Merge branch 'synaptics-rmi4' into next
[muen/linux.git] / drivers / input / rmi4 / rmi_driver.c
1 /*
2  * Copyright (c) 2011-2016 Synaptics Incorporated
3  * Copyright (c) 2011 Unixphere
4  *
5  * This driver provides the core support for a single RMI4-based device.
6  *
7  * The RMI4 specification can be found here (URL split for line length):
8  *
9  * http://www.synaptics.com/sites/default/files/
10  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License version 2 as published by
14  * the Free Software Foundation.
15  */
16
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/irq.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <uapi/linux/input.h>
25 #include <linux/rmi.h>
26 #include "rmi_bus.h"
27 #include "rmi_driver.h"
28
29 #define HAS_NONSTANDARD_PDT_MASK 0x40
30 #define RMI4_MAX_PAGE 0xff
31 #define RMI4_PAGE_SIZE 0x100
32 #define RMI4_PAGE_MASK 0xFF00
33
34 #define RMI_DEVICE_RESET_CMD    0x01
35 #define DEFAULT_RESET_DELAY_MS  100
36
37 void rmi_free_function_list(struct rmi_device *rmi_dev)
38 {
39         struct rmi_function *fn, *tmp;
40         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
41
42         rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
43
44         devm_kfree(&rmi_dev->dev, data->irq_memory);
45         data->irq_memory = NULL;
46         data->irq_status = NULL;
47         data->fn_irq_bits = NULL;
48         data->current_irq_mask = NULL;
49         data->new_irq_mask = NULL;
50
51         data->f01_container = NULL;
52         data->f34_container = NULL;
53
54         /* Doing it in the reverse order so F01 will be removed last */
55         list_for_each_entry_safe_reverse(fn, tmp,
56                                          &data->function_list, node) {
57                 list_del(&fn->node);
58                 rmi_unregister_function(fn);
59         }
60 }
61
62 static int reset_one_function(struct rmi_function *fn)
63 {
64         struct rmi_function_handler *fh;
65         int retval = 0;
66
67         if (!fn || !fn->dev.driver)
68                 return 0;
69
70         fh = to_rmi_function_handler(fn->dev.driver);
71         if (fh->reset) {
72                 retval = fh->reset(fn);
73                 if (retval < 0)
74                         dev_err(&fn->dev, "Reset failed with code %d.\n",
75                                 retval);
76         }
77
78         return retval;
79 }
80
81 static int configure_one_function(struct rmi_function *fn)
82 {
83         struct rmi_function_handler *fh;
84         int retval = 0;
85
86         if (!fn || !fn->dev.driver)
87                 return 0;
88
89         fh = to_rmi_function_handler(fn->dev.driver);
90         if (fh->config) {
91                 retval = fh->config(fn);
92                 if (retval < 0)
93                         dev_err(&fn->dev, "Config failed with code %d.\n",
94                                 retval);
95         }
96
97         return retval;
98 }
99
100 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
101 {
102         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
103         struct rmi_function *entry;
104         int retval;
105
106         list_for_each_entry(entry, &data->function_list, node) {
107                 retval = reset_one_function(entry);
108                 if (retval < 0)
109                         return retval;
110         }
111
112         return 0;
113 }
114
115 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
116 {
117         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
118         struct rmi_function *entry;
119         int retval;
120
121         list_for_each_entry(entry, &data->function_list, node) {
122                 retval = configure_one_function(entry);
123                 if (retval < 0)
124                         return retval;
125         }
126
127         return 0;
128 }
129
130 static void process_one_interrupt(struct rmi_driver_data *data,
131                                   struct rmi_function *fn)
132 {
133         struct rmi_function_handler *fh;
134
135         if (!fn || !fn->dev.driver)
136                 return;
137
138         fh = to_rmi_function_handler(fn->dev.driver);
139         if (fh->attention) {
140                 bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
141                                 data->irq_count);
142                 if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
143                         fh->attention(fn, data->fn_irq_bits);
144         }
145 }
146
147 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
148 {
149         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
150         struct device *dev = &rmi_dev->dev;
151         struct rmi_function *entry;
152         int error;
153
154         if (!data)
155                 return 0;
156
157         if (!data->attn_data.data) {
158                 error = rmi_read_block(rmi_dev,
159                                 data->f01_container->fd.data_base_addr + 1,
160                                 data->irq_status, data->num_of_irq_regs);
161                 if (error < 0) {
162                         dev_err(dev, "Failed to read irqs, code=%d\n", error);
163                         return error;
164                 }
165         }
166
167         mutex_lock(&data->irq_mutex);
168         bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
169                data->irq_count);
170         /*
171          * At this point, irq_status has all bits that are set in the
172          * interrupt status register and are enabled.
173          */
174         mutex_unlock(&data->irq_mutex);
175
176         /*
177          * It would be nice to be able to use irq_chip to handle these
178          * nested IRQs.  Unfortunately, most of the current customers for
179          * this driver are using older kernels (3.0.x) that don't support
180          * the features required for that.  Once they've shifted to more
181          * recent kernels (say, 3.3 and higher), this should be switched to
182          * use irq_chip.
183          */
184         list_for_each_entry(entry, &data->function_list, node)
185                 process_one_interrupt(data, entry);
186
187         if (data->input)
188                 input_sync(data->input);
189
190         return 0;
191 }
192
193 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
194                        void *data, size_t size)
195 {
196         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
197         struct rmi4_attn_data attn_data;
198         void *fifo_data;
199
200         if (!drvdata->enabled)
201                 return;
202
203         fifo_data = kmemdup(data, size, GFP_ATOMIC);
204         if (!fifo_data)
205                 return;
206
207         attn_data.irq_status = irq_status;
208         attn_data.size = size;
209         attn_data.data = fifo_data;
210
211         kfifo_put(&drvdata->attn_fifo, attn_data);
212 }
213 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
214
215 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
216 {
217         struct rmi_device *rmi_dev = dev_id;
218         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
219         struct rmi4_attn_data attn_data = {0};
220         int ret, count;
221
222         count = kfifo_get(&drvdata->attn_fifo, &attn_data);
223         if (count) {
224                 *(drvdata->irq_status) = attn_data.irq_status;
225                 drvdata->attn_data = attn_data;
226         }
227
228         ret = rmi_process_interrupt_requests(rmi_dev);
229         if (ret)
230                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
231                         "Failed to process interrupt request: %d\n", ret);
232
233         if (count)
234                 kfree(attn_data.data);
235
236         if (!kfifo_is_empty(&drvdata->attn_fifo))
237                 return rmi_irq_fn(irq, dev_id);
238
239         return IRQ_HANDLED;
240 }
241
242 static int rmi_irq_init(struct rmi_device *rmi_dev)
243 {
244         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
245         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
246         int irq_flags = irq_get_trigger_type(pdata->irq);
247         int ret;
248
249         if (!irq_flags)
250                 irq_flags = IRQF_TRIGGER_LOW;
251
252         ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
253                                         rmi_irq_fn, irq_flags | IRQF_ONESHOT,
254                                         dev_name(rmi_dev->xport->dev),
255                                         rmi_dev);
256         if (ret < 0) {
257                 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
258                         pdata->irq);
259
260                 return ret;
261         }
262
263         data->enabled = true;
264
265         return 0;
266 }
267
268 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
269 {
270         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
271         struct rmi_function *entry;
272
273         list_for_each_entry(entry, &data->function_list, node) {
274                 if (entry->fd.function_number == number)
275                         return entry;
276         }
277
278         return NULL;
279 }
280
281 static int suspend_one_function(struct rmi_function *fn)
282 {
283         struct rmi_function_handler *fh;
284         int retval = 0;
285
286         if (!fn || !fn->dev.driver)
287                 return 0;
288
289         fh = to_rmi_function_handler(fn->dev.driver);
290         if (fh->suspend) {
291                 retval = fh->suspend(fn);
292                 if (retval < 0)
293                         dev_err(&fn->dev, "Suspend failed with code %d.\n",
294                                 retval);
295         }
296
297         return retval;
298 }
299
300 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
301 {
302         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
303         struct rmi_function *entry;
304         int retval;
305
306         list_for_each_entry(entry, &data->function_list, node) {
307                 retval = suspend_one_function(entry);
308                 if (retval < 0)
309                         return retval;
310         }
311
312         return 0;
313 }
314
315 static int resume_one_function(struct rmi_function *fn)
316 {
317         struct rmi_function_handler *fh;
318         int retval = 0;
319
320         if (!fn || !fn->dev.driver)
321                 return 0;
322
323         fh = to_rmi_function_handler(fn->dev.driver);
324         if (fh->resume) {
325                 retval = fh->resume(fn);
326                 if (retval < 0)
327                         dev_err(&fn->dev, "Resume failed with code %d.\n",
328                                 retval);
329         }
330
331         return retval;
332 }
333
334 static int rmi_resume_functions(struct rmi_device *rmi_dev)
335 {
336         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
337         struct rmi_function *entry;
338         int retval;
339
340         list_for_each_entry(entry, &data->function_list, node) {
341                 retval = resume_one_function(entry);
342                 if (retval < 0)
343                         return retval;
344         }
345
346         return 0;
347 }
348
349 int rmi_enable_sensor(struct rmi_device *rmi_dev)
350 {
351         int retval = 0;
352
353         retval = rmi_driver_process_config_requests(rmi_dev);
354         if (retval < 0)
355                 return retval;
356
357         return rmi_process_interrupt_requests(rmi_dev);
358 }
359
360 /**
361  * rmi_driver_set_input_params - set input device id and other data.
362  *
363  * @rmi_dev: Pointer to an RMI device
364  * @input: Pointer to input device
365  *
366  */
367 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
368                                 struct input_dev *input)
369 {
370         input->name = SYNAPTICS_INPUT_DEVICE_NAME;
371         input->id.vendor  = SYNAPTICS_VENDOR_ID;
372         input->id.bustype = BUS_RMI;
373         return 0;
374 }
375
376 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
377                                 struct input_dev *input)
378 {
379         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
380         const char *device_name = rmi_f01_get_product_ID(data->f01_container);
381         char *name;
382
383         name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
384                               "Synaptics %s", device_name);
385         if (!name)
386                 return;
387
388         input->name = name;
389 }
390
391 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
392                                    unsigned long *mask)
393 {
394         int error = 0;
395         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
396         struct device *dev = &rmi_dev->dev;
397
398         mutex_lock(&data->irq_mutex);
399         bitmap_or(data->new_irq_mask,
400                   data->current_irq_mask, mask, data->irq_count);
401
402         error = rmi_write_block(rmi_dev,
403                         data->f01_container->fd.control_base_addr + 1,
404                         data->new_irq_mask, data->num_of_irq_regs);
405         if (error < 0) {
406                 dev_err(dev, "%s: Failed to change enabled interrupts!",
407                                                         __func__);
408                 goto error_unlock;
409         }
410         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
411                     data->num_of_irq_regs);
412
413 error_unlock:
414         mutex_unlock(&data->irq_mutex);
415         return error;
416 }
417
418 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
419                                      unsigned long *mask)
420 {
421         int error = 0;
422         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
423         struct device *dev = &rmi_dev->dev;
424
425         mutex_lock(&data->irq_mutex);
426         bitmap_andnot(data->new_irq_mask,
427                   data->current_irq_mask, mask, data->irq_count);
428
429         error = rmi_write_block(rmi_dev,
430                         data->f01_container->fd.control_base_addr + 1,
431                         data->new_irq_mask, data->num_of_irq_regs);
432         if (error < 0) {
433                 dev_err(dev, "%s: Failed to change enabled interrupts!",
434                                                         __func__);
435                 goto error_unlock;
436         }
437         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
438                     data->num_of_irq_regs);
439
440 error_unlock:
441         mutex_unlock(&data->irq_mutex);
442         return error;
443 }
444
445 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
446 {
447         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
448         int error;
449
450         /*
451          * Can get called before the driver is fully ready to deal with
452          * this situation.
453          */
454         if (!data || !data->f01_container) {
455                 dev_warn(&rmi_dev->dev,
456                          "Not ready to handle reset yet!\n");
457                 return 0;
458         }
459
460         error = rmi_read_block(rmi_dev,
461                                data->f01_container->fd.control_base_addr + 1,
462                                data->current_irq_mask, data->num_of_irq_regs);
463         if (error < 0) {
464                 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
465                         __func__);
466                 return error;
467         }
468
469         error = rmi_driver_process_reset_requests(rmi_dev);
470         if (error < 0)
471                 return error;
472
473         error = rmi_driver_process_config_requests(rmi_dev);
474         if (error < 0)
475                 return error;
476
477         return 0;
478 }
479
480 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
481                               struct pdt_entry *entry, u16 pdt_address)
482 {
483         u8 buf[RMI_PDT_ENTRY_SIZE];
484         int error;
485
486         error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
487         if (error) {
488                 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
489                                 pdt_address, error);
490                 return error;
491         }
492
493         entry->page_start = pdt_address & RMI4_PAGE_MASK;
494         entry->query_base_addr = buf[0];
495         entry->command_base_addr = buf[1];
496         entry->control_base_addr = buf[2];
497         entry->data_base_addr = buf[3];
498         entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
499         entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
500         entry->function_number = buf[5];
501
502         return 0;
503 }
504
505 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
506                                       struct rmi_function_descriptor *fd)
507 {
508         fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
509         fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
510         fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
511         fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
512         fd->function_number = pdt->function_number;
513         fd->interrupt_source_count = pdt->interrupt_source_count;
514         fd->function_version = pdt->function_version;
515 }
516
517 #define RMI_SCAN_CONTINUE       0
518 #define RMI_SCAN_DONE           1
519
520 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
521                              int page,
522                              int *empty_pages,
523                              void *ctx,
524                              int (*callback)(struct rmi_device *rmi_dev,
525                                              void *ctx,
526                                              const struct pdt_entry *entry))
527 {
528         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
529         struct pdt_entry pdt_entry;
530         u16 page_start = RMI4_PAGE_SIZE * page;
531         u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
532         u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
533         u16 addr;
534         int error;
535         int retval;
536
537         for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
538                 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
539                 if (error)
540                         return error;
541
542                 if (RMI4_END_OF_PDT(pdt_entry.function_number))
543                         break;
544
545                 retval = callback(rmi_dev, ctx, &pdt_entry);
546                 if (retval != RMI_SCAN_CONTINUE)
547                         return retval;
548         }
549
550         /*
551          * Count number of empty PDT pages. If a gap of two pages
552          * or more is found, stop scanning.
553          */
554         if (addr == pdt_start)
555                 ++*empty_pages;
556         else
557                 *empty_pages = 0;
558
559         return (data->bootloader_mode || *empty_pages >= 2) ?
560                                         RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
561 }
562
563 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
564                  int (*callback)(struct rmi_device *rmi_dev,
565                  void *ctx, const struct pdt_entry *entry))
566 {
567         int page;
568         int empty_pages = 0;
569         int retval = RMI_SCAN_DONE;
570
571         for (page = 0; page <= RMI4_MAX_PAGE; page++) {
572                 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
573                                            ctx, callback);
574                 if (retval != RMI_SCAN_CONTINUE)
575                         break;
576         }
577
578         return retval < 0 ? retval : 0;
579 }
580
581 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
582                                 struct rmi_register_descriptor *rdesc)
583 {
584         int ret;
585         u8 size_presence_reg;
586         u8 buf[35];
587         int presense_offset = 1;
588         u8 *struct_buf;
589         int reg;
590         int offset = 0;
591         int map_offset = 0;
592         int i;
593         int b;
594
595         /*
596          * The first register of the register descriptor is the size of
597          * the register descriptor's presense register.
598          */
599         ret = rmi_read(d, addr, &size_presence_reg);
600         if (ret)
601                 return ret;
602         ++addr;
603
604         if (size_presence_reg < 0 || size_presence_reg > 35)
605                 return -EIO;
606
607         memset(buf, 0, sizeof(buf));
608
609         /*
610          * The presence register contains the size of the register structure
611          * and a bitmap which identified which packet registers are present
612          * for this particular register type (ie query, control, or data).
613          */
614         ret = rmi_read_block(d, addr, buf, size_presence_reg);
615         if (ret)
616                 return ret;
617         ++addr;
618
619         if (buf[0] == 0) {
620                 presense_offset = 3;
621                 rdesc->struct_size = buf[1] | (buf[2] << 8);
622         } else {
623                 rdesc->struct_size = buf[0];
624         }
625
626         for (i = presense_offset; i < size_presence_reg; i++) {
627                 for (b = 0; b < 8; b++) {
628                         if (buf[i] & (0x1 << b))
629                                 bitmap_set(rdesc->presense_map, map_offset, 1);
630                         ++map_offset;
631                 }
632         }
633
634         rdesc->num_registers = bitmap_weight(rdesc->presense_map,
635                                                 RMI_REG_DESC_PRESENSE_BITS);
636
637         rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
638                                 sizeof(struct rmi_register_desc_item),
639                                 GFP_KERNEL);
640         if (!rdesc->registers)
641                 return -ENOMEM;
642
643         /*
644          * Allocate a temporary buffer to hold the register structure.
645          * I'm not using devm_kzalloc here since it will not be retained
646          * after exiting this function
647          */
648         struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
649         if (!struct_buf)
650                 return -ENOMEM;
651
652         /*
653          * The register structure contains information about every packet
654          * register of this type. This includes the size of the packet
655          * register and a bitmap of all subpackets contained in the packet
656          * register.
657          */
658         ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
659         if (ret)
660                 goto free_struct_buff;
661
662         reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
663         for (i = 0; i < rdesc->num_registers; i++) {
664                 struct rmi_register_desc_item *item = &rdesc->registers[i];
665                 int reg_size = struct_buf[offset];
666
667                 ++offset;
668                 if (reg_size == 0) {
669                         reg_size = struct_buf[offset] |
670                                         (struct_buf[offset + 1] << 8);
671                         offset += 2;
672                 }
673
674                 if (reg_size == 0) {
675                         reg_size = struct_buf[offset] |
676                                         (struct_buf[offset + 1] << 8) |
677                                         (struct_buf[offset + 2] << 16) |
678                                         (struct_buf[offset + 3] << 24);
679                         offset += 4;
680                 }
681
682                 item->reg = reg;
683                 item->reg_size = reg_size;
684
685                 map_offset = 0;
686
687                 do {
688                         for (b = 0; b < 7; b++) {
689                                 if (struct_buf[offset] & (0x1 << b))
690                                         bitmap_set(item->subpacket_map,
691                                                 map_offset, 1);
692                                 ++map_offset;
693                         }
694                 } while (struct_buf[offset++] & 0x80);
695
696                 item->num_subpackets = bitmap_weight(item->subpacket_map,
697                                                 RMI_REG_DESC_SUBPACKET_BITS);
698
699                 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
700                         "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
701                         item->reg, item->reg_size, item->num_subpackets);
702
703                 reg = find_next_bit(rdesc->presense_map,
704                                 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
705         }
706
707 free_struct_buff:
708         kfree(struct_buf);
709         return ret;
710 }
711
712 const struct rmi_register_desc_item *rmi_get_register_desc_item(
713                                 struct rmi_register_descriptor *rdesc, u16 reg)
714 {
715         const struct rmi_register_desc_item *item;
716         int i;
717
718         for (i = 0; i < rdesc->num_registers; i++) {
719                 item = &rdesc->registers[i];
720                 if (item->reg == reg)
721                         return item;
722         }
723
724         return NULL;
725 }
726
727 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
728 {
729         const struct rmi_register_desc_item *item;
730         int i;
731         size_t size = 0;
732
733         for (i = 0; i < rdesc->num_registers; i++) {
734                 item = &rdesc->registers[i];
735                 size += item->reg_size;
736         }
737         return size;
738 }
739
740 /* Compute the register offset relative to the base address */
741 int rmi_register_desc_calc_reg_offset(
742                 struct rmi_register_descriptor *rdesc, u16 reg)
743 {
744         const struct rmi_register_desc_item *item;
745         int offset = 0;
746         int i;
747
748         for (i = 0; i < rdesc->num_registers; i++) {
749                 item = &rdesc->registers[i];
750                 if (item->reg == reg)
751                         return offset;
752                 ++offset;
753         }
754         return -1;
755 }
756
757 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
758         u8 subpacket)
759 {
760         return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
761                                 subpacket) == subpacket;
762 }
763
764 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
765                                      const struct pdt_entry *pdt)
766 {
767         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
768         int ret;
769         u8 status;
770
771         if (pdt->function_number == 0x34 && pdt->function_version > 1) {
772                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
773                 if (ret) {
774                         dev_err(&rmi_dev->dev,
775                                 "Failed to read F34 status: %d.\n", ret);
776                         return ret;
777                 }
778
779                 if (status & BIT(7))
780                         data->bootloader_mode = true;
781         } else if (pdt->function_number == 0x01) {
782                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
783                 if (ret) {
784                         dev_err(&rmi_dev->dev,
785                                 "Failed to read F01 status: %d.\n", ret);
786                         return ret;
787                 }
788
789                 if (status & BIT(6))
790                         data->bootloader_mode = true;
791         }
792
793         return 0;
794 }
795
796 static int rmi_count_irqs(struct rmi_device *rmi_dev,
797                          void *ctx, const struct pdt_entry *pdt)
798 {
799         int *irq_count = ctx;
800         int ret;
801
802         *irq_count += pdt->interrupt_source_count;
803
804         ret = rmi_check_bootloader_mode(rmi_dev, pdt);
805         if (ret < 0)
806                 return ret;
807
808         return RMI_SCAN_CONTINUE;
809 }
810
811 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
812                       const struct pdt_entry *pdt)
813 {
814         int error;
815
816         if (pdt->function_number == 0x01) {
817                 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
818                 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
819                 const struct rmi_device_platform_data *pdata =
820                                 rmi_get_platform_data(rmi_dev);
821
822                 if (rmi_dev->xport->ops->reset) {
823                         error = rmi_dev->xport->ops->reset(rmi_dev->xport,
824                                                                 cmd_addr);
825                         if (error)
826                                 return error;
827
828                         return RMI_SCAN_DONE;
829                 }
830
831                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
832                 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
833                 if (error) {
834                         dev_err(&rmi_dev->dev,
835                                 "Initial reset failed. Code = %d.\n", error);
836                         return error;
837                 }
838
839                 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
840
841                 return RMI_SCAN_DONE;
842         }
843
844         /* F01 should always be on page 0. If we don't find it there, fail. */
845         return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
846 }
847
848 static int rmi_create_function(struct rmi_device *rmi_dev,
849                                void *ctx, const struct pdt_entry *pdt)
850 {
851         struct device *dev = &rmi_dev->dev;
852         struct rmi_driver_data *data = dev_get_drvdata(dev);
853         int *current_irq_count = ctx;
854         struct rmi_function *fn;
855         int i;
856         int error;
857
858         rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
859                         pdt->function_number);
860
861         fn = kzalloc(sizeof(struct rmi_function) +
862                         BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
863                      GFP_KERNEL);
864         if (!fn) {
865                 dev_err(dev, "Failed to allocate memory for F%02X\n",
866                         pdt->function_number);
867                 return -ENOMEM;
868         }
869
870         INIT_LIST_HEAD(&fn->node);
871         rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
872
873         fn->rmi_dev = rmi_dev;
874
875         fn->num_of_irqs = pdt->interrupt_source_count;
876         fn->irq_pos = *current_irq_count;
877         *current_irq_count += fn->num_of_irqs;
878
879         for (i = 0; i < fn->num_of_irqs; i++)
880                 set_bit(fn->irq_pos + i, fn->irq_mask);
881
882         error = rmi_register_function(fn);
883         if (error)
884                 goto err_put_fn;
885
886         if (pdt->function_number == 0x01)
887                 data->f01_container = fn;
888         else if (pdt->function_number == 0x34)
889                 data->f34_container = fn;
890
891         list_add_tail(&fn->node, &data->function_list);
892
893         return RMI_SCAN_CONTINUE;
894
895 err_put_fn:
896         put_device(&fn->dev);
897         return error;
898 }
899
900 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
901 {
902         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
903         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
904         int irq = pdata->irq;
905         int irq_flags;
906         int retval;
907
908         mutex_lock(&data->enabled_mutex);
909
910         if (data->enabled)
911                 goto out;
912
913         enable_irq(irq);
914         data->enabled = true;
915         if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
916                 retval = disable_irq_wake(irq);
917                 if (!retval)
918                         dev_warn(&rmi_dev->dev,
919                                  "Failed to disable irq for wake: %d\n",
920                                  retval);
921         }
922
923         /*
924          * Call rmi_process_interrupt_requests() after enabling irq,
925          * otherwise we may lose interrupt on edge-triggered systems.
926          */
927         irq_flags = irq_get_trigger_type(pdata->irq);
928         if (irq_flags & IRQ_TYPE_EDGE_BOTH)
929                 rmi_process_interrupt_requests(rmi_dev);
930
931 out:
932         mutex_unlock(&data->enabled_mutex);
933 }
934
935 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
936 {
937         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
938         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
939         struct rmi4_attn_data attn_data = {0};
940         int irq = pdata->irq;
941         int retval, count;
942
943         mutex_lock(&data->enabled_mutex);
944
945         if (!data->enabled)
946                 goto out;
947
948         data->enabled = false;
949         disable_irq(irq);
950         if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
951                 retval = enable_irq_wake(irq);
952                 if (!retval)
953                         dev_warn(&rmi_dev->dev,
954                                  "Failed to enable irq for wake: %d\n",
955                                  retval);
956         }
957
958         /* make sure the fifo is clean */
959         while (!kfifo_is_empty(&data->attn_fifo)) {
960                 count = kfifo_get(&data->attn_fifo, &attn_data);
961                 if (count)
962                         kfree(attn_data.data);
963         }
964
965 out:
966         mutex_unlock(&data->enabled_mutex);
967 }
968
969 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
970 {
971         int retval;
972
973         retval = rmi_suspend_functions(rmi_dev);
974         if (retval)
975                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
976                         retval);
977
978         rmi_disable_irq(rmi_dev, enable_wake);
979         return retval;
980 }
981 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
982
983 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
984 {
985         int retval;
986
987         rmi_enable_irq(rmi_dev, clear_wake);
988
989         retval = rmi_resume_functions(rmi_dev);
990         if (retval)
991                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
992                         retval);
993
994         return retval;
995 }
996 EXPORT_SYMBOL_GPL(rmi_driver_resume);
997
998 static int rmi_driver_remove(struct device *dev)
999 {
1000         struct rmi_device *rmi_dev = to_rmi_device(dev);
1001
1002         rmi_disable_irq(rmi_dev, false);
1003
1004         rmi_f34_remove_sysfs(rmi_dev);
1005         rmi_free_function_list(rmi_dev);
1006
1007         return 0;
1008 }
1009
1010 #ifdef CONFIG_OF
1011 static int rmi_driver_of_probe(struct device *dev,
1012                                 struct rmi_device_platform_data *pdata)
1013 {
1014         int retval;
1015
1016         retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
1017                                         "syna,reset-delay-ms", 1);
1018         if (retval)
1019                 return retval;
1020
1021         return 0;
1022 }
1023 #else
1024 static inline int rmi_driver_of_probe(struct device *dev,
1025                                         struct rmi_device_platform_data *pdata)
1026 {
1027         return -ENODEV;
1028 }
1029 #endif
1030
1031 int rmi_probe_interrupts(struct rmi_driver_data *data)
1032 {
1033         struct rmi_device *rmi_dev = data->rmi_dev;
1034         struct device *dev = &rmi_dev->dev;
1035         int irq_count;
1036         size_t size;
1037         int retval;
1038
1039         /*
1040          * We need to count the IRQs and allocate their storage before scanning
1041          * the PDT and creating the function entries, because adding a new
1042          * function can trigger events that result in the IRQ related storage
1043          * being accessed.
1044          */
1045         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1046         irq_count = 0;
1047         data->bootloader_mode = false;
1048
1049         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1050         if (retval < 0) {
1051                 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1052                 return retval;
1053         }
1054
1055         if (data->bootloader_mode)
1056                 dev_warn(dev, "Device in bootloader mode.\n");
1057
1058         data->irq_count = irq_count;
1059         data->num_of_irq_regs = (data->irq_count + 7) / 8;
1060
1061         size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1062         data->irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
1063         if (!data->irq_memory) {
1064                 dev_err(dev, "Failed to allocate memory for irq masks.\n");
1065                 return retval;
1066         }
1067
1068         data->irq_status        = data->irq_memory + size * 0;
1069         data->fn_irq_bits       = data->irq_memory + size * 1;
1070         data->current_irq_mask  = data->irq_memory + size * 2;
1071         data->new_irq_mask      = data->irq_memory + size * 3;
1072
1073         return retval;
1074 }
1075
1076 int rmi_init_functions(struct rmi_driver_data *data)
1077 {
1078         struct rmi_device *rmi_dev = data->rmi_dev;
1079         struct device *dev = &rmi_dev->dev;
1080         int irq_count;
1081         int retval;
1082
1083         irq_count = 0;
1084         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1085         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1086         if (retval < 0) {
1087                 dev_err(dev, "Function creation failed with code %d.\n",
1088                         retval);
1089                 goto err_destroy_functions;
1090         }
1091
1092         if (!data->f01_container) {
1093                 dev_err(dev, "Missing F01 container!\n");
1094                 retval = -EINVAL;
1095                 goto err_destroy_functions;
1096         }
1097
1098         retval = rmi_read_block(rmi_dev,
1099                                 data->f01_container->fd.control_base_addr + 1,
1100                                 data->current_irq_mask, data->num_of_irq_regs);
1101         if (retval < 0) {
1102                 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1103                         __func__);
1104                 goto err_destroy_functions;
1105         }
1106
1107         return 0;
1108
1109 err_destroy_functions:
1110         rmi_free_function_list(rmi_dev);
1111         return retval;
1112 }
1113
1114 static int rmi_driver_probe(struct device *dev)
1115 {
1116         struct rmi_driver *rmi_driver;
1117         struct rmi_driver_data *data;
1118         struct rmi_device_platform_data *pdata;
1119         struct rmi_device *rmi_dev;
1120         int retval;
1121
1122         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1123                         __func__);
1124
1125         if (!rmi_is_physical_device(dev)) {
1126                 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1127                 return -ENODEV;
1128         }
1129
1130         rmi_dev = to_rmi_device(dev);
1131         rmi_driver = to_rmi_driver(dev->driver);
1132         rmi_dev->driver = rmi_driver;
1133
1134         pdata = rmi_get_platform_data(rmi_dev);
1135
1136         if (rmi_dev->xport->dev->of_node) {
1137                 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1138                 if (retval)
1139                         return retval;
1140         }
1141
1142         data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1143         if (!data)
1144                 return -ENOMEM;
1145
1146         INIT_LIST_HEAD(&data->function_list);
1147         data->rmi_dev = rmi_dev;
1148         dev_set_drvdata(&rmi_dev->dev, data);
1149
1150         /*
1151          * Right before a warm boot, the sensor might be in some unusual state,
1152          * such as F54 diagnostics, or F34 bootloader mode after a firmware
1153          * or configuration update.  In order to clear the sensor to a known
1154          * state and/or apply any updates, we issue a initial reset to clear any
1155          * previous settings and force it into normal operation.
1156          *
1157          * We have to do this before actually building the PDT because
1158          * the reflash updates (if any) might cause various registers to move
1159          * around.
1160          *
1161          * For a number of reasons, this initial reset may fail to return
1162          * within the specified time, but we'll still be able to bring up the
1163          * driver normally after that failure.  This occurs most commonly in
1164          * a cold boot situation (where then firmware takes longer to come up
1165          * than from a warm boot) and the reset_delay_ms in the platform data
1166          * has been set too short to accommodate that.  Since the sensor will
1167          * eventually come up and be usable, we don't want to just fail here
1168          * and leave the customer's device unusable.  So we warn them, and
1169          * continue processing.
1170          */
1171         retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1172         if (retval < 0)
1173                 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1174
1175         retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1176         if (retval < 0) {
1177                 /*
1178                  * we'll print out a warning and continue since
1179                  * failure to get the PDT properties is not a cause to fail
1180                  */
1181                 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1182                          PDT_PROPERTIES_LOCATION, retval);
1183         }
1184
1185         mutex_init(&data->irq_mutex);
1186         mutex_init(&data->enabled_mutex);
1187
1188         retval = rmi_probe_interrupts(data);
1189         if (retval)
1190                 goto err;
1191
1192         if (rmi_dev->xport->input) {
1193                 /*
1194                  * The transport driver already has an input device.
1195                  * In some cases it is preferable to reuse the transport
1196                  * devices input device instead of creating a new one here.
1197                  * One example is some HID touchpads report "pass-through"
1198                  * button events are not reported by rmi registers.
1199                  */
1200                 data->input = rmi_dev->xport->input;
1201         } else {
1202                 data->input = devm_input_allocate_device(dev);
1203                 if (!data->input) {
1204                         dev_err(dev, "%s: Failed to allocate input device.\n",
1205                                 __func__);
1206                         retval = -ENOMEM;
1207                         goto err;
1208                 }
1209                 rmi_driver_set_input_params(rmi_dev, data->input);
1210                 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1211                                                 "%s/input0", dev_name(dev));
1212         }
1213
1214         retval = rmi_init_functions(data);
1215         if (retval)
1216                 goto err;
1217
1218         retval = rmi_f34_create_sysfs(rmi_dev);
1219         if (retval)
1220                 goto err;
1221
1222         if (data->input) {
1223                 rmi_driver_set_input_name(rmi_dev, data->input);
1224                 if (!rmi_dev->xport->input) {
1225                         if (input_register_device(data->input)) {
1226                                 dev_err(dev, "%s: Failed to register input device.\n",
1227                                         __func__);
1228                                 goto err_destroy_functions;
1229                         }
1230                 }
1231         }
1232
1233         retval = rmi_irq_init(rmi_dev);
1234         if (retval < 0)
1235                 goto err_destroy_functions;
1236
1237         if (data->f01_container->dev.driver)
1238                 /* Driver already bound, so enable ATTN now. */
1239                 return rmi_enable_sensor(rmi_dev);
1240
1241         return 0;
1242
1243 err_destroy_functions:
1244         rmi_free_function_list(rmi_dev);
1245 err:
1246         return retval < 0 ? retval : 0;
1247 }
1248
1249 static struct rmi_driver rmi_physical_driver = {
1250         .driver = {
1251                 .owner  = THIS_MODULE,
1252                 .name   = "rmi4_physical",
1253                 .bus    = &rmi_bus_type,
1254                 .probe = rmi_driver_probe,
1255                 .remove = rmi_driver_remove,
1256         },
1257         .reset_handler = rmi_driver_reset_handler,
1258         .clear_irq_bits = rmi_driver_clear_irq_bits,
1259         .set_irq_bits = rmi_driver_set_irq_bits,
1260         .set_input_params = rmi_driver_set_input_params,
1261 };
1262
1263 bool rmi_is_physical_driver(struct device_driver *drv)
1264 {
1265         return drv == &rmi_physical_driver.driver;
1266 }
1267
1268 int __init rmi_register_physical_driver(void)
1269 {
1270         int error;
1271
1272         error = driver_register(&rmi_physical_driver.driver);
1273         if (error) {
1274                 pr_err("%s: driver register failed, code=%d.\n", __func__,
1275                        error);
1276                 return error;
1277         }
1278
1279         return 0;
1280 }
1281
1282 void __exit rmi_unregister_physical_driver(void)
1283 {
1284         driver_unregister(&rmi_physical_driver.driver);
1285 }