caf2f3129ccdb65f7ed9ca9399427f34234b2c90
[muen/linux.git] / drivers / nvdimm / region_devs.c
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/sort.h>
19 #include <linux/io.h>
20 #include <linux/nd.h>
21 #include "nd-core.h"
22 #include "nd.h"
23
24 /*
25  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
26  * irrelevant.
27  */
28 #include <linux/io-64-nonatomic-hi-lo.h>
29
30 static DEFINE_IDA(region_ida);
31 static DEFINE_PER_CPU(int, flush_idx);
32
33 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
34                 struct nd_region_data *ndrd)
35 {
36         int i, j;
37
38         dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
39                         nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
40         for (i = 0; i < (1 << ndrd->hints_shift); i++) {
41                 struct resource *res = &nvdimm->flush_wpq[i];
42                 unsigned long pfn = PHYS_PFN(res->start);
43                 void __iomem *flush_page;
44
45                 /* check if flush hints share a page */
46                 for (j = 0; j < i; j++) {
47                         struct resource *res_j = &nvdimm->flush_wpq[j];
48                         unsigned long pfn_j = PHYS_PFN(res_j->start);
49
50                         if (pfn == pfn_j)
51                                 break;
52                 }
53
54                 if (j < i)
55                         flush_page = (void __iomem *) ((unsigned long)
56                                         ndrd_get_flush_wpq(ndrd, dimm, j)
57                                         & PAGE_MASK);
58                 else
59                         flush_page = devm_nvdimm_ioremap(dev,
60                                         PFN_PHYS(pfn), PAGE_SIZE);
61                 if (!flush_page)
62                         return -ENXIO;
63                 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
64                                 + (res->start & ~PAGE_MASK));
65         }
66
67         return 0;
68 }
69
70 int nd_region_activate(struct nd_region *nd_region)
71 {
72         int i, j, num_flush = 0;
73         struct nd_region_data *ndrd;
74         struct device *dev = &nd_region->dev;
75         size_t flush_data_size = sizeof(void *);
76
77         nvdimm_bus_lock(&nd_region->dev);
78         for (i = 0; i < nd_region->ndr_mappings; i++) {
79                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
80                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
81
82                 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
83                         nvdimm_bus_unlock(&nd_region->dev);
84                         return -EBUSY;
85                 }
86
87                 /* at least one null hint slot per-dimm for the "no-hint" case */
88                 flush_data_size += sizeof(void *);
89                 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
90                 if (!nvdimm->num_flush)
91                         continue;
92                 flush_data_size += nvdimm->num_flush * sizeof(void *);
93         }
94         nvdimm_bus_unlock(&nd_region->dev);
95
96         ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
97         if (!ndrd)
98                 return -ENOMEM;
99         dev_set_drvdata(dev, ndrd);
100
101         if (!num_flush)
102                 return 0;
103
104         ndrd->hints_shift = ilog2(num_flush);
105         for (i = 0; i < nd_region->ndr_mappings; i++) {
106                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
107                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
108                 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
109
110                 if (rc)
111                         return rc;
112         }
113
114         /*
115          * Clear out entries that are duplicates. This should prevent the
116          * extra flushings.
117          */
118         for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
119                 /* ignore if NULL already */
120                 if (!ndrd_get_flush_wpq(ndrd, i, 0))
121                         continue;
122
123                 for (j = i + 1; j < nd_region->ndr_mappings; j++)
124                         if (ndrd_get_flush_wpq(ndrd, i, 0) ==
125                             ndrd_get_flush_wpq(ndrd, j, 0))
126                                 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
127         }
128
129         return 0;
130 }
131
132 static void nd_region_release(struct device *dev)
133 {
134         struct nd_region *nd_region = to_nd_region(dev);
135         u16 i;
136
137         for (i = 0; i < nd_region->ndr_mappings; i++) {
138                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
139                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
140
141                 put_device(&nvdimm->dev);
142         }
143         free_percpu(nd_region->lane);
144         ida_simple_remove(&region_ida, nd_region->id);
145         if (is_nd_blk(dev))
146                 kfree(to_nd_blk_region(dev));
147         else
148                 kfree(nd_region);
149 }
150
151 static struct device_type nd_blk_device_type = {
152         .name = "nd_blk",
153         .release = nd_region_release,
154 };
155
156 static struct device_type nd_pmem_device_type = {
157         .name = "nd_pmem",
158         .release = nd_region_release,
159 };
160
161 static struct device_type nd_volatile_device_type = {
162         .name = "nd_volatile",
163         .release = nd_region_release,
164 };
165
166 bool is_nd_pmem(struct device *dev)
167 {
168         return dev ? dev->type == &nd_pmem_device_type : false;
169 }
170
171 bool is_nd_blk(struct device *dev)
172 {
173         return dev ? dev->type == &nd_blk_device_type : false;
174 }
175
176 bool is_nd_volatile(struct device *dev)
177 {
178         return dev ? dev->type == &nd_volatile_device_type : false;
179 }
180
181 struct nd_region *to_nd_region(struct device *dev)
182 {
183         struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
184
185         WARN_ON(dev->type->release != nd_region_release);
186         return nd_region;
187 }
188 EXPORT_SYMBOL_GPL(to_nd_region);
189
190 struct device *nd_region_dev(struct nd_region *nd_region)
191 {
192         if (!nd_region)
193                 return NULL;
194         return &nd_region->dev;
195 }
196 EXPORT_SYMBOL_GPL(nd_region_dev);
197
198 struct nd_blk_region *to_nd_blk_region(struct device *dev)
199 {
200         struct nd_region *nd_region = to_nd_region(dev);
201
202         WARN_ON(!is_nd_blk(dev));
203         return container_of(nd_region, struct nd_blk_region, nd_region);
204 }
205 EXPORT_SYMBOL_GPL(to_nd_blk_region);
206
207 void *nd_region_provider_data(struct nd_region *nd_region)
208 {
209         return nd_region->provider_data;
210 }
211 EXPORT_SYMBOL_GPL(nd_region_provider_data);
212
213 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
214 {
215         return ndbr->blk_provider_data;
216 }
217 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
218
219 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
220 {
221         ndbr->blk_provider_data = data;
222 }
223 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
224
225 /**
226  * nd_region_to_nstype() - region to an integer namespace type
227  * @nd_region: region-device to interrogate
228  *
229  * This is the 'nstype' attribute of a region as well, an input to the
230  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
231  * namespace devices with namespace drivers.
232  */
233 int nd_region_to_nstype(struct nd_region *nd_region)
234 {
235         if (is_memory(&nd_region->dev)) {
236                 u16 i, alias;
237
238                 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
239                         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
240                         struct nvdimm *nvdimm = nd_mapping->nvdimm;
241
242                         if (test_bit(NDD_ALIASING, &nvdimm->flags))
243                                 alias++;
244                 }
245                 if (alias)
246                         return ND_DEVICE_NAMESPACE_PMEM;
247                 else
248                         return ND_DEVICE_NAMESPACE_IO;
249         } else if (is_nd_blk(&nd_region->dev)) {
250                 return ND_DEVICE_NAMESPACE_BLK;
251         }
252
253         return 0;
254 }
255 EXPORT_SYMBOL(nd_region_to_nstype);
256
257 static ssize_t size_show(struct device *dev,
258                 struct device_attribute *attr, char *buf)
259 {
260         struct nd_region *nd_region = to_nd_region(dev);
261         unsigned long long size = 0;
262
263         if (is_memory(dev)) {
264                 size = nd_region->ndr_size;
265         } else if (nd_region->ndr_mappings == 1) {
266                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
267
268                 size = nd_mapping->size;
269         }
270
271         return sprintf(buf, "%llu\n", size);
272 }
273 static DEVICE_ATTR_RO(size);
274
275 static ssize_t deep_flush_show(struct device *dev,
276                 struct device_attribute *attr, char *buf)
277 {
278         struct nd_region *nd_region = to_nd_region(dev);
279
280         /*
281          * NOTE: in the nvdimm_has_flush() error case this attribute is
282          * not visible.
283          */
284         return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
285 }
286
287 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
288                 const char *buf, size_t len)
289 {
290         bool flush;
291         int rc = strtobool(buf, &flush);
292         struct nd_region *nd_region = to_nd_region(dev);
293
294         if (rc)
295                 return rc;
296         if (!flush)
297                 return -EINVAL;
298         nvdimm_flush(nd_region);
299
300         return len;
301 }
302 static DEVICE_ATTR_RW(deep_flush);
303
304 static ssize_t mappings_show(struct device *dev,
305                 struct device_attribute *attr, char *buf)
306 {
307         struct nd_region *nd_region = to_nd_region(dev);
308
309         return sprintf(buf, "%d\n", nd_region->ndr_mappings);
310 }
311 static DEVICE_ATTR_RO(mappings);
312
313 static ssize_t nstype_show(struct device *dev,
314                 struct device_attribute *attr, char *buf)
315 {
316         struct nd_region *nd_region = to_nd_region(dev);
317
318         return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
319 }
320 static DEVICE_ATTR_RO(nstype);
321
322 static ssize_t set_cookie_show(struct device *dev,
323                 struct device_attribute *attr, char *buf)
324 {
325         struct nd_region *nd_region = to_nd_region(dev);
326         struct nd_interleave_set *nd_set = nd_region->nd_set;
327         ssize_t rc = 0;
328
329         if (is_memory(dev) && nd_set)
330                 /* pass, should be precluded by region_visible */;
331         else
332                 return -ENXIO;
333
334         /*
335          * The cookie to show depends on which specification of the
336          * labels we are using. If there are not labels then default to
337          * the v1.1 namespace label cookie definition. To read all this
338          * data we need to wait for probing to settle.
339          */
340         device_lock(dev);
341         nvdimm_bus_lock(dev);
342         wait_nvdimm_bus_probe_idle(dev);
343         if (nd_region->ndr_mappings) {
344                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
345                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
346
347                 if (ndd) {
348                         struct nd_namespace_index *nsindex;
349
350                         nsindex = to_namespace_index(ndd, ndd->ns_current);
351                         rc = sprintf(buf, "%#llx\n",
352                                         nd_region_interleave_set_cookie(nd_region,
353                                                 nsindex));
354                 }
355         }
356         nvdimm_bus_unlock(dev);
357         device_unlock(dev);
358
359         if (rc)
360                 return rc;
361         return sprintf(buf, "%#llx\n", nd_set->cookie1);
362 }
363 static DEVICE_ATTR_RO(set_cookie);
364
365 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
366 {
367         resource_size_t blk_max_overlap = 0, available, overlap;
368         int i;
369
370         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
371
372  retry:
373         available = 0;
374         overlap = blk_max_overlap;
375         for (i = 0; i < nd_region->ndr_mappings; i++) {
376                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
377                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
378
379                 /* if a dimm is disabled the available capacity is zero */
380                 if (!ndd)
381                         return 0;
382
383                 if (is_memory(&nd_region->dev)) {
384                         available += nd_pmem_available_dpa(nd_region,
385                                         nd_mapping, &overlap);
386                         if (overlap > blk_max_overlap) {
387                                 blk_max_overlap = overlap;
388                                 goto retry;
389                         }
390                 } else if (is_nd_blk(&nd_region->dev))
391                         available += nd_blk_available_dpa(nd_region);
392         }
393
394         return available;
395 }
396
397 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
398 {
399         resource_size_t available = 0;
400         int i;
401
402         if (is_memory(&nd_region->dev))
403                 available = PHYS_ADDR_MAX;
404
405         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
406         for (i = 0; i < nd_region->ndr_mappings; i++) {
407                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
408
409                 if (is_memory(&nd_region->dev))
410                         available = min(available,
411                                         nd_pmem_max_contiguous_dpa(nd_region,
412                                                                    nd_mapping));
413                 else if (is_nd_blk(&nd_region->dev))
414                         available += nd_blk_available_dpa(nd_region);
415         }
416         if (is_memory(&nd_region->dev))
417                 return available * nd_region->ndr_mappings;
418         return available;
419 }
420
421 static ssize_t available_size_show(struct device *dev,
422                 struct device_attribute *attr, char *buf)
423 {
424         struct nd_region *nd_region = to_nd_region(dev);
425         unsigned long long available = 0;
426
427         /*
428          * Flush in-flight updates and grab a snapshot of the available
429          * size.  Of course, this value is potentially invalidated the
430          * memory nvdimm_bus_lock() is dropped, but that's userspace's
431          * problem to not race itself.
432          */
433         nvdimm_bus_lock(dev);
434         wait_nvdimm_bus_probe_idle(dev);
435         available = nd_region_available_dpa(nd_region);
436         nvdimm_bus_unlock(dev);
437
438         return sprintf(buf, "%llu\n", available);
439 }
440 static DEVICE_ATTR_RO(available_size);
441
442 static ssize_t max_available_extent_show(struct device *dev,
443                 struct device_attribute *attr, char *buf)
444 {
445         struct nd_region *nd_region = to_nd_region(dev);
446         unsigned long long available = 0;
447
448         nvdimm_bus_lock(dev);
449         wait_nvdimm_bus_probe_idle(dev);
450         available = nd_region_allocatable_dpa(nd_region);
451         nvdimm_bus_unlock(dev);
452
453         return sprintf(buf, "%llu\n", available);
454 }
455 static DEVICE_ATTR_RO(max_available_extent);
456
457 static ssize_t init_namespaces_show(struct device *dev,
458                 struct device_attribute *attr, char *buf)
459 {
460         struct nd_region_data *ndrd = dev_get_drvdata(dev);
461         ssize_t rc;
462
463         nvdimm_bus_lock(dev);
464         if (ndrd)
465                 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
466         else
467                 rc = -ENXIO;
468         nvdimm_bus_unlock(dev);
469
470         return rc;
471 }
472 static DEVICE_ATTR_RO(init_namespaces);
473
474 static ssize_t namespace_seed_show(struct device *dev,
475                 struct device_attribute *attr, char *buf)
476 {
477         struct nd_region *nd_region = to_nd_region(dev);
478         ssize_t rc;
479
480         nvdimm_bus_lock(dev);
481         if (nd_region->ns_seed)
482                 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
483         else
484                 rc = sprintf(buf, "\n");
485         nvdimm_bus_unlock(dev);
486         return rc;
487 }
488 static DEVICE_ATTR_RO(namespace_seed);
489
490 static ssize_t btt_seed_show(struct device *dev,
491                 struct device_attribute *attr, char *buf)
492 {
493         struct nd_region *nd_region = to_nd_region(dev);
494         ssize_t rc;
495
496         nvdimm_bus_lock(dev);
497         if (nd_region->btt_seed)
498                 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
499         else
500                 rc = sprintf(buf, "\n");
501         nvdimm_bus_unlock(dev);
502
503         return rc;
504 }
505 static DEVICE_ATTR_RO(btt_seed);
506
507 static ssize_t pfn_seed_show(struct device *dev,
508                 struct device_attribute *attr, char *buf)
509 {
510         struct nd_region *nd_region = to_nd_region(dev);
511         ssize_t rc;
512
513         nvdimm_bus_lock(dev);
514         if (nd_region->pfn_seed)
515                 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
516         else
517                 rc = sprintf(buf, "\n");
518         nvdimm_bus_unlock(dev);
519
520         return rc;
521 }
522 static DEVICE_ATTR_RO(pfn_seed);
523
524 static ssize_t dax_seed_show(struct device *dev,
525                 struct device_attribute *attr, char *buf)
526 {
527         struct nd_region *nd_region = to_nd_region(dev);
528         ssize_t rc;
529
530         nvdimm_bus_lock(dev);
531         if (nd_region->dax_seed)
532                 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
533         else
534                 rc = sprintf(buf, "\n");
535         nvdimm_bus_unlock(dev);
536
537         return rc;
538 }
539 static DEVICE_ATTR_RO(dax_seed);
540
541 static ssize_t read_only_show(struct device *dev,
542                 struct device_attribute *attr, char *buf)
543 {
544         struct nd_region *nd_region = to_nd_region(dev);
545
546         return sprintf(buf, "%d\n", nd_region->ro);
547 }
548
549 static ssize_t read_only_store(struct device *dev,
550                 struct device_attribute *attr, const char *buf, size_t len)
551 {
552         bool ro;
553         int rc = strtobool(buf, &ro);
554         struct nd_region *nd_region = to_nd_region(dev);
555
556         if (rc)
557                 return rc;
558
559         nd_region->ro = ro;
560         return len;
561 }
562 static DEVICE_ATTR_RW(read_only);
563
564 static ssize_t region_badblocks_show(struct device *dev,
565                 struct device_attribute *attr, char *buf)
566 {
567         struct nd_region *nd_region = to_nd_region(dev);
568         ssize_t rc;
569
570         device_lock(dev);
571         if (dev->driver)
572                 rc = badblocks_show(&nd_region->bb, buf, 0);
573         else
574                 rc = -ENXIO;
575         device_unlock(dev);
576
577         return rc;
578 }
579 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
580
581 static ssize_t resource_show(struct device *dev,
582                 struct device_attribute *attr, char *buf)
583 {
584         struct nd_region *nd_region = to_nd_region(dev);
585
586         return sprintf(buf, "%#llx\n", nd_region->ndr_start);
587 }
588 static DEVICE_ATTR_RO(resource);
589
590 static ssize_t persistence_domain_show(struct device *dev,
591                 struct device_attribute *attr, char *buf)
592 {
593         struct nd_region *nd_region = to_nd_region(dev);
594
595         if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
596                 return sprintf(buf, "cpu_cache\n");
597         else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
598                 return sprintf(buf, "memory_controller\n");
599         else
600                 return sprintf(buf, "\n");
601 }
602 static DEVICE_ATTR_RO(persistence_domain);
603
604 static struct attribute *nd_region_attributes[] = {
605         &dev_attr_size.attr,
606         &dev_attr_nstype.attr,
607         &dev_attr_mappings.attr,
608         &dev_attr_btt_seed.attr,
609         &dev_attr_pfn_seed.attr,
610         &dev_attr_dax_seed.attr,
611         &dev_attr_deep_flush.attr,
612         &dev_attr_read_only.attr,
613         &dev_attr_set_cookie.attr,
614         &dev_attr_available_size.attr,
615         &dev_attr_max_available_extent.attr,
616         &dev_attr_namespace_seed.attr,
617         &dev_attr_init_namespaces.attr,
618         &dev_attr_badblocks.attr,
619         &dev_attr_resource.attr,
620         &dev_attr_persistence_domain.attr,
621         NULL,
622 };
623
624 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
625 {
626         struct device *dev = container_of(kobj, typeof(*dev), kobj);
627         struct nd_region *nd_region = to_nd_region(dev);
628         struct nd_interleave_set *nd_set = nd_region->nd_set;
629         int type = nd_region_to_nstype(nd_region);
630
631         if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
632                 return 0;
633
634         if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
635                 return 0;
636
637         if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr)
638                 return 0;
639
640         if (a == &dev_attr_resource.attr) {
641                 if (is_nd_pmem(dev))
642                         return 0400;
643                 else
644                         return 0;
645         }
646
647         if (a == &dev_attr_deep_flush.attr) {
648                 int has_flush = nvdimm_has_flush(nd_region);
649
650                 if (has_flush == 1)
651                         return a->mode;
652                 else if (has_flush == 0)
653                         return 0444;
654                 else
655                         return 0;
656         }
657
658         if (a == &dev_attr_persistence_domain.attr) {
659                 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
660                                         | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
661                         return 0;
662                 return a->mode;
663         }
664
665         if (a != &dev_attr_set_cookie.attr
666                         && a != &dev_attr_available_size.attr)
667                 return a->mode;
668
669         if ((type == ND_DEVICE_NAMESPACE_PMEM
670                                 || type == ND_DEVICE_NAMESPACE_BLK)
671                         && a == &dev_attr_available_size.attr)
672                 return a->mode;
673         else if (is_memory(dev) && nd_set)
674                 return a->mode;
675
676         return 0;
677 }
678
679 struct attribute_group nd_region_attribute_group = {
680         .attrs = nd_region_attributes,
681         .is_visible = region_visible,
682 };
683 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
684
685 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
686                 struct nd_namespace_index *nsindex)
687 {
688         struct nd_interleave_set *nd_set = nd_region->nd_set;
689
690         if (!nd_set)
691                 return 0;
692
693         if (nsindex && __le16_to_cpu(nsindex->major) == 1
694                         && __le16_to_cpu(nsindex->minor) == 1)
695                 return nd_set->cookie1;
696         return nd_set->cookie2;
697 }
698
699 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
700 {
701         struct nd_interleave_set *nd_set = nd_region->nd_set;
702
703         if (nd_set)
704                 return nd_set->altcookie;
705         return 0;
706 }
707
708 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
709 {
710         struct nd_label_ent *label_ent, *e;
711
712         lockdep_assert_held(&nd_mapping->lock);
713         list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
714                 list_del(&label_ent->list);
715                 kfree(label_ent);
716         }
717 }
718
719 /*
720  * Upon successful probe/remove, take/release a reference on the
721  * associated interleave set (if present), and plant new btt + namespace
722  * seeds.  Also, on the removal of a BLK region, notify the provider to
723  * disable the region.
724  */
725 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
726                 struct device *dev, bool probe)
727 {
728         struct nd_region *nd_region;
729
730         if (!probe && is_nd_region(dev)) {
731                 int i;
732
733                 nd_region = to_nd_region(dev);
734                 for (i = 0; i < nd_region->ndr_mappings; i++) {
735                         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
736                         struct nvdimm_drvdata *ndd = nd_mapping->ndd;
737                         struct nvdimm *nvdimm = nd_mapping->nvdimm;
738
739                         mutex_lock(&nd_mapping->lock);
740                         nd_mapping_free_labels(nd_mapping);
741                         mutex_unlock(&nd_mapping->lock);
742
743                         put_ndd(ndd);
744                         nd_mapping->ndd = NULL;
745                         if (ndd)
746                                 atomic_dec(&nvdimm->busy);
747                 }
748         }
749         if (dev->parent && is_nd_region(dev->parent) && probe) {
750                 nd_region = to_nd_region(dev->parent);
751                 nvdimm_bus_lock(dev);
752                 if (nd_region->ns_seed == dev)
753                         nd_region_create_ns_seed(nd_region);
754                 nvdimm_bus_unlock(dev);
755         }
756         if (is_nd_btt(dev) && probe) {
757                 struct nd_btt *nd_btt = to_nd_btt(dev);
758
759                 nd_region = to_nd_region(dev->parent);
760                 nvdimm_bus_lock(dev);
761                 if (nd_region->btt_seed == dev)
762                         nd_region_create_btt_seed(nd_region);
763                 if (nd_region->ns_seed == &nd_btt->ndns->dev)
764                         nd_region_create_ns_seed(nd_region);
765                 nvdimm_bus_unlock(dev);
766         }
767         if (is_nd_pfn(dev) && probe) {
768                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
769
770                 nd_region = to_nd_region(dev->parent);
771                 nvdimm_bus_lock(dev);
772                 if (nd_region->pfn_seed == dev)
773                         nd_region_create_pfn_seed(nd_region);
774                 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
775                         nd_region_create_ns_seed(nd_region);
776                 nvdimm_bus_unlock(dev);
777         }
778         if (is_nd_dax(dev) && probe) {
779                 struct nd_dax *nd_dax = to_nd_dax(dev);
780
781                 nd_region = to_nd_region(dev->parent);
782                 nvdimm_bus_lock(dev);
783                 if (nd_region->dax_seed == dev)
784                         nd_region_create_dax_seed(nd_region);
785                 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
786                         nd_region_create_ns_seed(nd_region);
787                 nvdimm_bus_unlock(dev);
788         }
789 }
790
791 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
792 {
793         nd_region_notify_driver_action(nvdimm_bus, dev, true);
794 }
795
796 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
797 {
798         nd_region_notify_driver_action(nvdimm_bus, dev, false);
799 }
800
801 static ssize_t mappingN(struct device *dev, char *buf, int n)
802 {
803         struct nd_region *nd_region = to_nd_region(dev);
804         struct nd_mapping *nd_mapping;
805         struct nvdimm *nvdimm;
806
807         if (n >= nd_region->ndr_mappings)
808                 return -ENXIO;
809         nd_mapping = &nd_region->mapping[n];
810         nvdimm = nd_mapping->nvdimm;
811
812         return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
813                         nd_mapping->start, nd_mapping->size,
814                         nd_mapping->position);
815 }
816
817 #define REGION_MAPPING(idx) \
818 static ssize_t mapping##idx##_show(struct device *dev,          \
819                 struct device_attribute *attr, char *buf)       \
820 {                                                               \
821         return mappingN(dev, buf, idx);                         \
822 }                                                               \
823 static DEVICE_ATTR_RO(mapping##idx)
824
825 /*
826  * 32 should be enough for a while, even in the presence of socket
827  * interleave a 32-way interleave set is a degenerate case.
828  */
829 REGION_MAPPING(0);
830 REGION_MAPPING(1);
831 REGION_MAPPING(2);
832 REGION_MAPPING(3);
833 REGION_MAPPING(4);
834 REGION_MAPPING(5);
835 REGION_MAPPING(6);
836 REGION_MAPPING(7);
837 REGION_MAPPING(8);
838 REGION_MAPPING(9);
839 REGION_MAPPING(10);
840 REGION_MAPPING(11);
841 REGION_MAPPING(12);
842 REGION_MAPPING(13);
843 REGION_MAPPING(14);
844 REGION_MAPPING(15);
845 REGION_MAPPING(16);
846 REGION_MAPPING(17);
847 REGION_MAPPING(18);
848 REGION_MAPPING(19);
849 REGION_MAPPING(20);
850 REGION_MAPPING(21);
851 REGION_MAPPING(22);
852 REGION_MAPPING(23);
853 REGION_MAPPING(24);
854 REGION_MAPPING(25);
855 REGION_MAPPING(26);
856 REGION_MAPPING(27);
857 REGION_MAPPING(28);
858 REGION_MAPPING(29);
859 REGION_MAPPING(30);
860 REGION_MAPPING(31);
861
862 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
863 {
864         struct device *dev = container_of(kobj, struct device, kobj);
865         struct nd_region *nd_region = to_nd_region(dev);
866
867         if (n < nd_region->ndr_mappings)
868                 return a->mode;
869         return 0;
870 }
871
872 static struct attribute *mapping_attributes[] = {
873         &dev_attr_mapping0.attr,
874         &dev_attr_mapping1.attr,
875         &dev_attr_mapping2.attr,
876         &dev_attr_mapping3.attr,
877         &dev_attr_mapping4.attr,
878         &dev_attr_mapping5.attr,
879         &dev_attr_mapping6.attr,
880         &dev_attr_mapping7.attr,
881         &dev_attr_mapping8.attr,
882         &dev_attr_mapping9.attr,
883         &dev_attr_mapping10.attr,
884         &dev_attr_mapping11.attr,
885         &dev_attr_mapping12.attr,
886         &dev_attr_mapping13.attr,
887         &dev_attr_mapping14.attr,
888         &dev_attr_mapping15.attr,
889         &dev_attr_mapping16.attr,
890         &dev_attr_mapping17.attr,
891         &dev_attr_mapping18.attr,
892         &dev_attr_mapping19.attr,
893         &dev_attr_mapping20.attr,
894         &dev_attr_mapping21.attr,
895         &dev_attr_mapping22.attr,
896         &dev_attr_mapping23.attr,
897         &dev_attr_mapping24.attr,
898         &dev_attr_mapping25.attr,
899         &dev_attr_mapping26.attr,
900         &dev_attr_mapping27.attr,
901         &dev_attr_mapping28.attr,
902         &dev_attr_mapping29.attr,
903         &dev_attr_mapping30.attr,
904         &dev_attr_mapping31.attr,
905         NULL,
906 };
907
908 struct attribute_group nd_mapping_attribute_group = {
909         .is_visible = mapping_visible,
910         .attrs = mapping_attributes,
911 };
912 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
913
914 int nd_blk_region_init(struct nd_region *nd_region)
915 {
916         struct device *dev = &nd_region->dev;
917         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
918
919         if (!is_nd_blk(dev))
920                 return 0;
921
922         if (nd_region->ndr_mappings < 1) {
923                 dev_dbg(dev, "invalid BLK region\n");
924                 return -ENXIO;
925         }
926
927         return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
928 }
929
930 /**
931  * nd_region_acquire_lane - allocate and lock a lane
932  * @nd_region: region id and number of lanes possible
933  *
934  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
935  * We optimize for the common case where there are 256 lanes, one
936  * per-cpu.  For larger systems we need to lock to share lanes.  For now
937  * this implementation assumes the cost of maintaining an allocator for
938  * free lanes is on the order of the lock hold time, so it implements a
939  * static lane = cpu % num_lanes mapping.
940  *
941  * In the case of a BTT instance on top of a BLK namespace a lane may be
942  * acquired recursively.  We lock on the first instance.
943  *
944  * In the case of a BTT instance on top of PMEM, we only acquire a lane
945  * for the BTT metadata updates.
946  */
947 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
948 {
949         unsigned int cpu, lane;
950
951         cpu = get_cpu();
952         if (nd_region->num_lanes < nr_cpu_ids) {
953                 struct nd_percpu_lane *ndl_lock, *ndl_count;
954
955                 lane = cpu % nd_region->num_lanes;
956                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
957                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
958                 if (ndl_count->count++ == 0)
959                         spin_lock(&ndl_lock->lock);
960         } else
961                 lane = cpu;
962
963         return lane;
964 }
965 EXPORT_SYMBOL(nd_region_acquire_lane);
966
967 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
968 {
969         if (nd_region->num_lanes < nr_cpu_ids) {
970                 unsigned int cpu = get_cpu();
971                 struct nd_percpu_lane *ndl_lock, *ndl_count;
972
973                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
974                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
975                 if (--ndl_count->count == 0)
976                         spin_unlock(&ndl_lock->lock);
977                 put_cpu();
978         }
979         put_cpu();
980 }
981 EXPORT_SYMBOL(nd_region_release_lane);
982
983 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
984                 struct nd_region_desc *ndr_desc, struct device_type *dev_type,
985                 const char *caller)
986 {
987         struct nd_region *nd_region;
988         struct device *dev;
989         void *region_buf;
990         unsigned int i;
991         int ro = 0;
992
993         for (i = 0; i < ndr_desc->num_mappings; i++) {
994                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
995                 struct nvdimm *nvdimm = mapping->nvdimm;
996
997                 if ((mapping->start | mapping->size) % SZ_4K) {
998                         dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
999                                         caller, dev_name(&nvdimm->dev), i);
1000
1001                         return NULL;
1002                 }
1003
1004                 if (test_bit(NDD_UNARMED, &nvdimm->flags))
1005                         ro = 1;
1006         }
1007
1008         if (dev_type == &nd_blk_device_type) {
1009                 struct nd_blk_region_desc *ndbr_desc;
1010                 struct nd_blk_region *ndbr;
1011
1012                 ndbr_desc = to_blk_region_desc(ndr_desc);
1013                 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
1014                                 * ndr_desc->num_mappings,
1015                                 GFP_KERNEL);
1016                 if (ndbr) {
1017                         nd_region = &ndbr->nd_region;
1018                         ndbr->enable = ndbr_desc->enable;
1019                         ndbr->do_io = ndbr_desc->do_io;
1020                 }
1021                 region_buf = ndbr;
1022         } else {
1023                 nd_region = kzalloc(sizeof(struct nd_region)
1024                                 + sizeof(struct nd_mapping)
1025                                 * ndr_desc->num_mappings,
1026                                 GFP_KERNEL);
1027                 region_buf = nd_region;
1028         }
1029
1030         if (!region_buf)
1031                 return NULL;
1032         nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
1033         if (nd_region->id < 0)
1034                 goto err_id;
1035
1036         nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1037         if (!nd_region->lane)
1038                 goto err_percpu;
1039
1040         for (i = 0; i < nr_cpu_ids; i++) {
1041                 struct nd_percpu_lane *ndl;
1042
1043                 ndl = per_cpu_ptr(nd_region->lane, i);
1044                 spin_lock_init(&ndl->lock);
1045                 ndl->count = 0;
1046         }
1047
1048         for (i = 0; i < ndr_desc->num_mappings; i++) {
1049                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1050                 struct nvdimm *nvdimm = mapping->nvdimm;
1051
1052                 nd_region->mapping[i].nvdimm = nvdimm;
1053                 nd_region->mapping[i].start = mapping->start;
1054                 nd_region->mapping[i].size = mapping->size;
1055                 nd_region->mapping[i].position = mapping->position;
1056                 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1057                 mutex_init(&nd_region->mapping[i].lock);
1058
1059                 get_device(&nvdimm->dev);
1060         }
1061         nd_region->ndr_mappings = ndr_desc->num_mappings;
1062         nd_region->provider_data = ndr_desc->provider_data;
1063         nd_region->nd_set = ndr_desc->nd_set;
1064         nd_region->num_lanes = ndr_desc->num_lanes;
1065         nd_region->flags = ndr_desc->flags;
1066         nd_region->ro = ro;
1067         nd_region->numa_node = ndr_desc->numa_node;
1068         nd_region->target_node = ndr_desc->target_node;
1069         ida_init(&nd_region->ns_ida);
1070         ida_init(&nd_region->btt_ida);
1071         ida_init(&nd_region->pfn_ida);
1072         ida_init(&nd_region->dax_ida);
1073         dev = &nd_region->dev;
1074         dev_set_name(dev, "region%d", nd_region->id);
1075         dev->parent = &nvdimm_bus->dev;
1076         dev->type = dev_type;
1077         dev->groups = ndr_desc->attr_groups;
1078         dev->of_node = ndr_desc->of_node;
1079         nd_region->ndr_size = resource_size(ndr_desc->res);
1080         nd_region->ndr_start = ndr_desc->res->start;
1081         nd_device_register(dev);
1082
1083         return nd_region;
1084
1085  err_percpu:
1086         ida_simple_remove(&region_ida, nd_region->id);
1087  err_id:
1088         kfree(region_buf);
1089         return NULL;
1090 }
1091
1092 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1093                 struct nd_region_desc *ndr_desc)
1094 {
1095         ndr_desc->num_lanes = ND_MAX_LANES;
1096         return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1097                         __func__);
1098 }
1099 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1100
1101 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1102                 struct nd_region_desc *ndr_desc)
1103 {
1104         if (ndr_desc->num_mappings > 1)
1105                 return NULL;
1106         ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1107         return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1108                         __func__);
1109 }
1110 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1111
1112 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1113                 struct nd_region_desc *ndr_desc)
1114 {
1115         ndr_desc->num_lanes = ND_MAX_LANES;
1116         return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1117                         __func__);
1118 }
1119 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1120
1121 /**
1122  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1123  * @nd_region: blk or interleaved pmem region
1124  */
1125 void nvdimm_flush(struct nd_region *nd_region)
1126 {
1127         struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1128         int i, idx;
1129
1130         /*
1131          * Try to encourage some diversity in flush hint addresses
1132          * across cpus assuming a limited number of flush hints.
1133          */
1134         idx = this_cpu_read(flush_idx);
1135         idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1136
1137         /*
1138          * The first wmb() is needed to 'sfence' all previous writes
1139          * such that they are architecturally visible for the platform
1140          * buffer flush.  Note that we've already arranged for pmem
1141          * writes to avoid the cache via memcpy_flushcache().  The final
1142          * wmb() ensures ordering for the NVDIMM flush write.
1143          */
1144         wmb();
1145         for (i = 0; i < nd_region->ndr_mappings; i++)
1146                 if (ndrd_get_flush_wpq(ndrd, i, 0))
1147                         writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1148         wmb();
1149 }
1150 EXPORT_SYMBOL_GPL(nvdimm_flush);
1151
1152 /**
1153  * nvdimm_has_flush - determine write flushing requirements
1154  * @nd_region: blk or interleaved pmem region
1155  *
1156  * Returns 1 if writes require flushing
1157  * Returns 0 if writes do not require flushing
1158  * Returns -ENXIO if flushing capability can not be determined
1159  */
1160 int nvdimm_has_flush(struct nd_region *nd_region)
1161 {
1162         int i;
1163
1164         /* no nvdimm or pmem api == flushing capability unknown */
1165         if (nd_region->ndr_mappings == 0
1166                         || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1167                 return -ENXIO;
1168
1169         for (i = 0; i < nd_region->ndr_mappings; i++) {
1170                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1171                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1172
1173                 /* flush hints present / available */
1174                 if (nvdimm->num_flush)
1175                         return 1;
1176         }
1177
1178         /*
1179          * The platform defines dimm devices without hints, assume
1180          * platform persistence mechanism like ADR
1181          */
1182         return 0;
1183 }
1184 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1185
1186 int nvdimm_has_cache(struct nd_region *nd_region)
1187 {
1188         return is_nd_pmem(&nd_region->dev) &&
1189                 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1190 }
1191 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1192
1193 struct conflict_context {
1194         struct nd_region *nd_region;
1195         resource_size_t start, size;
1196 };
1197
1198 static int region_conflict(struct device *dev, void *data)
1199 {
1200         struct nd_region *nd_region;
1201         struct conflict_context *ctx = data;
1202         resource_size_t res_end, region_end, region_start;
1203
1204         if (!is_memory(dev))
1205                 return 0;
1206
1207         nd_region = to_nd_region(dev);
1208         if (nd_region == ctx->nd_region)
1209                 return 0;
1210
1211         res_end = ctx->start + ctx->size;
1212         region_start = nd_region->ndr_start;
1213         region_end = region_start + nd_region->ndr_size;
1214         if (ctx->start >= region_start && ctx->start < region_end)
1215                 return -EBUSY;
1216         if (res_end > region_start && res_end <= region_end)
1217                 return -EBUSY;
1218         return 0;
1219 }
1220
1221 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1222                 resource_size_t size)
1223 {
1224         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1225         struct conflict_context ctx = {
1226                 .nd_region = nd_region,
1227                 .start = start,
1228                 .size = size,
1229         };
1230
1231         return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1232 }
1233
1234 void __exit nd_region_devs_exit(void)
1235 {
1236         ida_destroy(&region_ida);
1237 }