blank.
911 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
914 * The TIMESTAMP_CTR register has the current
917 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
919 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
920 } while (scan_post_time != scan_prev_time);
922 scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
923 clock), 1000 * htotal);
924 scanline = min(scanline, vtotal - 1);
925 scanline = (scanline + vblank_start) % vtotal;
930 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
931 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
933 struct drm_device *dev = crtc->base.dev;
934 struct drm_i915_private *dev_priv = to_i915(dev);
935 const struct drm_display_mode *mode;
936 struct drm_vblank_crtc *vblank;
937 enum pipe pipe = crtc->pipe;
938 int position, vtotal;
943 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
944 mode = &vblank->hwmode;
946 if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
947 return __intel_get_crtc_scanline_from_timestamp(crtc);
949 vtotal = mode->crtc_vtotal;
950 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
953 if (IS_GEN2(dev_priv))
954 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
956 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
959 * On HSW, the DSL reg (0x70000) appears to return 0 if we
960 * read it just before the start of vblank. So try it again
961 * so we don't accidentally end up spanning a vblank frame
962 * increment, causing the pipe_update_end() code to squak at us.
964 * The nature of this problem means we can't simply check the ISR
965 * bit and return the vblank start value; nor can we use the scanline
966 * debug register in the transcoder as it appears to have the same
967 * problem. We may need to extend this to include other platforms,
968 * but so far testing only shows the problem on HSW.
970 if (HAS_DDI(dev_priv) && !position) {
973 for (i = 0; i < 100; i++) {
975 temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
976 if (temp != position) {
984 * See update_scanline_offset() for the details on the
985 * scanline_offset adjustment.
987 return (position + crtc->scanline_offset) % vtotal;
990 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
991 bool in_vblank_irq, int *vpos, int *hpos,
992 ktime_t *stime, ktime_t *etime,
993 const struct drm_display_mode *mode)
995 struct drm_i915_private *dev_priv = to_i915(dev);
996 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
999 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
1000 unsigned long irqflags;
1002 if (WARN_ON(!mode->crtc_clock)) {
1003 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
1004 "pipe %c\n", pipe_name(pipe));
1008 htotal = mode->crtc_htotal;
1009 hsync_start = mode->crtc_hsync_start;
1010 vtotal = mode->crtc_vtotal;
1011 vbl_start = mode->crtc_vblank_start;
1012 vbl_end = mode->crtc_vblank_end;
1014 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
1015 vbl_start = DIV_ROUND_UP(vbl_start, 2);
1021 * Lock uncore.lock, as we will do multiple timing critical raw
1022 * register reads, potentially with preemption disabled, so the
1023 * following code must not block on uncore.lock.
1025 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1027 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1029 /* Get optional system timestamp before query. */
1031 *stime = ktime_get();
1033 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1034 /* No obvious pixelcount register. Only query vertical
1035 * scanout position from Display scan line register.
1037 position = __intel_get_crtc_scanline(intel_crtc);
1039 /* Have access to pixelcount since start of frame.
1040 * We can split this into vertical and horizontal
1043 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1045 /* convert to pixel counts */
1046 vbl_start *= htotal;
1051 * In interlaced modes, the pixel counter counts all pixels,
1052 * so one field will have htotal more pixels. In order to avoid
1053 * the reported position from jumping backwards when the pixel
1054 * counter is beyond the length of the shorter field, just
1055 * clamp the position the length of the shorter field. This
1056 * matches how the scanline counter based position works since
1057 * the scanline counter doesn't count the two half lines.
1059 if (position >= vtotal)
1060 position = vtotal - 1;
1063 * Start of vblank interrupt is triggered at start of hsync,
1064 * just prior to the first active line of vblank. However we
1065 * consider lines to start at the leading edge of horizontal
1066 * active. So, should we get here before we've crossed into
1067 * the horizontal active of the first line in vblank, we would
1068 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1069 * always add htotal-hsync_start to the current pixel position.
1071 position = (position + htotal - hsync_start) % vtotal;
1074 /* Get optional system timestamp after query. */
1076 *etime = ktime_get();
1078 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1080 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1083 * While in vblank, position will be negative
1084 * counting up towards 0 at vbl_end. And outside
1085 * vblank, position will be positive counting
1088 if (position >= vbl_start)
1089 position -= vbl_end;
1091 position += vtotal - vbl_end;
1093 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1097 *vpos = position / htotal;
1098 *hpos = position - (*vpos * htotal);
1104 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1106 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1107 unsigned long irqflags;
1110 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1111 position = __intel_get_crtc_scanline(crtc);
1112 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1117 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1119 u32 busy_up, busy_down, max_avg, min_avg;
1122 spin_lock(&mchdev_lock);
1124 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1126 new_delay = dev_priv->ips.cur_delay;
1128 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1129 busy_up = I915_READ(RCPREVBSYTUPAVG);
1130 busy_down = I915_READ(RCPREVBSYTDNAVG);
1131 max_avg = I915_READ(RCBMAXAVG);
1132 min_avg = I915_READ(RCBMINAVG);
1134 /* Handle RCS change request from hw */
1135 if (busy_up > max_avg) {
1136 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1137 new_delay = dev_priv->ips.cur_delay - 1;
1138 if (new_delay < dev_priv->ips.max_delay)
1139 new_delay = dev_priv->ips.max_delay;
1140 } else if (busy_down < min_avg) {
1141 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1142 new_delay = dev_priv->ips.cur_delay + 1;
1143 if (new_delay > dev_priv->ips.min_delay)
1144 new_delay = dev_priv->ips.min_delay;
1147 if (ironlake_set_drps(dev_priv, new_delay))
1148 dev_priv->ips.cur_delay = new_delay;
1150 spin_unlock(&mchdev_lock);
1155 static void notify_ring(struct intel_engine_cs *engine)
1157 const u32 seqno = intel_engine_get_seqno(engine);
1158 struct i915_request *rq = NULL;
1159 struct task_struct *tsk = NULL;
1160 struct intel_wait *wait;
1162 if (unlikely(!engine->breadcrumbs.irq_armed))
1167 spin_lock(&engine->breadcrumbs.irq_lock);
1168 wait = engine->breadcrumbs.irq_wait;
1171 * We use a callback from the dma-fence to submit
1172 * requests after waiting on our own requests. To
1173 * ensure minimum delay in queuing the next request to
1174 * hardware, signal the fence now rather than wait for
1175 * the signaler to be woken up. We still wake up the
1176 * waiter in order to handle the irq-seqno coherency
1177 * issues (we may receive the interrupt before the
1178 * seqno is written, see __i915_request_irq_complete())
1179 * and to handle coalescing of multiple seqno updates
1182 if (i915_seqno_passed(seqno, wait->seqno)) {
1183 struct i915_request *waiter = wait->request;
1186 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1187 &waiter->fence.flags) &&
1188 intel_wait_check_request(wait, waiter))
1189 rq = i915_request_get(waiter);
1193 if (engine->irq_seqno_barrier &&
1194 i915_seqno_passed(seqno, wait->seqno - 1)) {
1195 set_bit(ENGINE_IRQ_BREADCRUMB,
1196 &engine->irq_posted);
1201 engine->breadcrumbs.irq_count++;
1203 if (engine->breadcrumbs.irq_armed)
1204 __intel_engine_disarm_breadcrumbs(engine);
1206 spin_unlock(&engine->breadcrumbs.irq_lock);
1209 spin_lock(&rq->lock);
1210 dma_fence_signal_locked(&rq->fence);
1211 GEM_BUG_ON(!i915_request_completed(rq));
1212 spin_unlock(&rq->lock);
1214 i915_request_put(rq);
1217 if (tsk && tsk->state & TASK_NORMAL)
1218 wake_up_process(tsk);
1222 trace_intel_engine_notify(engine, wait);
1225 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1226 struct intel_rps_ei *ei)
1228 ei->ktime = ktime_get_raw();
1229 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1230 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1233 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1235 memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1238 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1240 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1241 const struct intel_rps_ei *prev = &rps->ei;
1242 struct intel_rps_ei now;
1245 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1248 vlv_c0_read(dev_priv, &now);
1254 time = ktime_us_delta(now.ktime, prev->ktime);
1256 time *= dev_priv->czclk_freq;
1258 /* Workload can be split between render + media,
1259 * e.g. SwapBuffers being blitted in X after being rendered in
1260 * mesa. To account for this we need to combine both engines
1261 * into our activity counter.
1263 render = now.render_c0 - prev->render_c0;
1264 media = now.media_c0 - prev->media_c0;
1265 c0 = max(render, media);
1266 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1268 if (c0 > time * rps->up_threshold)
1269 events = GEN6_PM_RP_UP_THRESHOLD;
1270 else if (c0 < time * rps->down_threshold)
1271 events = GEN6_PM_RP_DOWN_THRESHOLD;
1278 static void gen6_pm_rps_work(struct work_struct *work)
1280 struct drm_i915_private *dev_priv =
1281 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1282 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1283 bool client_boost = false;
1284 int new_delay, adj, min, max;
1287 spin_lock_irq(&dev_priv->irq_lock);
1288 if (rps->interrupts_enabled) {
1289 pm_iir = fetch_and_zero(&rps->pm_iir);
1290 client_boost = atomic_read(&rps->num_waiters);
1292 spin_unlock_irq(&dev_priv->irq_lock);
1294 /* Make sure we didn't queue anything we're not going to process. */
1295 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1296 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1299 mutex_lock(&dev_priv->pcu_lock);
1301 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1303 adj = rps->last_adj;
1304 new_delay = rps->cur_freq;
1305 min = rps->min_freq_softlimit;
1306 max = rps->max_freq_softlimit;
1308 max = rps->max_freq;
1309 if (client_boost && new_delay < rps->boost_freq) {
1310 new_delay = rps->boost_freq;
1312 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1315 else /* CHV needs even encode values */
1316 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1318 if (new_delay >= rps->max_freq_softlimit)
1320 } else if (client_boost) {
1322 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1323 if (rps->cur_freq > rps->efficient_freq)
1324 new_delay = rps->efficient_freq;
1325 else if (rps->cur_freq > rps->min_freq_softlimit)
1326 new_delay = rps->min_freq_softlimit;
1328 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1331 else /* CHV needs even encode values */
1332 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1334 if (new_delay <= rps->min_freq_softlimit)
1336 } else { /* unknown event */
1340 rps->last_adj = adj;
1342 /* sysfs frequency interfaces may have snuck in while servicing the
1346 new_delay = clamp_t(int, new_delay, min, max);
1348 if (intel_set_rps(dev_priv, new_delay)) {
1349 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1353 mutex_unlock(&dev_priv->pcu_lock);
1356 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1357 spin_lock_irq(&dev_priv->irq_lock);
1358 if (rps->interrupts_enabled)
1359 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1360 spin_unlock_irq(&dev_priv->irq_lock);
1365 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1367 * @work: workqueue struct
1369 * Doesn't actually do anything except notify userspace. As a consequence of
1370 * this event, userspace should try to remap the bad rows since statistically
1371 * it is likely the same row is more likely to go bad again.
1373 static void ivybridge_parity_work(struct work_struct *work)
1375 struct drm_i915_private *dev_priv =
1376 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1377 u32 error_status, row, bank, subbank;
1378 char *parity_event[6];
1382 /* We must turn off DOP level clock gating to access the L3 registers.
1383 * In order to prevent a get/put style interface, acquire struct mutex
1384 * any time we access those registers.
1386 mutex_lock(&dev_priv->drm.struct_mutex);
1388 /* If we've screwed up tracking, just let the interrupt fire again */
1389 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1392 misccpctl = I915_READ(GEN7_MISCCPCTL);
1393 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1394 POSTING_READ(GEN7_MISCCPCTL);
1396 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1400 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1403 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1405 reg = GEN7_L3CDERRST1(slice);
1407 error_status = I915_READ(reg);
1408 row = GEN7_PARITY_ERROR_ROW(error_status);
1409 bank = GEN7_PARITY_ERROR_BANK(error_status);
1410 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1412 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1415 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1416 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1417 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1418 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1419 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1420 parity_event[5] = NULL;
1422 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1423 KOBJ_CHANGE, parity_event);
1425 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1426 slice, row, bank, subbank);
1428 kfree(parity_event[4]);
1429 kfree(parity_event[3]);
1430 kfree(parity_event[2]);
1431 kfree(parity_event[1]);
1434 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1437 WARN_ON(dev_priv->l3_parity.which_slice);
1438 spin_lock_irq(&dev_priv->irq_lock);
1439 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1440 spin_unlock_irq(&dev_priv->irq_lock);
1442 mutex_unlock(&dev_priv->drm.struct_mutex);
1445 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1448 if (!HAS_L3_DPF(dev_priv))
1451 spin_lock(&dev_priv->irq_lock);
1452 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1453 spin_unlock(&dev_priv->irq_lock);
1455 iir &= GT_PARITY_ERROR(dev_priv);
1456 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1457 dev_priv->l3_parity.which_slice |= 1 << 1;
1459 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1460 dev_priv->l3_parity.which_slice |= 1 << 0;
1462 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1465 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1468 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1469 notify_ring(dev_priv->engine[RCS]);
1470 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1471 notify_ring(dev_priv->engine[VCS]);
1474 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1477 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1478 notify_ring(dev_priv->engine[RCS]);
1479 if (gt_iir & GT_BSD_USER_INTERRUPT)
1480 notify_ring(dev_priv->engine[VCS]);
1481 if (gt_iir & GT_BLT_USER_INTERRUPT)
1482 notify_ring(dev_priv->engine[BCS]);
1484 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1485 GT_BSD_CS_ERROR_INTERRUPT |
1486 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1487 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1489 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1490 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1494 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1496 bool tasklet = false;
1498 if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
1501 if (iir & GT_RENDER_USER_INTERRUPT) {
1502 notify_ring(engine);
1503 tasklet |= USES_GUC_SUBMISSION(engine->i915);
1507 tasklet_hi_schedule(&engine->execlists.tasklet);
1510 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1511 u32 master_ctl, u32 gt_iir[4])
1513 void __iomem * const regs = i915->regs;
1515 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1517 GEN8_GT_VCS1_IRQ | \
1518 GEN8_GT_VCS2_IRQ | \
1519 GEN8_GT_VECS_IRQ | \
1523 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1524 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1525 if (likely(gt_iir[0]))
1526 raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1529 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1530 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1531 if (likely(gt_iir[1]))
1532 raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1535 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1536 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1537 if (likely(gt_iir[2] & (i915->pm_rps_events |
1538 i915->pm_guc_events)))
1539 raw_reg_write(regs, GEN8_GT_IIR(2),
1540 gt_iir[2] & (i915->pm_rps_events |
1541 i915->pm_guc_events));
1544 if (master_ctl & GEN8_GT_VECS_IRQ) {
1545 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1546 if (likely(gt_iir[3]))
1547 raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1551 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1552 u32 master_ctl, u32 gt_iir[4])
1554 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1555 gen8_cs_irq_handler(i915->engine[RCS],
1556 gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1557 gen8_cs_irq_handler(i915->engine[BCS],
1558 gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1561 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1562 gen8_cs_irq_handler(i915->engine[VCS],
1563 gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1564 gen8_cs_irq_handler(i915->engine[VCS2],
1565 gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT);
1568 if (master_ctl & GEN8_GT_VECS_IRQ) {
1569 gen8_cs_irq_handler(i915->engine[VECS],
1570 gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1573 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1574 gen6_rps_irq_handler(i915, gt_iir[2]);
1575 gen9_guc_irq_handler(i915, gt_iir[2]);
1579 static bool gen11_port_hotplug_long_detect(enum port port, u32 val)
1583 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1585 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1587 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1589 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1595 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1599 return val & PORTA_HOTPLUG_LONG_DETECT;
1601 return val & PORTB_HOTPLUG_LONG_DETECT;
1603 return val & PORTC_HOTPLUG_LONG_DETECT;
1609 static bool icp_ddi_port_hotplug_long_detect(enum port port, u32 val)
1613 return val & ICP_DDIA_HPD_LONG_DETECT;
1615 return val & ICP_DDIB_HPD_LONG_DETECT;
1621 static bool icp_tc_port_hotplug_long_detect(enum port port, u32 val)
1625 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1627 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1629 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1631 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1637 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1641 return val & PORTE_HOTPLUG_LONG_DETECT;
1647 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1651 return val & PORTA_HOTPLUG_LONG_DETECT;
1653 return val & PORTB_HOTPLUG_LONG_DETECT;
1655 return val & PORTC_HOTPLUG_LONG_DETECT;
1657 return val & PORTD_HOTPLUG_LONG_DETECT;
1663 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1667 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1673 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1677 return val & PORTB_HOTPLUG_LONG_DETECT;
1679 return val & PORTC_HOTPLUG_LONG_DETECT;
1681 return val & PORTD_HOTPLUG_LONG_DETECT;
1687 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1691 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1693 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1695 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1702 * Get a bit mask of pins that have triggered, and which ones may be long.
1703 * This can be called multiple times with the same masks to accumulate
1704 * hotplug detection results from several registers.
1706 * Note that the caller is expected to zero out the masks initially.
1708 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1709 u32 *pin_mask, u32 *long_mask,
1710 u32 hotplug_trigger, u32 dig_hotplug_reg,
1711 const u32 hpd[HPD_NUM_PINS],
1712 bool long_pulse_detect(enum port port, u32 val))
1717 for_each_hpd_pin(i) {
1718 if ((hpd[i] & hotplug_trigger) == 0)
1721 *pin_mask |= BIT(i);
1723 port = intel_hpd_pin_to_port(dev_priv, i);
1724 if (port == PORT_NONE)
1727 if (long_pulse_detect(port, dig_hotplug_reg))
1728 *long_mask |= BIT(i);
1731 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1732 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1736 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1738 wake_up_all(&dev_priv->gmbus_wait_queue);
1741 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1743 wake_up_all(&dev_priv->gmbus_wait_queue);
1746 #if defined(CONFIG_DEBUG_FS)
1747 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1749 uint32_t crc0, uint32_t crc1,
1750 uint32_t crc2, uint32_t crc3,
1753 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1754 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1757 spin_lock(&pipe_crc->lock);
1759 * For some not yet identified reason, the first CRC is
1760 * bonkers. So let's just wait for the next vblank and read
1761 * out the buggy result.
1763 * On GEN8+ sometimes the second CRC is bonkers as well, so
1764 * don't trust that one either.
1766 if (pipe_crc->skipped <= 0 ||
1767 (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1768 pipe_crc->skipped++;
1769 spin_unlock(&pipe_crc->lock);
1772 spin_unlock(&pipe_crc->lock);
1779 drm_crtc_add_crc_entry(&crtc->base, true,
1780 drm_crtc_accurate_vblank_count(&crtc->base),
1785 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1787 uint32_t crc0, uint32_t crc1,
1788 uint32_t crc2, uint32_t crc3,
1793 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1796 display_pipe_crc_irq_handler(dev_priv, pipe,
1797 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1801 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1804 display_pipe_crc_irq_handler(dev_priv, pipe,
1805 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1806 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1807 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1808 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1809 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1812 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1815 uint32_t res1, res2;
1817 if (INTEL_GEN(dev_priv) >= 3)
1818 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1822 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1823 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1827 display_pipe_crc_irq_handler(dev_priv, pipe,
1828 I915_READ(PIPE_CRC_RES_RED(pipe)),
1829 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1830 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1834 /* The RPS events need forcewake, so we add them to a work queue and mask their
1835 * IMR bits until the work is done. Other interrupts can be processed without
1836 * the work queue. */
1837 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1839 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1841 if (pm_iir & dev_priv->pm_rps_events) {
1842 spin_lock(&dev_priv->irq_lock);
1843 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1844 if (rps->interrupts_enabled) {
1845 rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1846 schedule_work(&rps->work);
1848 spin_unlock(&dev_priv->irq_lock);
1851 if (INTEL_GEN(dev_priv) >= 8)
1854 if (HAS_VEBOX(dev_priv)) {
1855 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1856 notify_ring(dev_priv->engine[VECS]);
1858 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1859 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1863 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1865 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1866 intel_guc_to_host_event_handler(&dev_priv->guc);
1869 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1873 for_each_pipe(dev_priv, pipe) {
1874 I915_WRITE(PIPESTAT(pipe),
1875 PIPESTAT_INT_STATUS_MASK |
1876 PIPE_FIFO_UNDERRUN_STATUS);
1878 dev_priv->pipestat_irq_mask[pipe] = 0;
1882 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1883 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1887 spin_lock(&dev_priv->irq_lock);
1889 if (!dev_priv->display_irqs_enabled) {
1890 spin_unlock(&dev_priv->irq_lock);
1894 for_each_pipe(dev_priv, pipe) {
1896 u32 status_mask, enable_mask, iir_bit = 0;
1899 * PIPESTAT bits get signalled even when the interrupt is
1900 * disabled with the mask bits, and some of the status bits do
1901 * not generate interrupts at all (like the underrun bit). Hence
1902 * we need to be careful that we only handle what we want to
1906 /* fifo underruns are filterered in the underrun handler. */
1907 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1911 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1914 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1917 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1921 status_mask |= dev_priv->pipestat_irq_mask[pipe];
1926 reg = PIPESTAT(pipe);
1927 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1928 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1931 * Clear the PIPE*STAT regs before the IIR
1933 * Toggle the enable bits to make sure we get an
1934 * edge in the ISR pipe event bit if we don't clear
1935 * all the enabled status bits. Otherwise the edge
1936 * triggered IIR on i965/g4x wouldn't notice that
1937 * an interrupt is still pending.
1939 if (pipe_stats[pipe]) {
1940 I915_WRITE(reg, pipe_stats[pipe]);
1941 I915_WRITE(reg, enable_mask);
1944 spin_unlock(&dev_priv->irq_lock);
1947 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1948 u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1952 for_each_pipe(dev_priv, pipe) {
1953 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1954 drm_handle_vblank(&dev_priv->drm, pipe);
1956 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1957 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1959 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1960 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1964 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1965 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1967 bool blc_event = false;
1970 for_each_pipe(dev_priv, pipe) {
1971 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1972 drm_handle_vblank(&dev_priv->drm, pipe);
1974 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1977 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1978 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1980 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1981 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1984 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1985 intel_opregion_asle_intr(dev_priv);
1988 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1989 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1991 bool blc_event = false;
1994 for_each_pipe(dev_priv, pipe) {
1995 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1996 drm_handle_vblank(&dev_priv->drm, pipe);
1998 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2001 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2002 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2004 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2005 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2008 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2009 intel_opregion_asle_intr(dev_priv);
2011 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2012 gmbus_irq_handler(dev_priv);
2015 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
2016 u32 pipe_stats[I915_MAX_PIPES])
2020 for_each_pipe(dev_priv, pipe) {
2021 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
2022 drm_handle_vblank(&dev_priv->drm, pipe);
2024 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2025 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2027 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2028 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2031 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2032 gmbus_irq_handler(dev_priv);
2035 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
2037 u32 hotplug_status = 0, hotplug_status_mask;
2040 if (IS_G4X(dev_priv) ||
2041 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2042 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
2043 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
2045 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
2048 * We absolutely have to clear all the pending interrupt
2049 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
2050 * interrupt bit won't have an edge, and the i965/g4x
2051 * edge triggered IIR will not notice that an interrupt
2052 * is still pending. We can't use PORT_HOTPLUG_EN to
2053 * guarantee the edge as the act of toggling the enable
2054 * bits can itself generate a new hotplug interrupt :(
2056 for (i = 0; i < 10; i++) {
2057 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
2060 return hotplug_status;
2062 hotplug_status |= tmp;
2063 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2067 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2068 I915_READ(PORT_HOTPLUG_STAT));
2070 return hotplug_status;
2073 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2076 u32 pin_mask = 0, long_mask = 0;
2078 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2079 IS_CHERRYVIEW(dev_priv)) {
2080 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2082 if (hotplug_trigger) {
2083 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2084 hotplug_trigger, hotplug_trigger,
2086 i9xx_port_hotplug_long_detect);
2088 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2091 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2092 dp_aux_irq_handler(dev_priv);
2094 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2096 if (hotplug_trigger) {
2097 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2098 hotplug_trigger, hotplug_trigger,
2100 i9xx_port_hotplug_long_detect);
2101 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2106 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2108 struct drm_device *dev = arg;
2109 struct drm_i915_private *dev_priv = to_i915(dev);
2110 irqreturn_t ret = IRQ_NONE;
2112 if (!intel_irqs_enabled(dev_priv))
2115 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2116 disable_rpm_wakeref_asserts(dev_priv);
2119 u32 iir, gt_iir, pm_iir;
2120 u32 pipe_stats[I915_MAX_PIPES] = {};
2121 u32 hotplug_status = 0;
2124 gt_iir = I915_READ(GTIIR);
2125 pm_iir = I915_READ(GEN6_PMIIR);
2126 iir = I915_READ(VLV_IIR);
2128 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2134 * Theory on interrupt generation, based on empirical evidence:
2136 * x = ((VLV_IIR & VLV_IER) ||
2137 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2138 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2140 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2141 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2142 * guarantee the CPU interrupt will be raised again even if we
2143 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2144 * bits this time around.
2146 I915_WRITE(VLV_MASTER_IER, 0);
2147 ier = I915_READ(VLV_IER);
2148 I915_WRITE(VLV_IER, 0);
2151 I915_WRITE(GTIIR, gt_iir);
2153 I915_WRITE(GEN6_PMIIR, pm_iir);
2155 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2156 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2158 /* Call regardless, as some status bits might not be
2159 * signalled in iir */
2160 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2162 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2163 I915_LPE_PIPE_B_INTERRUPT))
2164 intel_lpe_audio_irq_handler(dev_priv);
2167 * VLV_IIR is single buffered, and reflects the level
2168 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2171 I915_WRITE(VLV_IIR, iir);
2173 I915_WRITE(VLV_IER, ier);
2174 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2177 snb_gt_irq_handler(dev_priv, gt_iir);
2179 gen6_rps_irq_handler(dev_priv, pm_iir);
2182 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2184 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2187 enable_rpm_wakeref_asserts(dev_priv);
2192 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2194 struct drm_device *dev = arg;
2195 struct drm_i915_private *dev_priv = to_i915(dev);
2196 irqreturn_t ret = IRQ_NONE;
2198 if (!intel_irqs_enabled(dev_priv))
2201 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2202 disable_rpm_wakeref_asserts(dev_priv);
2205 u32 master_ctl, iir;
2206 u32 pipe_stats[I915_MAX_PIPES] = {};
2207 u32 hotplug_status = 0;
2211 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2212 iir = I915_READ(VLV_IIR);
2214 if (master_ctl == 0 && iir == 0)
2220 * Theory on interrupt generation, based on empirical evidence:
2222 * x = ((VLV_IIR & VLV_IER) ||
2223 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2224 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2226 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2227 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2228 * guarantee the CPU interrupt will be raised again even if we
2229 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2230 * bits this time around.
2232 I915_WRITE(GEN8_MASTER_IRQ, 0);
2233 ier = I915_READ(VLV_IER);
2234 I915_WRITE(VLV_IER, 0);
2236 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2238 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2239 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2241 /* Call regardless, as some status bits might not be
2242 * signalled in iir */
2243 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2245 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2246 I915_LPE_PIPE_B_INTERRUPT |
2247 I915_LPE_PIPE_C_INTERRUPT))
2248 intel_lpe_audio_irq_handler(dev_priv);
2251 * VLV_IIR is single buffered, and reflects the level
2252 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2255 I915_WRITE(VLV_IIR, iir);
2257 I915_WRITE(VLV_IER, ier);
2258 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2260 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2263 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2265 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2268 enable_rpm_wakeref_asserts(dev_priv);
2273 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2274 u32 hotplug_trigger,
2275 const u32 hpd[HPD_NUM_PINS])
2277 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2280 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2281 * unless we touch the hotplug register, even if hotplug_trigger is
2282 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2285 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2286 if (!hotplug_trigger) {
2287 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2288 PORTD_HOTPLUG_STATUS_MASK |
2289 PORTC_HOTPLUG_STATUS_MASK |
2290 PORTB_HOTPLUG_STATUS_MASK;
2291 dig_hotplug_reg &= ~mask;
2294 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2295 if (!hotplug_trigger)
2298 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2299 dig_hotplug_reg, hpd,
2300 pch_port_hotplug_long_detect);
2302 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2305 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2308 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2310 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2312 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2313 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2314 SDE_AUDIO_POWER_SHIFT);
2315 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2319 if (pch_iir & SDE_AUX_MASK)
2320 dp_aux_irq_handler(dev_priv);
2322 if (pch_iir & SDE_GMBUS)
2323 gmbus_irq_handler(dev_priv);
2325 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2326 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2328 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2329 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2331 if (pch_iir & SDE_POISON)
2332 DRM_ERROR("PCH poison interrupt\n");
2334 if (pch_iir & SDE_FDI_MASK)
2335 for_each_pipe(dev_priv, pipe)
2336 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2338 I915_READ(FDI_RX_IIR(pipe)));
2340 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2341 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2343 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2344 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2346 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2347 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2349 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2350 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2353 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2355 u32 err_int = I915_READ(GEN7_ERR_INT);
2358 if (err_int & ERR_INT_POISON)
2359 DRM_ERROR("Poison interrupt\n");
2361 for_each_pipe(dev_priv, pipe) {
2362 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2363 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2365 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2366 if (IS_IVYBRIDGE(dev_priv))
2367 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2369 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2373 I915_WRITE(GEN7_ERR_INT, err_int);
2376 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2378 u32 serr_int = I915_READ(SERR_INT);
2381 if (serr_int & SERR_INT_POISON)
2382 DRM_ERROR("PCH poison interrupt\n");
2384 for_each_pipe(dev_priv, pipe)
2385 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2386 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2388 I915_WRITE(SERR_INT, serr_int);
2391 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2394 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2396 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2398 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2399 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2400 SDE_AUDIO_POWER_SHIFT_CPT);
2401 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2405 if (pch_iir & SDE_AUX_MASK_CPT)
2406 dp_aux_irq_handler(dev_priv);
2408 if (pch_iir & SDE_GMBUS_CPT)
2409 gmbus_irq_handler(dev_priv);
2411 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2412 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2414 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2415 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2417 if (pch_iir & SDE_FDI_MASK_CPT)
2418 for_each_pipe(dev_priv, pipe)
2419 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2421 I915_READ(FDI_RX_IIR(pipe)));
2423 if (pch_iir & SDE_ERROR_CPT)
2424 cpt_serr_int_handler(dev_priv);
2427 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2429 u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2430 u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2431 u32 pin_mask = 0, long_mask = 0;
2433 if (ddi_hotplug_trigger) {
2434 u32 dig_hotplug_reg;
2436 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2437 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2439 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2440 ddi_hotplug_trigger,
2441 dig_hotplug_reg, hpd_icp,
2442 icp_ddi_port_hotplug_long_detect);
2445 if (tc_hotplug_trigger) {
2446 u32 dig_hotplug_reg;
2448 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2449 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2451 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2453 dig_hotplug_reg, hpd_icp,
2454 icp_tc_port_hotplug_long_detect);
2458 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2460 if (pch_iir & SDE_GMBUS_ICP)
2461 gmbus_irq_handler(dev_priv);
2464 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2466 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2467 ~SDE_PORTE_HOTPLUG_SPT;
2468 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2469 u32 pin_mask = 0, long_mask = 0;
2471 if (hotplug_trigger) {
2472 u32 dig_hotplug_reg;
2474 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2475 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2477 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2478 hotplug_trigger, dig_hotplug_reg, hpd_spt,
2479 spt_port_hotplug_long_detect);
2482 if (hotplug2_trigger) {
2483 u32 dig_hotplug_reg;
2485 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2486 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2488 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2489 hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2490 spt_port_hotplug2_long_detect);
2494 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2496 if (pch_iir & SDE_GMBUS_CPT)
2497 gmbus_irq_handler(dev_priv);
2500 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2501 u32 hotplug_trigger,
2502 const u32 hpd[HPD_NUM_PINS])
2504 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2506 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2507 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2509 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2510 dig_hotplug_reg, hpd,
2511 ilk_port_hotplug_long_detect);
2513 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2516 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2520 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2522 if (hotplug_trigger)
2523 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2525 if (de_iir & DE_AUX_CHANNEL_A)
2526 dp_aux_irq_handler(dev_priv);
2528 if (de_iir & DE_GSE)
2529 intel_opregion_asle_intr(dev_priv);
2531 if (de_iir & DE_POISON)
2532 DRM_ERROR("Poison interrupt\n");
2534 for_each_pipe(dev_priv, pipe) {
2535 if (de_iir & DE_PIPE_VBLANK(pipe))
2536 drm_handle_vblank(&dev_priv->drm, pipe);
2538 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2539 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2541 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2542 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2545 /* check event from PCH */
2546 if (de_iir & DE_PCH_EVENT) {
2547 u32 pch_iir = I915_READ(SDEIIR);
2549 if (HAS_PCH_CPT(dev_priv))
2550 cpt_irq_handler(dev_priv, pch_iir);
2552 ibx_irq_handler(dev_priv, pch_iir);
2554 /* should clear PCH hotplug event before clear CPU irq */
2555 I915_WRITE(SDEIIR, pch_iir);
2558 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2559 ironlake_rps_change_irq_handler(dev_priv);
2562 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2566 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2568 if (hotplug_trigger)
2569 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2571 if (de_iir & DE_ERR_INT_IVB)
2572 ivb_err_int_handler(dev_priv);
2574 if (de_iir & DE_EDP_PSR_INT_HSW) {
2575 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2577 intel_psr_irq_handler(dev_priv, psr_iir);
2578 I915_WRITE(EDP_PSR_IIR, psr_iir);
2581 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2582 dp_aux_irq_handler(dev_priv);
2584 if (de_iir & DE_GSE_IVB)
2585 intel_opregion_asle_intr(dev_priv);
2587 for_each_pipe(dev_priv, pipe) {
2588 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2589 drm_handle_vblank(&dev_priv->drm, pipe);
2592 /* check event from PCH */
2593 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2594 u32 pch_iir = I915_READ(SDEIIR);
2596 cpt_irq_handler(dev_priv, pch_iir);
2598 /* clear PCH hotplug event before clear CPU irq */
2599 I915_WRITE(SDEIIR, pch_iir);
2604 * To handle irqs with the minimum potential races with fresh interrupts, we:
2605 * 1 - Disable Master Interrupt Control.
2606 * 2 - Find the source(s) of the interrupt.
2607 * 3 - Clear the Interrupt Identity bits (IIR).
2608 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2609 * 5 - Re-enable Master Interrupt Control.
2611 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2613 struct drm_device *dev = arg;
2614 struct drm_i915_private *dev_priv = to_i915(dev);
2615 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2616 irqreturn_t ret = IRQ_NONE;
2618 if (!intel_irqs_enabled(dev_priv))
2621 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2622 disable_rpm_wakeref_asserts(dev_priv);
2624 /* disable master interrupt before clearing iir */
2625 de_ier = I915_READ(DEIER);
2626 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2628 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2629 * interrupts will will be stored on its back queue, and then we'll be
2630 * able to process them after we restore SDEIER (as soon as we restore
2631 * it, we'll get an interrupt if SDEIIR still has something to process
2632 * due to its back queue). */
2633 if (!HAS_PCH_NOP(dev_priv)) {
2634 sde_ier = I915_READ(SDEIER);
2635 I915_WRITE(SDEIER, 0);
2638 /* Find, clear, then process each source of interrupt */
2640 gt_iir = I915_READ(GTIIR);
2642 I915_WRITE(GTIIR, gt_iir);
2644 if (INTEL_GEN(dev_priv) >= 6)
2645 snb_gt_irq_handler(dev_priv, gt_iir);
2647 ilk_gt_irq_handler(dev_priv, gt_iir);
2650 de_iir = I915_READ(DEIIR);
2652 I915_WRITE(DEIIR, de_iir);
2654 if (INTEL_GEN(dev_priv) >= 7)
2655 ivb_display_irq_handler(dev_priv, de_iir);
2657 ilk_display_irq_handler(dev_priv, de_iir);
2660 if (INTEL_GEN(dev_priv) >= 6) {
2661 u32 pm_iir = I915_READ(GEN6_PMIIR);
2663 I915_WRITE(GEN6_PMIIR, pm_iir);
2665 gen6_rps_irq_handler(dev_priv, pm_iir);
2669 I915_WRITE(DEIER, de_ier);
2670 if (!HAS_PCH_NOP(dev_priv))
2671 I915_WRITE(SDEIER, sde_ier);
2673 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2674 enable_rpm_wakeref_asserts(dev_priv);
2679 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2680 u32 hotplug_trigger,
2681 const u32 hpd[HPD_NUM_PINS])
2683 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2685 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2686 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2688 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2689 dig_hotplug_reg, hpd,
2690 bxt_port_hotplug_long_detect);
2692 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2695 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2697 u32 pin_mask = 0, long_mask = 0;
2698 u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2699 u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2702 u32 dig_hotplug_reg;
2704 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2705 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2707 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2708 dig_hotplug_reg, hpd_gen11,
2709 gen11_port_hotplug_long_detect);
2713 u32 dig_hotplug_reg;
2715 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2716 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2718 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2719 dig_hotplug_reg, hpd_gen11,
2720 gen11_port_hotplug_long_detect);
2724 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2726 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2730 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2732 irqreturn_t ret = IRQ_NONE;
2736 if (master_ctl & GEN8_DE_MISC_IRQ) {
2737 iir = I915_READ(GEN8_DE_MISC_IIR);
2741 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2744 if (iir & GEN8_DE_MISC_GSE) {
2745 intel_opregion_asle_intr(dev_priv);
2749 if (iir & GEN8_DE_EDP_PSR) {
2750 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2752 intel_psr_irq_handler(dev_priv, psr_iir);
2753 I915_WRITE(EDP_PSR_IIR, psr_iir);
2758 DRM_ERROR("Unexpected DE Misc interrupt\n");
2761 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2764 if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2765 iir = I915_READ(GEN11_DE_HPD_IIR);
2767 I915_WRITE(GEN11_DE_HPD_IIR, iir);
2769 gen11_hpd_irq_handler(dev_priv, iir);
2771 DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2775 if (master_ctl & GEN8_DE_PORT_IRQ) {
2776 iir = I915_READ(GEN8_DE_PORT_IIR);
2781 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2784 tmp_mask = GEN8_AUX_CHANNEL_A;
2785 if (INTEL_GEN(dev_priv) >= 9)
2786 tmp_mask |= GEN9_AUX_CHANNEL_B |
2787 GEN9_AUX_CHANNEL_C |
2790 if (INTEL_GEN(dev_priv) >= 11)
2791 tmp_mask |= ICL_AUX_CHANNEL_E;
2793 if (IS_CNL_WITH_PORT_F(dev_priv) ||
2794 INTEL_GEN(dev_priv) >= 11)
2795 tmp_mask |= CNL_AUX_CHANNEL_F;
2797 if (iir & tmp_mask) {
2798 dp_aux_irq_handler(dev_priv);
2802 if (IS_GEN9_LP(dev_priv)) {
2803 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2805 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2809 } else if (IS_BROADWELL(dev_priv)) {
2810 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2812 ilk_hpd_irq_handler(dev_priv,
2818 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2819 gmbus_irq_handler(dev_priv);
2824 DRM_ERROR("Unexpected DE Port interrupt\n");
2827 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2830 for_each_pipe(dev_priv, pipe) {
2833 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2836 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2838 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2843 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2845 if (iir & GEN8_PIPE_VBLANK)
2846 drm_handle_vblank(&dev_priv->drm, pipe);
2848 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2849 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2851 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2852 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2855 if (INTEL_GEN(dev_priv) >= 9)
2856 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2858 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2861 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2866 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2867 master_ctl & GEN8_DE_PCH_IRQ) {
2869 * FIXME(BDW): Assume for now that the new interrupt handling
2870 * scheme also closed the SDE interrupt handling race we've seen
2871 * on older pch-split platforms. But this needs testing.
2873 iir = I915_READ(SDEIIR);
2875 I915_WRITE(SDEIIR, iir);
2878 if (HAS_PCH_ICP(dev_priv))
2879 icp_irq_handler(dev_priv, iir);
2880 else if (HAS_PCH_SPT(dev_priv) ||
2881 HAS_PCH_KBP(dev_priv) ||
2882 HAS_PCH_CNP(dev_priv))
2883 spt_irq_handler(dev_priv, iir);
2885 cpt_irq_handler(dev_priv, iir);
2888 * Like on previous PCH there seems to be something
2889 * fishy going on with forwarding PCH interrupts.
2891 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2898 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2900 struct drm_i915_private *dev_priv = to_i915(arg);
2904 if (!intel_irqs_enabled(dev_priv))
2907 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2908 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2912 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2914 /* Find, clear, then process each source of interrupt */
2915 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2917 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2918 if (master_ctl & ~GEN8_GT_IRQS) {
2919 disable_rpm_wakeref_asserts(dev_priv);
2920 gen8_de_irq_handler(dev_priv, master_ctl);
2921 enable_rpm_wakeref_asserts(dev_priv);
2924 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2926 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2932 struct delayed_work work;
2933 struct drm_i915_private *i915;
2937 static void wedge_me(struct work_struct *work)
2939 struct wedge_me *w = container_of(work, typeof(*w), work.work);
2941 dev_err(w->i915->drm.dev,
2942 "%s timed out, cancelling all in-flight rendering.\n",
2944 i915_gem_set_wedged(w->i915);
2947 static void __init_wedge(struct wedge_me *w,
2948 struct drm_i915_private *i915,
2955 INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2956 schedule_delayed_work(&w->work, timeout);
2959 static void __fini_wedge(struct wedge_me *w)
2961 cancel_delayed_work_sync(&w->work);
2962 destroy_delayed_work_on_stack(&w->work);
2966 #define i915_wedge_on_timeout(W, DEV, TIMEOUT) \
2967 for (__init_wedge((W), (DEV), (TIMEOUT), __func__); \
2972 gen11_gt_engine_identity(struct drm_i915_private * const i915,
2973 const unsigned int bank, const unsigned int bit)
2975 void __iomem * const regs = i915->regs;
2979 lockdep_assert_held(&i915->irq_lock);
2981 raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2984 * NB: Specs do not specify how long to spin wait,
2985 * so we do ~100us as an educated guess.
2987 timeout_ts = (local_clock() >> 10) + 100;
2989 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
2990 } while (!(ident & GEN11_INTR_DATA_VALID) &&
2991 !time_after32(local_clock() >> 10, timeout_ts));
2993 if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
2994 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
2999 raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
3000 GEN11_INTR_DATA_VALID);
3006 gen11_other_irq_handler(struct drm_i915_private * const i915,
3007 const u8 instance, const u16 iir)
3009 if (instance == OTHER_GTPM_INSTANCE)
3010 return gen6_rps_irq_handler(i915, iir);
3012 WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
3017 gen11_engine_irq_handler(struct drm_i915_private * const i915,
3018 const u8 class, const u8 instance, const u16 iir)
3020 struct intel_engine_cs *engine;
3022 if (instance <= MAX_ENGINE_INSTANCE)
3023 engine = i915->engine_class[class][instance];
3028 return gen8_cs_irq_handler(engine, iir);
3030 WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
3035 gen11_gt_identity_handler(struct drm_i915_private * const i915,
3038 const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
3039 const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
3040 const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
3042 if (unlikely(!intr))
3045 if (class <= COPY_ENGINE_CLASS)
3046 return gen11_engine_irq_handler(i915, class, instance, intr);
3048 if (class == OTHER_CLASS)
3049 return gen11_other_irq_handler(i915, instance, intr);
3051 WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
3052 class, instance, intr);
3056 gen11_gt_bank_handler(struct drm_i915_private * const i915,
3057 const unsigned int bank)
3059 void __iomem * const regs = i915->regs;
3060 unsigned long intr_dw;
3063 lockdep_assert_held(&i915->irq_lock);
3065 intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
3067 if (unlikely(!intr_dw)) {
3068 DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
3072 for_each_set_bit(bit, &intr_dw, 32) {
3073 const u32 ident = gen11_gt_engine_identity(i915,
3076 gen11_gt_identity_handler(i915, ident);
3079 /* Clear must be after shared has been served for engine */
3080 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
3084 gen11_gt_irq_handler(struct drm_i915_private * const i915,
3085 const u32 master_ctl)
3089 spin_lock(&i915->irq_lock);
3091 for (bank = 0; bank < 2; bank++) {
3092 if (master_ctl & GEN11_GT_DW_IRQ(bank))
3093 gen11_gt_bank_handler(i915, bank);
3096 spin_unlock(&i915->irq_lock);
3100 gen11_gu_misc_irq_ack(struct drm_i915_private *dev_priv, const u32 master_ctl,
3103 void __iomem * const regs = dev_priv->regs;
3105 if (!(master_ctl & GEN11_GU_MISC_IRQ))
3108 *iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
3110 raw_reg_write(regs, GEN11_GU_MISC_IIR, *iir);
3114 gen11_gu_misc_irq_handler(struct drm_i915_private *dev_priv,
3115 const u32 master_ctl, const u32 iir)
3117 if (!(master_ctl & GEN11_GU_MISC_IRQ))
3120 if (unlikely(!iir)) {
3121 DRM_ERROR("GU_MISC iir blank!\n");
3125 if (iir & GEN11_GU_MISC_GSE)
3126 intel_opregion_asle_intr(dev_priv);
3128 DRM_ERROR("Unexpected GU_MISC interrupt 0x%x\n", iir);
3131 static irqreturn_t gen11_irq_handler(int irq, void *arg)
3133 struct drm_i915_private * const i915 = to_i915(arg);
3134 void __iomem * const regs = i915->regs;
3138 if (!intel_irqs_enabled(i915))
3141 master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
3142 master_ctl &= ~GEN11_MASTER_IRQ;
3146 /* Disable interrupts. */
3147 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
3149 /* Find, clear, then process each source of interrupt. */
3150 gen11_gt_irq_handler(i915, master_ctl);
3152 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3153 if (master_ctl & GEN11_DISPLAY_IRQ) {
3154 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3156 disable_rpm_wakeref_asserts(i915);
3158 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3159 * for the display related bits.
3161 gen8_de_irq_handler(i915, disp_ctl);
3162 enable_rpm_wakeref_asserts(i915);
3165 gen11_gu_misc_irq_ack(i915, master_ctl, &gu_misc_iir);
3167 /* Acknowledge and enable interrupts. */
3168 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ | master_ctl);
3170 gen11_gu_misc_irq_handler(i915, master_ctl, gu_misc_iir);
3175 static void i915_reset_device(struct drm_i915_private *dev_priv,
3179 struct i915_gpu_error *error = &dev_priv->gpu_error;
3180 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
3181 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
3182 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
3183 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
3186 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
3188 DRM_DEBUG_DRIVER("resetting chip\n");
3189 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
3191 /* Use a watchdog to ensure that our reset completes */
3192 i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
3193 intel_prepare_reset(dev_priv);
3195 error->reason = reason;
3196 error->stalled_mask = engine_mask;
3198 /* Signal that locked waiters should reset the GPU */
3199 smp_mb__before_atomic();
3200 set_bit(I915_RESET_HANDOFF, &error->flags);
3201 wake_up_all(&error->wait_queue);
3203 /* Wait for anyone holding the lock to wakeup, without
3204 * blocking indefinitely on struct_mutex.
3207 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
3208 i915_reset(dev_priv, engine_mask, reason);
3209 mutex_unlock(&dev_priv->drm.struct_mutex);
3211 } while (wait_on_bit_timeout(&error->flags,
3213 TASK_UNINTERRUPTIBLE,
3216 error->stalled_mask = 0;
3217 error->reason = NULL;
3219 intel_finish_reset(dev_priv);
3222 if (!test_bit(I915_WEDGED, &error->flags))
3223 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
3226 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
3230 if (!IS_GEN2(dev_priv))
3231 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
3233 if (INTEL_GEN(dev_priv) < 4)
3234 I915_WRITE(IPEIR, I915_READ(IPEIR));
3236 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
3238 I915_WRITE(EIR, I915_READ(EIR));
3239 eir = I915_READ(EIR);
3242 * some errors might have become stuck,
3245 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
3246 I915_WRITE(EMR, I915_READ(EMR) | eir);
3247 I915_WRITE(IIR, I915_MASTER_ERROR_INTERRUPT);
3252 * i915_handle_error - handle a gpu error
3253 * @dev_priv: i915 device private
3254 * @engine_mask: mask representing engines that are hung
3255 * @flags: control flags
3256 * @fmt: Error message format string
3258 * Do some basic checking of register state at error time and
3259 * dump it to the syslog. Also call i915_capture_error_state() to make
3260 * sure we get a record and make it available in debugfs. Fire a uevent
3261 * so userspace knows something bad happened (should trigger collection
3262 * of a ring dump etc.).
3264 void i915_handle_error(struct drm_i915_private *dev_priv,
3266 unsigned long flags,
3267 const char *fmt, ...)
3269 struct intel_engine_cs *engine;
3277 va_start(args, fmt);
3278 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
3285 * In most cases it's guaranteed that we get here with an RPM
3286 * reference held, for example because there is a pending GPU
3287 * request that won't finish until the reset is done. This
3288 * isn't the case at least when we get here by doing a
3289 * simulated reset via debugfs, so get an RPM reference.
3291 intel_runtime_pm_get(dev_priv);
3293 engine_mask &= INTEL_INFO(dev_priv)->ring_mask;
3295 if (flags & I915_ERROR_CAPTURE) {
3296 i915_capture_error_state(dev_priv, engine_mask, msg);
3297 i915_clear_error_registers(dev_priv);
3301 * Try engine reset when available. We fall back to full reset if
3302 * single reset fails.
3304 if (intel_has_reset_engine(dev_priv)) {
3305 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
3306 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
3307 if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3308 &dev_priv->gpu_error.flags))
3311 if (i915_reset_engine(engine, msg) == 0)
3312 engine_mask &= ~intel_engine_flag(engine);
3314 clear_bit(I915_RESET_ENGINE + engine->id,
3315 &dev_priv->gpu_error.flags);
3316 wake_up_bit(&dev_priv->gpu_error.flags,
3317 I915_RESET_ENGINE + engine->id);