irqchip/gic-v3-its: Fix reprogramming of redistributors on CPU hotplug
[muen/linux.git] / drivers / irqchip / irq-gic-v3-its.c
1 /*
2  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/log2.h>
27 #include <linux/mm.h>
28 #include <linux/msi.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
36 #include <linux/syscore_ops.h>
37
38 #include <linux/irqchip.h>
39 #include <linux/irqchip/arm-gic-v3.h>
40 #include <linux/irqchip/arm-gic-v4.h>
41
42 #include <asm/cputype.h>
43 #include <asm/exception.h>
44
45 #include "irq-gic-common.h"
46
47 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
49 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
50 #define ITS_FLAGS_SAVE_SUSPEND_STATE            (1ULL << 3)
51
52 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING     (1 << 0)
53
54 static u32 lpi_id_bits;
55
56 /*
57  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
58  * deal with (one configuration byte per interrupt). PENDBASE has to
59  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
60  */
61 #define LPI_NRBITS              lpi_id_bits
62 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
63 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
64
65 #define LPI_PROP_DEFAULT_PRIO   0xa0
66
67 /*
68  * Collection structure - just an ID, and a redistributor address to
69  * ping. We use one per CPU as a bag of interrupts assigned to this
70  * CPU.
71  */
72 struct its_collection {
73         u64                     target_address;
74         u16                     col_id;
75 };
76
77 /*
78  * The ITS_BASER structure - contains memory information, cached
79  * value of BASER register configuration and ITS page size.
80  */
81 struct its_baser {
82         void            *base;
83         u64             val;
84         u32             order;
85         u32             psz;
86 };
87
88 struct its_device;
89
90 /*
91  * The ITS structure - contains most of the infrastructure, with the
92  * top-level MSI domain, the command queue, the collections, and the
93  * list of devices writing to it.
94  */
95 struct its_node {
96         raw_spinlock_t          lock;
97         struct list_head        entry;
98         void __iomem            *base;
99         phys_addr_t             phys_base;
100         struct its_cmd_block    *cmd_base;
101         struct its_cmd_block    *cmd_write;
102         struct its_baser        tables[GITS_BASER_NR_REGS];
103         struct its_collection   *collections;
104         struct fwnode_handle    *fwnode_handle;
105         u64                     (*get_msi_base)(struct its_device *its_dev);
106         u64                     cbaser_save;
107         u32                     ctlr_save;
108         struct list_head        its_device_list;
109         u64                     flags;
110         unsigned long           list_nr;
111         u32                     ite_size;
112         u32                     device_ids;
113         int                     numa_node;
114         unsigned int            msi_domain_flags;
115         u32                     pre_its_base; /* for Socionext Synquacer */
116         bool                    is_v4;
117         int                     vlpi_redist_offset;
118 };
119
120 #define ITS_ITT_ALIGN           SZ_256
121
122 /* The maximum number of VPEID bits supported by VLPI commands */
123 #define ITS_MAX_VPEID_BITS      (16)
124 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
125
126 /* Convert page order to size in bytes */
127 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
128
129 struct event_lpi_map {
130         unsigned long           *lpi_map;
131         u16                     *col_map;
132         irq_hw_number_t         lpi_base;
133         int                     nr_lpis;
134         struct mutex            vlpi_lock;
135         struct its_vm           *vm;
136         struct its_vlpi_map     *vlpi_maps;
137         int                     nr_vlpis;
138 };
139
140 /*
141  * The ITS view of a device - belongs to an ITS, owns an interrupt
142  * translation table, and a list of interrupts.  If it some of its
143  * LPIs are injected into a guest (GICv4), the event_map.vm field
144  * indicates which one.
145  */
146 struct its_device {
147         struct list_head        entry;
148         struct its_node         *its;
149         struct event_lpi_map    event_map;
150         void                    *itt;
151         u32                     nr_ites;
152         u32                     device_id;
153 };
154
155 static struct {
156         raw_spinlock_t          lock;
157         struct its_device       *dev;
158         struct its_vpe          **vpes;
159         int                     next_victim;
160 } vpe_proxy;
161
162 static LIST_HEAD(its_nodes);
163 static DEFINE_SPINLOCK(its_lock);
164 static struct rdists *gic_rdists;
165 static struct irq_domain *its_parent;
166
167 static unsigned long its_list_map;
168 static u16 vmovp_seq_num;
169 static DEFINE_RAW_SPINLOCK(vmovp_lock);
170
171 static DEFINE_IDA(its_vpeid_ida);
172
173 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
174 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
175 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
176
177 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
178                                                u32 event)
179 {
180         struct its_node *its = its_dev->its;
181
182         return its->collections + its_dev->event_map.col_map[event];
183 }
184
185 static struct its_collection *valid_col(struct its_collection *col)
186 {
187         if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(0, 15)))
188                 return NULL;
189
190         return col;
191 }
192
193 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
194 {
195         if (valid_col(its->collections + vpe->col_idx))
196                 return vpe;
197
198         return NULL;
199 }
200
201 /*
202  * ITS command descriptors - parameters to be encoded in a command
203  * block.
204  */
205 struct its_cmd_desc {
206         union {
207                 struct {
208                         struct its_device *dev;
209                         u32 event_id;
210                 } its_inv_cmd;
211
212                 struct {
213                         struct its_device *dev;
214                         u32 event_id;
215                 } its_clear_cmd;
216
217                 struct {
218                         struct its_device *dev;
219                         u32 event_id;
220                 } its_int_cmd;
221
222                 struct {
223                         struct its_device *dev;
224                         int valid;
225                 } its_mapd_cmd;
226
227                 struct {
228                         struct its_collection *col;
229                         int valid;
230                 } its_mapc_cmd;
231
232                 struct {
233                         struct its_device *dev;
234                         u32 phys_id;
235                         u32 event_id;
236                 } its_mapti_cmd;
237
238                 struct {
239                         struct its_device *dev;
240                         struct its_collection *col;
241                         u32 event_id;
242                 } its_movi_cmd;
243
244                 struct {
245                         struct its_device *dev;
246                         u32 event_id;
247                 } its_discard_cmd;
248
249                 struct {
250                         struct its_collection *col;
251                 } its_invall_cmd;
252
253                 struct {
254                         struct its_vpe *vpe;
255                 } its_vinvall_cmd;
256
257                 struct {
258                         struct its_vpe *vpe;
259                         struct its_collection *col;
260                         bool valid;
261                 } its_vmapp_cmd;
262
263                 struct {
264                         struct its_vpe *vpe;
265                         struct its_device *dev;
266                         u32 virt_id;
267                         u32 event_id;
268                         bool db_enabled;
269                 } its_vmapti_cmd;
270
271                 struct {
272                         struct its_vpe *vpe;
273                         struct its_device *dev;
274                         u32 event_id;
275                         bool db_enabled;
276                 } its_vmovi_cmd;
277
278                 struct {
279                         struct its_vpe *vpe;
280                         struct its_collection *col;
281                         u16 seq_num;
282                         u16 its_list;
283                 } its_vmovp_cmd;
284         };
285 };
286
287 /*
288  * The ITS command block, which is what the ITS actually parses.
289  */
290 struct its_cmd_block {
291         u64     raw_cmd[4];
292 };
293
294 #define ITS_CMD_QUEUE_SZ                SZ_64K
295 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
296
297 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
298                                                     struct its_cmd_block *,
299                                                     struct its_cmd_desc *);
300
301 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
302                                               struct its_cmd_block *,
303                                               struct its_cmd_desc *);
304
305 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
306 {
307         u64 mask = GENMASK_ULL(h, l);
308         *raw_cmd &= ~mask;
309         *raw_cmd |= (val << l) & mask;
310 }
311
312 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
313 {
314         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
315 }
316
317 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
318 {
319         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
320 }
321
322 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
323 {
324         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
325 }
326
327 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
328 {
329         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
330 }
331
332 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
333 {
334         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
335 }
336
337 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
338 {
339         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
340 }
341
342 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
343 {
344         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
345 }
346
347 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
348 {
349         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
350 }
351
352 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
353 {
354         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
355 }
356
357 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
358 {
359         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
360 }
361
362 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
363 {
364         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
365 }
366
367 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
368 {
369         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
370 }
371
372 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
373 {
374         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
375 }
376
377 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
378 {
379         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
380 }
381
382 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
383 {
384         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
385 }
386
387 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
388 {
389         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
390 }
391
392 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
393 {
394         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
395 }
396
397 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
398 {
399         /* Let's fixup BE commands */
400         cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
401         cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
402         cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
403         cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
404 }
405
406 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
407                                                  struct its_cmd_block *cmd,
408                                                  struct its_cmd_desc *desc)
409 {
410         unsigned long itt_addr;
411         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
412
413         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
414         itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
415
416         its_encode_cmd(cmd, GITS_CMD_MAPD);
417         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
418         its_encode_size(cmd, size - 1);
419         its_encode_itt(cmd, itt_addr);
420         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
421
422         its_fixup_cmd(cmd);
423
424         return NULL;
425 }
426
427 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
428                                                  struct its_cmd_block *cmd,
429                                                  struct its_cmd_desc *desc)
430 {
431         its_encode_cmd(cmd, GITS_CMD_MAPC);
432         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
433         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
434         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
435
436         its_fixup_cmd(cmd);
437
438         return desc->its_mapc_cmd.col;
439 }
440
441 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
442                                                   struct its_cmd_block *cmd,
443                                                   struct its_cmd_desc *desc)
444 {
445         struct its_collection *col;
446
447         col = dev_event_to_col(desc->its_mapti_cmd.dev,
448                                desc->its_mapti_cmd.event_id);
449
450         its_encode_cmd(cmd, GITS_CMD_MAPTI);
451         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
452         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
453         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
454         its_encode_collection(cmd, col->col_id);
455
456         its_fixup_cmd(cmd);
457
458         return valid_col(col);
459 }
460
461 static struct its_collection *its_build_movi_cmd(struct its_node *its,
462                                                  struct its_cmd_block *cmd,
463                                                  struct its_cmd_desc *desc)
464 {
465         struct its_collection *col;
466
467         col = dev_event_to_col(desc->its_movi_cmd.dev,
468                                desc->its_movi_cmd.event_id);
469
470         its_encode_cmd(cmd, GITS_CMD_MOVI);
471         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
472         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
473         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
474
475         its_fixup_cmd(cmd);
476
477         return valid_col(col);
478 }
479
480 static struct its_collection *its_build_discard_cmd(struct its_node *its,
481                                                     struct its_cmd_block *cmd,
482                                                     struct its_cmd_desc *desc)
483 {
484         struct its_collection *col;
485
486         col = dev_event_to_col(desc->its_discard_cmd.dev,
487                                desc->its_discard_cmd.event_id);
488
489         its_encode_cmd(cmd, GITS_CMD_DISCARD);
490         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
491         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
492
493         its_fixup_cmd(cmd);
494
495         return valid_col(col);
496 }
497
498 static struct its_collection *its_build_inv_cmd(struct its_node *its,
499                                                 struct its_cmd_block *cmd,
500                                                 struct its_cmd_desc *desc)
501 {
502         struct its_collection *col;
503
504         col = dev_event_to_col(desc->its_inv_cmd.dev,
505                                desc->its_inv_cmd.event_id);
506
507         its_encode_cmd(cmd, GITS_CMD_INV);
508         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
509         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
510
511         its_fixup_cmd(cmd);
512
513         return valid_col(col);
514 }
515
516 static struct its_collection *its_build_int_cmd(struct its_node *its,
517                                                 struct its_cmd_block *cmd,
518                                                 struct its_cmd_desc *desc)
519 {
520         struct its_collection *col;
521
522         col = dev_event_to_col(desc->its_int_cmd.dev,
523                                desc->its_int_cmd.event_id);
524
525         its_encode_cmd(cmd, GITS_CMD_INT);
526         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
527         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
528
529         its_fixup_cmd(cmd);
530
531         return valid_col(col);
532 }
533
534 static struct its_collection *its_build_clear_cmd(struct its_node *its,
535                                                   struct its_cmd_block *cmd,
536                                                   struct its_cmd_desc *desc)
537 {
538         struct its_collection *col;
539
540         col = dev_event_to_col(desc->its_clear_cmd.dev,
541                                desc->its_clear_cmd.event_id);
542
543         its_encode_cmd(cmd, GITS_CMD_CLEAR);
544         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
545         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
546
547         its_fixup_cmd(cmd);
548
549         return valid_col(col);
550 }
551
552 static struct its_collection *its_build_invall_cmd(struct its_node *its,
553                                                    struct its_cmd_block *cmd,
554                                                    struct its_cmd_desc *desc)
555 {
556         its_encode_cmd(cmd, GITS_CMD_INVALL);
557         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
558
559         its_fixup_cmd(cmd);
560
561         return NULL;
562 }
563
564 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
565                                              struct its_cmd_block *cmd,
566                                              struct its_cmd_desc *desc)
567 {
568         its_encode_cmd(cmd, GITS_CMD_VINVALL);
569         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
570
571         its_fixup_cmd(cmd);
572
573         return valid_vpe(its, desc->its_vinvall_cmd.vpe);
574 }
575
576 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
577                                            struct its_cmd_block *cmd,
578                                            struct its_cmd_desc *desc)
579 {
580         unsigned long vpt_addr;
581         u64 target;
582
583         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
584         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
585
586         its_encode_cmd(cmd, GITS_CMD_VMAPP);
587         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
588         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
589         its_encode_target(cmd, target);
590         its_encode_vpt_addr(cmd, vpt_addr);
591         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
592
593         its_fixup_cmd(cmd);
594
595         return valid_vpe(its, desc->its_vmapp_cmd.vpe);
596 }
597
598 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
599                                             struct its_cmd_block *cmd,
600                                             struct its_cmd_desc *desc)
601 {
602         u32 db;
603
604         if (desc->its_vmapti_cmd.db_enabled)
605                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
606         else
607                 db = 1023;
608
609         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
610         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
611         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
612         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
613         its_encode_db_phys_id(cmd, db);
614         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
615
616         its_fixup_cmd(cmd);
617
618         return valid_vpe(its, desc->its_vmapti_cmd.vpe);
619 }
620
621 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
622                                            struct its_cmd_block *cmd,
623                                            struct its_cmd_desc *desc)
624 {
625         u32 db;
626
627         if (desc->its_vmovi_cmd.db_enabled)
628                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
629         else
630                 db = 1023;
631
632         its_encode_cmd(cmd, GITS_CMD_VMOVI);
633         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
634         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
635         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
636         its_encode_db_phys_id(cmd, db);
637         its_encode_db_valid(cmd, true);
638
639         its_fixup_cmd(cmd);
640
641         return valid_vpe(its, desc->its_vmovi_cmd.vpe);
642 }
643
644 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
645                                            struct its_cmd_block *cmd,
646                                            struct its_cmd_desc *desc)
647 {
648         u64 target;
649
650         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
651         its_encode_cmd(cmd, GITS_CMD_VMOVP);
652         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
653         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
654         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
655         its_encode_target(cmd, target);
656
657         its_fixup_cmd(cmd);
658
659         return valid_vpe(its, desc->its_vmovp_cmd.vpe);
660 }
661
662 static u64 its_cmd_ptr_to_offset(struct its_node *its,
663                                  struct its_cmd_block *ptr)
664 {
665         return (ptr - its->cmd_base) * sizeof(*ptr);
666 }
667
668 static int its_queue_full(struct its_node *its)
669 {
670         int widx;
671         int ridx;
672
673         widx = its->cmd_write - its->cmd_base;
674         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
675
676         /* This is incredibly unlikely to happen, unless the ITS locks up. */
677         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
678                 return 1;
679
680         return 0;
681 }
682
683 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
684 {
685         struct its_cmd_block *cmd;
686         u32 count = 1000000;    /* 1s! */
687
688         while (its_queue_full(its)) {
689                 count--;
690                 if (!count) {
691                         pr_err_ratelimited("ITS queue not draining\n");
692                         return NULL;
693                 }
694                 cpu_relax();
695                 udelay(1);
696         }
697
698         cmd = its->cmd_write++;
699
700         /* Handle queue wrapping */
701         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
702                 its->cmd_write = its->cmd_base;
703
704         /* Clear command  */
705         cmd->raw_cmd[0] = 0;
706         cmd->raw_cmd[1] = 0;
707         cmd->raw_cmd[2] = 0;
708         cmd->raw_cmd[3] = 0;
709
710         return cmd;
711 }
712
713 static struct its_cmd_block *its_post_commands(struct its_node *its)
714 {
715         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
716
717         writel_relaxed(wr, its->base + GITS_CWRITER);
718
719         return its->cmd_write;
720 }
721
722 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
723 {
724         /*
725          * Make sure the commands written to memory are observable by
726          * the ITS.
727          */
728         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
729                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
730         else
731                 dsb(ishst);
732 }
733
734 static int its_wait_for_range_completion(struct its_node *its,
735                                          struct its_cmd_block *from,
736                                          struct its_cmd_block *to)
737 {
738         u64 rd_idx, from_idx, to_idx;
739         u32 count = 1000000;    /* 1s! */
740
741         from_idx = its_cmd_ptr_to_offset(its, from);
742         to_idx = its_cmd_ptr_to_offset(its, to);
743
744         while (1) {
745                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
746
747                 /* Direct case */
748                 if (from_idx < to_idx && rd_idx >= to_idx)
749                         break;
750
751                 /* Wrapped case */
752                 if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
753                         break;
754
755                 count--;
756                 if (!count) {
757                         pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
758                                            from_idx, to_idx, rd_idx);
759                         return -1;
760                 }
761                 cpu_relax();
762                 udelay(1);
763         }
764
765         return 0;
766 }
767
768 /* Warning, macro hell follows */
769 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
770 void name(struct its_node *its,                                         \
771           buildtype builder,                                            \
772           struct its_cmd_desc *desc)                                    \
773 {                                                                       \
774         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
775         synctype *sync_obj;                                             \
776         unsigned long flags;                                            \
777                                                                         \
778         raw_spin_lock_irqsave(&its->lock, flags);                       \
779                                                                         \
780         cmd = its_allocate_entry(its);                                  \
781         if (!cmd) {             /* We're soooooo screewed... */         \
782                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
783                 return;                                                 \
784         }                                                               \
785         sync_obj = builder(its, cmd, desc);                             \
786         its_flush_cmd(its, cmd);                                        \
787                                                                         \
788         if (sync_obj) {                                                 \
789                 sync_cmd = its_allocate_entry(its);                     \
790                 if (!sync_cmd)                                          \
791                         goto post;                                      \
792                                                                         \
793                 buildfn(its, sync_cmd, sync_obj);                       \
794                 its_flush_cmd(its, sync_cmd);                           \
795         }                                                               \
796                                                                         \
797 post:                                                                   \
798         next_cmd = its_post_commands(its);                              \
799         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
800                                                                         \
801         if (its_wait_for_range_completion(its, cmd, next_cmd))          \
802                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
803 }
804
805 static void its_build_sync_cmd(struct its_node *its,
806                                struct its_cmd_block *sync_cmd,
807                                struct its_collection *sync_col)
808 {
809         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
810         its_encode_target(sync_cmd, sync_col->target_address);
811
812         its_fixup_cmd(sync_cmd);
813 }
814
815 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
816                              struct its_collection, its_build_sync_cmd)
817
818 static void its_build_vsync_cmd(struct its_node *its,
819                                 struct its_cmd_block *sync_cmd,
820                                 struct its_vpe *sync_vpe)
821 {
822         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
823         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
824
825         its_fixup_cmd(sync_cmd);
826 }
827
828 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
829                              struct its_vpe, its_build_vsync_cmd)
830
831 static void its_send_int(struct its_device *dev, u32 event_id)
832 {
833         struct its_cmd_desc desc;
834
835         desc.its_int_cmd.dev = dev;
836         desc.its_int_cmd.event_id = event_id;
837
838         its_send_single_command(dev->its, its_build_int_cmd, &desc);
839 }
840
841 static void its_send_clear(struct its_device *dev, u32 event_id)
842 {
843         struct its_cmd_desc desc;
844
845         desc.its_clear_cmd.dev = dev;
846         desc.its_clear_cmd.event_id = event_id;
847
848         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
849 }
850
851 static void its_send_inv(struct its_device *dev, u32 event_id)
852 {
853         struct its_cmd_desc desc;
854
855         desc.its_inv_cmd.dev = dev;
856         desc.its_inv_cmd.event_id = event_id;
857
858         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
859 }
860
861 static void its_send_mapd(struct its_device *dev, int valid)
862 {
863         struct its_cmd_desc desc;
864
865         desc.its_mapd_cmd.dev = dev;
866         desc.its_mapd_cmd.valid = !!valid;
867
868         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
869 }
870
871 static void its_send_mapc(struct its_node *its, struct its_collection *col,
872                           int valid)
873 {
874         struct its_cmd_desc desc;
875
876         desc.its_mapc_cmd.col = col;
877         desc.its_mapc_cmd.valid = !!valid;
878
879         its_send_single_command(its, its_build_mapc_cmd, &desc);
880 }
881
882 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
883 {
884         struct its_cmd_desc desc;
885
886         desc.its_mapti_cmd.dev = dev;
887         desc.its_mapti_cmd.phys_id = irq_id;
888         desc.its_mapti_cmd.event_id = id;
889
890         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
891 }
892
893 static void its_send_movi(struct its_device *dev,
894                           struct its_collection *col, u32 id)
895 {
896         struct its_cmd_desc desc;
897
898         desc.its_movi_cmd.dev = dev;
899         desc.its_movi_cmd.col = col;
900         desc.its_movi_cmd.event_id = id;
901
902         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
903 }
904
905 static void its_send_discard(struct its_device *dev, u32 id)
906 {
907         struct its_cmd_desc desc;
908
909         desc.its_discard_cmd.dev = dev;
910         desc.its_discard_cmd.event_id = id;
911
912         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
913 }
914
915 static void its_send_invall(struct its_node *its, struct its_collection *col)
916 {
917         struct its_cmd_desc desc;
918
919         desc.its_invall_cmd.col = col;
920
921         its_send_single_command(its, its_build_invall_cmd, &desc);
922 }
923
924 static void its_send_vmapti(struct its_device *dev, u32 id)
925 {
926         struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
927         struct its_cmd_desc desc;
928
929         desc.its_vmapti_cmd.vpe = map->vpe;
930         desc.its_vmapti_cmd.dev = dev;
931         desc.its_vmapti_cmd.virt_id = map->vintid;
932         desc.its_vmapti_cmd.event_id = id;
933         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
934
935         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
936 }
937
938 static void its_send_vmovi(struct its_device *dev, u32 id)
939 {
940         struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
941         struct its_cmd_desc desc;
942
943         desc.its_vmovi_cmd.vpe = map->vpe;
944         desc.its_vmovi_cmd.dev = dev;
945         desc.its_vmovi_cmd.event_id = id;
946         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
947
948         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
949 }
950
951 static void its_send_vmapp(struct its_node *its,
952                            struct its_vpe *vpe, bool valid)
953 {
954         struct its_cmd_desc desc;
955
956         desc.its_vmapp_cmd.vpe = vpe;
957         desc.its_vmapp_cmd.valid = valid;
958         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
959
960         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
961 }
962
963 static void its_send_vmovp(struct its_vpe *vpe)
964 {
965         struct its_cmd_desc desc;
966         struct its_node *its;
967         unsigned long flags;
968         int col_id = vpe->col_idx;
969
970         desc.its_vmovp_cmd.vpe = vpe;
971         desc.its_vmovp_cmd.its_list = (u16)its_list_map;
972
973         if (!its_list_map) {
974                 its = list_first_entry(&its_nodes, struct its_node, entry);
975                 desc.its_vmovp_cmd.seq_num = 0;
976                 desc.its_vmovp_cmd.col = &its->collections[col_id];
977                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
978                 return;
979         }
980
981         /*
982          * Yet another marvel of the architecture. If using the
983          * its_list "feature", we need to make sure that all ITSs
984          * receive all VMOVP commands in the same order. The only way
985          * to guarantee this is to make vmovp a serialization point.
986          *
987          * Wall <-- Head.
988          */
989         raw_spin_lock_irqsave(&vmovp_lock, flags);
990
991         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
992
993         /* Emit VMOVPs */
994         list_for_each_entry(its, &its_nodes, entry) {
995                 if (!its->is_v4)
996                         continue;
997
998                 if (!vpe->its_vm->vlpi_count[its->list_nr])
999                         continue;
1000
1001                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1002                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1003         }
1004
1005         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1006 }
1007
1008 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1009 {
1010         struct its_cmd_desc desc;
1011
1012         desc.its_vinvall_cmd.vpe = vpe;
1013         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1014 }
1015
1016 /*
1017  * irqchip functions - assumes MSI, mostly.
1018  */
1019
1020 static inline u32 its_get_event_id(struct irq_data *d)
1021 {
1022         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1023         return d->hwirq - its_dev->event_map.lpi_base;
1024 }
1025
1026 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1027 {
1028         irq_hw_number_t hwirq;
1029         struct page *prop_page;
1030         u8 *cfg;
1031
1032         if (irqd_is_forwarded_to_vcpu(d)) {
1033                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1034                 u32 event = its_get_event_id(d);
1035                 struct its_vlpi_map *map;
1036
1037                 prop_page = its_dev->event_map.vm->vprop_page;
1038                 map = &its_dev->event_map.vlpi_maps[event];
1039                 hwirq = map->vintid;
1040
1041                 /* Remember the updated property */
1042                 map->properties &= ~clr;
1043                 map->properties |= set | LPI_PROP_GROUP1;
1044         } else {
1045                 prop_page = gic_rdists->prop_page;
1046                 hwirq = d->hwirq;
1047         }
1048
1049         cfg = page_address(prop_page) + hwirq - 8192;
1050         *cfg &= ~clr;
1051         *cfg |= set | LPI_PROP_GROUP1;
1052
1053         /*
1054          * Make the above write visible to the redistributors.
1055          * And yes, we're flushing exactly: One. Single. Byte.
1056          * Humpf...
1057          */
1058         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1059                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1060         else
1061                 dsb(ishst);
1062 }
1063
1064 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1065 {
1066         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1067
1068         lpi_write_config(d, clr, set);
1069         its_send_inv(its_dev, its_get_event_id(d));
1070 }
1071
1072 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1073 {
1074         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1075         u32 event = its_get_event_id(d);
1076
1077         if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1078                 return;
1079
1080         its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1081
1082         /*
1083          * More fun with the architecture:
1084          *
1085          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1086          * value or to 1023, depending on the enable bit. But that
1087          * would be issueing a mapping for an /existing/ DevID+EventID
1088          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1089          * to the /same/ vPE, using this opportunity to adjust the
1090          * doorbell. Mouahahahaha. We loves it, Precious.
1091          */
1092         its_send_vmovi(its_dev, event);
1093 }
1094
1095 static void its_mask_irq(struct irq_data *d)
1096 {
1097         if (irqd_is_forwarded_to_vcpu(d))
1098                 its_vlpi_set_doorbell(d, false);
1099
1100         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1101 }
1102
1103 static void its_unmask_irq(struct irq_data *d)
1104 {
1105         if (irqd_is_forwarded_to_vcpu(d))
1106                 its_vlpi_set_doorbell(d, true);
1107
1108         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1109 }
1110
1111 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1112                             bool force)
1113 {
1114         unsigned int cpu;
1115         const struct cpumask *cpu_mask = cpu_online_mask;
1116         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1117         struct its_collection *target_col;
1118         u32 id = its_get_event_id(d);
1119
1120         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1121         if (irqd_is_forwarded_to_vcpu(d))
1122                 return -EINVAL;
1123
1124        /* lpi cannot be routed to a redistributor that is on a foreign node */
1125         if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1126                 if (its_dev->its->numa_node >= 0) {
1127                         cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1128                         if (!cpumask_intersects(mask_val, cpu_mask))
1129                                 return -EINVAL;
1130                 }
1131         }
1132
1133         cpu = cpumask_any_and(mask_val, cpu_mask);
1134
1135         if (cpu >= nr_cpu_ids)
1136                 return -EINVAL;
1137
1138         /* don't set the affinity when the target cpu is same as current one */
1139         if (cpu != its_dev->event_map.col_map[id]) {
1140                 target_col = &its_dev->its->collections[cpu];
1141                 its_send_movi(its_dev, target_col, id);
1142                 its_dev->event_map.col_map[id] = cpu;
1143                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1144         }
1145
1146         return IRQ_SET_MASK_OK_DONE;
1147 }
1148
1149 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1150 {
1151         struct its_node *its = its_dev->its;
1152
1153         return its->phys_base + GITS_TRANSLATER;
1154 }
1155
1156 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1157 {
1158         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1159         struct its_node *its;
1160         u64 addr;
1161
1162         its = its_dev->its;
1163         addr = its->get_msi_base(its_dev);
1164
1165         msg->address_lo         = lower_32_bits(addr);
1166         msg->address_hi         = upper_32_bits(addr);
1167         msg->data               = its_get_event_id(d);
1168
1169         iommu_dma_map_msi_msg(d->irq, msg);
1170 }
1171
1172 static int its_irq_set_irqchip_state(struct irq_data *d,
1173                                      enum irqchip_irq_state which,
1174                                      bool state)
1175 {
1176         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1177         u32 event = its_get_event_id(d);
1178
1179         if (which != IRQCHIP_STATE_PENDING)
1180                 return -EINVAL;
1181
1182         if (state)
1183                 its_send_int(its_dev, event);
1184         else
1185                 its_send_clear(its_dev, event);
1186
1187         return 0;
1188 }
1189
1190 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1191 {
1192         unsigned long flags;
1193
1194         /* Not using the ITS list? Everything is always mapped. */
1195         if (!its_list_map)
1196                 return;
1197
1198         raw_spin_lock_irqsave(&vmovp_lock, flags);
1199
1200         /*
1201          * If the VM wasn't mapped yet, iterate over the vpes and get
1202          * them mapped now.
1203          */
1204         vm->vlpi_count[its->list_nr]++;
1205
1206         if (vm->vlpi_count[its->list_nr] == 1) {
1207                 int i;
1208
1209                 for (i = 0; i < vm->nr_vpes; i++) {
1210                         struct its_vpe *vpe = vm->vpes[i];
1211                         struct irq_data *d = irq_get_irq_data(vpe->irq);
1212
1213                         /* Map the VPE to the first possible CPU */
1214                         vpe->col_idx = cpumask_first(cpu_online_mask);
1215                         its_send_vmapp(its, vpe, true);
1216                         its_send_vinvall(its, vpe);
1217                         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1218                 }
1219         }
1220
1221         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1222 }
1223
1224 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1225 {
1226         unsigned long flags;
1227
1228         /* Not using the ITS list? Everything is always mapped. */
1229         if (!its_list_map)
1230                 return;
1231
1232         raw_spin_lock_irqsave(&vmovp_lock, flags);
1233
1234         if (!--vm->vlpi_count[its->list_nr]) {
1235                 int i;
1236
1237                 for (i = 0; i < vm->nr_vpes; i++)
1238                         its_send_vmapp(its, vm->vpes[i], false);
1239         }
1240
1241         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1242 }
1243
1244 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1245 {
1246         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1247         u32 event = its_get_event_id(d);
1248         int ret = 0;
1249
1250         if (!info->map)
1251                 return -EINVAL;
1252
1253         mutex_lock(&its_dev->event_map.vlpi_lock);
1254
1255         if (!its_dev->event_map.vm) {
1256                 struct its_vlpi_map *maps;
1257
1258                 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1259                                GFP_KERNEL);
1260                 if (!maps) {
1261                         ret = -ENOMEM;
1262                         goto out;
1263                 }
1264
1265                 its_dev->event_map.vm = info->map->vm;
1266                 its_dev->event_map.vlpi_maps = maps;
1267         } else if (its_dev->event_map.vm != info->map->vm) {
1268                 ret = -EINVAL;
1269                 goto out;
1270         }
1271
1272         /* Get our private copy of the mapping information */
1273         its_dev->event_map.vlpi_maps[event] = *info->map;
1274
1275         if (irqd_is_forwarded_to_vcpu(d)) {
1276                 /* Already mapped, move it around */
1277                 its_send_vmovi(its_dev, event);
1278         } else {
1279                 /* Ensure all the VPEs are mapped on this ITS */
1280                 its_map_vm(its_dev->its, info->map->vm);
1281
1282                 /*
1283                  * Flag the interrupt as forwarded so that we can
1284                  * start poking the virtual property table.
1285                  */
1286                 irqd_set_forwarded_to_vcpu(d);
1287
1288                 /* Write out the property to the prop table */
1289                 lpi_write_config(d, 0xff, info->map->properties);
1290
1291                 /* Drop the physical mapping */
1292                 its_send_discard(its_dev, event);
1293
1294                 /* and install the virtual one */
1295                 its_send_vmapti(its_dev, event);
1296
1297                 /* Increment the number of VLPIs */
1298                 its_dev->event_map.nr_vlpis++;
1299         }
1300
1301 out:
1302         mutex_unlock(&its_dev->event_map.vlpi_lock);
1303         return ret;
1304 }
1305
1306 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1307 {
1308         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1309         u32 event = its_get_event_id(d);
1310         int ret = 0;
1311
1312         mutex_lock(&its_dev->event_map.vlpi_lock);
1313
1314         if (!its_dev->event_map.vm ||
1315             !its_dev->event_map.vlpi_maps[event].vm) {
1316                 ret = -EINVAL;
1317                 goto out;
1318         }
1319
1320         /* Copy our mapping information to the incoming request */
1321         *info->map = its_dev->event_map.vlpi_maps[event];
1322
1323 out:
1324         mutex_unlock(&its_dev->event_map.vlpi_lock);
1325         return ret;
1326 }
1327
1328 static int its_vlpi_unmap(struct irq_data *d)
1329 {
1330         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1331         u32 event = its_get_event_id(d);
1332         int ret = 0;
1333
1334         mutex_lock(&its_dev->event_map.vlpi_lock);
1335
1336         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1337                 ret = -EINVAL;
1338                 goto out;
1339         }
1340
1341         /* Drop the virtual mapping */
1342         its_send_discard(its_dev, event);
1343
1344         /* and restore the physical one */
1345         irqd_clr_forwarded_to_vcpu(d);
1346         its_send_mapti(its_dev, d->hwirq, event);
1347         lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1348                                     LPI_PROP_ENABLED |
1349                                     LPI_PROP_GROUP1));
1350
1351         /* Potentially unmap the VM from this ITS */
1352         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1353
1354         /*
1355          * Drop the refcount and make the device available again if
1356          * this was the last VLPI.
1357          */
1358         if (!--its_dev->event_map.nr_vlpis) {
1359                 its_dev->event_map.vm = NULL;
1360                 kfree(its_dev->event_map.vlpi_maps);
1361         }
1362
1363 out:
1364         mutex_unlock(&its_dev->event_map.vlpi_lock);
1365         return ret;
1366 }
1367
1368 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1369 {
1370         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1371
1372         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1373                 return -EINVAL;
1374
1375         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1376                 lpi_update_config(d, 0xff, info->config);
1377         else
1378                 lpi_write_config(d, 0xff, info->config);
1379         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1380
1381         return 0;
1382 }
1383
1384 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1385 {
1386         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1387         struct its_cmd_info *info = vcpu_info;
1388
1389         /* Need a v4 ITS */
1390         if (!its_dev->its->is_v4)
1391                 return -EINVAL;
1392
1393         /* Unmap request? */
1394         if (!info)
1395                 return its_vlpi_unmap(d);
1396
1397         switch (info->cmd_type) {
1398         case MAP_VLPI:
1399                 return its_vlpi_map(d, info);
1400
1401         case GET_VLPI:
1402                 return its_vlpi_get(d, info);
1403
1404         case PROP_UPDATE_VLPI:
1405         case PROP_UPDATE_AND_INV_VLPI:
1406                 return its_vlpi_prop_update(d, info);
1407
1408         default:
1409                 return -EINVAL;
1410         }
1411 }
1412
1413 static struct irq_chip its_irq_chip = {
1414         .name                   = "ITS",
1415         .irq_mask               = its_mask_irq,
1416         .irq_unmask             = its_unmask_irq,
1417         .irq_eoi                = irq_chip_eoi_parent,
1418         .irq_set_affinity       = its_set_affinity,
1419         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
1420         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
1421         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
1422 };
1423
1424 /*
1425  * How we allocate LPIs:
1426  *
1427  * The GIC has id_bits bits for interrupt identifiers. From there, we
1428  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
1429  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
1430  * bits to the right.
1431  *
1432  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
1433  */
1434 #define IRQS_PER_CHUNK_SHIFT    5
1435 #define IRQS_PER_CHUNK          (1UL << IRQS_PER_CHUNK_SHIFT)
1436 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
1437
1438 static unsigned long *lpi_bitmap;
1439 static u32 lpi_chunks;
1440 static DEFINE_SPINLOCK(lpi_lock);
1441
1442 static int its_lpi_to_chunk(int lpi)
1443 {
1444         return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
1445 }
1446
1447 static int its_chunk_to_lpi(int chunk)
1448 {
1449         return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
1450 }
1451
1452 static int __init its_lpi_init(u32 id_bits)
1453 {
1454         lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
1455
1456         lpi_bitmap = kcalloc(BITS_TO_LONGS(lpi_chunks), sizeof(long),
1457                              GFP_KERNEL);
1458         if (!lpi_bitmap) {
1459                 lpi_chunks = 0;
1460                 return -ENOMEM;
1461         }
1462
1463         pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
1464         return 0;
1465 }
1466
1467 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
1468 {
1469         unsigned long *bitmap = NULL;
1470         int chunk_id;
1471         int nr_chunks;
1472         int i;
1473
1474         nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
1475
1476         spin_lock(&lpi_lock);
1477
1478         do {
1479                 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
1480                                                       0, nr_chunks, 0);
1481                 if (chunk_id < lpi_chunks)
1482                         break;
1483
1484                 nr_chunks--;
1485         } while (nr_chunks > 0);
1486
1487         if (!nr_chunks)
1488                 goto out;
1489
1490         bitmap = kcalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK),
1491                          sizeof(long),
1492                          GFP_ATOMIC);
1493         if (!bitmap)
1494                 goto out;
1495
1496         for (i = 0; i < nr_chunks; i++)
1497                 set_bit(chunk_id + i, lpi_bitmap);
1498
1499         *base = its_chunk_to_lpi(chunk_id);
1500         *nr_ids = nr_chunks * IRQS_PER_CHUNK;
1501
1502 out:
1503         spin_unlock(&lpi_lock);
1504
1505         if (!bitmap)
1506                 *base = *nr_ids = 0;
1507
1508         return bitmap;
1509 }
1510
1511 static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids)
1512 {
1513         int lpi;
1514
1515         spin_lock(&lpi_lock);
1516
1517         for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
1518                 int chunk = its_lpi_to_chunk(lpi);
1519
1520                 BUG_ON(chunk > lpi_chunks);
1521                 if (test_bit(chunk, lpi_bitmap)) {
1522                         clear_bit(chunk, lpi_bitmap);
1523                 } else {
1524                         pr_err("Bad LPI chunk %d\n", chunk);
1525                 }
1526         }
1527
1528         spin_unlock(&lpi_lock);
1529
1530         kfree(bitmap);
1531 }
1532
1533 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1534 {
1535         struct page *prop_page;
1536
1537         prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1538         if (!prop_page)
1539                 return NULL;
1540
1541         /* Priority 0xa0, Group-1, disabled */
1542         memset(page_address(prop_page),
1543                LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
1544                LPI_PROPBASE_SZ);
1545
1546         /* Make sure the GIC will observe the written configuration */
1547         gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ);
1548
1549         return prop_page;
1550 }
1551
1552 static void its_free_prop_table(struct page *prop_page)
1553 {
1554         free_pages((unsigned long)page_address(prop_page),
1555                    get_order(LPI_PROPBASE_SZ));
1556 }
1557
1558 static int __init its_alloc_lpi_tables(void)
1559 {
1560         phys_addr_t paddr;
1561
1562         lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS);
1563         gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT);
1564         if (!gic_rdists->prop_page) {
1565                 pr_err("Failed to allocate PROPBASE\n");
1566                 return -ENOMEM;
1567         }
1568
1569         paddr = page_to_phys(gic_rdists->prop_page);
1570         pr_info("GIC: using LPI property table @%pa\n", &paddr);
1571
1572         return its_lpi_init(lpi_id_bits);
1573 }
1574
1575 static const char *its_base_type_string[] = {
1576         [GITS_BASER_TYPE_DEVICE]        = "Devices",
1577         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
1578         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
1579         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
1580         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
1581         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
1582         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
1583 };
1584
1585 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1586 {
1587         u32 idx = baser - its->tables;
1588
1589         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1590 }
1591
1592 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1593                             u64 val)
1594 {
1595         u32 idx = baser - its->tables;
1596
1597         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1598         baser->val = its_read_baser(its, baser);
1599 }
1600
1601 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1602                            u64 cache, u64 shr, u32 psz, u32 order,
1603                            bool indirect)
1604 {
1605         u64 val = its_read_baser(its, baser);
1606         u64 esz = GITS_BASER_ENTRY_SIZE(val);
1607         u64 type = GITS_BASER_TYPE(val);
1608         u64 baser_phys, tmp;
1609         u32 alloc_pages;
1610         void *base;
1611
1612 retry_alloc_baser:
1613         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1614         if (alloc_pages > GITS_BASER_PAGES_MAX) {
1615                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1616                         &its->phys_base, its_base_type_string[type],
1617                         alloc_pages, GITS_BASER_PAGES_MAX);
1618                 alloc_pages = GITS_BASER_PAGES_MAX;
1619                 order = get_order(GITS_BASER_PAGES_MAX * psz);
1620         }
1621
1622         base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1623         if (!base)
1624                 return -ENOMEM;
1625
1626         baser_phys = virt_to_phys(base);
1627
1628         /* Check if the physical address of the memory is above 48bits */
1629         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1630
1631                 /* 52bit PA is supported only when PageSize=64K */
1632                 if (psz != SZ_64K) {
1633                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1634                         free_pages((unsigned long)base, order);
1635                         return -ENXIO;
1636                 }
1637
1638                 /* Convert 52bit PA to 48bit field */
1639                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1640         }
1641
1642 retry_baser:
1643         val = (baser_phys                                        |
1644                 (type << GITS_BASER_TYPE_SHIFT)                  |
1645                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
1646                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
1647                 cache                                            |
1648                 shr                                              |
1649                 GITS_BASER_VALID);
1650
1651         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
1652
1653         switch (psz) {
1654         case SZ_4K:
1655                 val |= GITS_BASER_PAGE_SIZE_4K;
1656                 break;
1657         case SZ_16K:
1658                 val |= GITS_BASER_PAGE_SIZE_16K;
1659                 break;
1660         case SZ_64K:
1661                 val |= GITS_BASER_PAGE_SIZE_64K;
1662                 break;
1663         }
1664
1665         its_write_baser(its, baser, val);
1666         tmp = baser->val;
1667
1668         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1669                 /*
1670                  * Shareability didn't stick. Just use
1671                  * whatever the read reported, which is likely
1672                  * to be the only thing this redistributor
1673                  * supports. If that's zero, make it
1674                  * non-cacheable as well.
1675                  */
1676                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1677                 if (!shr) {
1678                         cache = GITS_BASER_nC;
1679                         gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1680                 }
1681                 goto retry_baser;
1682         }
1683
1684         if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1685                 /*
1686                  * Page size didn't stick. Let's try a smaller
1687                  * size and retry. If we reach 4K, then
1688                  * something is horribly wrong...
1689                  */
1690                 free_pages((unsigned long)base, order);
1691                 baser->base = NULL;
1692
1693                 switch (psz) {
1694                 case SZ_16K:
1695                         psz = SZ_4K;
1696                         goto retry_alloc_baser;
1697                 case SZ_64K:
1698                         psz = SZ_16K;
1699                         goto retry_alloc_baser;
1700                 }
1701         }
1702
1703         if (val != tmp) {
1704                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1705                        &its->phys_base, its_base_type_string[type],
1706                        val, tmp);
1707                 free_pages((unsigned long)base, order);
1708                 return -ENXIO;
1709         }
1710
1711         baser->order = order;
1712         baser->base = base;
1713         baser->psz = psz;
1714         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1715
1716         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1717                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1718                 its_base_type_string[type],
1719                 (unsigned long)virt_to_phys(base),
1720                 indirect ? "indirect" : "flat", (int)esz,
1721                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1722
1723         return 0;
1724 }
1725
1726 static bool its_parse_indirect_baser(struct its_node *its,
1727                                      struct its_baser *baser,
1728                                      u32 psz, u32 *order, u32 ids)
1729 {
1730         u64 tmp = its_read_baser(its, baser);
1731         u64 type = GITS_BASER_TYPE(tmp);
1732         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1733         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1734         u32 new_order = *order;
1735         bool indirect = false;
1736
1737         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
1738         if ((esz << ids) > (psz * 2)) {
1739                 /*
1740                  * Find out whether hw supports a single or two-level table by
1741                  * table by reading bit at offset '62' after writing '1' to it.
1742                  */
1743                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1744                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
1745
1746                 if (indirect) {
1747                         /*
1748                          * The size of the lvl2 table is equal to ITS page size
1749                          * which is 'psz'. For computing lvl1 table size,
1750                          * subtract ID bits that sparse lvl2 table from 'ids'
1751                          * which is reported by ITS hardware times lvl1 table
1752                          * entry size.
1753                          */
1754                         ids -= ilog2(psz / (int)esz);
1755                         esz = GITS_LVL1_ENTRY_SIZE;
1756                 }
1757         }
1758
1759         /*
1760          * Allocate as many entries as required to fit the
1761          * range of device IDs that the ITS can grok... The ID
1762          * space being incredibly sparse, this results in a
1763          * massive waste of memory if two-level device table
1764          * feature is not supported by hardware.
1765          */
1766         new_order = max_t(u32, get_order(esz << ids), new_order);
1767         if (new_order >= MAX_ORDER) {
1768                 new_order = MAX_ORDER - 1;
1769                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1770                 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1771                         &its->phys_base, its_base_type_string[type],
1772                         its->device_ids, ids);
1773         }
1774
1775         *order = new_order;
1776
1777         return indirect;
1778 }
1779
1780 static void its_free_tables(struct its_node *its)
1781 {
1782         int i;
1783
1784         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1785                 if (its->tables[i].base) {
1786                         free_pages((unsigned long)its->tables[i].base,
1787                                    its->tables[i].order);
1788                         its->tables[i].base = NULL;
1789                 }
1790         }
1791 }
1792
1793 static int its_alloc_tables(struct its_node *its)
1794 {
1795         u64 shr = GITS_BASER_InnerShareable;
1796         u64 cache = GITS_BASER_RaWaWb;
1797         u32 psz = SZ_64K;
1798         int err, i;
1799
1800         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1801                 /* erratum 24313: ignore memory access type */
1802                 cache = GITS_BASER_nCnB;
1803
1804         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1805                 struct its_baser *baser = its->tables + i;
1806                 u64 val = its_read_baser(its, baser);
1807                 u64 type = GITS_BASER_TYPE(val);
1808                 u32 order = get_order(psz);
1809                 bool indirect = false;
1810
1811                 switch (type) {
1812                 case GITS_BASER_TYPE_NONE:
1813                         continue;
1814
1815                 case GITS_BASER_TYPE_DEVICE:
1816                         indirect = its_parse_indirect_baser(its, baser,
1817                                                             psz, &order,
1818                                                             its->device_ids);
1819                 case GITS_BASER_TYPE_VCPU:
1820                         indirect = its_parse_indirect_baser(its, baser,
1821                                                             psz, &order,
1822                                                             ITS_MAX_VPEID_BITS);
1823                         break;
1824                 }
1825
1826                 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1827                 if (err < 0) {
1828                         its_free_tables(its);
1829                         return err;
1830                 }
1831
1832                 /* Update settings which will be used for next BASERn */
1833                 psz = baser->psz;
1834                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1835                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1836         }
1837
1838         return 0;
1839 }
1840
1841 static int its_alloc_collections(struct its_node *its)
1842 {
1843         int i;
1844
1845         its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1846                                    GFP_KERNEL);
1847         if (!its->collections)
1848                 return -ENOMEM;
1849
1850         for (i = 0; i < nr_cpu_ids; i++)
1851                 its->collections[i].target_address = ~0ULL;
1852
1853         return 0;
1854 }
1855
1856 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1857 {
1858         struct page *pend_page;
1859         /*
1860          * The pending pages have to be at least 64kB aligned,
1861          * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1862          */
1863         pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1864                                 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1865         if (!pend_page)
1866                 return NULL;
1867
1868         /* Make sure the GIC will observe the zero-ed page */
1869         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1870
1871         return pend_page;
1872 }
1873
1874 static void its_free_pending_table(struct page *pt)
1875 {
1876         free_pages((unsigned long)page_address(pt),
1877                    get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1878 }
1879
1880 static void its_cpu_init_lpis(void)
1881 {
1882         void __iomem *rbase = gic_data_rdist_rd_base();
1883         struct page *pend_page;
1884         u64 val, tmp;
1885
1886         /* If we didn't allocate the pending table yet, do it now */
1887         pend_page = gic_data_rdist()->pend_page;
1888         if (!pend_page) {
1889                 phys_addr_t paddr;
1890
1891                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
1892                 if (!pend_page) {
1893                         pr_err("Failed to allocate PENDBASE for CPU%d\n",
1894                                smp_processor_id());
1895                         return;
1896                 }
1897
1898                 paddr = page_to_phys(pend_page);
1899                 pr_info("CPU%d: using LPI pending table @%pa\n",
1900                         smp_processor_id(), &paddr);
1901                 gic_data_rdist()->pend_page = pend_page;
1902         }
1903
1904         /* set PROPBASE */
1905         val = (page_to_phys(gic_rdists->prop_page) |
1906                GICR_PROPBASER_InnerShareable |
1907                GICR_PROPBASER_RaWaWb |
1908                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1909
1910         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1911         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1912
1913         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1914                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1915                         /*
1916                          * The HW reports non-shareable, we must
1917                          * remove the cacheability attributes as
1918                          * well.
1919                          */
1920                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1921                                  GICR_PROPBASER_CACHEABILITY_MASK);
1922                         val |= GICR_PROPBASER_nC;
1923                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1924                 }
1925                 pr_info_once("GIC: using cache flushing for LPI property table\n");
1926                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1927         }
1928
1929         /* set PENDBASE */
1930         val = (page_to_phys(pend_page) |
1931                GICR_PENDBASER_InnerShareable |
1932                GICR_PENDBASER_RaWaWb);
1933
1934         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1935         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1936
1937         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1938                 /*
1939                  * The HW reports non-shareable, we must remove the
1940                  * cacheability attributes as well.
1941                  */
1942                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1943                          GICR_PENDBASER_CACHEABILITY_MASK);
1944                 val |= GICR_PENDBASER_nC;
1945                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1946         }
1947
1948         /* Enable LPIs */
1949         val = readl_relaxed(rbase + GICR_CTLR);
1950         val |= GICR_CTLR_ENABLE_LPIS;
1951         writel_relaxed(val, rbase + GICR_CTLR);
1952
1953         /* Make sure the GIC has seen the above */
1954         dsb(sy);
1955 }
1956
1957 static void its_cpu_init_collection(struct its_node *its)
1958 {
1959         int cpu = smp_processor_id();
1960         u64 target;
1961
1962         /* avoid cross node collections and its mapping */
1963         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1964                 struct device_node *cpu_node;
1965
1966                 cpu_node = of_get_cpu_node(cpu, NULL);
1967                 if (its->numa_node != NUMA_NO_NODE &&
1968                         its->numa_node != of_node_to_nid(cpu_node))
1969                         return;
1970         }
1971
1972         /*
1973          * We now have to bind each collection to its target
1974          * redistributor.
1975          */
1976         if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1977                 /*
1978                  * This ITS wants the physical address of the
1979                  * redistributor.
1980                  */
1981                 target = gic_data_rdist()->phys_base;
1982         } else {
1983                 /* This ITS wants a linear CPU number. */
1984                 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1985                 target = GICR_TYPER_CPU_NUMBER(target) << 16;
1986         }
1987
1988         /* Perform collection mapping */
1989         its->collections[cpu].target_address = target;
1990         its->collections[cpu].col_id = cpu;
1991
1992         its_send_mapc(its, &its->collections[cpu], 1);
1993         its_send_invall(its, &its->collections[cpu]);
1994 }
1995
1996 static void its_cpu_init_collections(void)
1997 {
1998         struct its_node *its;
1999
2000         spin_lock(&its_lock);
2001
2002         list_for_each_entry(its, &its_nodes, entry)
2003                 its_cpu_init_collection(its);
2004
2005         spin_unlock(&its_lock);
2006 }
2007
2008 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2009 {
2010         struct its_device *its_dev = NULL, *tmp;
2011         unsigned long flags;
2012
2013         raw_spin_lock_irqsave(&its->lock, flags);
2014
2015         list_for_each_entry(tmp, &its->its_device_list, entry) {
2016                 if (tmp->device_id == dev_id) {
2017                         its_dev = tmp;
2018                         break;
2019                 }
2020         }
2021
2022         raw_spin_unlock_irqrestore(&its->lock, flags);
2023
2024         return its_dev;
2025 }
2026
2027 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2028 {
2029         int i;
2030
2031         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2032                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
2033                         return &its->tables[i];
2034         }
2035
2036         return NULL;
2037 }
2038
2039 static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
2040 {
2041         struct page *page;
2042         u32 esz, idx;
2043         __le64 *table;
2044
2045         /* Don't allow device id that exceeds single, flat table limit */
2046         esz = GITS_BASER_ENTRY_SIZE(baser->val);
2047         if (!(baser->val & GITS_BASER_INDIRECT))
2048                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2049
2050         /* Compute 1st level table index & check if that exceeds table limit */
2051         idx = id >> ilog2(baser->psz / esz);
2052         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2053                 return false;
2054
2055         table = baser->base;
2056
2057         /* Allocate memory for 2nd level table */
2058         if (!table[idx]) {
2059                 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
2060                 if (!page)
2061                         return false;
2062
2063                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2064                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2065                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
2066
2067                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2068
2069                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2070                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2071                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2072
2073                 /* Ensure updated table contents are visible to ITS hardware */
2074                 dsb(sy);
2075         }
2076
2077         return true;
2078 }
2079
2080 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2081 {
2082         struct its_baser *baser;
2083
2084         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2085
2086         /* Don't allow device id that exceeds ITS hardware limit */
2087         if (!baser)
2088                 return (ilog2(dev_id) < its->device_ids);
2089
2090         return its_alloc_table_entry(baser, dev_id);
2091 }
2092
2093 static bool its_alloc_vpe_table(u32 vpe_id)
2094 {
2095         struct its_node *its;
2096
2097         /*
2098          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2099          * could try and only do it on ITSs corresponding to devices
2100          * that have interrupts targeted at this VPE, but the
2101          * complexity becomes crazy (and you have tons of memory
2102          * anyway, right?).
2103          */
2104         list_for_each_entry(its, &its_nodes, entry) {
2105                 struct its_baser *baser;
2106
2107                 if (!its->is_v4)
2108                         continue;
2109
2110                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2111                 if (!baser)
2112                         return false;
2113
2114                 if (!its_alloc_table_entry(baser, vpe_id))
2115                         return false;
2116         }
2117
2118         return true;
2119 }
2120
2121 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2122                                             int nvecs, bool alloc_lpis)
2123 {
2124         struct its_device *dev;
2125         unsigned long *lpi_map = NULL;
2126         unsigned long flags;
2127         u16 *col_map = NULL;
2128         void *itt;
2129         int lpi_base;
2130         int nr_lpis;
2131         int nr_ites;
2132         int sz;
2133
2134         if (!its_alloc_device_table(its, dev_id))
2135                 return NULL;
2136
2137         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2138         /*
2139          * We allocate at least one chunk worth of LPIs bet device,
2140          * and thus that many ITEs. The device may require less though.
2141          */
2142         nr_ites = max(IRQS_PER_CHUNK, roundup_pow_of_two(nvecs));
2143         sz = nr_ites * its->ite_size;
2144         sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2145         itt = kzalloc(sz, GFP_KERNEL);
2146         if (alloc_lpis) {
2147                 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
2148                 if (lpi_map)
2149                         col_map = kcalloc(nr_lpis, sizeof(*col_map),
2150                                           GFP_KERNEL);
2151         } else {
2152                 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2153                 nr_lpis = 0;
2154                 lpi_base = 0;
2155         }
2156
2157         if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2158                 kfree(dev);
2159                 kfree(itt);
2160                 kfree(lpi_map);
2161                 kfree(col_map);
2162                 return NULL;
2163         }
2164
2165         gic_flush_dcache_to_poc(itt, sz);
2166
2167         dev->its = its;
2168         dev->itt = itt;
2169         dev->nr_ites = nr_ites;
2170         dev->event_map.lpi_map = lpi_map;
2171         dev->event_map.col_map = col_map;
2172         dev->event_map.lpi_base = lpi_base;
2173         dev->event_map.nr_lpis = nr_lpis;
2174         mutex_init(&dev->event_map.vlpi_lock);
2175         dev->device_id = dev_id;
2176         INIT_LIST_HEAD(&dev->entry);
2177
2178         raw_spin_lock_irqsave(&its->lock, flags);
2179         list_add(&dev->entry, &its->its_device_list);
2180         raw_spin_unlock_irqrestore(&its->lock, flags);
2181
2182         /* Map device to its ITT */
2183         its_send_mapd(dev, 1);
2184
2185         return dev;
2186 }
2187
2188 static void its_free_device(struct its_device *its_dev)
2189 {
2190         unsigned long flags;
2191
2192         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2193         list_del(&its_dev->entry);
2194         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2195         kfree(its_dev->itt);
2196         kfree(its_dev);
2197 }
2198
2199 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
2200 {
2201         int idx;
2202
2203         idx = find_first_zero_bit(dev->event_map.lpi_map,
2204                                   dev->event_map.nr_lpis);
2205         if (idx == dev->event_map.nr_lpis)
2206                 return -ENOSPC;
2207
2208         *hwirq = dev->event_map.lpi_base + idx;
2209         set_bit(idx, dev->event_map.lpi_map);
2210
2211         return 0;
2212 }
2213
2214 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2215                            int nvec, msi_alloc_info_t *info)
2216 {
2217         struct its_node *its;
2218         struct its_device *its_dev;
2219         struct msi_domain_info *msi_info;
2220         u32 dev_id;
2221
2222         /*
2223          * We ignore "dev" entierely, and rely on the dev_id that has
2224          * been passed via the scratchpad. This limits this domain's
2225          * usefulness to upper layers that definitely know that they
2226          * are built on top of the ITS.
2227          */
2228         dev_id = info->scratchpad[0].ul;
2229
2230         msi_info = msi_get_domain_info(domain);
2231         its = msi_info->data;
2232
2233         if (!gic_rdists->has_direct_lpi &&
2234             vpe_proxy.dev &&
2235             vpe_proxy.dev->its == its &&
2236             dev_id == vpe_proxy.dev->device_id) {
2237                 /* Bad luck. Get yourself a better implementation */
2238                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2239                           dev_id);
2240                 return -EINVAL;
2241         }
2242
2243         its_dev = its_find_device(its, dev_id);
2244         if (its_dev) {
2245                 /*
2246                  * We already have seen this ID, probably through
2247                  * another alias (PCI bridge of some sort). No need to
2248                  * create the device.
2249                  */
2250                 pr_debug("Reusing ITT for devID %x\n", dev_id);
2251                 goto out;
2252         }
2253
2254         its_dev = its_create_device(its, dev_id, nvec, true);
2255         if (!its_dev)
2256                 return -ENOMEM;
2257
2258         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2259 out:
2260         info->scratchpad[0].ptr = its_dev;
2261         return 0;
2262 }
2263
2264 static struct msi_domain_ops its_msi_domain_ops = {
2265         .msi_prepare    = its_msi_prepare,
2266 };
2267
2268 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2269                                     unsigned int virq,
2270                                     irq_hw_number_t hwirq)
2271 {
2272         struct irq_fwspec fwspec;
2273
2274         if (irq_domain_get_of_node(domain->parent)) {
2275                 fwspec.fwnode = domain->parent->fwnode;
2276                 fwspec.param_count = 3;
2277                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2278                 fwspec.param[1] = hwirq;
2279                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2280         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2281                 fwspec.fwnode = domain->parent->fwnode;
2282                 fwspec.param_count = 2;
2283                 fwspec.param[0] = hwirq;
2284                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2285         } else {
2286                 return -EINVAL;
2287         }
2288
2289         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2290 }
2291
2292 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2293                                 unsigned int nr_irqs, void *args)
2294 {
2295         msi_alloc_info_t *info = args;
2296         struct its_device *its_dev = info->scratchpad[0].ptr;
2297         irq_hw_number_t hwirq;
2298         int err;
2299         int i;
2300
2301         for (i = 0; i < nr_irqs; i++) {
2302                 err = its_alloc_device_irq(its_dev, &hwirq);
2303                 if (err)
2304                         return err;
2305
2306                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
2307                 if (err)
2308                         return err;
2309
2310                 irq_domain_set_hwirq_and_chip(domain, virq + i,
2311                                               hwirq, &its_irq_chip, its_dev);
2312                 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2313                 pr_debug("ID:%d pID:%d vID:%d\n",
2314                          (int)(hwirq - its_dev->event_map.lpi_base),
2315                          (int) hwirq, virq + i);
2316         }
2317
2318         return 0;
2319 }
2320
2321 static int its_irq_domain_activate(struct irq_domain *domain,
2322                                    struct irq_data *d, bool reserve)
2323 {
2324         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2325         u32 event = its_get_event_id(d);
2326         const struct cpumask *cpu_mask = cpu_online_mask;
2327         int cpu;
2328
2329         /* get the cpu_mask of local node */
2330         if (its_dev->its->numa_node >= 0)
2331                 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2332
2333         /* Bind the LPI to the first possible CPU */
2334         cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2335         if (cpu >= nr_cpu_ids) {
2336                 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2337                         return -EINVAL;
2338
2339                 cpu = cpumask_first(cpu_online_mask);
2340         }
2341
2342         its_dev->event_map.col_map[event] = cpu;
2343         irq_data_update_effective_affinity(d, cpumask_of(cpu));
2344
2345         /* Map the GIC IRQ and event to the device */
2346         its_send_mapti(its_dev, d->hwirq, event);
2347         return 0;
2348 }
2349
2350 static void its_irq_domain_deactivate(struct irq_domain *domain,
2351                                       struct irq_data *d)
2352 {
2353         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2354         u32 event = its_get_event_id(d);
2355
2356         /* Stop the delivery of interrupts */
2357         its_send_discard(its_dev, event);
2358 }
2359
2360 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2361                                 unsigned int nr_irqs)
2362 {
2363         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2364         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2365         int i;
2366
2367         for (i = 0; i < nr_irqs; i++) {
2368                 struct irq_data *data = irq_domain_get_irq_data(domain,
2369                                                                 virq + i);
2370                 u32 event = its_get_event_id(data);
2371
2372                 /* Mark interrupt index as unused */
2373                 clear_bit(event, its_dev->event_map.lpi_map);
2374
2375                 /* Nuke the entry in the domain */
2376                 irq_domain_reset_irq_data(data);
2377         }
2378
2379         /* If all interrupts have been freed, start mopping the floor */
2380         if (bitmap_empty(its_dev->event_map.lpi_map,
2381                          its_dev->event_map.nr_lpis)) {
2382                 its_lpi_free_chunks(its_dev->event_map.lpi_map,
2383                                     its_dev->event_map.lpi_base,
2384                                     its_dev->event_map.nr_lpis);
2385                 kfree(its_dev->event_map.col_map);
2386
2387                 /* Unmap device/itt */
2388                 its_send_mapd(its_dev, 0);
2389                 its_free_device(its_dev);
2390         }
2391
2392         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2393 }
2394
2395 static const struct irq_domain_ops its_domain_ops = {
2396         .alloc                  = its_irq_domain_alloc,
2397         .free                   = its_irq_domain_free,
2398         .activate               = its_irq_domain_activate,
2399         .deactivate             = its_irq_domain_deactivate,
2400 };
2401
2402 /*
2403  * This is insane.
2404  *
2405  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2406  * likely), the only way to perform an invalidate is to use a fake
2407  * device to issue an INV command, implying that the LPI has first
2408  * been mapped to some event on that device. Since this is not exactly
2409  * cheap, we try to keep that mapping around as long as possible, and
2410  * only issue an UNMAP if we're short on available slots.
2411  *
2412  * Broken by design(tm).
2413  */
2414 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2415 {
2416         /* Already unmapped? */
2417         if (vpe->vpe_proxy_event == -1)
2418                 return;
2419
2420         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2421         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2422
2423         /*
2424          * We don't track empty slots at all, so let's move the
2425          * next_victim pointer if we can quickly reuse that slot
2426          * instead of nuking an existing entry. Not clear that this is
2427          * always a win though, and this might just generate a ripple
2428          * effect... Let's just hope VPEs don't migrate too often.
2429          */
2430         if (vpe_proxy.vpes[vpe_proxy.next_victim])
2431                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
2432
2433         vpe->vpe_proxy_event = -1;
2434 }
2435
2436 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2437 {
2438         if (!gic_rdists->has_direct_lpi) {
2439                 unsigned long flags;
2440
2441                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2442                 its_vpe_db_proxy_unmap_locked(vpe);
2443                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2444         }
2445 }
2446
2447 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2448 {
2449         /* Already mapped? */
2450         if (vpe->vpe_proxy_event != -1)
2451                 return;
2452
2453         /* This slot was already allocated. Kick the other VPE out. */
2454         if (vpe_proxy.vpes[vpe_proxy.next_victim])
2455                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2456
2457         /* Map the new VPE instead */
2458         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2459         vpe->vpe_proxy_event = vpe_proxy.next_victim;
2460         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2461
2462         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2463         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2464 }
2465
2466 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2467 {
2468         unsigned long flags;
2469         struct its_collection *target_col;
2470
2471         if (gic_rdists->has_direct_lpi) {
2472                 void __iomem *rdbase;
2473
2474                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2475                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2476                 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2477                         cpu_relax();
2478
2479                 return;
2480         }
2481
2482         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2483
2484         its_vpe_db_proxy_map_locked(vpe);
2485
2486         target_col = &vpe_proxy.dev->its->collections[to];
2487         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2488         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2489
2490         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2491 }
2492
2493 static int its_vpe_set_affinity(struct irq_data *d,
2494                                 const struct cpumask *mask_val,
2495                                 bool force)
2496 {
2497         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2498         int cpu = cpumask_first(mask_val);
2499
2500         /*
2501          * Changing affinity is mega expensive, so let's be as lazy as
2502          * we can and only do it if we really have to. Also, if mapped
2503          * into the proxy device, we need to move the doorbell
2504          * interrupt to its new location.
2505          */
2506         if (vpe->col_idx != cpu) {
2507                 int from = vpe->col_idx;
2508
2509                 vpe->col_idx = cpu;
2510                 its_send_vmovp(vpe);
2511                 its_vpe_db_proxy_move(vpe, from, cpu);
2512         }
2513
2514         irq_data_update_effective_affinity(d, cpumask_of(cpu));
2515
2516         return IRQ_SET_MASK_OK_DONE;
2517 }
2518
2519 static void its_vpe_schedule(struct its_vpe *vpe)
2520 {
2521         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2522         u64 val;
2523
2524         /* Schedule the VPE */
2525         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2526                 GENMASK_ULL(51, 12);
2527         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2528         val |= GICR_VPROPBASER_RaWb;
2529         val |= GICR_VPROPBASER_InnerShareable;
2530         gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2531
2532         val  = virt_to_phys(page_address(vpe->vpt_page)) &
2533                 GENMASK_ULL(51, 16);
2534         val |= GICR_VPENDBASER_RaWaWb;
2535         val |= GICR_VPENDBASER_NonShareable;
2536         /*
2537          * There is no good way of finding out if the pending table is
2538          * empty as we can race against the doorbell interrupt very
2539          * easily. So in the end, vpe->pending_last is only an
2540          * indication that the vcpu has something pending, not one
2541          * that the pending table is empty. A good implementation
2542          * would be able to read its coarse map pretty quickly anyway,
2543          * making this a tolerable issue.
2544          */
2545         val |= GICR_VPENDBASER_PendingLast;
2546         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2547         val |= GICR_VPENDBASER_Valid;
2548         gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2549 }
2550
2551 static void its_vpe_deschedule(struct its_vpe *vpe)
2552 {
2553         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2554         u32 count = 1000000;    /* 1s! */
2555         bool clean;
2556         u64 val;
2557
2558         /* We're being scheduled out */
2559         val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2560         val &= ~GICR_VPENDBASER_Valid;
2561         gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2562
2563         do {
2564                 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2565                 clean = !(val & GICR_VPENDBASER_Dirty);
2566                 if (!clean) {
2567                         count--;
2568                         cpu_relax();
2569                         udelay(1);
2570                 }
2571         } while (!clean && count);
2572
2573         if (unlikely(!clean && !count)) {
2574                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2575                 vpe->idai = false;
2576                 vpe->pending_last = true;
2577         } else {
2578                 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2579                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2580         }
2581 }
2582
2583 static void its_vpe_invall(struct its_vpe *vpe)
2584 {
2585         struct its_node *its;
2586
2587         list_for_each_entry(its, &its_nodes, entry) {
2588                 if (!its->is_v4)
2589                         continue;
2590
2591                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2592                         continue;
2593
2594                 /*
2595                  * Sending a VINVALL to a single ITS is enough, as all
2596                  * we need is to reach the redistributors.
2597                  */
2598                 its_send_vinvall(its, vpe);
2599                 return;
2600         }
2601 }
2602
2603 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2604 {
2605         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2606         struct its_cmd_info *info = vcpu_info;
2607
2608         switch (info->cmd_type) {
2609         case SCHEDULE_VPE:
2610                 its_vpe_schedule(vpe);
2611                 return 0;
2612
2613         case DESCHEDULE_VPE:
2614                 its_vpe_deschedule(vpe);
2615                 return 0;
2616
2617         case INVALL_VPE:
2618                 its_vpe_invall(vpe);
2619                 return 0;
2620
2621         default:
2622                 return -EINVAL;
2623         }
2624 }
2625
2626 static void its_vpe_send_cmd(struct its_vpe *vpe,
2627                              void (*cmd)(struct its_device *, u32))
2628 {
2629         unsigned long flags;
2630
2631         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2632
2633         its_vpe_db_proxy_map_locked(vpe);
2634         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2635
2636         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2637 }
2638
2639 static void its_vpe_send_inv(struct irq_data *d)
2640 {
2641         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2642
2643         if (gic_rdists->has_direct_lpi) {
2644                 void __iomem *rdbase;
2645
2646                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2647                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2648                 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2649                         cpu_relax();
2650         } else {
2651                 its_vpe_send_cmd(vpe, its_send_inv);
2652         }
2653 }
2654
2655 static void its_vpe_mask_irq(struct irq_data *d)
2656 {
2657         /*
2658          * We need to unmask the LPI, which is described by the parent
2659          * irq_data. Instead of calling into the parent (which won't
2660          * exactly do the right thing, let's simply use the
2661          * parent_data pointer. Yes, I'm naughty.
2662          */
2663         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2664         its_vpe_send_inv(d);
2665 }
2666
2667 static void its_vpe_unmask_irq(struct irq_data *d)
2668 {
2669         /* Same hack as above... */
2670         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2671         its_vpe_send_inv(d);
2672 }
2673
2674 static int its_vpe_set_irqchip_state(struct irq_data *d,
2675                                      enum irqchip_irq_state which,
2676                                      bool state)
2677 {
2678         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2679
2680         if (which != IRQCHIP_STATE_PENDING)
2681                 return -EINVAL;
2682
2683         if (gic_rdists->has_direct_lpi) {
2684                 void __iomem *rdbase;
2685
2686                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2687                 if (state) {
2688                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2689                 } else {
2690                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2691                         while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2692                                 cpu_relax();
2693                 }
2694         } else {
2695                 if (state)
2696                         its_vpe_send_cmd(vpe, its_send_int);
2697                 else
2698                         its_vpe_send_cmd(vpe, its_send_clear);
2699         }
2700
2701         return 0;
2702 }
2703
2704 static struct irq_chip its_vpe_irq_chip = {
2705         .name                   = "GICv4-vpe",
2706         .irq_mask               = its_vpe_mask_irq,
2707         .irq_unmask             = its_vpe_unmask_irq,
2708         .irq_eoi                = irq_chip_eoi_parent,
2709         .irq_set_affinity       = its_vpe_set_affinity,
2710         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
2711         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
2712 };
2713
2714 static int its_vpe_id_alloc(void)
2715 {
2716         return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2717 }
2718
2719 static void its_vpe_id_free(u16 id)
2720 {
2721         ida_simple_remove(&its_vpeid_ida, id);
2722 }
2723
2724 static int its_vpe_init(struct its_vpe *vpe)
2725 {
2726         struct page *vpt_page;
2727         int vpe_id;
2728
2729         /* Allocate vpe_id */
2730         vpe_id = its_vpe_id_alloc();
2731         if (vpe_id < 0)
2732                 return vpe_id;
2733
2734         /* Allocate VPT */
2735         vpt_page = its_allocate_pending_table(GFP_KERNEL);
2736         if (!vpt_page) {
2737                 its_vpe_id_free(vpe_id);
2738                 return -ENOMEM;
2739         }
2740
2741         if (!its_alloc_vpe_table(vpe_id)) {
2742                 its_vpe_id_free(vpe_id);
2743                 its_free_pending_table(vpe->vpt_page);
2744                 return -ENOMEM;
2745         }
2746
2747         vpe->vpe_id = vpe_id;
2748         vpe->vpt_page = vpt_page;
2749         vpe->vpe_proxy_event = -1;
2750
2751         return 0;
2752 }
2753
2754 static void its_vpe_teardown(struct its_vpe *vpe)
2755 {
2756         its_vpe_db_proxy_unmap(vpe);
2757         its_vpe_id_free(vpe->vpe_id);
2758         its_free_pending_table(vpe->vpt_page);
2759 }
2760
2761 static void its_vpe_irq_domain_free(struct irq_domain *domain,
2762                                     unsigned int virq,
2763                                     unsigned int nr_irqs)
2764 {
2765         struct its_vm *vm = domain->host_data;
2766         int i;
2767
2768         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2769
2770         for (i = 0; i < nr_irqs; i++) {
2771                 struct irq_data *data = irq_domain_get_irq_data(domain,
2772                                                                 virq + i);
2773                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2774
2775                 BUG_ON(vm != vpe->its_vm);
2776
2777                 clear_bit(data->hwirq, vm->db_bitmap);
2778                 its_vpe_teardown(vpe);
2779                 irq_domain_reset_irq_data(data);
2780         }
2781
2782         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2783                 its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2784                 its_free_prop_table(vm->vprop_page);
2785         }
2786 }
2787
2788 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2789                                     unsigned int nr_irqs, void *args)
2790 {
2791         struct its_vm *vm = args;
2792         unsigned long *bitmap;
2793         struct page *vprop_page;
2794         int base, nr_ids, i, err = 0;
2795
2796         BUG_ON(!vm);
2797
2798         bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids);
2799         if (!bitmap)
2800                 return -ENOMEM;
2801
2802         if (nr_ids < nr_irqs) {
2803                 its_lpi_free_chunks(bitmap, base, nr_ids);
2804                 return -ENOMEM;
2805         }
2806
2807         vprop_page = its_allocate_prop_table(GFP_KERNEL);
2808         if (!vprop_page) {
2809                 its_lpi_free_chunks(bitmap, base, nr_ids);
2810                 return -ENOMEM;
2811         }
2812
2813         vm->db_bitmap = bitmap;
2814         vm->db_lpi_base = base;
2815         vm->nr_db_lpis = nr_ids;
2816         vm->vprop_page = vprop_page;
2817
2818         for (i = 0; i < nr_irqs; i++) {
2819                 vm->vpes[i]->vpe_db_lpi = base + i;
2820                 err = its_vpe_init(vm->vpes[i]);
2821                 if (err)
2822                         break;
2823                 err = its_irq_gic_domain_alloc(domain, virq + i,
2824                                                vm->vpes[i]->vpe_db_lpi);
2825                 if (err)
2826                         break;
2827                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
2828                                               &its_vpe_irq_chip, vm->vpes[i]);
2829                 set_bit(i, bitmap);
2830         }
2831
2832         if (err) {
2833                 if (i > 0)
2834                         its_vpe_irq_domain_free(domain, virq, i - 1);
2835
2836                 its_lpi_free_chunks(bitmap, base, nr_ids);
2837                 its_free_prop_table(vprop_page);
2838         }
2839
2840         return err;
2841 }
2842
2843 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
2844                                        struct irq_data *d, bool reserve)
2845 {
2846         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2847         struct its_node *its;
2848
2849         /* If we use the list map, we issue VMAPP on demand... */
2850         if (its_list_map)
2851                 return 0;
2852
2853         /* Map the VPE to the first possible CPU */
2854         vpe->col_idx = cpumask_first(cpu_online_mask);
2855
2856         list_for_each_entry(its, &its_nodes, entry) {
2857                 if (!its->is_v4)
2858                         continue;
2859
2860                 its_send_vmapp(its, vpe, true);
2861                 its_send_vinvall(its, vpe);
2862         }
2863
2864         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
2865
2866         return 0;
2867 }
2868
2869 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
2870                                           struct irq_data *d)
2871 {
2872         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2873         struct its_node *its;
2874
2875         /*
2876          * If we use the list map, we unmap the VPE once no VLPIs are
2877          * associated with the VM.
2878          */
2879         if (its_list_map)
2880                 return;
2881
2882         list_for_each_entry(its, &its_nodes, entry) {
2883                 if (!its->is_v4)
2884                         continue;
2885
2886                 its_send_vmapp(its, vpe, false);
2887         }
2888 }
2889
2890 static const struct irq_domain_ops its_vpe_domain_ops = {
2891         .alloc                  = its_vpe_irq_domain_alloc,
2892         .free                   = its_vpe_irq_domain_free,
2893         .activate               = its_vpe_irq_domain_activate,
2894         .deactivate             = its_vpe_irq_domain_deactivate,
2895 };
2896
2897 static int its_force_quiescent(void __iomem *base)
2898 {
2899         u32 count = 1000000;    /* 1s */
2900         u32 val;
2901
2902         val = readl_relaxed(base + GITS_CTLR);
2903         /*
2904          * GIC architecture specification requires the ITS to be both
2905          * disabled and quiescent for writes to GITS_BASER<n> or
2906          * GITS_CBASER to not have UNPREDICTABLE results.
2907          */
2908         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
2909                 return 0;
2910
2911         /* Disable the generation of all interrupts to this ITS */
2912         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
2913         writel_relaxed(val, base + GITS_CTLR);
2914
2915         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
2916         while (1) {
2917                 val = readl_relaxed(base + GITS_CTLR);
2918                 if (val & GITS_CTLR_QUIESCENT)
2919                         return 0;
2920
2921                 count--;
2922                 if (!count)
2923                         return -EBUSY;
2924
2925                 cpu_relax();
2926                 udelay(1);
2927         }
2928 }
2929
2930 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
2931 {
2932         struct its_node *its = data;
2933
2934         /* erratum 22375: only alloc 8MB table size */
2935         its->device_ids = 0x14;         /* 20 bits, 8MB */
2936         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
2937
2938         return true;
2939 }
2940
2941 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
2942 {
2943         struct its_node *its = data;
2944
2945         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
2946
2947         return true;
2948 }
2949
2950 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
2951 {
2952         struct its_node *its = data;
2953
2954         /* On QDF2400, the size of the ITE is 16Bytes */
2955         its->ite_size = 16;
2956
2957         return true;
2958 }
2959
2960 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
2961 {
2962         struct its_node *its = its_dev->its;
2963
2964         /*
2965          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
2966          * which maps 32-bit writes targeted at a separate window of
2967          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
2968          * with device ID taken from bits [device_id_bits + 1:2] of
2969          * the window offset.
2970          */
2971         return its->pre_its_base + (its_dev->device_id << 2);
2972 }
2973
2974 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
2975 {
2976         struct its_node *its = data;
2977         u32 pre_its_window[2];
2978         u32 ids;
2979
2980         if (!fwnode_property_read_u32_array(its->fwnode_handle,
2981                                            "socionext,synquacer-pre-its",
2982                                            pre_its_window,
2983                                            ARRAY_SIZE(pre_its_window))) {
2984
2985                 its->pre_its_base = pre_its_window[0];
2986                 its->get_msi_base = its_irq_get_msi_base_pre_its;
2987
2988                 ids = ilog2(pre_its_window[1]) - 2;
2989                 if (its->device_ids > ids)
2990                         its->device_ids = ids;
2991
2992                 /* the pre-ITS breaks isolation, so disable MSI remapping */
2993                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
2994                 return true;
2995         }
2996         return false;
2997 }
2998
2999 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3000 {
3001         struct its_node *its = data;
3002
3003         /*
3004          * Hip07 insists on using the wrong address for the VLPI
3005          * page. Trick it into doing the right thing...
3006          */
3007         its->vlpi_redist_offset = SZ_128K;
3008         return true;
3009 }
3010
3011 static const struct gic_quirk its_quirks[] = {
3012 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3013         {
3014                 .desc   = "ITS: Cavium errata 22375, 24313",
3015                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
3016                 .mask   = 0xffff0fff,
3017                 .init   = its_enable_quirk_cavium_22375,
3018         },
3019 #endif
3020 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3021         {
3022                 .desc   = "ITS: Cavium erratum 23144",
3023                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
3024                 .mask   = 0xffff0fff,
3025                 .init   = its_enable_quirk_cavium_23144,
3026         },
3027 #endif
3028 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3029         {
3030                 .desc   = "ITS: QDF2400 erratum 0065",
3031                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
3032                 .mask   = 0xffffffff,
3033                 .init   = its_enable_quirk_qdf2400_e0065,
3034         },
3035 #endif
3036 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3037         {
3038                 /*
3039                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3040                  * implementation, but with a 'pre-ITS' added that requires
3041                  * special handling in software.
3042                  */
3043                 .desc   = "ITS: Socionext Synquacer pre-ITS",
3044                 .iidr   = 0x0001143b,
3045                 .mask   = 0xffffffff,
3046                 .init   = its_enable_quirk_socionext_synquacer,
3047         },
3048 #endif
3049 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3050         {
3051                 .desc   = "ITS: Hip07 erratum 161600802",
3052                 .iidr   = 0x00000004,
3053                 .mask   = 0xffffffff,
3054                 .init   = its_enable_quirk_hip07_161600802,
3055         },
3056 #endif
3057         {
3058         }
3059 };
3060
3061 static void its_enable_quirks(struct its_node *its)
3062 {
3063         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3064
3065         gic_enable_quirks(iidr, its_quirks, its);
3066 }
3067
3068 static int its_save_disable(void)
3069 {
3070         struct its_node *its;
3071         int err = 0;
3072
3073         spin_lock(&its_lock);
3074         list_for_each_entry(its, &its_nodes, entry) {
3075                 void __iomem *base;
3076
3077                 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3078                         continue;
3079
3080                 base = its->base;
3081                 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3082                 err = its_force_quiescent(base);
3083                 if (err) {
3084                         pr_err("ITS@%pa: failed to quiesce: %d\n",
3085                                &its->phys_base, err);
3086                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3087                         goto err;
3088                 }
3089
3090                 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3091         }
3092
3093 err:
3094         if (err) {
3095                 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3096                         void __iomem *base;
3097
3098                         if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3099                                 continue;
3100
3101                         base = its->base;
3102                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3103                 }
3104         }
3105         spin_unlock(&its_lock);
3106
3107         return err;
3108 }
3109
3110 static void its_restore_enable(void)
3111 {
3112         struct its_node *its;
3113         int ret;
3114
3115         spin_lock(&its_lock);
3116         list_for_each_entry(its, &its_nodes, entry) {
3117                 void __iomem *base;
3118                 int i;
3119
3120                 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3121                         continue;
3122
3123                 base = its->base;
3124
3125                 /*
3126                  * Make sure that the ITS is disabled. If it fails to quiesce,
3127                  * don't restore it since writing to CBASER or BASER<n>
3128                  * registers is undefined according to the GIC v3 ITS
3129                  * Specification.
3130                  */
3131                 ret = its_force_quiescent(base);
3132                 if (ret) {
3133                         pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3134                                &its->phys_base, ret);
3135                         continue;
3136                 }
3137
3138                 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3139
3140                 /*
3141                  * Writing CBASER resets CREADR to 0, so make CWRITER and
3142                  * cmd_write line up with it.
3143                  */
3144                 its->cmd_write = its->cmd_base;
3145                 gits_write_cwriter(0, base + GITS_CWRITER);
3146
3147                 /* Restore GITS_BASER from the value cache. */
3148                 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3149                         struct its_baser *baser = &its->tables[i];
3150
3151                         if (!(baser->val & GITS_BASER_VALID))
3152                                 continue;
3153
3154                         its_write_baser(its, baser, baser->val);
3155                 }
3156                 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3157
3158                 /*
3159                  * Reinit the collection if it's stored in the ITS. This is
3160                  * indicated by the col_id being less than the HCC field.
3161                  * CID < HCC as specified in the GIC v3 Documentation.
3162                  */
3163                 if (its->collections[smp_processor_id()].col_id <
3164                     GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3165                         its_cpu_init_collection(its);
3166         }
3167         spin_unlock(&its_lock);
3168 }
3169
3170 static struct syscore_ops its_syscore_ops = {
3171         .suspend = its_save_disable,
3172         .resume = its_restore_enable,
3173 };
3174
3175 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3176 {
3177         struct irq_domain *inner_domain;
3178         struct msi_domain_info *info;
3179
3180         info = kzalloc(sizeof(*info), GFP_KERNEL);
3181         if (!info)
3182                 return -ENOMEM;
3183
3184         inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3185         if (!inner_domain) {
3186                 kfree(info);
3187                 return -ENOMEM;
3188         }
3189
3190         inner_domain->parent = its_parent;
3191         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3192         inner_domain->flags |= its->msi_domain_flags;
3193         info->ops = &its_msi_domain_ops;
3194         info->data = its;
3195         inner_domain->host_data = info;
3196
3197         return 0;
3198 }
3199
3200 static int its_init_vpe_domain(void)
3201 {
3202         struct its_node *its;
3203         u32 devid;
3204         int entries;
3205
3206         if (gic_rdists->has_direct_lpi) {
3207                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3208                 return 0;
3209         }
3210
3211         /* Any ITS will do, even if not v4 */
3212         its = list_first_entry(&its_nodes, struct its_node, entry);
3213
3214         entries = roundup_pow_of_two(nr_cpu_ids);
3215         vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3216                                  GFP_KERNEL);
3217         if (!vpe_proxy.vpes) {
3218                 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3219                 return -ENOMEM;
3220         }
3221
3222         /* Use the last possible DevID */
3223         devid = GENMASK(its->device_ids - 1, 0);
3224         vpe_proxy.dev = its_create_device(its, devid, entries, false);
3225         if (!vpe_proxy.dev) {
3226                 kfree(vpe_proxy.vpes);
3227                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
3228                 return -ENOMEM;
3229         }
3230
3231         BUG_ON(entries > vpe_proxy.dev->nr_ites);
3232
3233         raw_spin_lock_init(&vpe_proxy.lock);
3234         vpe_proxy.next_victim = 0;
3235         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3236                 devid, vpe_proxy.dev->nr_ites);
3237
3238         return 0;
3239 }
3240
3241 static int __init its_compute_its_list_map(struct resource *res,
3242                                            void __iomem *its_base)
3243 {
3244         int its_number;
3245         u32 ctlr;
3246
3247         /*
3248          * This is assumed to be done early enough that we're
3249          * guaranteed to be single-threaded, hence no
3250          * locking. Should this change, we should address
3251          * this.
3252          */
3253         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3254         if (its_number >= GICv4_ITS_LIST_MAX) {
3255                 pr_err("ITS@%pa: No ITSList entry available!\n",
3256                        &res->start);
3257                 return -EINVAL;
3258         }
3259
3260         ctlr = readl_relaxed(its_base + GITS_CTLR);
3261         ctlr &= ~GITS_CTLR_ITS_NUMBER;
3262         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3263         writel_relaxed(ctlr, its_base + GITS_CTLR);
3264         ctlr = readl_relaxed(its_base + GITS_CTLR);
3265         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3266                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3267                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3268         }
3269
3270         if (test_and_set_bit(its_number, &its_list_map)) {
3271                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3272                        &res->start, its_number);
3273                 return -EINVAL;
3274         }
3275
3276         return its_number;
3277 }
3278
3279 static int __init its_probe_one(struct resource *res,
3280                                 struct fwnode_handle *handle, int numa_node)
3281 {
3282         struct its_node *its;
3283         void __iomem *its_base;
3284         u32 val, ctlr;
3285         u64 baser, tmp, typer;
3286         int err;
3287
3288         its_base = ioremap(res->start, resource_size(res));
3289         if (!its_base) {
3290                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3291                 return -ENOMEM;
3292         }
3293
3294         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3295         if (val != 0x30 && val != 0x40) {
3296                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3297                 err = -ENODEV;
3298                 goto out_unmap;
3299         }
3300
3301         err = its_force_quiescent(its_base);
3302         if (err) {
3303                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3304                 goto out_unmap;
3305         }
3306
3307         pr_info("ITS %pR\n", res);
3308
3309         its = kzalloc(sizeof(*its), GFP_KERNEL);
3310         if (!its) {
3311                 err = -ENOMEM;
3312                 goto out_unmap;
3313         }
3314
3315         raw_spin_lock_init(&its->lock);
3316         INIT_LIST_HEAD(&its->entry);
3317         INIT_LIST_HEAD(&its->its_device_list);
3318         typer = gic_read_typer(its_base + GITS_TYPER);
3319         its->base = its_base;
3320         its->phys_base = res->start;
3321         its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3322         its->device_ids = GITS_TYPER_DEVBITS(typer);
3323         its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3324         if (its->is_v4) {
3325                 if (!(typer & GITS_TYPER_VMOVP)) {
3326                         err = its_compute_its_list_map(res, its_base);
3327                         if (err < 0)
3328                                 goto out_free_its;
3329
3330                         its->list_nr = err;
3331
3332                         pr_info("ITS@%pa: Using ITS number %d\n",
3333                                 &res->start, err);
3334                 } else {
3335                         pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3336                 }
3337         }
3338
3339         its->numa_node = numa_node;
3340
3341         its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
3342                                                 get_order(ITS_CMD_QUEUE_SZ));
3343         if (!its->cmd_base) {
3344                 err = -ENOMEM;
3345                 goto out_free_its;
3346         }
3347         its->cmd_write = its->cmd_base;
3348         its->fwnode_handle = handle;
3349         its->get_msi_base = its_irq_get_msi_base;
3350         its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3351
3352         its_enable_quirks(its);
3353
3354         err = its_alloc_tables(its);
3355         if (err)
3356                 goto out_free_cmd;
3357
3358         err = its_alloc_collections(its);
3359         if (err)
3360                 goto out_free_tables;
3361
3362         baser = (virt_to_phys(its->cmd_base)    |
3363                  GITS_CBASER_RaWaWb             |
3364                  GITS_CBASER_InnerShareable     |