1 // SPDX-License-Identifier: GPL-2.0
3 * This file is the ADC part of the STM32 DFSDM driver
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iio/adc/stm32-dfsdm-adc.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/hw-consumer.h>
14 #include <linux/iio/sysfs.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
22 #include "stm32-dfsdm.h"
24 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
26 /* Conversion timeout */
27 #define DFSDM_TIMEOUT_US 100000
28 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
30 /* Oversampling attribute default */
31 #define DFSDM_DEFAULT_OVERSAMPLING 100
33 /* Oversampling max values */
34 #define DFSDM_MAX_INT_OVERSAMPLING 256
35 #define DFSDM_MAX_FL_OVERSAMPLING 1024
37 /* Max sample resolutions */
38 #define DFSDM_MAX_RES BIT(31)
39 #define DFSDM_DATA_RES BIT(23)
41 enum sd_converter_type {
46 struct stm32_dfsdm_dev_data {
48 int (*init)(struct iio_dev *indio_dev);
49 unsigned int num_channels;
50 const struct regmap_config *regmap_cfg;
53 struct stm32_dfsdm_adc {
54 struct stm32_dfsdm *dfsdm;
55 const struct stm32_dfsdm_dev_data *dev_data;
59 unsigned int oversamp;
60 struct iio_hw_consumer *hwc;
61 struct completion completion;
65 unsigned int spi_freq; /* SPI bus clock frequency */
66 unsigned int sample_freq; /* Sample frequency after filter decimation */
67 int (*cb)(const void *data, size_t size, void *cb_priv);
72 unsigned int bufi; /* Buffer current position */
73 unsigned int buf_sz; /* Buffer size */
74 struct dma_chan *dma_chan;
78 struct stm32_dfsdm_str2field {
83 /* DFSDM channel serial interface type */
84 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
85 { "SPI_R", 0 }, /* SPI with data on rising edge */
86 { "SPI_F", 1 }, /* SPI with data on falling edge */
87 { "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
88 { "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
92 /* DFSDM channel clock source */
93 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
94 /* External SPI clock (CLKIN x) */
95 { "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
96 /* Internal SPI clock (CLKOUT) */
97 { "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
98 /* Internal SPI clock divided by 2 (falling edge) */
99 { "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
100 /* Internal SPI clock divided by 2 (falling edge) */
101 { "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
105 static int stm32_dfsdm_str2val(const char *str,
106 const struct stm32_dfsdm_str2field *list)
108 const struct stm32_dfsdm_str2field *p = list;
110 for (p = list; p && p->name; p++)
111 if (!strcmp(p->name, str))
117 static int stm32_dfsdm_set_osrs(struct stm32_dfsdm_filter *fl,
118 unsigned int fast, unsigned int oversamp)
120 unsigned int i, d, fosr, iosr;
123 unsigned int m = 1; /* multiplication factor */
124 unsigned int p = fl->ford; /* filter order (ford) */
126 pr_debug("%s: Requested oversampling: %d\n", __func__, oversamp);
128 * This function tries to compute filter oversampling and integrator
129 * oversampling, base on oversampling ratio requested by user.
131 * Decimation d depends on the filter order and the oversampling ratios.
133 * fosr: filter over sampling ratio
134 * iosr: integrator over sampling ratio
136 if (fl->ford == DFSDM_FASTSINC_ORDER) {
142 * Look for filter and integrator oversampling ratios which allows
143 * to reach 24 bits data output resolution.
144 * Leave as soon as if exact resolution if reached.
145 * Otherwise the higher resolution below 32 bits is kept.
147 for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
148 for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
151 else if (fl->ford == DFSDM_FASTSINC_ORDER)
152 d = fosr * (iosr + 3) + 2;
154 d = fosr * (iosr - 1 + p) + p;
158 else if (d != oversamp)
161 * Check resolution (limited to signed 32 bits)
164 * res = m * fosr^p x iosr (with m=1, p=ford)
166 * res = m * fosr^p x iosr (with m=2, p=2)
169 for (i = p - 1; i > 0; i--) {
170 res = res * (u64)fosr;
171 if (res > DFSDM_MAX_RES)
174 if (res > DFSDM_MAX_RES)
176 res = res * (u64)m * (u64)iosr;
177 if (res > DFSDM_MAX_RES)
180 delta = res - DFSDM_DATA_RES;
182 if (res >= fl->res) {
187 pr_debug("%s: fosr = %d, iosr = %d\n",
188 __func__, fl->fosr, fl->iosr);
202 static int stm32_dfsdm_start_channel(struct stm32_dfsdm *dfsdm,
205 return regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
206 DFSDM_CHCFGR1_CHEN_MASK,
207 DFSDM_CHCFGR1_CHEN(1));
210 static void stm32_dfsdm_stop_channel(struct stm32_dfsdm *dfsdm,
213 regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
214 DFSDM_CHCFGR1_CHEN_MASK, DFSDM_CHCFGR1_CHEN(0));
217 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
218 struct stm32_dfsdm_channel *ch)
220 unsigned int id = ch->id;
221 struct regmap *regmap = dfsdm->regmap;
224 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
225 DFSDM_CHCFGR1_SITP_MASK,
226 DFSDM_CHCFGR1_SITP(ch->type));
229 ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
230 DFSDM_CHCFGR1_SPICKSEL_MASK,
231 DFSDM_CHCFGR1_SPICKSEL(ch->src));
234 return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
235 DFSDM_CHCFGR1_CHINSEL_MASK,
236 DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
239 static int stm32_dfsdm_start_filter(struct stm32_dfsdm *dfsdm,
245 ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
246 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
250 /* Start conversion */
251 return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
252 DFSDM_CR1_RSWSTART_MASK,
253 DFSDM_CR1_RSWSTART(1));
256 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
259 /* Disable conversion */
260 regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
261 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
264 static int stm32_dfsdm_filter_configure(struct stm32_dfsdm *dfsdm,
265 unsigned int fl_id, unsigned int ch_id)
267 struct regmap *regmap = dfsdm->regmap;
268 struct stm32_dfsdm_filter *fl = &dfsdm->fl_list[fl_id];
271 /* Average integrator oversampling */
272 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
273 DFSDM_FCR_IOSR(fl->iosr - 1));
277 /* Filter order and Oversampling */
278 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
279 DFSDM_FCR_FOSR(fl->fosr - 1));
283 ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
284 DFSDM_FCR_FORD(fl->ford));
288 /* No scan mode supported for the moment */
289 ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_RCH_MASK,
290 DFSDM_CR1_RCH(ch_id));
294 return regmap_update_bits(regmap, DFSDM_CR1(fl_id),
295 DFSDM_CR1_RSYNC_MASK,
296 DFSDM_CR1_RSYNC(fl->sync_mode));
299 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
300 struct iio_dev *indio_dev,
301 struct iio_chan_spec *ch)
303 struct stm32_dfsdm_channel *df_ch;
305 int chan_idx = ch->scan_index;
308 ret = of_property_read_u32_index(indio_dev->dev.of_node,
309 "st,adc-channels", chan_idx,
312 dev_err(&indio_dev->dev,
313 " Error parsing 'st,adc-channels' for idx %d\n",
317 if (ch->channel >= dfsdm->num_chs) {
318 dev_err(&indio_dev->dev,
319 " Error bad channel number %d (max = %d)\n",
320 ch->channel, dfsdm->num_chs);
324 ret = of_property_read_string_index(indio_dev->dev.of_node,
325 "st,adc-channel-names", chan_idx,
326 &ch->datasheet_name);
328 dev_err(&indio_dev->dev,
329 " Error parsing 'st,adc-channel-names' for idx %d\n",
334 df_ch = &dfsdm->ch_list[ch->channel];
335 df_ch->id = ch->channel;
337 ret = of_property_read_string_index(indio_dev->dev.of_node,
338 "st,adc-channel-types", chan_idx,
341 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
349 ret = of_property_read_string_index(indio_dev->dev.of_node,
350 "st,adc-channel-clk-src", chan_idx,
353 val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
361 ret = of_property_read_u32_index(indio_dev->dev.of_node,
362 "st,adc-alt-channel", chan_idx,
370 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
372 const struct iio_chan_spec *chan,
375 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
377 return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
380 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
382 const struct iio_chan_spec *chan,
383 const char *buf, size_t len)
385 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
386 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
387 struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
388 unsigned int sample_freq = adc->sample_freq;
389 unsigned int spi_freq;
392 dev_err(&indio_dev->dev, "enter %s\n", __func__);
393 /* If DFSDM is master on SPI, SPI freq can not be updated */
394 if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
397 ret = kstrtoint(buf, 0, &spi_freq);
405 if (spi_freq % sample_freq)
406 dev_warn(&indio_dev->dev,
407 "Sampling rate not accurate (%d)\n",
408 spi_freq / (spi_freq / sample_freq));
410 ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / sample_freq));
412 dev_err(&indio_dev->dev,
413 "No filter parameters that match!\n");
417 adc->spi_freq = spi_freq;
422 static int stm32_dfsdm_start_conv(struct stm32_dfsdm_adc *adc,
423 const struct iio_chan_spec *chan,
426 struct regmap *regmap = adc->dfsdm->regmap;
428 unsigned int dma_en = 0, cont_en = 0;
430 ret = stm32_dfsdm_start_channel(adc->dfsdm, chan->channel);
434 ret = stm32_dfsdm_filter_configure(adc->dfsdm, adc->fl_id,
440 /* Enable DMA transfer*/
441 dma_en = DFSDM_CR1_RDMAEN(1);
442 /* Enable conversion triggered by SPI clock*/
443 cont_en = DFSDM_CR1_RCONT(1);
445 /* Enable DMA transfer*/
446 ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
447 DFSDM_CR1_RDMAEN_MASK, dma_en);
451 /* Enable conversion triggered by SPI clock*/
452 ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
453 DFSDM_CR1_RCONT_MASK, cont_en);
457 ret = stm32_dfsdm_start_filter(adc->dfsdm, adc->fl_id);
464 regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
465 DFSDM_CR1_RDMAEN_MASK, 0);
467 regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
468 DFSDM_CR1_RCONT_MASK, 0);
469 stm32_dfsdm_stop_channel(adc->dfsdm, chan->channel);
474 static void stm32_dfsdm_stop_conv(struct stm32_dfsdm_adc *adc,
475 const struct iio_chan_spec *chan)
477 struct regmap *regmap = adc->dfsdm->regmap;
479 stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
481 /* Clean conversion options */
482 regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
483 DFSDM_CR1_RDMAEN_MASK, 0);
485 regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
486 DFSDM_CR1_RCONT_MASK, 0);
488 stm32_dfsdm_stop_channel(adc->dfsdm, chan->channel);
491 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
494 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
495 unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
498 * DMA cyclic transfers are used, buffer is split into two periods.
500 * - always one buffer (period) DMA is working on
501 * - one buffer (period) driver pushed to ASoC side.
503 watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
504 adc->buf_sz = watermark * 2;
509 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
511 struct dma_tx_state state;
512 enum dma_status status;
514 status = dmaengine_tx_status(adc->dma_chan,
515 adc->dma_chan->cookie,
517 if (status == DMA_IN_PROGRESS) {
518 /* Residue is size in bytes from end of buffer */
519 unsigned int i = adc->buf_sz - state.residue;
522 /* Return available bytes */
524 size = i - adc->bufi;
526 size = adc->buf_sz + i - adc->bufi;
534 static void stm32_dfsdm_audio_dma_buffer_done(void *data)
536 struct iio_dev *indio_dev = data;
537 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
538 int available = stm32_dfsdm_adc_dma_residue(adc);
542 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
543 * offers only an interface to push data samples per samples.
544 * For this reason IIO buffer interface is not used and interface is
545 * bypassed using a private callback registered by ASoC.
546 * This should be a temporary solution waiting a cyclic DMA engine
550 dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
551 adc->bufi, available);
554 while (available >= indio_dev->scan_bytes) {
555 u32 *buffer = (u32 *)&adc->rx_buf[adc->bufi];
557 /* Mask 8 LSB that contains the channel ID */
558 *buffer = (*buffer & 0xFFFFFF00) << 8;
559 available -= indio_dev->scan_bytes;
560 adc->bufi += indio_dev->scan_bytes;
561 if (adc->bufi >= adc->buf_sz) {
563 adc->cb(&adc->rx_buf[old_pos],
564 adc->buf_sz - old_pos, adc->cb_priv);
570 adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
574 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
576 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
577 struct dma_async_tx_descriptor *desc;
584 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
585 adc->buf_sz, adc->buf_sz / 2);
587 /* Prepare a DMA cyclic transaction */
588 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
590 adc->buf_sz, adc->buf_sz / 2,
596 desc->callback = stm32_dfsdm_audio_dma_buffer_done;
597 desc->callback_param = indio_dev;
599 cookie = dmaengine_submit(desc);
600 ret = dma_submit_error(cookie);
602 dmaengine_terminate_all(adc->dma_chan);
606 /* Issue pending DMA requests */
607 dma_async_issue_pending(adc->dma_chan);
612 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
614 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
615 const struct iio_chan_spec *chan = &indio_dev->channels[0];
618 /* Reset adc buffer index */
621 ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
625 ret = stm32_dfsdm_start_conv(adc, chan, true);
627 dev_err(&indio_dev->dev, "Can't start conversion\n");
632 ret = stm32_dfsdm_adc_dma_start(indio_dev);
634 dev_err(&indio_dev->dev, "Can't start DMA\n");
642 stm32_dfsdm_stop_conv(adc, chan);
644 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
649 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
651 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
652 const struct iio_chan_spec *chan = &indio_dev->channels[0];
655 dmaengine_terminate_all(adc->dma_chan);
657 stm32_dfsdm_stop_conv(adc, chan);
659 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
664 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
665 .postenable = &stm32_dfsdm_postenable,
666 .predisable = &stm32_dfsdm_predisable,
670 * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
671 * DMA transfer period is achieved.
673 * @iio_dev: Handle to IIO device.
674 * @cb: Pointer to callback function:
675 * - data: pointer to data buffer
676 * - size: size in byte of the data buffer
677 * - private: pointer to consumer private structure.
678 * @private: Pointer to consumer private structure.
680 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
681 int (*cb)(const void *data, size_t size,
685 struct stm32_dfsdm_adc *adc;
689 adc = iio_priv(iio_dev);
692 adc->cb_priv = private;
696 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
699 * stm32_dfsdm_release_buff_cb - unregister buffer callback
701 * @iio_dev: Handle to IIO device.
703 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
705 struct stm32_dfsdm_adc *adc;
709 adc = iio_priv(iio_dev);
716 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
718 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
719 const struct iio_chan_spec *chan, int *res)
721 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
725 reinit_completion(&adc->completion);
729 ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
733 ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
734 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
738 ret = stm32_dfsdm_start_conv(adc, chan, false);
740 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
741 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
745 timeout = wait_for_completion_interruptible_timeout(&adc->completion,
748 /* Mask IRQ for regular conversion achievement*/
749 regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
750 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
754 else if (timeout < 0)
759 stm32_dfsdm_stop_conv(adc, chan);
762 stm32_dfsdm_stop_dfsdm(adc->dfsdm);
767 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
768 struct iio_chan_spec const *chan,
769 int val, int val2, long mask)
771 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
772 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
773 struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
774 unsigned int spi_freq = adc->spi_freq;
778 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
779 ret = stm32_dfsdm_set_osrs(fl, 0, val);
785 case IIO_CHAN_INFO_SAMP_FREQ:
788 if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
789 spi_freq = adc->dfsdm->spi_master_freq;
792 dev_warn(&indio_dev->dev,
793 "Sampling rate not accurate (%d)\n",
794 spi_freq / (spi_freq / val));
796 ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / val));
798 dev_err(&indio_dev->dev,
799 "Not able to find parameter that match!\n");
802 adc->sample_freq = val;
810 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
811 struct iio_chan_spec const *chan, int *val,
812 int *val2, long mask)
814 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
818 case IIO_CHAN_INFO_RAW:
819 ret = iio_hw_consumer_enable(adc->hwc);
821 dev_err(&indio_dev->dev,
822 "%s: IIO enable failed (channel %d)\n",
823 __func__, chan->channel);
826 ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
827 iio_hw_consumer_disable(adc->hwc);
829 dev_err(&indio_dev->dev,
830 "%s: Conversion failed (channel %d)\n",
831 __func__, chan->channel);
836 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
837 *val = adc->oversamp;
841 case IIO_CHAN_INFO_SAMP_FREQ:
842 *val = adc->sample_freq;
850 static const struct iio_info stm32_dfsdm_info_audio = {
851 .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
852 .read_raw = stm32_dfsdm_read_raw,
853 .write_raw = stm32_dfsdm_write_raw,
856 static const struct iio_info stm32_dfsdm_info_adc = {
857 .read_raw = stm32_dfsdm_read_raw,
858 .write_raw = stm32_dfsdm_write_raw,
861 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
863 struct stm32_dfsdm_adc *adc = arg;
864 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
865 struct regmap *regmap = adc->dfsdm->regmap;
866 unsigned int status, int_en;
868 regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
869 regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
871 if (status & DFSDM_ISR_REOCF_MASK) {
872 /* Read the data register clean the IRQ status */
873 regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
874 complete(&adc->completion);
877 if (status & DFSDM_ISR_ROVRF_MASK) {
878 if (int_en & DFSDM_CR2_ROVRIE_MASK)
879 dev_warn(&indio_dev->dev, "Overrun detected\n");
880 regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
881 DFSDM_ICR_CLRROVRF_MASK,
882 DFSDM_ICR_CLRROVRF_MASK);
889 * Define external info for SPI Frequency and audio sampling rate that can be
890 * configured by ASoC driver through consumer.h API
892 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
893 /* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
895 .name = "spi_clk_freq",
896 .shared = IIO_SHARED_BY_TYPE,
897 .read = dfsdm_adc_audio_get_spiclk,
898 .write = dfsdm_adc_audio_set_spiclk,
903 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
905 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
908 dma_free_coherent(adc->dma_chan->device->dev,
909 DFSDM_DMA_BUFFER_SIZE,
910 adc->rx_buf, adc->dma_buf);
911 dma_release_channel(adc->dma_chan);
915 static int stm32_dfsdm_dma_request(struct iio_dev *indio_dev)
917 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
918 struct dma_slave_config config = {
919 .src_addr = (dma_addr_t)adc->dfsdm->phys_base +
920 DFSDM_RDATAR(adc->fl_id),
921 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
925 adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
929 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
930 DFSDM_DMA_BUFFER_SIZE,
931 &adc->dma_buf, GFP_KERNEL);
937 ret = dmaengine_slave_config(adc->dma_chan, &config);
944 dma_free_coherent(adc->dma_chan->device->dev, DFSDM_DMA_BUFFER_SIZE,
945 adc->rx_buf, adc->dma_buf);
947 dma_release_channel(adc->dma_chan);
952 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
953 struct iio_chan_spec *ch)
955 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
958 ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
962 ch->type = IIO_VOLTAGE;
966 * IIO_CHAN_INFO_RAW: used to compute regular conversion
967 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
969 ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
970 ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO);
972 if (adc->dev_data->type == DFSDM_AUDIO) {
973 ch->scan_type.sign = 's';
974 ch->ext_info = dfsdm_adc_audio_ext_info;
976 ch->scan_type.sign = 'u';
978 ch->scan_type.realbits = 24;
979 ch->scan_type.storagebits = 32;
981 return stm32_dfsdm_chan_configure(adc->dfsdm,
982 &adc->dfsdm->ch_list[ch->channel]);
985 static int stm32_dfsdm_audio_init(struct iio_dev *indio_dev)
987 struct iio_chan_spec *ch;
988 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
989 struct stm32_dfsdm_channel *d_ch;
992 indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
993 indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
995 ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1001 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1003 dev_err(&indio_dev->dev, "Channels init failed\n");
1006 ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1008 d_ch = &adc->dfsdm->ch_list[ch->channel];
1009 if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1010 adc->spi_freq = adc->dfsdm->spi_master_freq;
1012 indio_dev->num_channels = 1;
1013 indio_dev->channels = ch;
1015 return stm32_dfsdm_dma_request(indio_dev);
1018 static int stm32_dfsdm_adc_init(struct iio_dev *indio_dev)
1020 struct iio_chan_spec *ch;
1021 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1025 adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1026 ret = stm32_dfsdm_set_osrs(&adc->dfsdm->fl_list[adc->fl_id], 0,
1031 num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1033 if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1034 dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1035 return num_ch < 0 ? num_ch : -EINVAL;
1038 /* Bind to SD modulator IIO device */
1039 adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1040 if (IS_ERR(adc->hwc))
1041 return -EPROBE_DEFER;
1043 ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1048 for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1049 ch[chan_idx].scan_index = chan_idx;
1050 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1052 dev_err(&indio_dev->dev, "Channels init failed\n");
1057 indio_dev->num_channels = num_ch;
1058 indio_dev->channels = ch;
1060 init_completion(&adc->completion);
1065 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1067 .init = stm32_dfsdm_adc_init,
1070 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1071 .type = DFSDM_AUDIO,
1072 .init = stm32_dfsdm_audio_init,
1075 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1077 .compatible = "st,stm32-dfsdm-adc",
1078 .data = &stm32h7_dfsdm_adc_data,
1081 .compatible = "st,stm32-dfsdm-dmic",
1082 .data = &stm32h7_dfsdm_audio_data,
1087 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1089 struct device *dev = &pdev->dev;
1090 struct stm32_dfsdm_adc *adc;
1091 struct device_node *np = dev->of_node;
1092 const struct stm32_dfsdm_dev_data *dev_data;
1093 struct iio_dev *iio;
1097 dev_data = of_device_get_match_data(dev);
1098 iio = devm_iio_device_alloc(dev, sizeof(*adc));
1100 dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1104 adc = iio_priv(iio);
1105 adc->dfsdm = dev_get_drvdata(dev->parent);
1107 iio->dev.parent = dev;
1108 iio->dev.of_node = np;
1109 iio->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
1111 platform_set_drvdata(pdev, adc);
1113 ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1114 if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1115 dev_err(dev, "Missing or bad reg property\n");
1119 name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1122 if (dev_data->type == DFSDM_AUDIO) {
1123 iio->info = &stm32_dfsdm_info_audio;
1124 snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1126 iio->info = &stm32_dfsdm_info_adc;
1127 snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1132 * In a first step IRQs generated for channels are not treated.
1133 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1135 irq = platform_get_irq(pdev, 0);
1136 ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1137 0, pdev->name, adc);
1139 dev_err(dev, "Failed to request IRQ\n");
1143 ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1145 dev_err(dev, "Failed to set filter order\n");
1149 adc->dfsdm->fl_list[adc->fl_id].ford = val;
1151 ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1153 adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1155 adc->dev_data = dev_data;
1156 ret = dev_data->init(iio);
1160 ret = iio_device_register(iio);
1164 if (dev_data->type == DFSDM_AUDIO) {
1165 ret = of_platform_populate(np, NULL, NULL, dev);
1167 dev_err(dev, "Failed to find an audio DAI\n");
1168 goto err_unregister;
1175 iio_device_unregister(iio);
1177 stm32_dfsdm_dma_release(iio);
1182 static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1184 struct stm32_dfsdm_adc *adc = platform_get_drvdata(pdev);
1185 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1187 if (adc->dev_data->type == DFSDM_AUDIO)
1188 of_platform_depopulate(&pdev->dev);
1189 iio_device_unregister(indio_dev);
1190 stm32_dfsdm_dma_release(indio_dev);
1195 static struct platform_driver stm32_dfsdm_adc_driver = {
1197 .name = "stm32-dfsdm-adc",
1198 .of_match_table = stm32_dfsdm_adc_match,
1200 .probe = stm32_dfsdm_adc_probe,
1201 .remove = stm32_dfsdm_adc_remove,
1203 module_platform_driver(stm32_dfsdm_adc_driver);
1205 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1206 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1207 MODULE_LICENSE("GPL v2");