Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[muen/linux.git] / drivers / input / rmi4 / rmi_driver.c
1 /*
2  * Copyright (c) 2011-2016 Synaptics Incorporated
3  * Copyright (c) 2011 Unixphere
4  *
5  * This driver provides the core support for a single RMI4-based device.
6  *
7  * The RMI4 specification can be found here (URL split for line length):
8  *
9  * http://www.synaptics.com/sites/default/files/
10  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License version 2 as published by
14  * the Free Software Foundation.
15  */
16
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/irq.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <uapi/linux/input.h>
25 #include <linux/rmi.h>
26 #include "rmi_bus.h"
27 #include "rmi_driver.h"
28
29 #define HAS_NONSTANDARD_PDT_MASK 0x40
30 #define RMI4_MAX_PAGE 0xff
31 #define RMI4_PAGE_SIZE 0x100
32 #define RMI4_PAGE_MASK 0xFF00
33
34 #define RMI_DEVICE_RESET_CMD    0x01
35 #define DEFAULT_RESET_DELAY_MS  100
36
37 void rmi_free_function_list(struct rmi_device *rmi_dev)
38 {
39         struct rmi_function *fn, *tmp;
40         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
41
42         rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
43
44         devm_kfree(&rmi_dev->dev, data->irq_memory);
45         data->irq_memory = NULL;
46         data->irq_status = NULL;
47         data->fn_irq_bits = NULL;
48         data->current_irq_mask = NULL;
49         data->new_irq_mask = NULL;
50
51         data->f01_container = NULL;
52         data->f34_container = NULL;
53
54         /* Doing it in the reverse order so F01 will be removed last */
55         list_for_each_entry_safe_reverse(fn, tmp,
56                                          &data->function_list, node) {
57                 list_del(&fn->node);
58                 rmi_unregister_function(fn);
59         }
60 }
61
62 static int reset_one_function(struct rmi_function *fn)
63 {
64         struct rmi_function_handler *fh;
65         int retval = 0;
66
67         if (!fn || !fn->dev.driver)
68                 return 0;
69
70         fh = to_rmi_function_handler(fn->dev.driver);
71         if (fh->reset) {
72                 retval = fh->reset(fn);
73                 if (retval < 0)
74                         dev_err(&fn->dev, "Reset failed with code %d.\n",
75                                 retval);
76         }
77
78         return retval;
79 }
80
81 static int configure_one_function(struct rmi_function *fn)
82 {
83         struct rmi_function_handler *fh;
84         int retval = 0;
85
86         if (!fn || !fn->dev.driver)
87                 return 0;
88
89         fh = to_rmi_function_handler(fn->dev.driver);
90         if (fh->config) {
91                 retval = fh->config(fn);
92                 if (retval < 0)
93                         dev_err(&fn->dev, "Config failed with code %d.\n",
94                                 retval);
95         }
96
97         return retval;
98 }
99
100 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
101 {
102         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
103         struct rmi_function *entry;
104         int retval;
105
106         list_for_each_entry(entry, &data->function_list, node) {
107                 retval = reset_one_function(entry);
108                 if (retval < 0)
109                         return retval;
110         }
111
112         return 0;
113 }
114
115 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
116 {
117         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
118         struct rmi_function *entry;
119         int retval;
120
121         list_for_each_entry(entry, &data->function_list, node) {
122                 retval = configure_one_function(entry);
123                 if (retval < 0)
124                         return retval;
125         }
126
127         return 0;
128 }
129
130 static void process_one_interrupt(struct rmi_driver_data *data,
131                                   struct rmi_function *fn)
132 {
133         struct rmi_function_handler *fh;
134
135         if (!fn || !fn->dev.driver)
136                 return;
137
138         fh = to_rmi_function_handler(fn->dev.driver);
139         if (fh->attention) {
140                 bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
141                                 data->irq_count);
142                 if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
143                         fh->attention(fn, data->fn_irq_bits);
144         }
145 }
146
147 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
148 {
149         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
150         struct device *dev = &rmi_dev->dev;
151         struct rmi_function *entry;
152         int error;
153
154         if (!data)
155                 return 0;
156
157         if (!data->attn_data.data) {
158                 error = rmi_read_block(rmi_dev,
159                                 data->f01_container->fd.data_base_addr + 1,
160                                 data->irq_status, data->num_of_irq_regs);
161                 if (error < 0) {
162                         dev_err(dev, "Failed to read irqs, code=%d\n", error);
163                         return error;
164                 }
165         }
166
167         mutex_lock(&data->irq_mutex);
168         bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
169                data->irq_count);
170         /*
171          * At this point, irq_status has all bits that are set in the
172          * interrupt status register and are enabled.
173          */
174         mutex_unlock(&data->irq_mutex);
175
176         /*
177          * It would be nice to be able to use irq_chip to handle these
178          * nested IRQs.  Unfortunately, most of the current customers for
179          * this driver are using older kernels (3.0.x) that don't support
180          * the features required for that.  Once they've shifted to more
181          * recent kernels (say, 3.3 and higher), this should be switched to
182          * use irq_chip.
183          */
184         list_for_each_entry(entry, &data->function_list, node)
185                 process_one_interrupt(data, entry);
186
187         if (data->input)
188                 input_sync(data->input);
189
190         return 0;
191 }
192
193 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
194                        void *data, size_t size)
195 {
196         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
197         struct rmi4_attn_data attn_data;
198         void *fifo_data;
199
200         if (!drvdata->enabled)
201                 return;
202
203         fifo_data = kmemdup(data, size, GFP_ATOMIC);
204         if (!fifo_data)
205                 return;
206
207         attn_data.irq_status = irq_status;
208         attn_data.size = size;
209         attn_data.data = fifo_data;
210
211         kfifo_put(&drvdata->attn_fifo, attn_data);
212 }
213 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
214
215 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
216 {
217         struct rmi_device *rmi_dev = dev_id;
218         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
219         struct rmi4_attn_data attn_data = {0};
220         int ret, count;
221
222         count = kfifo_get(&drvdata->attn_fifo, &attn_data);
223         if (count) {
224                 *(drvdata->irq_status) = attn_data.irq_status;
225                 drvdata->attn_data = attn_data;
226         }
227
228         ret = rmi_process_interrupt_requests(rmi_dev);
229         if (ret)
230                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
231                         "Failed to process interrupt request: %d\n", ret);
232
233         if (count)
234                 kfree(attn_data.data);
235
236         if (!kfifo_is_empty(&drvdata->attn_fifo))
237                 return rmi_irq_fn(irq, dev_id);
238
239         return IRQ_HANDLED;
240 }
241
242 static int rmi_irq_init(struct rmi_device *rmi_dev)
243 {
244         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
245         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
246         int irq_flags = irq_get_trigger_type(pdata->irq);
247         int ret;
248
249         if (!irq_flags)
250                 irq_flags = IRQF_TRIGGER_LOW;
251
252         ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
253                                         rmi_irq_fn, irq_flags | IRQF_ONESHOT,
254                                         dev_name(rmi_dev->xport->dev),
255                                         rmi_dev);
256         if (ret < 0) {
257                 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
258                         pdata->irq);
259
260                 return ret;
261         }
262
263         data->enabled = true;
264
265         return 0;
266 }
267
268 static int suspend_one_function(struct rmi_function *fn)
269 {
270         struct rmi_function_handler *fh;
271         int retval = 0;
272
273         if (!fn || !fn->dev.driver)
274                 return 0;
275
276         fh = to_rmi_function_handler(fn->dev.driver);
277         if (fh->suspend) {
278                 retval = fh->suspend(fn);
279                 if (retval < 0)
280                         dev_err(&fn->dev, "Suspend failed with code %d.\n",
281                                 retval);
282         }
283
284         return retval;
285 }
286
287 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
288 {
289         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
290         struct rmi_function *entry;
291         int retval;
292
293         list_for_each_entry(entry, &data->function_list, node) {
294                 retval = suspend_one_function(entry);
295                 if (retval < 0)
296                         return retval;
297         }
298
299         return 0;
300 }
301
302 static int resume_one_function(struct rmi_function *fn)
303 {
304         struct rmi_function_handler *fh;
305         int retval = 0;
306
307         if (!fn || !fn->dev.driver)
308                 return 0;
309
310         fh = to_rmi_function_handler(fn->dev.driver);
311         if (fh->resume) {
312                 retval = fh->resume(fn);
313                 if (retval < 0)
314                         dev_err(&fn->dev, "Resume failed with code %d.\n",
315                                 retval);
316         }
317
318         return retval;
319 }
320
321 static int rmi_resume_functions(struct rmi_device *rmi_dev)
322 {
323         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
324         struct rmi_function *entry;
325         int retval;
326
327         list_for_each_entry(entry, &data->function_list, node) {
328                 retval = resume_one_function(entry);
329                 if (retval < 0)
330                         return retval;
331         }
332
333         return 0;
334 }
335
336 int rmi_enable_sensor(struct rmi_device *rmi_dev)
337 {
338         int retval = 0;
339
340         retval = rmi_driver_process_config_requests(rmi_dev);
341         if (retval < 0)
342                 return retval;
343
344         return rmi_process_interrupt_requests(rmi_dev);
345 }
346
347 /**
348  * rmi_driver_set_input_params - set input device id and other data.
349  *
350  * @rmi_dev: Pointer to an RMI device
351  * @input: Pointer to input device
352  *
353  */
354 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
355                                 struct input_dev *input)
356 {
357         input->name = SYNAPTICS_INPUT_DEVICE_NAME;
358         input->id.vendor  = SYNAPTICS_VENDOR_ID;
359         input->id.bustype = BUS_RMI;
360         return 0;
361 }
362
363 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
364                                 struct input_dev *input)
365 {
366         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
367         char *device_name = rmi_f01_get_product_ID(data->f01_container);
368         char *name;
369
370         name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
371                               "Synaptics %s", device_name);
372         if (!name)
373                 return;
374
375         input->name = name;
376 }
377
378 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
379                                    unsigned long *mask)
380 {
381         int error = 0;
382         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
383         struct device *dev = &rmi_dev->dev;
384
385         mutex_lock(&data->irq_mutex);
386         bitmap_or(data->new_irq_mask,
387                   data->current_irq_mask, mask, data->irq_count);
388
389         error = rmi_write_block(rmi_dev,
390                         data->f01_container->fd.control_base_addr + 1,
391                         data->new_irq_mask, data->num_of_irq_regs);
392         if (error < 0) {
393                 dev_err(dev, "%s: Failed to change enabled interrupts!",
394                                                         __func__);
395                 goto error_unlock;
396         }
397         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
398                     data->num_of_irq_regs);
399
400 error_unlock:
401         mutex_unlock(&data->irq_mutex);
402         return error;
403 }
404
405 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
406                                      unsigned long *mask)
407 {
408         int error = 0;
409         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
410         struct device *dev = &rmi_dev->dev;
411
412         mutex_lock(&data->irq_mutex);
413         bitmap_andnot(data->new_irq_mask,
414                   data->current_irq_mask, mask, data->irq_count);
415
416         error = rmi_write_block(rmi_dev,
417                         data->f01_container->fd.control_base_addr + 1,
418                         data->new_irq_mask, data->num_of_irq_regs);
419         if (error < 0) {
420                 dev_err(dev, "%s: Failed to change enabled interrupts!",
421                                                         __func__);
422                 goto error_unlock;
423         }
424         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
425                     data->num_of_irq_regs);
426
427 error_unlock:
428         mutex_unlock(&data->irq_mutex);
429         return error;
430 }
431
432 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
433 {
434         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
435         int error;
436
437         /*
438          * Can get called before the driver is fully ready to deal with
439          * this situation.
440          */
441         if (!data || !data->f01_container) {
442                 dev_warn(&rmi_dev->dev,
443                          "Not ready to handle reset yet!\n");
444                 return 0;
445         }
446
447         error = rmi_read_block(rmi_dev,
448                                data->f01_container->fd.control_base_addr + 1,
449                                data->current_irq_mask, data->num_of_irq_regs);
450         if (error < 0) {
451                 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
452                         __func__);
453                 return error;
454         }
455
456         error = rmi_driver_process_reset_requests(rmi_dev);
457         if (error < 0)
458                 return error;
459
460         error = rmi_driver_process_config_requests(rmi_dev);
461         if (error < 0)
462                 return error;
463
464         return 0;
465 }
466
467 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
468                               struct pdt_entry *entry, u16 pdt_address)
469 {
470         u8 buf[RMI_PDT_ENTRY_SIZE];
471         int error;
472
473         error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
474         if (error) {
475                 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
476                                 pdt_address, error);
477                 return error;
478         }
479
480         entry->page_start = pdt_address & RMI4_PAGE_MASK;
481         entry->query_base_addr = buf[0];
482         entry->command_base_addr = buf[1];
483         entry->control_base_addr = buf[2];
484         entry->data_base_addr = buf[3];
485         entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
486         entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
487         entry->function_number = buf[5];
488
489         return 0;
490 }
491
492 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
493                                       struct rmi_function_descriptor *fd)
494 {
495         fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
496         fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
497         fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
498         fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
499         fd->function_number = pdt->function_number;
500         fd->interrupt_source_count = pdt->interrupt_source_count;
501         fd->function_version = pdt->function_version;
502 }
503
504 #define RMI_SCAN_CONTINUE       0
505 #define RMI_SCAN_DONE           1
506
507 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
508                              int page,
509                              int *empty_pages,
510                              void *ctx,
511                              int (*callback)(struct rmi_device *rmi_dev,
512                                              void *ctx,
513                                              const struct pdt_entry *entry))
514 {
515         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
516         struct pdt_entry pdt_entry;
517         u16 page_start = RMI4_PAGE_SIZE * page;
518         u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
519         u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
520         u16 addr;
521         int error;
522         int retval;
523
524         for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
525                 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
526                 if (error)
527                         return error;
528
529                 if (RMI4_END_OF_PDT(pdt_entry.function_number))
530                         break;
531
532                 retval = callback(rmi_dev, ctx, &pdt_entry);
533                 if (retval != RMI_SCAN_CONTINUE)
534                         return retval;
535         }
536
537         /*
538          * Count number of empty PDT pages. If a gap of two pages
539          * or more is found, stop scanning.
540          */
541         if (addr == pdt_start)
542                 ++*empty_pages;
543         else
544                 *empty_pages = 0;
545
546         return (data->bootloader_mode || *empty_pages >= 2) ?
547                                         RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
548 }
549
550 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
551                  int (*callback)(struct rmi_device *rmi_dev,
552                  void *ctx, const struct pdt_entry *entry))
553 {
554         int page;
555         int empty_pages = 0;
556         int retval = RMI_SCAN_DONE;
557
558         for (page = 0; page <= RMI4_MAX_PAGE; page++) {
559                 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
560                                            ctx, callback);
561                 if (retval != RMI_SCAN_CONTINUE)
562                         break;
563         }
564
565         return retval < 0 ? retval : 0;
566 }
567
568 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
569                                 struct rmi_register_descriptor *rdesc)
570 {
571         int ret;
572         u8 size_presence_reg;
573         u8 buf[35];
574         int presense_offset = 1;
575         u8 *struct_buf;
576         int reg;
577         int offset = 0;
578         int map_offset = 0;
579         int i;
580         int b;
581
582         /*
583          * The first register of the register descriptor is the size of
584          * the register descriptor's presense register.
585          */
586         ret = rmi_read(d, addr, &size_presence_reg);
587         if (ret)
588                 return ret;
589         ++addr;
590
591         if (size_presence_reg < 0 || size_presence_reg > 35)
592                 return -EIO;
593
594         memset(buf, 0, sizeof(buf));
595
596         /*
597          * The presence register contains the size of the register structure
598          * and a bitmap which identified which packet registers are present
599          * for this particular register type (ie query, control, or data).
600          */
601         ret = rmi_read_block(d, addr, buf, size_presence_reg);
602         if (ret)
603                 return ret;
604         ++addr;
605
606         if (buf[0] == 0) {
607                 presense_offset = 3;
608                 rdesc->struct_size = buf[1] | (buf[2] << 8);
609         } else {
610                 rdesc->struct_size = buf[0];
611         }
612
613         for (i = presense_offset; i < size_presence_reg; i++) {
614                 for (b = 0; b < 8; b++) {
615                         if (buf[i] & (0x1 << b))
616                                 bitmap_set(rdesc->presense_map, map_offset, 1);
617                         ++map_offset;
618                 }
619         }
620
621         rdesc->num_registers = bitmap_weight(rdesc->presense_map,
622                                                 RMI_REG_DESC_PRESENSE_BITS);
623
624         rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
625                                 sizeof(struct rmi_register_desc_item),
626                                 GFP_KERNEL);
627         if (!rdesc->registers)
628                 return -ENOMEM;
629
630         /*
631          * Allocate a temporary buffer to hold the register structure.
632          * I'm not using devm_kzalloc here since it will not be retained
633          * after exiting this function
634          */
635         struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
636         if (!struct_buf)
637                 return -ENOMEM;
638
639         /*
640          * The register structure contains information about every packet
641          * register of this type. This includes the size of the packet
642          * register and a bitmap of all subpackets contained in the packet
643          * register.
644          */
645         ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
646         if (ret)
647                 goto free_struct_buff;
648
649         reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
650         for (i = 0; i < rdesc->num_registers; i++) {
651                 struct rmi_register_desc_item *item = &rdesc->registers[i];
652                 int reg_size = struct_buf[offset];
653
654                 ++offset;
655                 if (reg_size == 0) {
656                         reg_size = struct_buf[offset] |
657                                         (struct_buf[offset + 1] << 8);
658                         offset += 2;
659                 }
660
661                 if (reg_size == 0) {
662                         reg_size = struct_buf[offset] |
663                                         (struct_buf[offset + 1] << 8) |
664                                         (struct_buf[offset + 2] << 16) |
665                                         (struct_buf[offset + 3] << 24);
666                         offset += 4;
667                 }
668
669                 item->reg = reg;
670                 item->reg_size = reg_size;
671
672                 map_offset = 0;
673
674                 do {
675                         for (b = 0; b < 7; b++) {
676                                 if (struct_buf[offset] & (0x1 << b))
677                                         bitmap_set(item->subpacket_map,
678                                                 map_offset, 1);
679                                 ++map_offset;
680                         }
681                 } while (struct_buf[offset++] & 0x80);
682
683                 item->num_subpackets = bitmap_weight(item->subpacket_map,
684                                                 RMI_REG_DESC_SUBPACKET_BITS);
685
686                 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
687                         "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
688                         item->reg, item->reg_size, item->num_subpackets);
689
690                 reg = find_next_bit(rdesc->presense_map,
691                                 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
692         }
693
694 free_struct_buff:
695         kfree(struct_buf);
696         return ret;
697 }
698
699 const struct rmi_register_desc_item *rmi_get_register_desc_item(
700                                 struct rmi_register_descriptor *rdesc, u16 reg)
701 {
702         const struct rmi_register_desc_item *item;
703         int i;
704
705         for (i = 0; i < rdesc->num_registers; i++) {
706                 item = &rdesc->registers[i];
707                 if (item->reg == reg)
708                         return item;
709         }
710
711         return NULL;
712 }
713
714 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
715 {
716         const struct rmi_register_desc_item *item;
717         int i;
718         size_t size = 0;
719
720         for (i = 0; i < rdesc->num_registers; i++) {
721                 item = &rdesc->registers[i];
722                 size += item->reg_size;
723         }
724         return size;
725 }
726
727 /* Compute the register offset relative to the base address */
728 int rmi_register_desc_calc_reg_offset(
729                 struct rmi_register_descriptor *rdesc, u16 reg)
730 {
731         const struct rmi_register_desc_item *item;
732         int offset = 0;
733         int i;
734
735         for (i = 0; i < rdesc->num_registers; i++) {
736                 item = &rdesc->registers[i];
737                 if (item->reg == reg)
738                         return offset;
739                 ++offset;
740         }
741         return -1;
742 }
743
744 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
745         u8 subpacket)
746 {
747         return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
748                                 subpacket) == subpacket;
749 }
750
751 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
752                                      const struct pdt_entry *pdt)
753 {
754         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
755         int ret;
756         u8 status;
757
758         if (pdt->function_number == 0x34 && pdt->function_version > 1) {
759                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
760                 if (ret) {
761                         dev_err(&rmi_dev->dev,
762                                 "Failed to read F34 status: %d.\n", ret);
763                         return ret;
764                 }
765
766                 if (status & BIT(7))
767                         data->bootloader_mode = true;
768         } else if (pdt->function_number == 0x01) {
769                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
770                 if (ret) {
771                         dev_err(&rmi_dev->dev,
772                                 "Failed to read F01 status: %d.\n", ret);
773                         return ret;
774                 }
775
776                 if (status & BIT(6))
777                         data->bootloader_mode = true;
778         }
779
780         return 0;
781 }
782
783 static int rmi_count_irqs(struct rmi_device *rmi_dev,
784                          void *ctx, const struct pdt_entry *pdt)
785 {
786         int *irq_count = ctx;
787         int ret;
788
789         *irq_count += pdt->interrupt_source_count;
790
791         ret = rmi_check_bootloader_mode(rmi_dev, pdt);
792         if (ret < 0)
793                 return ret;
794
795         return RMI_SCAN_CONTINUE;
796 }
797
798 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
799                       const struct pdt_entry *pdt)
800 {
801         int error;
802
803         if (pdt->function_number == 0x01) {
804                 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
805                 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
806                 const struct rmi_device_platform_data *pdata =
807                                 rmi_get_platform_data(rmi_dev);
808
809                 if (rmi_dev->xport->ops->reset) {
810                         error = rmi_dev->xport->ops->reset(rmi_dev->xport,
811                                                                 cmd_addr);
812                         if (error)
813                                 return error;
814
815                         return RMI_SCAN_DONE;
816                 }
817
818                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
819                 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
820                 if (error) {
821                         dev_err(&rmi_dev->dev,
822                                 "Initial reset failed. Code = %d.\n", error);
823                         return error;
824                 }
825
826                 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
827
828                 return RMI_SCAN_DONE;
829         }
830
831         /* F01 should always be on page 0. If we don't find it there, fail. */
832         return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
833 }
834
835 static int rmi_create_function(struct rmi_device *rmi_dev,
836                                void *ctx, const struct pdt_entry *pdt)
837 {
838         struct device *dev = &rmi_dev->dev;
839         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
840         int *current_irq_count = ctx;
841         struct rmi_function *fn;
842         int i;
843         int error;
844
845         rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
846                         pdt->function_number);
847
848         fn = kzalloc(sizeof(struct rmi_function) +
849                         BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
850                      GFP_KERNEL);
851         if (!fn) {
852                 dev_err(dev, "Failed to allocate memory for F%02X\n",
853                         pdt->function_number);
854                 return -ENOMEM;
855         }
856
857         INIT_LIST_HEAD(&fn->node);
858         rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
859
860         fn->rmi_dev = rmi_dev;
861
862         fn->num_of_irqs = pdt->interrupt_source_count;
863         fn->irq_pos = *current_irq_count;
864         *current_irq_count += fn->num_of_irqs;
865
866         for (i = 0; i < fn->num_of_irqs; i++)
867                 set_bit(fn->irq_pos + i, fn->irq_mask);
868
869         error = rmi_register_function(fn);
870         if (error)
871                 goto err_put_fn;
872
873         if (pdt->function_number == 0x01)
874                 data->f01_container = fn;
875         else if (pdt->function_number == 0x34)
876                 data->f34_container = fn;
877
878         list_add_tail(&fn->node, &data->function_list);
879
880         return RMI_SCAN_CONTINUE;
881
882 err_put_fn:
883         put_device(&fn->dev);
884         return error;
885 }
886
887 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
888 {
889         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
890         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
891         int irq = pdata->irq;
892         int irq_flags;
893         int retval;
894
895         mutex_lock(&data->enabled_mutex);
896
897         if (data->enabled)
898                 goto out;
899
900         enable_irq(irq);
901         data->enabled = true;
902         if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
903                 retval = disable_irq_wake(irq);
904                 if (!retval)
905                         dev_warn(&rmi_dev->dev,
906                                  "Failed to disable irq for wake: %d\n",
907                                  retval);
908         }
909
910         /*
911          * Call rmi_process_interrupt_requests() after enabling irq,
912          * otherwise we may lose interrupt on edge-triggered systems.
913          */
914         irq_flags = irq_get_trigger_type(pdata->irq);
915         if (irq_flags & IRQ_TYPE_EDGE_BOTH)
916                 rmi_process_interrupt_requests(rmi_dev);
917
918 out:
919         mutex_unlock(&data->enabled_mutex);
920 }
921
922 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
923 {
924         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
925         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
926         struct rmi4_attn_data attn_data = {0};
927         int irq = pdata->irq;
928         int retval, count;
929
930         mutex_lock(&data->enabled_mutex);
931
932         if (!data->enabled)
933                 goto out;
934
935         data->enabled = false;
936         disable_irq(irq);
937         if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
938                 retval = enable_irq_wake(irq);
939                 if (!retval)
940                         dev_warn(&rmi_dev->dev,
941                                  "Failed to enable irq for wake: %d\n",
942                                  retval);
943         }
944
945         /* make sure the fifo is clean */
946         while (!kfifo_is_empty(&data->attn_fifo)) {
947                 count = kfifo_get(&data->attn_fifo, &attn_data);
948                 if (count)
949                         kfree(attn_data.data);
950         }
951
952 out:
953         mutex_unlock(&data->enabled_mutex);
954 }
955
956 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
957 {
958         int retval;
959
960         retval = rmi_suspend_functions(rmi_dev);
961         if (retval)
962                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
963                         retval);
964
965         rmi_disable_irq(rmi_dev, enable_wake);
966         return retval;
967 }
968 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
969
970 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
971 {
972         int retval;
973
974         rmi_enable_irq(rmi_dev, clear_wake);
975
976         retval = rmi_resume_functions(rmi_dev);
977         if (retval)
978                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
979                         retval);
980
981         return retval;
982 }
983 EXPORT_SYMBOL_GPL(rmi_driver_resume);
984
985 static int rmi_driver_remove(struct device *dev)
986 {
987         struct rmi_device *rmi_dev = to_rmi_device(dev);
988
989         rmi_disable_irq(rmi_dev, false);
990
991         rmi_f34_remove_sysfs(rmi_dev);
992         rmi_free_function_list(rmi_dev);
993
994         return 0;
995 }
996
997 #ifdef CONFIG_OF
998 static int rmi_driver_of_probe(struct device *dev,
999                                 struct rmi_device_platform_data *pdata)
1000 {
1001         int retval;
1002
1003         retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
1004                                         "syna,reset-delay-ms", 1);
1005         if (retval)
1006                 return retval;
1007
1008         return 0;
1009 }
1010 #else
1011 static inline int rmi_driver_of_probe(struct device *dev,
1012                                         struct rmi_device_platform_data *pdata)
1013 {
1014         return -ENODEV;
1015 }
1016 #endif
1017
1018 int rmi_probe_interrupts(struct rmi_driver_data *data)
1019 {
1020         struct rmi_device *rmi_dev = data->rmi_dev;
1021         struct device *dev = &rmi_dev->dev;
1022         int irq_count;
1023         size_t size;
1024         int retval;
1025
1026         /*
1027          * We need to count the IRQs and allocate their storage before scanning
1028          * the PDT and creating the function entries, because adding a new
1029          * function can trigger events that result in the IRQ related storage
1030          * being accessed.
1031          */
1032         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1033         irq_count = 0;
1034         data->bootloader_mode = false;
1035
1036         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1037         if (retval < 0) {
1038                 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1039                 return retval;
1040         }
1041
1042         if (data->bootloader_mode)
1043                 dev_warn(&rmi_dev->dev, "Device in bootloader mode.\n");
1044
1045         data->irq_count = irq_count;
1046         data->num_of_irq_regs = (data->irq_count + 7) / 8;
1047
1048         size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1049         data->irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
1050         if (!data->irq_memory) {
1051                 dev_err(dev, "Failed to allocate memory for irq masks.\n");
1052                 return retval;
1053         }
1054
1055         data->irq_status        = data->irq_memory + size * 0;
1056         data->fn_irq_bits       = data->irq_memory + size * 1;
1057         data->current_irq_mask  = data->irq_memory + size * 2;
1058         data->new_irq_mask      = data->irq_memory + size * 3;
1059
1060         return retval;
1061 }
1062
1063 int rmi_init_functions(struct rmi_driver_data *data)
1064 {
1065         struct rmi_device *rmi_dev = data->rmi_dev;
1066         struct device *dev = &rmi_dev->dev;
1067         int irq_count;
1068         int retval;
1069
1070         irq_count = 0;
1071         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1072         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1073         if (retval < 0) {
1074                 dev_err(dev, "Function creation failed with code %d.\n",
1075                         retval);
1076                 goto err_destroy_functions;
1077         }
1078
1079         if (!data->f01_container) {
1080                 dev_err(dev, "Missing F01 container!\n");
1081                 retval = -EINVAL;
1082                 goto err_destroy_functions;
1083         }
1084
1085         retval = rmi_read_block(rmi_dev,
1086                                 data->f01_container->fd.control_base_addr + 1,
1087                                 data->current_irq_mask, data->num_of_irq_regs);
1088         if (retval < 0) {
1089                 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1090                         __func__);
1091                 goto err_destroy_functions;
1092         }
1093
1094         return 0;
1095
1096 err_destroy_functions:
1097         rmi_free_function_list(rmi_dev);
1098         return retval;
1099 }
1100
1101 static int rmi_driver_probe(struct device *dev)
1102 {
1103         struct rmi_driver *rmi_driver;
1104         struct rmi_driver_data *data;
1105         struct rmi_device_platform_data *pdata;
1106         struct rmi_device *rmi_dev;
1107         int retval;
1108
1109         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1110                         __func__);
1111
1112         if (!rmi_is_physical_device(dev)) {
1113                 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1114                 return -ENODEV;
1115         }
1116
1117         rmi_dev = to_rmi_device(dev);
1118         rmi_driver = to_rmi_driver(dev->driver);
1119         rmi_dev->driver = rmi_driver;
1120
1121         pdata = rmi_get_platform_data(rmi_dev);
1122
1123         if (rmi_dev->xport->dev->of_node) {
1124                 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1125                 if (retval)
1126                         return retval;
1127         }
1128
1129         data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1130         if (!data)
1131                 return -ENOMEM;
1132
1133         INIT_LIST_HEAD(&data->function_list);
1134         data->rmi_dev = rmi_dev;
1135         dev_set_drvdata(&rmi_dev->dev, data);
1136
1137         /*
1138          * Right before a warm boot, the sensor might be in some unusual state,
1139          * such as F54 diagnostics, or F34 bootloader mode after a firmware
1140          * or configuration update.  In order to clear the sensor to a known
1141          * state and/or apply any updates, we issue a initial reset to clear any
1142          * previous settings and force it into normal operation.
1143          *
1144          * We have to do this before actually building the PDT because
1145          * the reflash updates (if any) might cause various registers to move
1146          * around.
1147          *
1148          * For a number of reasons, this initial reset may fail to return
1149          * within the specified time, but we'll still be able to bring up the
1150          * driver normally after that failure.  This occurs most commonly in
1151          * a cold boot situation (where then firmware takes longer to come up
1152          * than from a warm boot) and the reset_delay_ms in the platform data
1153          * has been set too short to accommodate that.  Since the sensor will
1154          * eventually come up and be usable, we don't want to just fail here
1155          * and leave the customer's device unusable.  So we warn them, and
1156          * continue processing.
1157          */
1158         retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1159         if (retval < 0)
1160                 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1161
1162         retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1163         if (retval < 0) {
1164                 /*
1165                  * we'll print out a warning and continue since
1166                  * failure to get the PDT properties is not a cause to fail
1167                  */
1168                 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1169                          PDT_PROPERTIES_LOCATION, retval);
1170         }
1171
1172         mutex_init(&data->irq_mutex);
1173         mutex_init(&data->enabled_mutex);
1174
1175         retval = rmi_probe_interrupts(data);
1176         if (retval)
1177                 goto err;
1178
1179         if (rmi_dev->xport->input) {
1180                 /*
1181                  * The transport driver already has an input device.
1182                  * In some cases it is preferable to reuse the transport
1183                  * devices input device instead of creating a new one here.
1184                  * One example is some HID touchpads report "pass-through"
1185                  * button events are not reported by rmi registers.
1186                  */
1187                 data->input = rmi_dev->xport->input;
1188         } else {
1189                 data->input = devm_input_allocate_device(dev);
1190                 if (!data->input) {
1191                         dev_err(dev, "%s: Failed to allocate input device.\n",
1192                                 __func__);
1193                         retval = -ENOMEM;
1194                         goto err;
1195                 }
1196                 rmi_driver_set_input_params(rmi_dev, data->input);
1197                 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1198                                                 "%s/input0", dev_name(dev));
1199         }
1200
1201         retval = rmi_init_functions(data);
1202         if (retval)
1203                 goto err;
1204
1205         retval = rmi_f34_create_sysfs(rmi_dev);
1206         if (retval)
1207                 goto err;
1208
1209         if (data->input) {
1210                 rmi_driver_set_input_name(rmi_dev, data->input);
1211                 if (!rmi_dev->xport->input) {
1212                         if (input_register_device(data->input)) {
1213                                 dev_err(dev, "%s: Failed to register input device.\n",
1214                                         __func__);
1215                                 goto err_destroy_functions;
1216                         }
1217                 }
1218         }
1219
1220         retval = rmi_irq_init(rmi_dev);
1221         if (retval < 0)
1222                 goto err_destroy_functions;
1223
1224         if (data->f01_container->dev.driver)
1225                 /* Driver already bound, so enable ATTN now. */
1226                 return rmi_enable_sensor(rmi_dev);
1227
1228         return 0;
1229
1230 err_destroy_functions:
1231         rmi_free_function_list(rmi_dev);
1232 err:
1233         return retval < 0 ? retval : 0;
1234 }
1235
1236 static struct rmi_driver rmi_physical_driver = {
1237         .driver = {
1238                 .owner  = THIS_MODULE,
1239                 .name   = "rmi4_physical",
1240                 .bus    = &rmi_bus_type,
1241                 .probe = rmi_driver_probe,
1242                 .remove = rmi_driver_remove,
1243         },
1244         .reset_handler = rmi_driver_reset_handler,
1245         .clear_irq_bits = rmi_driver_clear_irq_bits,
1246         .set_irq_bits = rmi_driver_set_irq_bits,
1247         .set_input_params = rmi_driver_set_input_params,
1248 };
1249
1250 bool rmi_is_physical_driver(struct device_driver *drv)
1251 {
1252         return drv == &rmi_physical_driver.driver;
1253 }
1254
1255 int __init rmi_register_physical_driver(void)
1256 {
1257         int error;
1258
1259         error = driver_register(&rmi_physical_driver.driver);
1260         if (error) {
1261                 pr_err("%s: driver register failed, code=%d.\n", __func__,
1262                        error);
1263                 return error;
1264         }
1265
1266         return 0;
1267 }
1268
1269 void __exit rmi_unregister_physical_driver(void)
1270 {
1271         driver_unregister(&rmi_physical_driver.driver);
1272 }