dm: disable DISCARD if the underlying storage no longer supports it
[muen/linux.git] / drivers / md / dm-integrity.c
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8
9 #include <linux/compiler.h>
10 #include <linux/module.h>
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/vmalloc.h>
14 #include <linux/sort.h>
15 #include <linux/rbtree.h>
16 #include <linux/delay.h>
17 #include <linux/random.h>
18 #include <crypto/hash.h>
19 #include <crypto/skcipher.h>
20 #include <linux/async_tx.h>
21 #include <linux/dm-bufio.h>
22
23 #define DM_MSG_PREFIX "integrity"
24
25 #define DEFAULT_INTERLEAVE_SECTORS      32768
26 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
27 #define DEFAULT_BUFFER_SECTORS          128
28 #define DEFAULT_JOURNAL_WATERMARK       50
29 #define DEFAULT_SYNC_MSEC               10000
30 #define DEFAULT_MAX_JOURNAL_SECTORS     131072
31 #define MIN_LOG2_INTERLEAVE_SECTORS     3
32 #define MAX_LOG2_INTERLEAVE_SECTORS     31
33 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
34 #define RECALC_SECTORS                  8192
35 #define RECALC_WRITE_SUPER              16
36
37 /*
38  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
39  * so it should not be enabled in the official kernel
40  */
41 //#define DEBUG_PRINT
42 //#define INTERNAL_VERIFY
43
44 /*
45  * On disk structures
46  */
47
48 #define SB_MAGIC                        "integrt"
49 #define SB_VERSION_1                    1
50 #define SB_VERSION_2                    2
51 #define SB_SECTORS                      8
52 #define MAX_SECTORS_PER_BLOCK           8
53
54 struct superblock {
55         __u8 magic[8];
56         __u8 version;
57         __u8 log2_interleave_sectors;
58         __u16 integrity_tag_size;
59         __u32 journal_sections;
60         __u64 provided_data_sectors;    /* userspace uses this value */
61         __u32 flags;
62         __u8 log2_sectors_per_block;
63         __u8 pad[3];
64         __u64 recalc_sector;
65 };
66
67 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
68 #define SB_FLAG_RECALCULATING           0x2
69
70 #define JOURNAL_ENTRY_ROUNDUP           8
71
72 typedef __u64 commit_id_t;
73 #define JOURNAL_MAC_PER_SECTOR          8
74
75 struct journal_entry {
76         union {
77                 struct {
78                         __u32 sector_lo;
79                         __u32 sector_hi;
80                 } s;
81                 __u64 sector;
82         } u;
83         commit_id_t last_bytes[0];
84         /* __u8 tag[0]; */
85 };
86
87 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
88
89 #if BITS_PER_LONG == 64
90 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
91 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
92 #elif defined(CONFIG_LBDAF)
93 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
94 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
95 #else
96 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0)
97 #define journal_entry_get_sector(je)            le32_to_cpu((je)->u.s.sector_lo)
98 #endif
99 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
100 #define journal_entry_set_unused(je)            do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
101 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
102 #define journal_entry_set_inprogress(je)        do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
103
104 #define JOURNAL_BLOCK_SECTORS           8
105 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
106 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
107
108 struct journal_sector {
109         __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
110         __u8 mac[JOURNAL_MAC_PER_SECTOR];
111         commit_id_t commit_id;
112 };
113
114 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
115
116 #define METADATA_PADDING_SECTORS        8
117
118 #define N_COMMIT_IDS                    4
119
120 static unsigned char prev_commit_seq(unsigned char seq)
121 {
122         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
123 }
124
125 static unsigned char next_commit_seq(unsigned char seq)
126 {
127         return (seq + 1) % N_COMMIT_IDS;
128 }
129
130 /*
131  * In-memory structures
132  */
133
134 struct journal_node {
135         struct rb_node node;
136         sector_t sector;
137 };
138
139 struct alg_spec {
140         char *alg_string;
141         char *key_string;
142         __u8 *key;
143         unsigned key_size;
144 };
145
146 struct dm_integrity_c {
147         struct dm_dev *dev;
148         struct dm_dev *meta_dev;
149         unsigned tag_size;
150         __s8 log2_tag_size;
151         sector_t start;
152         mempool_t journal_io_mempool;
153         struct dm_io_client *io;
154         struct dm_bufio_client *bufio;
155         struct workqueue_struct *metadata_wq;
156         struct superblock *sb;
157         unsigned journal_pages;
158         struct page_list *journal;
159         struct page_list *journal_io;
160         struct page_list *journal_xor;
161
162         struct crypto_skcipher *journal_crypt;
163         struct scatterlist **journal_scatterlist;
164         struct scatterlist **journal_io_scatterlist;
165         struct skcipher_request **sk_requests;
166
167         struct crypto_shash *journal_mac;
168
169         struct journal_node *journal_tree;
170         struct rb_root journal_tree_root;
171
172         sector_t provided_data_sectors;
173
174         unsigned short journal_entry_size;
175         unsigned char journal_entries_per_sector;
176         unsigned char journal_section_entries;
177         unsigned short journal_section_sectors;
178         unsigned journal_sections;
179         unsigned journal_entries;
180         sector_t data_device_sectors;
181         sector_t meta_device_sectors;
182         unsigned initial_sectors;
183         unsigned metadata_run;
184         __s8 log2_metadata_run;
185         __u8 log2_buffer_sectors;
186         __u8 sectors_per_block;
187
188         unsigned char mode;
189         int suspending;
190
191         int failed;
192
193         struct crypto_shash *internal_hash;
194
195         /* these variables are locked with endio_wait.lock */
196         struct rb_root in_progress;
197         struct list_head wait_list;
198         wait_queue_head_t endio_wait;
199         struct workqueue_struct *wait_wq;
200
201         unsigned char commit_seq;
202         commit_id_t commit_ids[N_COMMIT_IDS];
203
204         unsigned committed_section;
205         unsigned n_committed_sections;
206
207         unsigned uncommitted_section;
208         unsigned n_uncommitted_sections;
209
210         unsigned free_section;
211         unsigned char free_section_entry;
212         unsigned free_sectors;
213
214         unsigned free_sectors_threshold;
215
216         struct workqueue_struct *commit_wq;
217         struct work_struct commit_work;
218
219         struct workqueue_struct *writer_wq;
220         struct work_struct writer_work;
221
222         struct workqueue_struct *recalc_wq;
223         struct work_struct recalc_work;
224         u8 *recalc_buffer;
225         u8 *recalc_tags;
226
227         struct bio_list flush_bio_list;
228
229         unsigned long autocommit_jiffies;
230         struct timer_list autocommit_timer;
231         unsigned autocommit_msec;
232
233         wait_queue_head_t copy_to_journal_wait;
234
235         struct completion crypto_backoff;
236
237         bool journal_uptodate;
238         bool just_formatted;
239
240         struct alg_spec internal_hash_alg;
241         struct alg_spec journal_crypt_alg;
242         struct alg_spec journal_mac_alg;
243
244         atomic64_t number_of_mismatches;
245 };
246
247 struct dm_integrity_range {
248         sector_t logical_sector;
249         unsigned n_sectors;
250         bool waiting;
251         union {
252                 struct rb_node node;
253                 struct {
254                         struct task_struct *task;
255                         struct list_head wait_entry;
256                 };
257         };
258 };
259
260 struct dm_integrity_io {
261         struct work_struct work;
262
263         struct dm_integrity_c *ic;
264         bool write;
265         bool fua;
266
267         struct dm_integrity_range range;
268
269         sector_t metadata_block;
270         unsigned metadata_offset;
271
272         atomic_t in_flight;
273         blk_status_t bi_status;
274
275         struct completion *completion;
276
277         struct gendisk *orig_bi_disk;
278         u8 orig_bi_partno;
279         bio_end_io_t *orig_bi_end_io;
280         struct bio_integrity_payload *orig_bi_integrity;
281         struct bvec_iter orig_bi_iter;
282 };
283
284 struct journal_completion {
285         struct dm_integrity_c *ic;
286         atomic_t in_flight;
287         struct completion comp;
288 };
289
290 struct journal_io {
291         struct dm_integrity_range range;
292         struct journal_completion *comp;
293 };
294
295 static struct kmem_cache *journal_io_cache;
296
297 #define JOURNAL_IO_MEMPOOL      32
298
299 #ifdef DEBUG_PRINT
300 #define DEBUG_print(x, ...)     printk(KERN_DEBUG x, ##__VA_ARGS__)
301 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
302 {
303         va_list args;
304         va_start(args, msg);
305         vprintk(msg, args);
306         va_end(args);
307         if (len)
308                 pr_cont(":");
309         while (len) {
310                 pr_cont(" %02x", *bytes);
311                 bytes++;
312                 len--;
313         }
314         pr_cont("\n");
315 }
316 #define DEBUG_bytes(bytes, len, msg, ...)       __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
317 #else
318 #define DEBUG_print(x, ...)                     do { } while (0)
319 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
320 #endif
321
322 /*
323  * DM Integrity profile, protection is performed layer above (dm-crypt)
324  */
325 static const struct blk_integrity_profile dm_integrity_profile = {
326         .name                   = "DM-DIF-EXT-TAG",
327         .generate_fn            = NULL,
328         .verify_fn              = NULL,
329 };
330
331 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
332 static void integrity_bio_wait(struct work_struct *w);
333 static void dm_integrity_dtr(struct dm_target *ti);
334
335 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
336 {
337         if (err == -EILSEQ)
338                 atomic64_inc(&ic->number_of_mismatches);
339         if (!cmpxchg(&ic->failed, 0, err))
340                 DMERR("Error on %s: %d", msg, err);
341 }
342
343 static int dm_integrity_failed(struct dm_integrity_c *ic)
344 {
345         return READ_ONCE(ic->failed);
346 }
347
348 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
349                                           unsigned j, unsigned char seq)
350 {
351         /*
352          * Xor the number with section and sector, so that if a piece of
353          * journal is written at wrong place, it is detected.
354          */
355         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
356 }
357
358 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
359                                 sector_t *area, sector_t *offset)
360 {
361         if (!ic->meta_dev) {
362                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
363                 *area = data_sector >> log2_interleave_sectors;
364                 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
365         } else {
366                 *area = 0;
367                 *offset = data_sector;
368         }
369 }
370
371 #define sector_to_block(ic, n)                                          \
372 do {                                                                    \
373         BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));          \
374         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
375 } while (0)
376
377 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
378                                             sector_t offset, unsigned *metadata_offset)
379 {
380         __u64 ms;
381         unsigned mo;
382
383         ms = area << ic->sb->log2_interleave_sectors;
384         if (likely(ic->log2_metadata_run >= 0))
385                 ms += area << ic->log2_metadata_run;
386         else
387                 ms += area * ic->metadata_run;
388         ms >>= ic->log2_buffer_sectors;
389
390         sector_to_block(ic, offset);
391
392         if (likely(ic->log2_tag_size >= 0)) {
393                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
394                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
395         } else {
396                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
397                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
398         }
399         *metadata_offset = mo;
400         return ms;
401 }
402
403 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
404 {
405         sector_t result;
406
407         if (ic->meta_dev)
408                 return offset;
409
410         result = area << ic->sb->log2_interleave_sectors;
411         if (likely(ic->log2_metadata_run >= 0))
412                 result += (area + 1) << ic->log2_metadata_run;
413         else
414                 result += (area + 1) * ic->metadata_run;
415
416         result += (sector_t)ic->initial_sectors + offset;
417         result += ic->start;
418
419         return result;
420 }
421
422 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
423 {
424         if (unlikely(*sec_ptr >= ic->journal_sections))
425                 *sec_ptr -= ic->journal_sections;
426 }
427
428 static void sb_set_version(struct dm_integrity_c *ic)
429 {
430         if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
431                 ic->sb->version = SB_VERSION_2;
432         else
433                 ic->sb->version = SB_VERSION_1;
434 }
435
436 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
437 {
438         struct dm_io_request io_req;
439         struct dm_io_region io_loc;
440
441         io_req.bi_op = op;
442         io_req.bi_op_flags = op_flags;
443         io_req.mem.type = DM_IO_KMEM;
444         io_req.mem.ptr.addr = ic->sb;
445         io_req.notify.fn = NULL;
446         io_req.client = ic->io;
447         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
448         io_loc.sector = ic->start;
449         io_loc.count = SB_SECTORS;
450
451         return dm_io(&io_req, 1, &io_loc, NULL);
452 }
453
454 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
455                                  bool e, const char *function)
456 {
457 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
458         unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
459
460         if (unlikely(section >= ic->journal_sections) ||
461             unlikely(offset >= limit)) {
462                 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
463                         function, section, offset, ic->journal_sections, limit);
464                 BUG();
465         }
466 #endif
467 }
468
469 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
470                                unsigned *pl_index, unsigned *pl_offset)
471 {
472         unsigned sector;
473
474         access_journal_check(ic, section, offset, false, "page_list_location");
475
476         sector = section * ic->journal_section_sectors + offset;
477
478         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
479         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
480 }
481
482 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
483                                                unsigned section, unsigned offset, unsigned *n_sectors)
484 {
485         unsigned pl_index, pl_offset;
486         char *va;
487
488         page_list_location(ic, section, offset, &pl_index, &pl_offset);
489
490         if (n_sectors)
491                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
492
493         va = lowmem_page_address(pl[pl_index].page);
494
495         return (struct journal_sector *)(va + pl_offset);
496 }
497
498 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
499 {
500         return access_page_list(ic, ic->journal, section, offset, NULL);
501 }
502
503 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
504 {
505         unsigned rel_sector, offset;
506         struct journal_sector *js;
507
508         access_journal_check(ic, section, n, true, "access_journal_entry");
509
510         rel_sector = n % JOURNAL_BLOCK_SECTORS;
511         offset = n / JOURNAL_BLOCK_SECTORS;
512
513         js = access_journal(ic, section, rel_sector);
514         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
515 }
516
517 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
518 {
519         n <<= ic->sb->log2_sectors_per_block;
520
521         n += JOURNAL_BLOCK_SECTORS;
522
523         access_journal_check(ic, section, n, false, "access_journal_data");
524
525         return access_journal(ic, section, n);
526 }
527
528 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
529 {
530         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
531         int r;
532         unsigned j, size;
533
534         desc->tfm = ic->journal_mac;
535         desc->flags = 0;
536
537         r = crypto_shash_init(desc);
538         if (unlikely(r)) {
539                 dm_integrity_io_error(ic, "crypto_shash_init", r);
540                 goto err;
541         }
542
543         for (j = 0; j < ic->journal_section_entries; j++) {
544                 struct journal_entry *je = access_journal_entry(ic, section, j);
545                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
546                 if (unlikely(r)) {
547                         dm_integrity_io_error(ic, "crypto_shash_update", r);
548                         goto err;
549                 }
550         }
551
552         size = crypto_shash_digestsize(ic->journal_mac);
553
554         if (likely(size <= JOURNAL_MAC_SIZE)) {
555                 r = crypto_shash_final(desc, result);
556                 if (unlikely(r)) {
557                         dm_integrity_io_error(ic, "crypto_shash_final", r);
558                         goto err;
559                 }
560                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
561         } else {
562                 __u8 digest[HASH_MAX_DIGESTSIZE];
563
564                 if (WARN_ON(size > sizeof(digest))) {
565                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
566                         goto err;
567                 }
568                 r = crypto_shash_final(desc, digest);
569                 if (unlikely(r)) {
570                         dm_integrity_io_error(ic, "crypto_shash_final", r);
571                         goto err;
572                 }
573                 memcpy(result, digest, JOURNAL_MAC_SIZE);
574         }
575
576         return;
577 err:
578         memset(result, 0, JOURNAL_MAC_SIZE);
579 }
580
581 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
582 {
583         __u8 result[JOURNAL_MAC_SIZE];
584         unsigned j;
585
586         if (!ic->journal_mac)
587                 return;
588
589         section_mac(ic, section, result);
590
591         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
592                 struct journal_sector *js = access_journal(ic, section, j);
593
594                 if (likely(wr))
595                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
596                 else {
597                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
598                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
599                 }
600         }
601 }
602
603 static void complete_journal_op(void *context)
604 {
605         struct journal_completion *comp = context;
606         BUG_ON(!atomic_read(&comp->in_flight));
607         if (likely(atomic_dec_and_test(&comp->in_flight)))
608                 complete(&comp->comp);
609 }
610
611 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
612                         unsigned n_sections, struct journal_completion *comp)
613 {
614         struct async_submit_ctl submit;
615         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
616         unsigned pl_index, pl_offset, section_index;
617         struct page_list *source_pl, *target_pl;
618
619         if (likely(encrypt)) {
620                 source_pl = ic->journal;
621                 target_pl = ic->journal_io;
622         } else {
623                 source_pl = ic->journal_io;
624                 target_pl = ic->journal;
625         }
626
627         page_list_location(ic, section, 0, &pl_index, &pl_offset);
628
629         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
630
631         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
632
633         section_index = pl_index;
634
635         do {
636                 size_t this_step;
637                 struct page *src_pages[2];
638                 struct page *dst_page;
639
640                 while (unlikely(pl_index == section_index)) {
641                         unsigned dummy;
642                         if (likely(encrypt))
643                                 rw_section_mac(ic, section, true);
644                         section++;
645                         n_sections--;
646                         if (!n_sections)
647                                 break;
648                         page_list_location(ic, section, 0, &section_index, &dummy);
649                 }
650
651                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
652                 dst_page = target_pl[pl_index].page;
653                 src_pages[0] = source_pl[pl_index].page;
654                 src_pages[1] = ic->journal_xor[pl_index].page;
655
656                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
657
658                 pl_index++;
659                 pl_offset = 0;
660                 n_bytes -= this_step;
661         } while (n_bytes);
662
663         BUG_ON(n_sections);
664
665         async_tx_issue_pending_all();
666 }
667
668 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
669 {
670         struct journal_completion *comp = req->data;
671         if (unlikely(err)) {
672                 if (likely(err == -EINPROGRESS)) {
673                         complete(&comp->ic->crypto_backoff);
674                         return;
675                 }
676                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
677         }
678         complete_journal_op(comp);
679 }
680
681 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
682 {
683         int r;
684         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
685                                       complete_journal_encrypt, comp);
686         if (likely(encrypt))
687                 r = crypto_skcipher_encrypt(req);
688         else
689                 r = crypto_skcipher_decrypt(req);
690         if (likely(!r))
691                 return false;
692         if (likely(r == -EINPROGRESS))
693                 return true;
694         if (likely(r == -EBUSY)) {
695                 wait_for_completion(&comp->ic->crypto_backoff);
696                 reinit_completion(&comp->ic->crypto_backoff);
697                 return true;
698         }
699         dm_integrity_io_error(comp->ic, "encrypt", r);
700         return false;
701 }
702
703 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
704                           unsigned n_sections, struct journal_completion *comp)
705 {
706         struct scatterlist **source_sg;
707         struct scatterlist **target_sg;
708
709         atomic_add(2, &comp->in_flight);
710
711         if (likely(encrypt)) {
712                 source_sg = ic->journal_scatterlist;
713                 target_sg = ic->journal_io_scatterlist;
714         } else {
715                 source_sg = ic->journal_io_scatterlist;
716                 target_sg = ic->journal_scatterlist;
717         }
718
719         do {
720                 struct skcipher_request *req;
721                 unsigned ivsize;
722                 char *iv;
723
724                 if (likely(encrypt))
725                         rw_section_mac(ic, section, true);
726
727                 req = ic->sk_requests[section];
728                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
729                 iv = req->iv;
730
731                 memcpy(iv, iv + ivsize, ivsize);
732
733                 req->src = source_sg[section];
734                 req->dst = target_sg[section];
735
736                 if (unlikely(do_crypt(encrypt, req, comp)))
737                         atomic_inc(&comp->in_flight);
738
739                 section++;
740                 n_sections--;
741         } while (n_sections);
742
743         atomic_dec(&comp->in_flight);
744         complete_journal_op(comp);
745 }
746
747 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
748                             unsigned n_sections, struct journal_completion *comp)
749 {
750         if (ic->journal_xor)
751                 return xor_journal(ic, encrypt, section, n_sections, comp);
752         else
753                 return crypt_journal(ic, encrypt, section, n_sections, comp);
754 }
755
756 static void complete_journal_io(unsigned long error, void *context)
757 {
758         struct journal_completion *comp = context;
759         if (unlikely(error != 0))
760                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
761         complete_journal_op(comp);
762 }
763
764 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
765                        unsigned n_sections, struct journal_completion *comp)
766 {
767         struct dm_io_request io_req;
768         struct dm_io_region io_loc;
769         unsigned sector, n_sectors, pl_index, pl_offset;
770         int r;
771
772         if (unlikely(dm_integrity_failed(ic))) {
773                 if (comp)
774                         complete_journal_io(-1UL, comp);
775                 return;
776         }
777
778         sector = section * ic->journal_section_sectors;
779         n_sectors = n_sections * ic->journal_section_sectors;
780
781         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
782         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
783
784         io_req.bi_op = op;
785         io_req.bi_op_flags = op_flags;
786         io_req.mem.type = DM_IO_PAGE_LIST;
787         if (ic->journal_io)
788                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
789         else
790                 io_req.mem.ptr.pl = &ic->journal[pl_index];
791         io_req.mem.offset = pl_offset;
792         if (likely(comp != NULL)) {
793                 io_req.notify.fn = complete_journal_io;
794                 io_req.notify.context = comp;
795         } else {
796                 io_req.notify.fn = NULL;
797         }
798         io_req.client = ic->io;
799         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
800         io_loc.sector = ic->start + SB_SECTORS + sector;
801         io_loc.count = n_sectors;
802
803         r = dm_io(&io_req, 1, &io_loc, NULL);
804         if (unlikely(r)) {
805                 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
806                 if (comp) {
807                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
808                         complete_journal_io(-1UL, comp);
809                 }
810         }
811 }
812
813 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
814 {
815         struct journal_completion io_comp;
816         struct journal_completion crypt_comp_1;
817         struct journal_completion crypt_comp_2;
818         unsigned i;
819
820         io_comp.ic = ic;
821         init_completion(&io_comp.comp);
822
823         if (commit_start + commit_sections <= ic->journal_sections) {
824                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
825                 if (ic->journal_io) {
826                         crypt_comp_1.ic = ic;
827                         init_completion(&crypt_comp_1.comp);
828                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
829                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
830                         wait_for_completion_io(&crypt_comp_1.comp);
831                 } else {
832                         for (i = 0; i < commit_sections; i++)
833                                 rw_section_mac(ic, commit_start + i, true);
834                 }
835                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
836                            commit_sections, &io_comp);
837         } else {
838                 unsigned to_end;
839                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
840                 to_end = ic->journal_sections - commit_start;
841                 if (ic->journal_io) {
842                         crypt_comp_1.ic = ic;
843                         init_completion(&crypt_comp_1.comp);
844                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
845                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
846                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
847                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
848                                 reinit_completion(&crypt_comp_1.comp);
849                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
850                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
851                                 wait_for_completion_io(&crypt_comp_1.comp);
852                         } else {
853                                 crypt_comp_2.ic = ic;
854                                 init_completion(&crypt_comp_2.comp);
855                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
856                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
857                                 wait_for_completion_io(&crypt_comp_1.comp);
858                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
859                                 wait_for_completion_io(&crypt_comp_2.comp);
860                         }
861                 } else {
862                         for (i = 0; i < to_end; i++)
863                                 rw_section_mac(ic, commit_start + i, true);
864                         rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
865                         for (i = 0; i < commit_sections - to_end; i++)
866                                 rw_section_mac(ic, i, true);
867                 }
868                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
869         }
870
871         wait_for_completion_io(&io_comp.comp);
872 }
873
874 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
875                               unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
876 {
877         struct dm_io_request io_req;
878         struct dm_io_region io_loc;
879         int r;
880         unsigned sector, pl_index, pl_offset;
881
882         BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
883
884         if (unlikely(dm_integrity_failed(ic))) {
885                 fn(-1UL, data);
886                 return;
887         }
888
889         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
890
891         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
892         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
893
894         io_req.bi_op = REQ_OP_WRITE;
895         io_req.bi_op_flags = 0;
896         io_req.mem.type = DM_IO_PAGE_LIST;
897         io_req.mem.ptr.pl = &ic->journal[pl_index];
898         io_req.mem.offset = pl_offset;
899         io_req.notify.fn = fn;
900         io_req.notify.context = data;
901         io_req.client = ic->io;
902         io_loc.bdev = ic->dev->bdev;
903         io_loc.sector = target;
904         io_loc.count = n_sectors;
905
906         r = dm_io(&io_req, 1, &io_loc, NULL);
907         if (unlikely(r)) {
908                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
909                 fn(-1UL, data);
910         }
911 }
912
913 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
914 {
915         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
916                range2->logical_sector + range2->n_sectors > range2->logical_sector;
917 }
918
919 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
920 {
921         struct rb_node **n = &ic->in_progress.rb_node;
922         struct rb_node *parent;
923
924         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
925
926         if (likely(check_waiting)) {
927                 struct dm_integrity_range *range;
928                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
929                         if (unlikely(ranges_overlap(range, new_range)))
930                                 return false;
931                 }
932         }
933
934         parent = NULL;
935
936         while (*n) {
937                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
938
939                 parent = *n;
940                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
941                         n = &range->node.rb_left;
942                 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
943                         n = &range->node.rb_right;
944                 } else {
945                         return false;
946                 }
947         }
948
949         rb_link_node(&new_range->node, parent, n);
950         rb_insert_color(&new_range->node, &ic->in_progress);
951
952         return true;
953 }
954
955 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
956 {
957         rb_erase(&range->node, &ic->in_progress);
958         while (unlikely(!list_empty(&ic->wait_list))) {
959                 struct dm_integrity_range *last_range =
960                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
961                 struct task_struct *last_range_task;
962                 if (!ranges_overlap(range, last_range))
963                         break;
964                 last_range_task = last_range->task;
965                 list_del(&last_range->wait_entry);
966                 if (!add_new_range(ic, last_range, false)) {
967                         last_range->task = last_range_task;
968                         list_add(&last_range->wait_entry, &ic->wait_list);
969                         break;
970                 }
971                 last_range->waiting = false;
972                 wake_up_process(last_range_task);
973         }
974 }
975
976 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
977 {
978         unsigned long flags;
979
980         spin_lock_irqsave(&ic->endio_wait.lock, flags);
981         remove_range_unlocked(ic, range);
982         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
983 }
984
985 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
986 {
987         new_range->waiting = true;
988         list_add_tail(&new_range->wait_entry, &ic->wait_list);
989         new_range->task = current;
990         do {
991                 __set_current_state(TASK_UNINTERRUPTIBLE);
992                 spin_unlock_irq(&ic->endio_wait.lock);
993                 io_schedule();
994                 spin_lock_irq(&ic->endio_wait.lock);
995         } while (unlikely(new_range->waiting));
996 }
997
998 static void init_journal_node(struct journal_node *node)
999 {
1000         RB_CLEAR_NODE(&node->node);
1001         node->sector = (sector_t)-1;
1002 }
1003
1004 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1005 {
1006         struct rb_node **link;
1007         struct rb_node *parent;
1008
1009         node->sector = sector;
1010         BUG_ON(!RB_EMPTY_NODE(&node->node));
1011
1012         link = &ic->journal_tree_root.rb_node;
1013         parent = NULL;
1014
1015         while (*link) {
1016                 struct journal_node *j;
1017                 parent = *link;
1018                 j = container_of(parent, struct journal_node, node);
1019                 if (sector < j->sector)
1020                         link = &j->node.rb_left;
1021                 else
1022                         link = &j->node.rb_right;
1023         }
1024
1025         rb_link_node(&node->node, parent, link);
1026         rb_insert_color(&node->node, &ic->journal_tree_root);
1027 }
1028
1029 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1030 {
1031         BUG_ON(RB_EMPTY_NODE(&node->node));
1032         rb_erase(&node->node, &ic->journal_tree_root);
1033         init_journal_node(node);
1034 }
1035
1036 #define NOT_FOUND       (-1U)
1037
1038 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1039 {
1040         struct rb_node *n = ic->journal_tree_root.rb_node;
1041         unsigned found = NOT_FOUND;
1042         *next_sector = (sector_t)-1;
1043         while (n) {
1044                 struct journal_node *j = container_of(n, struct journal_node, node);
1045                 if (sector == j->sector) {
1046                         found = j - ic->journal_tree;
1047                 }
1048                 if (sector < j->sector) {
1049                         *next_sector = j->sector;
1050                         n = j->node.rb_left;
1051                 } else {
1052                         n = j->node.rb_right;
1053                 }
1054         }
1055
1056         return found;
1057 }
1058
1059 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1060 {
1061         struct journal_node *node, *next_node;
1062         struct rb_node *next;
1063
1064         if (unlikely(pos >= ic->journal_entries))
1065                 return false;
1066         node = &ic->journal_tree[pos];
1067         if (unlikely(RB_EMPTY_NODE(&node->node)))
1068                 return false;
1069         if (unlikely(node->sector != sector))
1070                 return false;
1071
1072         next = rb_next(&node->node);
1073         if (unlikely(!next))
1074                 return true;
1075
1076         next_node = container_of(next, struct journal_node, node);
1077         return next_node->sector != sector;
1078 }
1079
1080 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1081 {
1082         struct rb_node *next;
1083         struct journal_node *next_node;
1084         unsigned next_section;
1085
1086         BUG_ON(RB_EMPTY_NODE(&node->node));
1087
1088         next = rb_next(&node->node);
1089         if (unlikely(!next))
1090                 return false;
1091
1092         next_node = container_of(next, struct journal_node, node);
1093
1094         if (next_node->sector != node->sector)
1095                 return false;
1096
1097         next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1098         if (next_section >= ic->committed_section &&
1099             next_section < ic->committed_section + ic->n_committed_sections)
1100                 return true;
1101         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1102                 return true;
1103
1104         return false;
1105 }
1106
1107 #define TAG_READ        0
1108 #define TAG_WRITE       1
1109 #define TAG_CMP         2
1110
1111 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1112                                unsigned *metadata_offset, unsigned total_size, int op)
1113 {
1114         do {
1115                 unsigned char *data, *dp;
1116                 struct dm_buffer *b;
1117                 unsigned to_copy;
1118                 int r;
1119
1120                 r = dm_integrity_failed(ic);
1121                 if (unlikely(r))
1122                         return r;
1123
1124                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1125                 if (IS_ERR(data))
1126                         return PTR_ERR(data);
1127
1128                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1129                 dp = data + *metadata_offset;
1130                 if (op == TAG_READ) {
1131                         memcpy(tag, dp, to_copy);
1132                 } else if (op == TAG_WRITE) {
1133                         memcpy(dp, tag, to_copy);
1134                         dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1135                 } else  {
1136                         /* e.g.: op == TAG_CMP */
1137                         if (unlikely(memcmp(dp, tag, to_copy))) {
1138                                 unsigned i;
1139
1140                                 for (i = 0; i < to_copy; i++) {
1141                                         if (dp[i] != tag[i])
1142                                                 break;
1143                                         total_size--;
1144                                 }
1145                                 dm_bufio_release(b);
1146                                 return total_size;
1147                         }
1148                 }
1149                 dm_bufio_release(b);
1150
1151                 tag += to_copy;
1152                 *metadata_offset += to_copy;
1153                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1154                         (*metadata_block)++;
1155                         *metadata_offset = 0;
1156                 }
1157                 total_size -= to_copy;
1158         } while (unlikely(total_size));
1159
1160         return 0;
1161 }
1162
1163 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1164 {
1165         int r;
1166         r = dm_bufio_write_dirty_buffers(ic->bufio);
1167         if (unlikely(r))
1168                 dm_integrity_io_error(ic, "writing tags", r);
1169 }
1170
1171 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1172 {
1173         DECLARE_WAITQUEUE(wait, current);
1174         __add_wait_queue(&ic->endio_wait, &wait);
1175         __set_current_state(TASK_UNINTERRUPTIBLE);
1176         spin_unlock_irq(&ic->endio_wait.lock);
1177         io_schedule();
1178         spin_lock_irq(&ic->endio_wait.lock);
1179         __remove_wait_queue(&ic->endio_wait, &wait);
1180 }
1181
1182 static void autocommit_fn(struct timer_list *t)
1183 {
1184         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1185
1186         if (likely(!dm_integrity_failed(ic)))
1187                 queue_work(ic->commit_wq, &ic->commit_work);
1188 }
1189
1190 static void schedule_autocommit(struct dm_integrity_c *ic)
1191 {
1192         if (!timer_pending(&ic->autocommit_timer))
1193                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1194 }
1195
1196 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1197 {
1198         struct bio *bio;
1199         unsigned long flags;
1200
1201         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1202         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1203         bio_list_add(&ic->flush_bio_list, bio);
1204         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1205
1206         queue_work(ic->commit_wq, &ic->commit_work);
1207 }
1208
1209 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1210 {
1211         int r = dm_integrity_failed(ic);
1212         if (unlikely(r) && !bio->bi_status)
1213                 bio->bi_status = errno_to_blk_status(r);
1214         bio_endio(bio);
1215 }
1216
1217 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1218 {
1219         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1220
1221         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1222                 submit_flush_bio(ic, dio);
1223         else
1224                 do_endio(ic, bio);
1225 }
1226
1227 static void dec_in_flight(struct dm_integrity_io *dio)
1228 {
1229         if (atomic_dec_and_test(&dio->in_flight)) {
1230                 struct dm_integrity_c *ic = dio->ic;
1231                 struct bio *bio;
1232
1233                 remove_range(ic, &dio->range);
1234
1235                 if (unlikely(dio->write))
1236                         schedule_autocommit(ic);
1237
1238                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1239
1240                 if (unlikely(dio->bi_status) && !bio->bi_status)
1241                         bio->bi_status = dio->bi_status;
1242                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1243                         dio->range.logical_sector += dio->range.n_sectors;
1244                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1245                         INIT_WORK(&dio->work, integrity_bio_wait);
1246                         queue_work(ic->wait_wq, &dio->work);
1247                         return;
1248                 }
1249                 do_endio_flush(ic, dio);
1250         }
1251 }
1252
1253 static void integrity_end_io(struct bio *bio)
1254 {
1255         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1256
1257         bio->bi_iter = dio->orig_bi_iter;
1258         bio->bi_disk = dio->orig_bi_disk;
1259         bio->bi_partno = dio->orig_bi_partno;
1260         if (dio->orig_bi_integrity) {
1261                 bio->bi_integrity = dio->orig_bi_integrity;
1262                 bio->bi_opf |= REQ_INTEGRITY;
1263         }
1264         bio->bi_end_io = dio->orig_bi_end_io;
1265
1266         if (dio->completion)
1267                 complete(dio->completion);
1268
1269         dec_in_flight(dio);
1270 }
1271
1272 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1273                                       const char *data, char *result)
1274 {
1275         __u64 sector_le = cpu_to_le64(sector);
1276         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1277         int r;
1278         unsigned digest_size;
1279
1280         req->tfm = ic->internal_hash;
1281         req->flags = 0;
1282
1283         r = crypto_shash_init(req);
1284         if (unlikely(r < 0)) {
1285                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1286                 goto failed;
1287         }
1288
1289         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1290         if (unlikely(r < 0)) {
1291                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1292                 goto failed;
1293         }
1294
1295         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1296         if (unlikely(r < 0)) {
1297                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1298                 goto failed;
1299         }
1300
1301         r = crypto_shash_final(req, result);
1302         if (unlikely(r < 0)) {
1303                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1304                 goto failed;
1305         }
1306
1307         digest_size = crypto_shash_digestsize(ic->internal_hash);
1308         if (unlikely(digest_size < ic->tag_size))
1309                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1310
1311         return;
1312
1313 failed:
1314         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1315         get_random_bytes(result, ic->tag_size);
1316 }
1317
1318 static void integrity_metadata(struct work_struct *w)
1319 {
1320         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1321         struct dm_integrity_c *ic = dio->ic;
1322
1323         int r;
1324
1325         if (ic->internal_hash) {
1326                 struct bvec_iter iter;
1327                 struct bio_vec bv;
1328                 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1329                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1330                 char *checksums;
1331                 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1332                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1333                 unsigned sectors_to_process = dio->range.n_sectors;
1334                 sector_t sector = dio->range.logical_sector;
1335
1336                 if (unlikely(ic->mode == 'R'))
1337                         goto skip_io;
1338
1339                 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1340                                     GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1341                 if (!checksums) {
1342                         checksums = checksums_onstack;
1343                         if (WARN_ON(extra_space &&
1344                                     digest_size > sizeof(checksums_onstack))) {
1345                                 r = -EINVAL;
1346                                 goto error;
1347                         }
1348                 }
1349
1350                 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1351                         unsigned pos;
1352                         char *mem, *checksums_ptr;
1353
1354 again:
1355                         mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1356                         pos = 0;
1357                         checksums_ptr = checksums;
1358                         do {
1359                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1360                                 checksums_ptr += ic->tag_size;
1361                                 sectors_to_process -= ic->sectors_per_block;
1362                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1363                                 sector += ic->sectors_per_block;
1364                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1365                         kunmap_atomic(mem);
1366
1367                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1368                                                 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1369                         if (unlikely(r)) {
1370                                 if (r > 0) {
1371                                         DMERR_LIMIT("Checksum failed at sector 0x%llx",
1372                                                     (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1373                                         r = -EILSEQ;
1374                                         atomic64_inc(&ic->number_of_mismatches);
1375                                 }
1376                                 if (likely(checksums != checksums_onstack))
1377                                         kfree(checksums);
1378                                 goto error;
1379                         }
1380
1381                         if (!sectors_to_process)
1382                                 break;
1383
1384                         if (unlikely(pos < bv.bv_len)) {
1385                                 bv.bv_offset += pos;
1386                                 bv.bv_len -= pos;
1387                                 goto again;
1388                         }
1389                 }
1390
1391                 if (likely(checksums != checksums_onstack))
1392                         kfree(checksums);
1393         } else {
1394                 struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1395
1396                 if (bip) {
1397                         struct bio_vec biv;
1398                         struct bvec_iter iter;
1399                         unsigned data_to_process = dio->range.n_sectors;
1400                         sector_to_block(ic, data_to_process);
1401                         data_to_process *= ic->tag_size;
1402
1403                         bip_for_each_vec(biv, bip, iter) {
1404                                 unsigned char *tag;
1405                                 unsigned this_len;
1406
1407                                 BUG_ON(PageHighMem(biv.bv_page));
1408                                 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1409                                 this_len = min(biv.bv_len, data_to_process);
1410                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1411                                                         this_len, !dio->write ? TAG_READ : TAG_WRITE);
1412                                 if (unlikely(r))
1413                                         goto error;
1414                                 data_to_process -= this_len;
1415                                 if (!data_to_process)
1416                                         break;
1417                         }
1418                 }
1419         }
1420 skip_io:
1421         dec_in_flight(dio);
1422         return;
1423 error:
1424         dio->bi_status = errno_to_blk_status(r);
1425         dec_in_flight(dio);
1426 }
1427
1428 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1429 {
1430         struct dm_integrity_c *ic = ti->private;
1431         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1432         struct bio_integrity_payload *bip;
1433
1434         sector_t area, offset;
1435
1436         dio->ic = ic;
1437         dio->bi_status = 0;
1438
1439         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1440                 submit_flush_bio(ic, dio);
1441                 return DM_MAPIO_SUBMITTED;
1442         }
1443
1444         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1445         dio->write = bio_op(bio) == REQ_OP_WRITE;
1446         dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1447         if (unlikely(dio->fua)) {
1448                 /*
1449                  * Don't pass down the FUA flag because we have to flush
1450                  * disk cache anyway.
1451                  */
1452                 bio->bi_opf &= ~REQ_FUA;
1453         }
1454         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1455                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1456                       (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1457                       (unsigned long long)ic->provided_data_sectors);
1458                 return DM_MAPIO_KILL;
1459         }
1460         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1461                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1462                       ic->sectors_per_block,
1463                       (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1464                 return DM_MAPIO_KILL;
1465         }
1466
1467         if (ic->sectors_per_block > 1) {
1468                 struct bvec_iter iter;
1469                 struct bio_vec bv;
1470                 bio_for_each_segment(bv, bio, iter) {
1471                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1472                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1473                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1474                                 return DM_MAPIO_KILL;
1475                         }
1476                 }
1477         }
1478
1479         bip = bio_integrity(bio);
1480         if (!ic->internal_hash) {
1481                 if (bip) {
1482                         unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1483                         if (ic->log2_tag_size >= 0)
1484                                 wanted_tag_size <<= ic->log2_tag_size;
1485                         else
1486                                 wanted_tag_size *= ic->tag_size;
1487                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1488                                 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
1489                                 return DM_MAPIO_KILL;
1490                         }
1491                 }
1492         } else {
1493                 if (unlikely(bip != NULL)) {
1494                         DMERR("Unexpected integrity data when using internal hash");
1495                         return DM_MAPIO_KILL;
1496                 }
1497         }
1498
1499         if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1500                 return DM_MAPIO_KILL;
1501
1502         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1503         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1504         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1505
1506         dm_integrity_map_continue(dio, true);
1507         return DM_MAPIO_SUBMITTED;
1508 }
1509
1510 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1511                                  unsigned journal_section, unsigned journal_entry)
1512 {
1513         struct dm_integrity_c *ic = dio->ic;
1514         sector_t logical_sector;
1515         unsigned n_sectors;
1516
1517         logical_sector = dio->range.logical_sector;
1518         n_sectors = dio->range.n_sectors;
1519         do {
1520                 struct bio_vec bv = bio_iovec(bio);
1521                 char *mem;
1522
1523                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1524                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1525                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1526                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1527 retry_kmap:
1528                 mem = kmap_atomic(bv.bv_page);
1529                 if (likely(dio->write))
1530                         flush_dcache_page(bv.bv_page);
1531
1532                 do {
1533                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1534
1535                         if (unlikely(!dio->write)) {
1536                                 struct journal_sector *js;
1537                                 char *mem_ptr;
1538                                 unsigned s;
1539
1540                                 if (unlikely(journal_entry_is_inprogress(je))) {
1541                                         flush_dcache_page(bv.bv_page);
1542                                         kunmap_atomic(mem);
1543
1544                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1545                                         goto retry_kmap;
1546                                 }
1547                                 smp_rmb();
1548                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1549                                 js = access_journal_data(ic, journal_section, journal_entry);
1550                                 mem_ptr = mem + bv.bv_offset;
1551                                 s = 0;
1552                                 do {
1553                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1554                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1555                                         js++;
1556                                         mem_ptr += 1 << SECTOR_SHIFT;
1557                                 } while (++s < ic->sectors_per_block);
1558 #ifdef INTERNAL_VERIFY
1559                                 if (ic->internal_hash) {
1560                                         char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1561
1562                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1563                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1564                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1565                                                             (unsigned long long)logical_sector);
1566                                         }
1567                                 }
1568 #endif
1569                         }
1570
1571                         if (!ic->internal_hash) {
1572                                 struct bio_integrity_payload *bip = bio_integrity(bio);
1573                                 unsigned tag_todo = ic->tag_size;
1574                                 char *tag_ptr = journal_entry_tag(ic, je);
1575
1576                                 if (bip) do {
1577                                         struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1578                                         unsigned tag_now = min(biv.bv_len, tag_todo);
1579                                         char *tag_addr;
1580                                         BUG_ON(PageHighMem(biv.bv_page));
1581                                         tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1582                                         if (likely(dio->write))
1583                                                 memcpy(tag_ptr, tag_addr, tag_now);
1584                                         else
1585                                                 memcpy(tag_addr, tag_ptr, tag_now);
1586                                         bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1587                                         tag_ptr += tag_now;
1588                                         tag_todo -= tag_now;
1589                                 } while (unlikely(tag_todo)); else {
1590                                         if (likely(dio->write))
1591                                                 memset(tag_ptr, 0, tag_todo);
1592                                 }
1593                         }
1594
1595                         if (likely(dio->write)) {
1596                                 struct journal_sector *js;
1597                                 unsigned s;
1598
1599                                 js = access_journal_data(ic, journal_section, journal_entry);
1600                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1601
1602                                 s = 0;
1603                                 do {
1604                                         je->last_bytes[s] = js[s].commit_id;
1605                                 } while (++s < ic->sectors_per_block);
1606
1607                                 if (ic->internal_hash) {
1608                                         unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1609                                         if (unlikely(digest_size > ic->tag_size)) {
1610                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1611                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1612                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1613                                         } else
1614                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1615                                 }
1616
1617                                 journal_entry_set_sector(je, logical_sector);
1618                         }
1619                         logical_sector += ic->sectors_per_block;
1620
1621                         journal_entry++;
1622                         if (unlikely(journal_entry == ic->journal_section_entries)) {
1623                                 journal_entry = 0;
1624                                 journal_section++;
1625                                 wraparound_section(ic, &journal_section);
1626                         }
1627
1628                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1629                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1630
1631                 if (unlikely(!dio->write))
1632                         flush_dcache_page(bv.bv_page);
1633                 kunmap_atomic(mem);
1634         } while (n_sectors);
1635
1636         if (likely(dio->write)) {
1637                 smp_mb();
1638                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1639                         wake_up(&ic->copy_to_journal_wait);
1640                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1641                         queue_work(ic->commit_wq, &ic->commit_work);
1642                 } else {
1643                         schedule_autocommit(ic);
1644                 }
1645         } else {
1646                 remove_range(ic, &dio->range);
1647         }
1648
1649         if (unlikely(bio->bi_iter.bi_size)) {
1650                 sector_t area, offset;
1651
1652                 dio->range.logical_sector = logical_sector;
1653                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1654                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1655                 return true;
1656         }
1657
1658         return false;
1659 }
1660
1661 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1662 {
1663         struct dm_integrity_c *ic = dio->ic;
1664         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1665         unsigned journal_section, journal_entry;
1666         unsigned journal_read_pos;
1667         struct completion read_comp;
1668         bool need_sync_io = ic->internal_hash && !dio->write;
1669
1670         if (need_sync_io && from_map) {
1671                 INIT_WORK(&dio->work, integrity_bio_wait);
1672                 queue_work(ic->metadata_wq, &dio->work);
1673                 return;
1674         }
1675
1676 lock_retry:
1677         spin_lock_irq(&ic->endio_wait.lock);
1678 retry:
1679         if (unlikely(dm_integrity_failed(ic))) {
1680                 spin_unlock_irq(&ic->endio_wait.lock);
1681                 do_endio(ic, bio);
1682                 return;
1683         }
1684         dio->range.n_sectors = bio_sectors(bio);
1685         journal_read_pos = NOT_FOUND;
1686         if (likely(ic->mode == 'J')) {
1687                 if (dio->write) {
1688                         unsigned next_entry, i, pos;
1689                         unsigned ws, we, range_sectors;
1690
1691                         dio->range.n_sectors = min(dio->range.n_sectors,
1692                                                    ic->free_sectors << ic->sb->log2_sectors_per_block);
1693                         if (unlikely(!dio->range.n_sectors)) {
1694                                 if (from_map)
1695                                         goto offload_to_thread;
1696                                 sleep_on_endio_wait(ic);
1697                                 goto retry;
1698                         }
1699                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1700                         ic->free_sectors -= range_sectors;
1701                         journal_section = ic->free_section;
1702                         journal_entry = ic->free_section_entry;
1703
1704                         next_entry = ic->free_section_entry + range_sectors;
1705                         ic->free_section_entry = next_entry % ic->journal_section_entries;
1706                         ic->free_section += next_entry / ic->journal_section_entries;
1707                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1708                         wraparound_section(ic, &ic->free_section);
1709
1710                         pos = journal_section * ic->journal_section_entries + journal_entry;
1711                         ws = journal_section;
1712                         we = journal_entry;
1713                         i = 0;
1714                         do {
1715                                 struct journal_entry *je;
1716
1717                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1718                                 pos++;
1719                                 if (unlikely(pos >= ic->journal_entries))
1720                                         pos = 0;
1721
1722                                 je = access_journal_entry(ic, ws, we);
1723                                 BUG_ON(!journal_entry_is_unused(je));
1724                                 journal_entry_set_inprogress(je);
1725                                 we++;
1726                                 if (unlikely(we == ic->journal_section_entries)) {
1727                                         we = 0;
1728                                         ws++;
1729                                         wraparound_section(ic, &ws);
1730                                 }
1731                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1732
1733                         spin_unlock_irq(&ic->endio_wait.lock);
1734                         goto journal_read_write;
1735                 } else {
1736                         sector_t next_sector;
1737                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1738                         if (likely(journal_read_pos == NOT_FOUND)) {
1739                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1740                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
1741                         } else {
1742                                 unsigned i;
1743                                 unsigned jp = journal_read_pos + 1;
1744                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1745                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1746                                                 break;
1747                                 }
1748                                 dio->range.n_sectors = i;
1749                         }
1750                 }
1751         }
1752         if (unlikely(!add_new_range(ic, &dio->range, true))) {
1753                 /*
1754                  * We must not sleep in the request routine because it could
1755                  * stall bios on current->bio_list.
1756                  * So, we offload the bio to a workqueue if we have to sleep.
1757                  */
1758                 if (from_map) {
1759 offload_to_thread:
1760                         spin_unlock_irq(&ic->endio_wait.lock);
1761                         INIT_WORK(&dio->work, integrity_bio_wait);
1762                         queue_work(ic->wait_wq, &dio->work);
1763                         return;
1764                 }
1765                 wait_and_add_new_range(ic, &dio->range);
1766         }
1767         spin_unlock_irq(&ic->endio_wait.lock);
1768
1769         if (unlikely(journal_read_pos != NOT_FOUND)) {
1770                 journal_section = journal_read_pos / ic->journal_section_entries;
1771                 journal_entry = journal_read_pos % ic->journal_section_entries;
1772                 goto journal_read_write;
1773         }
1774
1775         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1776
1777         if (need_sync_io) {
1778                 init_completion(&read_comp);
1779                 dio->completion = &read_comp;
1780         } else
1781                 dio->completion = NULL;
1782
1783         dio->orig_bi_iter = bio->bi_iter;
1784
1785         dio->orig_bi_disk = bio->bi_disk;
1786         dio->orig_bi_partno = bio->bi_partno;
1787         bio_set_dev(bio, ic->dev->bdev);
1788
1789         dio->orig_bi_integrity = bio_integrity(bio);
1790         bio->bi_integrity = NULL;
1791         bio->bi_opf &= ~REQ_INTEGRITY;
1792
1793         dio->orig_bi_end_io = bio->bi_end_io;
1794         bio->bi_end_io = integrity_end_io;
1795
1796         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1797         generic_make_request(bio);
1798
1799         if (need_sync_io) {
1800                 wait_for_completion_io(&read_comp);
1801                 if (unlikely(ic->recalc_wq != NULL) &&
1802                     ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
1803                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
1804                         goto skip_check;
1805                 if (likely(!bio->bi_status))
1806                         integrity_metadata(&dio->work);
1807                 else
1808 skip_check:
1809                         dec_in_flight(dio);
1810
1811         } else {
1812                 INIT_WORK(&dio->work, integrity_metadata);
1813                 queue_work(ic->metadata_wq, &dio->work);
1814         }
1815
1816         return;
1817
1818 journal_read_write:
1819         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
1820                 goto lock_retry;
1821
1822         do_endio_flush(ic, dio);
1823 }
1824
1825
1826 static void integrity_bio_wait(struct work_struct *w)
1827 {
1828         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1829
1830         dm_integrity_map_continue(dio, false);
1831 }
1832
1833 static void pad_uncommitted(struct dm_integrity_c *ic)
1834 {
1835         if (ic->free_section_entry) {
1836                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
1837                 ic->free_section_entry = 0;
1838                 ic->free_section++;
1839                 wraparound_section(ic, &ic->free_section);
1840                 ic->n_uncommitted_sections++;
1841         }
1842         WARN_ON(ic->journal_sections * ic->journal_section_entries !=
1843                 (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
1844 }
1845
1846 static void integrity_commit(struct work_struct *w)
1847 {
1848         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
1849         unsigned commit_start, commit_sections;
1850         unsigned i, j, n;
1851         struct bio *flushes;
1852
1853         del_timer(&ic->autocommit_timer);
1854
1855         spin_lock_irq(&ic->endio_wait.lock);
1856         flushes = bio_list_get(&ic->flush_bio_list);
1857         if (unlikely(ic->mode != 'J')) {
1858                 spin_unlock_irq(&ic->endio_wait.lock);
1859                 dm_integrity_flush_buffers(ic);
1860                 goto release_flush_bios;
1861         }
1862
1863         pad_uncommitted(ic);
1864         commit_start = ic->uncommitted_section;
1865         commit_sections = ic->n_uncommitted_sections;
1866         spin_unlock_irq(&ic->endio_wait.lock);
1867
1868         if (!commit_sections)
1869                 goto release_flush_bios;
1870
1871         i = commit_start;
1872         for (n = 0; n < commit_sections; n++) {
1873                 for (j = 0; j < ic->journal_section_entries; j++) {
1874                         struct journal_entry *je;
1875                         je = access_journal_entry(ic, i, j);
1876                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1877                 }
1878                 for (j = 0; j < ic->journal_section_sectors; j++) {
1879                         struct journal_sector *js;
1880                         js = access_journal(ic, i, j);
1881                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
1882                 }
1883                 i++;
1884                 if (unlikely(i >= ic->journal_sections))
1885                         ic->commit_seq = next_commit_seq(ic->commit_seq);
1886                 wraparound_section(ic, &i);
1887         }
1888         smp_rmb();
1889
1890         write_journal(ic, commit_start, commit_sections);
1891
1892         spin_lock_irq(&ic->endio_wait.lock);
1893         ic->uncommitted_section += commit_sections;
1894         wraparound_section(ic, &ic->uncommitted_section);
1895         ic->n_uncommitted_sections -= commit_sections;
1896         ic->n_committed_sections += commit_sections;
1897         spin_unlock_irq(&ic->endio_wait.lock);
1898
1899         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
1900                 queue_work(ic->writer_wq, &ic->writer_work);
1901
1902 release_flush_bios:
1903         while (flushes) {
1904                 struct bio *next = flushes->bi_next;
1905                 flushes->bi_next = NULL;
1906                 do_endio(ic, flushes);
1907                 flushes = next;
1908         }
1909 }
1910
1911 static void complete_copy_from_journal(unsigned long error, void *context)
1912 {
1913         struct journal_io *io = context;
1914         struct journal_completion *comp = io->comp;
1915         struct dm_integrity_c *ic = comp->ic;
1916         remove_range(ic, &io->range);
1917         mempool_free(io, &ic->journal_io_mempool);
1918         if (unlikely(error != 0))
1919                 dm_integrity_io_error(ic, "copying from journal", -EIO);
1920         complete_journal_op(comp);
1921 }
1922
1923 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
1924                                struct journal_entry *je)
1925 {
1926         unsigned s = 0;
1927         do {
1928                 js->commit_id = je->last_bytes[s];
1929                 js++;
1930         } while (++s < ic->sectors_per_block);
1931 }
1932
1933 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
1934                              unsigned write_sections, bool from_replay)
1935 {
1936         unsigned i, j, n;
1937         struct journal_completion comp;
1938         struct blk_plug plug;
1939
1940         blk_start_plug(&plug);
1941
1942         comp.ic = ic;
1943         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1944         init_completion(&comp.comp);
1945
1946         i = write_start;
1947         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
1948 #ifndef INTERNAL_VERIFY
1949                 if (unlikely(from_replay))
1950 #endif
1951                         rw_section_mac(ic, i, false);
1952                 for (j = 0; j < ic->journal_section_entries; j++) {
1953                         struct journal_entry *je = access_journal_entry(ic, i, j);
1954                         sector_t sec, area, offset;
1955                         unsigned k, l, next_loop;
1956                         sector_t metadata_block;
1957                         unsigned metadata_offset;
1958                         struct journal_io *io;
1959
1960                         if (journal_entry_is_unused(je))
1961                                 continue;
1962                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
1963                         sec = journal_entry_get_sector(je);
1964                         if (unlikely(from_replay)) {
1965                                 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
1966                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
1967                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
1968                                 }
1969                         }
1970                         get_area_and_offset(ic, sec, &area, &offset);
1971                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
1972                         for (k = j + 1; k < ic->journal_section_entries; k++) {
1973                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
1974                                 sector_t sec2, area2, offset2;
1975                                 if (journal_entry_is_unused(je2))
1976                                         break;
1977                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
1978                                 sec2 = journal_entry_get_sector(je2);
1979                                 get_area_and_offset(ic, sec2, &area2, &offset2);
1980                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
1981                                         break;
1982                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
1983                         }
1984                         next_loop = k - 1;
1985
1986                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
1987                         io->comp = &comp;
1988                         io->range.logical_sector = sec;
1989                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
1990
1991                         spin_lock_irq(&ic->endio_wait.lock);
1992                         if (unlikely(!add_new_range(ic, &io->range, true)))
1993                                 wait_and_add_new_range(ic, &io->range);
1994
1995                         if (likely(!from_replay)) {
1996                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
1997
1998                                 /* don't write if there is newer committed sector */
1999                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2000                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
2001
2002                                         journal_entry_set_unused(je2);
2003                                         remove_journal_node(ic, &section_node[j]);
2004                                         j++;
2005                                         sec += ic->sectors_per_block;
2006                                         offset += ic->sectors_per_block;
2007                                 }
2008                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2009                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2010
2011                                         journal_entry_set_unused(je2);
2012                                         remove_journal_node(ic, &section_node[k - 1]);
2013                                         k--;
2014                                 }
2015                                 if (j == k) {
2016                                         remove_range_unlocked(ic, &io->range);
2017                                         spin_unlock_irq(&ic->endio_wait.lock);
2018                                         mempool_free(io, &ic->journal_io_mempool);
2019                                         goto skip_io;
2020                                 }
2021                                 for (l = j; l < k; l++) {
2022                                         remove_journal_node(ic, &section_node[l]);
2023                                 }
2024                         }
2025                         spin_unlock_irq(&ic->endio_wait.lock);
2026
2027                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2028                         for (l = j; l < k; l++) {
2029                                 int r;
2030                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2031
2032                                 if (
2033 #ifndef INTERNAL_VERIFY
2034                                     unlikely(from_replay) &&
2035 #endif
2036                                     ic->internal_hash) {
2037                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2038
2039                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2040                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2041                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2042                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2043                                 }
2044
2045                                 journal_entry_set_unused(je2);
2046                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2047                                                         ic->tag_size, TAG_WRITE);
2048                                 if (unlikely(r)) {
2049                                         dm_integrity_io_error(ic, "reading tags", r);
2050                                 }
2051                         }
2052
2053                         atomic_inc(&comp.in_flight);
2054                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2055                                           (k - j) << ic->sb->log2_sectors_per_block,
2056                                           get_data_sector(ic, area, offset),
2057                                           complete_copy_from_journal, io);
2058 skip_io:
2059                         j = next_loop;
2060                 }
2061         }
2062
2063         dm_bufio_write_dirty_buffers_async(ic->bufio);
2064
2065         blk_finish_plug(&plug);
2066
2067         complete_journal_op(&comp);
2068         wait_for_completion_io(&comp.comp);
2069
2070         dm_integrity_flush_buffers(ic);
2071 }
2072
2073 static void integrity_writer(struct work_struct *w)
2074 {
2075         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2076         unsigned write_start, write_sections;
2077
2078         unsigned prev_free_sectors;
2079
2080         /* the following test is not needed, but it tests the replay code */
2081         if (READ_ONCE(ic->suspending) && !ic->meta_dev)
2082                 return;
2083
2084         spin_lock_irq(&ic->endio_wait.lock);
2085         write_start = ic->committed_section;
2086         write_sections = ic->n_committed_sections;
2087         spin_unlock_irq(&ic->endio_wait.lock);
2088
2089         if (!write_sections)
2090                 return;
2091
2092         do_journal_write(ic, write_start, write_sections, false);
2093
2094         spin_lock_irq(&ic->endio_wait.lock);
2095
2096         ic->committed_section += write_sections;
2097         wraparound_section(ic, &ic->committed_section);
2098         ic->n_committed_sections -= write_sections;
2099
2100         prev_free_sectors = ic->free_sectors;
2101         ic->free_sectors += write_sections * ic->journal_section_entries;
2102         if (unlikely(!prev_free_sectors))
2103                 wake_up_locked(&ic->endio_wait);
2104
2105         spin_unlock_irq(&ic->endio_wait.lock);
2106 }
2107
2108 static void recalc_write_super(struct dm_integrity_c *ic)
2109 {
2110         int r;
2111
2112         dm_integrity_flush_buffers(ic);
2113         if (dm_integrity_failed(ic))
2114                 return;
2115
2116         sb_set_version(ic);
2117         r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2118         if (unlikely(r))
2119                 dm_integrity_io_error(ic, "writing superblock", r);
2120 }
2121
2122 static void integrity_recalc(struct work_struct *w)
2123 {
2124         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2125         struct dm_integrity_range range;
2126         struct dm_io_request io_req;
2127         struct dm_io_region io_loc;
2128         sector_t area, offset;
2129         sector_t metadata_block;
2130         unsigned metadata_offset;
2131         __u8 *t;
2132         unsigned i;
2133         int r;
2134         unsigned super_counter = 0;
2135
2136         spin_lock_irq(&ic->endio_wait.lock);
2137
2138 next_chunk:
2139
2140         if (unlikely(READ_ONCE(ic->suspending)))
2141                 goto unlock_ret;
2142
2143         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2144         if (unlikely(range.logical_sector >= ic->provided_data_sectors))
2145                 goto unlock_ret;
2146
2147         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2148         range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2149         if (!ic->meta_dev)
2150                 range.n_sectors = min(range.n_sectors, (1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2151
2152         if (unlikely(!add_new_range(ic, &range, true)))
2153                 wait_and_add_new_range(ic, &range);
2154
2155         spin_unlock_irq(&ic->endio_wait.lock);
2156
2157         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2158                 recalc_write_super(ic);
2159                 super_counter = 0;
2160         }
2161
2162         if (unlikely(dm_integrity_failed(ic)))
2163                 goto err;
2164
2165         io_req.bi_op = REQ_OP_READ;
2166         io_req.bi_op_flags = 0;
2167         io_req.mem.type = DM_IO_VMA;
2168         io_req.mem.ptr.addr = ic->recalc_buffer;
2169         io_req.notify.fn = NULL;
2170         io_req.client = ic->io;
2171         io_loc.bdev = ic->dev->bdev;
2172         io_loc.sector = get_data_sector(ic, area, offset);
2173         io_loc.count = range.n_sectors;
2174
2175         r = dm_io(&io_req, 1, &io_loc, NULL);
2176         if (unlikely(r)) {
2177                 dm_integrity_io_error(ic, "reading data", r);
2178                 goto err;
2179         }
2180
2181         t = ic->recalc_tags;
2182         for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
2183                 integrity_sector_checksum(ic, range.logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2184                 t += ic->tag_size;
2185         }
2186
2187         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2188
2189         r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2190         if (unlikely(r)) {
2191                 dm_integrity_io_error(ic, "writing tags", r);
2192                 goto err;
2193         }
2194
2195         spin_lock_irq(&ic->endio_wait.lock);
2196         remove_range_unlocked(ic, &range);
2197         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2198         goto next_chunk;
2199
2200 err:
2201         remove_range(ic, &range);
2202         return;
2203
2204 unlock_ret:
2205         spin_unlock_irq(&ic->endio_wait.lock);
2206
2207         recalc_write_super(ic);
2208 }
2209
2210 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2211                          unsigned n_sections, unsigned char commit_seq)
2212 {
2213         unsigned i, j, n;
2214
2215         if (!n_sections)
2216                 return;
2217
2218         for (n = 0; n < n_sections; n++) {
2219                 i = start_section + n;
2220                 wraparound_section(ic, &i);
2221                 for (j = 0; j < ic->journal_section_sectors; j++) {
2222                         struct journal_sector *js = access_journal(ic, i, j);
2223                         memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2224                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2225                 }
2226                 for (j = 0; j < ic->journal_section_entries; j++) {
2227                         struct journal_entry *je = access_journal_entry(ic, i, j);
2228                         journal_entry_set_unused(je);
2229                 }
2230         }
2231
2232         write_journal(ic, start_section, n_sections);
2233 }
2234
2235 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2236 {
2237         unsigned char k;
2238         for (k = 0; k < N_COMMIT_IDS; k++) {
2239                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2240                         return k;
2241         }
2242         dm_integrity_io_error(ic, "journal commit id", -EIO);
2243         return -EIO;
2244 }
2245
2246 static void replay_journal(struct dm_integrity_c *ic)
2247 {
2248         unsigned i, j;
2249         bool used_commit_ids[N_COMMIT_IDS];
2250         unsigned max_commit_id_sections[N_COMMIT_IDS];
2251         unsigned write_start, write_sections;
2252         unsigned continue_section;
2253         bool journal_empty;
2254         unsigned char unused, last_used, want_commit_seq;
2255
2256         if (ic->mode == 'R')
2257                 return;
2258
2259         if (ic->journal_uptodate)
2260                 return;
2261
2262         last_used = 0;
2263         write_start = 0;
2264
2265         if (!ic->just_formatted) {
2266                 DEBUG_print("reading journal\n");
2267                 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2268                 if (ic->journal_io)
2269                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2270                 if (ic->journal_io) {
2271                         struct journal_completion crypt_comp;
2272                         crypt_comp.ic = ic;
2273                         init_completion(&crypt_comp.comp);
2274                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2275                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2276                         wait_for_completion(&crypt_comp.comp);
2277                 }
2278                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2279         }
2280
2281         if (dm_integrity_failed(ic))
2282                 goto clear_journal;
2283
2284         journal_empty = true;
2285         memset(used_commit_ids, 0, sizeof used_commit_ids);
2286         memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2287         for (i = 0; i < ic->journal_sections; i++) {
2288                 for (j = 0; j < ic->journal_section_sectors; j++) {
2289                         int k;
2290                         struct journal_sector *js = access_journal(ic, i, j);
2291                         k = find_commit_seq(ic, i, j, js->commit_id);
2292                         if (k < 0)
2293                                 goto clear_journal;
2294                         used_commit_ids[k] = true;
2295                         max_commit_id_sections[k] = i;
2296                 }
2297                 if (journal_empty) {
2298                         for (j = 0; j < ic->journal_section_entries; j++) {
2299                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2300                                 if (!journal_entry_is_unused(je)) {
2301                                         journal_empty = false;
2302                                         break;
2303                                 }
2304                         }
2305                 }
2306         }
2307
2308         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2309                 unused = N_COMMIT_IDS - 1;
2310                 while (unused && !used_commit_ids[unused - 1])
2311                         unused--;
2312         } else {
2313                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2314                         if (!used_commit_ids[unused])
2315                                 break;
2316                 if (unused == N_COMMIT_IDS) {
2317                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
2318                         goto clear_journal;
2319                 }
2320         }
2321         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2322                     unused, used_commit_ids[0], used_commit_ids[1],
2323                     used_commit_ids[2], used_commit_ids[3]);
2324
2325         last_used = prev_commit_seq(unused);
2326         want_commit_seq = prev_commit_seq(last_used);
2327
2328         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2329                 journal_empty = true;
2330
2331         write_start = max_commit_id_sections[last_used] + 1;
2332         if (unlikely(write_start >= ic->journal_sections))
2333                 want_commit_seq = next_commit_seq(want_commit_seq);
2334         wraparound_section(ic, &write_start);
2335
2336         i = write_start;
2337         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2338                 for (j = 0; j < ic->journal_section_sectors; j++) {
2339                         struct journal_sector *js = access_journal(ic, i, j);
2340
2341                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2342                                 /*
2343                                  * This could be caused by crash during writing.
2344                                  * We won't replay the inconsistent part of the
2345                                  * journal.
2346                                  */
2347                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2348                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2349                                 goto brk;
2350                         }
2351                 }
2352                 i++;
2353                 if (unlikely(i >= ic->journal_sections))
2354                         want_commit_seq = next_commit_seq(want_commit_seq);
2355                 wraparound_section(ic, &i);
2356         }
2357 brk:
2358
2359         if (!journal_empty) {
2360                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2361                             write_sections, write_start, want_commit_seq);
2362                 do_journal_write(ic, write_start, write_sections, true);
2363         }
2364
2365         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2366                 continue_section = write_start;
2367                 ic->commit_seq = want_commit_seq;
2368                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2369         } else {
2370                 unsigned s;
2371                 unsigned char erase_seq;
2372 clear_journal:
2373                 DEBUG_print("clearing journal\n");
2374
2375                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2376                 s = write_start;
2377                 init_journal(ic, s, 1, erase_seq);
2378                 s++;
2379                 wraparound_section(ic, &s);
2380                 if (ic->journal_sections >= 2) {
2381                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2382                         s += ic->journal_sections - 2;
2383                         wraparound_section(ic, &s);
2384                         init_journal(ic, s, 1, erase_seq);
2385                 }
2386
2387                 continue_section = 0;
2388                 ic->commit_seq = next_commit_seq(erase_seq);
2389         }
2390
2391         ic->committed_section = continue_section;
2392         ic->n_committed_sections = 0;
2393
2394         ic->uncommitted_section = continue_section;
2395         ic->n_uncommitted_sections = 0;
2396
2397         ic->free_section = continue_section;
2398         ic->free_section_entry = 0;
2399         ic->free_sectors = ic->journal_entries;
2400
2401         ic->journal_tree_root = RB_ROOT;
2402         for (i = 0; i < ic->journal_entries; i++)
2403                 init_journal_node(&ic->journal_tree[i]);
2404 }
2405
2406 static void dm_integrity_postsuspend(struct dm_target *ti)
2407 {
2408         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2409
2410         del_timer_sync(&ic->autocommit_timer);
2411
2412         WRITE_ONCE(ic->suspending, 1);
2413
2414         if (ic->recalc_wq)
2415                 drain_workqueue(ic->recalc_wq);
2416
2417         queue_work(ic->commit_wq, &ic->commit_work);
2418         drain_workqueue(ic->commit_wq);
2419
2420         if (ic->mode == 'J') {
2421                 if (ic->meta_dev)
2422                         queue_work(ic->writer_wq, &ic->writer_work);
2423                 drain_workqueue(ic->writer_wq);
2424                 dm_integrity_flush_buffers(ic);
2425         }
2426
2427         WRITE_ONCE(ic->suspending, 0);
2428
2429         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2430
2431         ic->journal_uptodate = true;
2432 }
2433
2434 static void dm_integrity_resume(struct dm_target *ti)
2435 {
2436         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2437
2438         replay_journal(ic);
2439
2440         if (ic->recalc_wq && ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2441                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
2442                 if (recalc_pos < ic->provided_data_sectors) {
2443                         queue_work(ic->recalc_wq, &ic->recalc_work);
2444                 } else if (recalc_pos > ic->provided_data_sectors) {
2445                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
2446                         recalc_write_super(ic);
2447                 }
2448         }
2449 }
2450
2451 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2452                                 unsigned status_flags, char *result, unsigned maxlen)
2453 {
2454         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2455         unsigned arg_count;
2456         size_t sz = 0;
2457
2458         switch (type) {
2459         case STATUSTYPE_INFO:
2460                 DMEMIT("%llu %llu",
2461                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
2462                         (unsigned long long)ic->provided_data_sectors);
2463                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2464                         DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
2465                 else
2466                         DMEMIT(" -");
2467                 break;
2468
2469         case STATUSTYPE_TABLE: {
2470                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2471                 watermark_percentage += ic->journal_entries / 2;
2472                 do_div(watermark_percentage, ic->journal_entries);
2473                 arg_count = 5;
2474                 arg_count += !!ic->meta_dev;
2475                 arg_count += ic->sectors_per_block != 1;
2476                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
2477                 arg_count += !!ic->internal_hash_alg.alg_string;
2478                 arg_count += !!ic->journal_crypt_alg.alg_string;
2479                 arg_count += !!ic->journal_mac_alg.alg_string;
2480                 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2481                        ic->tag_size, ic->mode, arg_count);
2482                 if (ic->meta_dev)
2483                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
2484                 if (ic->sectors_per_block != 1)
2485                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2486                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2487                         DMEMIT(" recalculate");
2488                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2489                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2490                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2491                 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2492                 DMEMIT(" commit_time:%u", ic->autocommit_msec);
2493
2494 #define EMIT_ALG(a, n)                                                  \
2495                 do {                                                    \
2496                         if (ic->a.alg_string) {                         \
2497                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
2498                                 if (ic->a.key_string)                   \
2499                                         DMEMIT(":%s", ic->a.key_string);\
2500                         }                                               \
2501                 } while (0)
2502                 EMIT_ALG(internal_hash_alg, "internal_hash");
2503                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2504                 EMIT_ALG(journal_mac_alg, "journal_mac");
2505                 break;
2506         }
2507         }
2508 }
2509
2510 static int dm_integrity_iterate_devices(struct dm_target *ti,
2511                                         iterate_devices_callout_fn fn, void *data)
2512 {
2513         struct dm_integrity_c *ic = ti->private;
2514
2515         if (!ic->meta_dev)
2516                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2517         else
2518                 return fn(ti, ic->dev, 0, ti->len, data);
2519 }
2520
2521 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2522 {
2523         struct dm_integrity_c *ic = ti->private;
2524
2525         if (ic->sectors_per_block > 1) {
2526                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2527                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2528                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2529         }
2530 }
2531
2532 static void calculate_journal_section_size(struct dm_integrity_c *ic)
2533 {
2534         unsigned sector_space = JOURNAL_SECTOR_DATA;
2535
2536         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2537         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2538                                          JOURNAL_ENTRY_ROUNDUP);
2539
2540         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2541                 sector_space -= JOURNAL_MAC_PER_SECTOR;
2542         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
2543         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
2544         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
2545         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
2546 }
2547
2548 static int calculate_device_limits(struct dm_integrity_c *ic)
2549 {
2550         __u64 initial_sectors;
2551
2552         calculate_journal_section_size(ic);
2553         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
2554         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
2555                 return -EINVAL;
2556         ic->initial_sectors = initial_sectors;
2557
2558         if (!ic->meta_dev) {
2559                 sector_t last_sector, last_area, last_offset;
2560
2561                 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
2562                                            (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
2563                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
2564                         ic->log2_metadata_run = __ffs(ic->metadata_run);
2565                 else
2566                         ic->log2_metadata_run = -1;
2567
2568                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
2569                 last_sector = get_data_sector(ic, last_area, last_offset);
2570                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
2571                         return -EINVAL;
2572         } else {
2573                 __u64 meta_size = ic->provided_data_sectors * ic->tag_size;
2574                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
2575                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
2576                 meta_size <<= ic->log2_buffer_sectors;
2577                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
2578                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
2579                         return -EINVAL;
2580                 ic->metadata_run = 1;
2581                 ic->log2_metadata_run = 0;
2582         }
2583
2584         return 0;
2585 }
2586
2587 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
2588 {
2589         unsigned journal_sections;
2590         int test_bit;
2591
2592         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
2593         memcpy(ic->sb->magic, SB_MAGIC, 8);
2594         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
2595         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
2596         if (ic->journal_mac_alg.alg_string)
2597                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
2598
2599         calculate_journal_section_size(ic);
2600         journal_sections = journal_sectors / ic->journal_section_sectors;
2601         if (!journal_sections)
2602                 journal_sections = 1;
2603
2604         if (!ic->meta_dev) {
2605                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
2606                 if (!interleave_sectors)
2607                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2608                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
2609                 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2610                 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2611
2612                 ic->provided_data_sectors = 0;
2613                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
2614                         __u64 prev_data_sectors = ic->provided_data_sectors;
2615
2616                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
2617                         if (calculate_device_limits(ic))
2618                                 ic->provided_data_sectors = prev_data_sectors;
2619                 }
2620                 if (!ic->provided_data_sectors)
2621                         return -EINVAL;
2622         } else {
2623                 ic->sb->log2_interleave_sectors = 0;
2624                 ic->provided_data_sectors = ic->data_device_sectors;
2625                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
2626
2627 try_smaller_buffer:
2628                 ic->sb->journal_sections = cpu_to_le32(0);
2629                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
2630                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
2631                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
2632                         if (test_journal_sections > journal_sections)
2633                                 continue;
2634                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
2635                         if (calculate_device_limits(ic))
2636                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
2637
2638                 }
2639                 if (!le32_to_cpu(ic->sb->journal_sections)) {
2640                         if (ic->log2_buffer_sectors > 3) {
2641                                 ic->log2_buffer_sectors--;
2642                                 goto try_smaller_buffer;
2643                         }
2644                         return -EINVAL;
2645                 }
2646         }
2647
2648         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2649
2650         sb_set_version(ic);
2651
2652         return 0;
2653 }
2654
2655 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
2656 {
2657         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
2658         struct blk_integrity bi;
2659
2660         memset(&bi, 0, sizeof(bi));
2661         bi.profile = &dm_integrity_profile;
2662         bi.tuple_size = ic->tag_size;
2663         bi.tag_size = bi.tuple_size;
2664         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
2665
2666         blk_integrity_register(disk, &bi);
2667         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
2668 }
2669
2670 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
2671 {
2672         unsigned i;
2673
2674         if (!pl)
2675                 return;
2676         for (i = 0; i < ic->journal_pages; i++)
2677                 if (pl[i].page)
2678                         __free_page(pl[i].page);
2679         kvfree(pl);
2680 }
2681
2682 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
2683 {
2684         size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
2685         struct page_list *pl;
2686         unsigned i;
2687
2688         pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
2689         if (!pl)
2690                 return NULL;
2691
2692         for (i = 0; i < ic->journal_pages; i++) {
2693                 pl[i].page = alloc_page(GFP_KERNEL);
2694                 if (!pl[i].page) {
2695                         dm_integrity_free_page_list(ic, pl);
2696                         return NULL;
2697                 }
2698                 if (i)
2699                         pl[i - 1].next = &pl[i];
2700         }
2701
2702         return pl;
2703 }
2704
2705 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
2706 {
2707         unsigned i;
2708         for (i = 0; i < ic->journal_sections; i++)
2709                 kvfree(sl[i]);
2710         kvfree(sl);
2711 }
2712
2713 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
2714 {
2715         struct scatterlist **sl;
2716         unsigned i;
2717
2718         sl = kvmalloc_array(ic->journal_sections,
2719                             sizeof(struct scatterlist *),
2720                             GFP_KERNEL | __GFP_ZERO);
2721         if (!sl)
2722                 return NULL;
2723
2724         for (i = 0; i < ic->journal_sections; i++) {
2725                 struct scatterlist *s;
2726                 unsigned start_index, start_offset;
2727                 unsigned end_index, end_offset;
2728                 unsigned n_pages;
2729                 unsigned idx;
2730
2731                 page_list_location(ic, i, 0, &start_index, &start_offset);
2732                 page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
2733
2734                 n_pages = (end_index - start_index + 1);
2735
2736                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
2737                                    GFP_KERNEL);
2738                 if (!s) {
2739                         dm_integrity_free_journal_scatterlist(ic, sl);
2740                         return NULL;
2741                 }
2742
2743                 sg_init_table(s, n_pages);
2744                 for (idx = start_index; idx <= end_index; idx++) {
2745                         char *va = lowmem_page_address(pl[idx].page);
2746                         unsigned start = 0, end = PAGE_SIZE;
2747                         if (idx == start_index)
2748                                 start = start_offset;
2749                         if (idx == end_index)
2750                                 end = end_offset + (1 << SECTOR_SHIFT);
2751                         sg_set_buf(&s[idx - start_index], va + start, end - start);
2752                 }
2753
2754                 sl[i] = s;
2755         }
2756
2757         return sl;
2758 }
2759
2760 static void free_alg(struct alg_spec *a)
2761 {
2762         kzfree(a->alg_string);
2763         kzfree(a->key);
2764         memset(a, 0, sizeof *a);
2765 }
2766
2767 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
2768 {
2769         char *k;
2770
2771         free_alg(a);
2772
2773         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
2774         if (!a->alg_string)
2775                 goto nomem;
2776
2777         k = strchr(a->alg_string, ':');
2778         if (k) {
2779                 *k = 0;
2780                 a->key_string = k + 1;
2781                 if (strlen(a->key_string) & 1)
2782                         goto inval;
2783
2784                 a->key_size = strlen(a->key_string) / 2;
2785                 a->key = kmalloc(a->key_size, GFP_KERNEL);
2786                 if (!a->key)
2787                         goto nomem;
2788                 if (hex2bin(a->key, a->key_string, a->key_size))
2789                         goto inval;
2790         }
2791
2792         return 0;
2793 inval:
2794         *error = error_inval;
2795         return -EINVAL;
2796 nomem:
2797         *error = "Out of memory for an argument";
2798         return -ENOMEM;
2799 }
2800
2801 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
2802                    char *error_alg, char *error_key)
2803 {
2804         int r;
2805
2806         if (a->alg_string) {
2807                 *hash = crypto_alloc_shash(a->alg_string, 0, 0);
2808                 if (IS_ERR(*hash)) {
2809                         *error = error_alg;
2810                         r = PTR_ERR(*hash);
2811                         *hash = NULL;
2812                         return r;
2813                 }
2814
2815                 if (a->key) {
2816                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
2817                         if (r) {
2818                                 *error = error_key;
2819                                 return r;
2820                         }
2821                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
2822                         *error = error_key;
2823                         return -ENOKEY;
2824                 }
2825         }
2826
2827         return 0;
2828 }
2829
2830 static int create_journal(struct dm_integrity_c *ic, char **error)
2831 {
2832         int r = 0;
2833         unsigned i;
2834         __u64 journal_pages, journal_desc_size, journal_tree_size;
2835         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
2836         struct skcipher_request *req = NULL;
2837
2838         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
2839         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
2840         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
2841         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
2842
2843         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
2844                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
2845         journal_desc_size = journal_pages * sizeof(struct page_list);
2846         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
2847                 *error = "Journal doesn't fit into memory";
2848                 r = -ENOMEM;
2849                 goto bad;
2850         }
2851         ic->journal_pages = journal_pages;
2852
2853         ic->journal = dm_integrity_alloc_page_list(ic);
2854         if (!ic->journal) {
2855                 *error = "Could not allocate memory for journal";
2856                 r = -ENOMEM;
2857                 goto bad;
2858         }
2859         if (ic->journal_crypt_alg.alg_string) {
2860                 unsigned ivsize, blocksize;
2861                 struct journal_completion comp;
2862
2863                 comp.ic = ic;
2864                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
2865                 if (IS_ERR(ic->journal_crypt)) {
2866                         *error = "Invalid journal cipher";
2867                         r = PTR_ERR(ic->journal_crypt);
2868                         ic->journal_crypt = NULL;
2869                         goto bad;
2870                 }
2871                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
2872                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
2873
2874                 if (ic->journal_crypt_alg.key) {
2875                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
2876                                                    ic->journal_crypt_alg.key_size);
2877                         if (r) {
2878                                 *error = "Error setting encryption key";
2879                                 goto bad;
2880                         }
2881                 }
2882                 DEBUG_print("cipher %s, block size %u iv size %u\n",
2883                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
2884
2885                 ic->journal_io = dm_integrity_alloc_page_list(ic);
2886                 if (!ic->journal_io) {
2887                         *error = "Could not allocate memory for journal io";
2888                         r = -ENOMEM;
2889                         goto bad;
2890                 }
2891
2892                 if (blocksize == 1) {
2893                         struct scatterlist *sg;
2894
2895                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2896                         if (!req) {
2897                                 *error = "Could not allocate crypt request";
2898                                 r = -ENOMEM;
2899                                 goto bad;
2900                         }
2901
2902                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2903                         if (!crypt_iv) {
2904                                 *error = "Could not allocate iv";
2905                                 r = -ENOMEM;
2906                                 goto bad;
2907                         }
2908
2909                         ic->journal_xor = dm_integrity_alloc_page_list(ic);
2910                         if (!ic->journal_xor) {
2911                                 *error = "Could not allocate memory for journal xor";
2912                                 r = -ENOMEM;
2913                                 goto bad;
2914                         }
2915
2916                         sg = kvmalloc_array(ic->journal_pages + 1,
2917                                             sizeof(struct scatterlist),
2918                                             GFP_KERNEL);
2919                         if (!sg) {
2920                                 *error = "Unable to allocate sg list";
2921                                 r = -ENOMEM;
2922                                 goto bad;
2923                         }
2924                         sg_init_table(sg, ic->journal_pages + 1);
2925                         for (i = 0; i < ic->journal_pages; i++) {
2926                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
2927                                 clear_page(va);
2928                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
2929                         }
2930                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
2931                         memset(crypt_iv, 0x00, ivsize);
2932
2933                         skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
2934                         init_completion(&comp.comp);
2935                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2936                         if (do_crypt(true, req, &comp))
2937                                 wait_for_completion(&comp.comp);
2938                         kvfree(sg);
2939                         r = dm_integrity_failed(ic);
2940                         if (r) {
2941                                 *error = "Unable to encrypt journal";
2942                                 goto bad;
2943                         }
2944                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
2945
2946                         crypto_free_skcipher(ic->journal_crypt);
2947                         ic->journal_crypt = NULL;
2948                 } else {
2949                         unsigned crypt_len = roundup(ivsize, blocksize);
2950
2951                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2952                         if (!req) {
2953                                 *error = "Could not allocate crypt request";
2954                                 r = -ENOMEM;
2955                                 goto bad;
2956                         }
2957
2958                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2959                         if (!crypt_iv) {
2960                                 *error = "Could not allocate iv";
2961                                 r = -ENOMEM;
2962                                 goto bad;
2963                         }
2964
2965                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
2966                         if (!crypt_data) {
2967                                 *error = "Unable to allocate crypt data";
2968                                 r = -ENOMEM;
2969                                 goto bad;
2970                         }
2971
2972                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
2973                         if (!ic->journal_scatterlist) {
2974                                 *error = "Unable to allocate sg list";
2975                                 r = -ENOMEM;
2976                                 goto bad;
2977                         }
2978                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
2979                         if (!ic->journal_io_scatterlist) {
2980                                 *error = "Unable to allocate sg list";
2981                                 r = -ENOMEM;
2982                                 goto bad;
2983                         }
2984                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
2985                                                          sizeof(struct skcipher_request *),
2986                                                          GFP_KERNEL | __GFP_ZERO);
2987                         if (!ic->sk_requests) {
2988                                 *error = "Unable to allocate sk requests";
2989                                 r = -ENOMEM;
2990                                 goto bad;
2991                         }
2992                         for (i = 0; i < ic->journal_sections; i++) {
2993                                 struct scatterlist sg;
2994                                 struct skcipher_request *section_req;
2995                                 __u32 section_le = cpu_to_le32(i);
2996
2997                                 memset(crypt_iv, 0x00, ivsize);
2998                                 memset(crypt_data, 0x00, crypt_len);
2999                                 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3000
3001                                 sg_init_one(&sg, crypt_data, crypt_len);
3002                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3003                                 init_completion(&comp.comp);
3004                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3005                                 if (do_crypt(true, req, &comp))
3006                                         wait_for_completion(&comp.comp);
3007
3008                                 r = dm_integrity_failed(ic);
3009                                 if (r) {
3010                                         *error = "Unable to generate iv";
3011                                         goto bad;
3012                                 }
3013
3014                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3015                                 if (!section_req) {
3016                                         *error = "Unable to allocate crypt request";
3017                                         r = -ENOMEM;
3018                                         goto bad;
3019                                 }
3020                                 section_req->iv = kmalloc_array(ivsize, 2,
3021                                                                 GFP_KERNEL);
3022                                 if (!section_req->iv) {
3023                                         skcipher_request_free(section_req);
3024                                         *error = "Unable to allocate iv";
3025                                         r = -ENOMEM;
3026                                         goto bad;
3027                                 }
3028                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3029                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3030                                 ic->sk_requests[i] = section_req;
3031                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3032                         }
3033                 }
3034         }
3035
3036         for (i = 0; i < N_COMMIT_IDS; i++) {
3037                 unsigned j;
3038 retest_commit_id:
3039                 for (j = 0; j < i; j++) {
3040                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3041                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3042                                 goto retest_commit_id;
3043                         }
3044                 }
3045                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3046         }
3047
3048         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3049         if (journal_tree_size > ULONG_MAX) {
3050                 *error = "Journal doesn't fit into memory";
3051                 r = -ENOMEM;
3052                 goto bad;
3053         }
3054         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3055         if (!ic->journal_tree) {
3056                 *error = "Could not allocate memory for journal tree";
3057                 r = -ENOMEM;
3058         }
3059 bad:
3060         kfree(crypt_data);
3061         kfree(crypt_iv);
3062         skcipher_request_free(req);
3063
3064         return r;
3065 }
3066
3067 /*
3068  * Construct a integrity mapping
3069  *
3070  * Arguments:
3071  *      device
3072  *      offset from the start of the device
3073  *      tag size
3074  *      D - direct writes, J - journal writes, R - recovery mode
3075  *      number of optional arguments
3076  *      optional arguments:
3077  *              journal_sectors
3078  *              interleave_sectors
3079  *              buffer_sectors
3080  *              journal_watermark
3081  *              commit_time
3082  *              internal_hash
3083  *              journal_crypt
3084  *              journal_mac
3085  *              block_size
3086  */
3087 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3088 {
3089         struct dm_integrity_c *ic;
3090         char dummy;
3091         int r;
3092         unsigned extra_args;
3093         struct dm_arg_set as;
3094         static const struct dm_arg _args[] = {
3095                 {0, 9, "Invalid number of feature args"},
3096         };
3097         unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3098         bool recalculate;
3099         bool should_write_sb;
3100         __u64 threshold;
3101         unsigned long long start;
3102
3103 #define DIRECT_ARGUMENTS        4
3104
3105         if (argc <= DIRECT_ARGUMENTS) {
3106                 ti->error = "Invalid argument count";
3107                 return -EINVAL;
3108         }
3109
3110         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3111         if (!ic) {
3112                 ti->error = "Cannot allocate integrity context";
3113                 return -ENOMEM;
3114         }
3115         ti->private = ic;
3116         ti->per_io_data_size = sizeof(struct dm_integrity_io);
3117
3118         ic->in_progress = RB_ROOT;
3119         INIT_LIST_HEAD(&ic->wait_list);
3120         init_waitqueue_head(&ic->endio_wait);
3121         bio_list_init(&ic->flush_bio_list);
3122         init_waitqueue_head(&ic->copy_to_journal_wait);
3123         init_completion(&ic->crypto_backoff);
3124         atomic64_set(&ic->number_of_mismatches, 0);
3125
3126         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3127         if (r) {
3128                 ti->error = "Device lookup failed";
3129                 goto bad;
3130         }
3131
3132         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3133                 ti->error = "Invalid starting offset";
3134                 r = -EINVAL;
3135                 goto bad;
3136         }
3137         ic->start = start;
3138
3139         if (strcmp(argv[2], "-")) {
3140                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3141                         ti->error = "Invalid tag size";
3142                         r = -EINVAL;
3143                         goto bad;
3144                 }
3145         }
3146
3147         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
3148                 ic->mode = argv[3][0];
3149         else {
3150                 ti->error = "Invalid mode (expecting J, D, R)";
3151                 r = -EINVAL;
3152                 goto bad;
3153         }
3154
3155         journal_sectors = 0;
3156         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3157         buffer_sectors = DEFAULT_BUFFER_SECTORS;
3158         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3159         sync_msec = DEFAULT_SYNC_MSEC;
3160         recalculate = false;
3161         ic->sectors_per_block = 1;
3162
3163         as.argc = argc - DIRECT_ARGUMENTS;
3164         as.argv = argv + DIRECT_ARGUMENTS;
3165         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3166         if (r)
3167                 goto bad;
3168
3169         while (extra_args--) {
3170                 const char *opt_string;
3171                 unsigned val;
3172                 opt_string = dm_shift_arg(&as);
3173                 if (!opt_string) {
3174                         r = -EINVAL;
3175                         ti->error = "Not enough feature arguments";
3176                         goto bad;
3177                 }
3178                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3179                         journal_sectors = val ? val : 1;
3180                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3181                         interleave_sectors = val;
3182                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3183                         buffer_sectors = val;
3184                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3185                         journal_watermark = val;
3186                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3187                         sync_msec = val;
3188                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3189                         if (ic->meta_dev) {