1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
36 #include <linux/aer.h>
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 EXPORT_SYMBOL_GPL(pci_power_names);
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
48 EXPORT_SYMBOL(pci_pci_problems);
50 unsigned int pci_pm_d3_delay;
52 static void pci_pme_list_scan(struct work_struct *work);
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 struct pci_pme_device {
59 struct list_head list;
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 static void pci_dev_d3_sleep(struct pci_dev *dev)
67 unsigned int delay = dev->d3_delay;
69 if (delay < pci_pm_d3_delay)
70 delay = pci_pm_d3_delay;
76 #ifdef CONFIG_PCI_DOMAINS
77 int pci_domains_supported = 1;
80 #define DEFAULT_CARDBUS_IO_SIZE (256)
81 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
82 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
83 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
84 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
86 #define DEFAULT_HOTPLUG_IO_SIZE (256)
87 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
88 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
90 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
92 #define DEFAULT_HOTPLUG_BUS_SIZE 1
93 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
95 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
98 * The default CLS is used if arch didn't set CLS explicitly and not
99 * all pci devices agree on the same value. Arch can override either
100 * the dfl or actual value as it sees fit. Don't forget this is
101 * measured in 32-bit words, not bytes.
103 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
104 u8 pci_cache_line_size;
107 * If we set up a device for bus mastering, we need to check the latency
108 * timer as certain BIOSes forget to set it properly.
110 unsigned int pcibios_max_latency = 255;
112 /* If set, the PCIe ARI capability will not be used. */
113 static bool pcie_ari_disabled;
115 /* Disable bridge_d3 for all PCIe ports */
116 static bool pci_bridge_d3_disable;
117 /* Force bridge_d3 for all PCIe ports */
118 static bool pci_bridge_d3_force;
120 static int __init pcie_port_pm_setup(char *str)
122 if (!strcmp(str, "off"))
123 pci_bridge_d3_disable = true;
124 else if (!strcmp(str, "force"))
125 pci_bridge_d3_force = true;
128 __setup("pcie_port_pm=", pcie_port_pm_setup);
130 /* Time to wait after a reset for device to become responsive */
131 #define PCIE_RESET_READY_POLL_MS 60000
134 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
135 * @bus: pointer to PCI bus structure to search
137 * Given a PCI bus, returns the highest PCI bus number present in the set
138 * including the given PCI bus and its list of child PCI buses.
140 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
143 unsigned char max, n;
145 max = bus->busn_res.end;
146 list_for_each_entry(tmp, &bus->children, node) {
147 n = pci_bus_max_busnr(tmp);
153 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
155 #ifdef CONFIG_HAS_IOMEM
156 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
158 struct resource *res = &pdev->resource[bar];
161 * Make sure the BAR is actually a memory resource, not an IO resource
163 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
164 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
167 return ioremap_nocache(res->start, resource_size(res));
169 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
171 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
174 * Make sure the BAR is actually a memory resource, not an IO resource
176 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
180 return ioremap_wc(pci_resource_start(pdev, bar),
181 pci_resource_len(pdev, bar));
183 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
187 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
188 u8 pos, int cap, int *ttl)
193 pci_bus_read_config_byte(bus, devfn, pos, &pos);
199 pci_bus_read_config_word(bus, devfn, pos, &ent);
211 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
214 int ttl = PCI_FIND_CAP_TTL;
216 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
219 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
221 return __pci_find_next_cap(dev->bus, dev->devfn,
222 pos + PCI_CAP_LIST_NEXT, cap);
224 EXPORT_SYMBOL_GPL(pci_find_next_capability);
226 static int __pci_bus_find_cap_start(struct pci_bus *bus,
227 unsigned int devfn, u8 hdr_type)
231 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
232 if (!(status & PCI_STATUS_CAP_LIST))
236 case PCI_HEADER_TYPE_NORMAL:
237 case PCI_HEADER_TYPE_BRIDGE:
238 return PCI_CAPABILITY_LIST;
239 case PCI_HEADER_TYPE_CARDBUS:
240 return PCI_CB_CAPABILITY_LIST;
247 * pci_find_capability - query for devices' capabilities
248 * @dev: PCI device to query
249 * @cap: capability code
251 * Tell if a device supports a given PCI capability.
252 * Returns the address of the requested capability structure within the
253 * device's PCI configuration space or 0 in case the device does not
254 * support it. Possible values for @cap:
256 * %PCI_CAP_ID_PM Power Management
257 * %PCI_CAP_ID_AGP Accelerated Graphics Port
258 * %PCI_CAP_ID_VPD Vital Product Data
259 * %PCI_CAP_ID_SLOTID Slot Identification
260 * %PCI_CAP_ID_MSI Message Signalled Interrupts
261 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
262 * %PCI_CAP_ID_PCIX PCI-X
263 * %PCI_CAP_ID_EXP PCI Express
265 int pci_find_capability(struct pci_dev *dev, int cap)
269 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
271 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
275 EXPORT_SYMBOL(pci_find_capability);
278 * pci_bus_find_capability - query for devices' capabilities
279 * @bus: the PCI bus to query
280 * @devfn: PCI device to query
281 * @cap: capability code
283 * Like pci_find_capability() but works for pci devices that do not have a
284 * pci_dev structure set up yet.
286 * Returns the address of the requested capability structure within the
287 * device's PCI configuration space or 0 in case the device does not
290 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
295 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
297 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
299 pos = __pci_find_next_cap(bus, devfn, pos, cap);
303 EXPORT_SYMBOL(pci_bus_find_capability);
306 * pci_find_next_ext_capability - Find an extended capability
307 * @dev: PCI device to query
308 * @start: address at which to start looking (0 to start at beginning of list)
309 * @cap: capability code
311 * Returns the address of the next matching extended capability structure
312 * within the device's PCI configuration space or 0 if the device does
313 * not support it. Some capabilities can occur several times, e.g., the
314 * vendor-specific capability, and this provides a way to find them all.
316 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
320 int pos = PCI_CFG_SPACE_SIZE;
322 /* minimum 8 bytes per capability */
323 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
325 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
331 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
335 * If we have no capabilities, this is indicated by cap ID,
336 * cap version and next pointer all being 0.
342 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
345 pos = PCI_EXT_CAP_NEXT(header);
346 if (pos < PCI_CFG_SPACE_SIZE)
349 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
355 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
358 * pci_find_ext_capability - Find an extended capability
359 * @dev: PCI device to query
360 * @cap: capability code
362 * Returns the address of the requested extended capability structure
363 * within the device's PCI configuration space or 0 if the device does
364 * not support it. Possible values for @cap:
366 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
367 * %PCI_EXT_CAP_ID_VC Virtual Channel
368 * %PCI_EXT_CAP_ID_DSN Device Serial Number
369 * %PCI_EXT_CAP_ID_PWR Power Budgeting
371 int pci_find_ext_capability(struct pci_dev *dev, int cap)
373 return pci_find_next_ext_capability(dev, 0, cap);
375 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
377 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
379 int rc, ttl = PCI_FIND_CAP_TTL;
382 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
383 mask = HT_3BIT_CAP_MASK;
385 mask = HT_5BIT_CAP_MASK;
387 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
388 PCI_CAP_ID_HT, &ttl);
390 rc = pci_read_config_byte(dev, pos + 3, &cap);
391 if (rc != PCIBIOS_SUCCESSFUL)
394 if ((cap & mask) == ht_cap)
397 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
398 pos + PCI_CAP_LIST_NEXT,
399 PCI_CAP_ID_HT, &ttl);
405 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
406 * @dev: PCI device to query
407 * @pos: Position from which to continue searching
408 * @ht_cap: Hypertransport capability code
410 * To be used in conjunction with pci_find_ht_capability() to search for
411 * all capabilities matching @ht_cap. @pos should always be a value returned
412 * from pci_find_ht_capability().
414 * NB. To be 100% safe against broken PCI devices, the caller should take
415 * steps to avoid an infinite loop.
417 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
419 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
421 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
424 * pci_find_ht_capability - query a device's Hypertransport capabilities
425 * @dev: PCI device to query
426 * @ht_cap: Hypertransport capability code
428 * Tell if a device supports a given Hypertransport capability.
429 * Returns an address within the device's PCI configuration space
430 * or 0 in case the device does not support the request capability.
431 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
432 * which has a Hypertransport capability matching @ht_cap.
434 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
438 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
440 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
444 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
447 * pci_find_parent_resource - return resource region of parent bus of given region
448 * @dev: PCI device structure contains resources to be searched
449 * @res: child resource record for which parent is sought
451 * For given resource region of given device, return the resource
452 * region of parent bus the given region is contained in.
454 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
455 struct resource *res)
457 const struct pci_bus *bus = dev->bus;
461 pci_bus_for_each_resource(bus, r, i) {
464 if (resource_contains(r, res)) {
467 * If the window is prefetchable but the BAR is
468 * not, the allocator made a mistake.
470 if (r->flags & IORESOURCE_PREFETCH &&
471 !(res->flags & IORESOURCE_PREFETCH))
475 * If we're below a transparent bridge, there may
476 * be both a positively-decoded aperture and a
477 * subtractively-decoded region that contain the BAR.
478 * We want the positively-decoded one, so this depends
479 * on pci_bus_for_each_resource() giving us those
487 EXPORT_SYMBOL(pci_find_parent_resource);
490 * pci_find_resource - Return matching PCI device resource
491 * @dev: PCI device to query
492 * @res: Resource to look for
494 * Goes over standard PCI resources (BARs) and checks if the given resource
495 * is partially or fully contained in any of them. In that case the
496 * matching resource is returned, %NULL otherwise.
498 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
502 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
503 struct resource *r = &dev->resource[i];
505 if (r->start && resource_contains(r, res))
511 EXPORT_SYMBOL(pci_find_resource);
514 * pci_find_pcie_root_port - return PCIe Root Port
515 * @dev: PCI device to query
517 * Traverse up the parent chain and return the PCIe Root Port PCI Device
518 * for a given PCI Device.
520 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
522 struct pci_dev *bridge, *highest_pcie_bridge = dev;
524 bridge = pci_upstream_bridge(dev);
525 while (bridge && pci_is_pcie(bridge)) {
526 highest_pcie_bridge = bridge;
527 bridge = pci_upstream_bridge(bridge);
530 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
533 return highest_pcie_bridge;
535 EXPORT_SYMBOL(pci_find_pcie_root_port);
538 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
539 * @dev: the PCI device to operate on
540 * @pos: config space offset of status word
541 * @mask: mask of bit(s) to care about in status word
543 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
545 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
549 /* Wait for Transaction Pending bit clean */
550 for (i = 0; i < 4; i++) {
553 msleep((1 << (i - 1)) * 100);
555 pci_read_config_word(dev, pos, &status);
556 if (!(status & mask))
564 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
565 * @dev: PCI device to have its BARs restored
567 * Restore the BAR values for a given device, so as to make it
568 * accessible by its driver.
570 static void pci_restore_bars(struct pci_dev *dev)
574 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
575 pci_update_resource(dev, i);
578 static const struct pci_platform_pm_ops *pci_platform_pm;
580 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
582 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
583 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
585 pci_platform_pm = ops;
589 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
591 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
594 static inline int platform_pci_set_power_state(struct pci_dev *dev,
597 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
600 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
602 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
605 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
607 return pci_platform_pm ?
608 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
611 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
613 return pci_platform_pm ?
614 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
617 static inline bool platform_pci_need_resume(struct pci_dev *dev)
619 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
623 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
625 * @dev: PCI device to handle.
626 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
629 * -EINVAL if the requested state is invalid.
630 * -EIO if device does not support PCI PM or its PM capabilities register has a
631 * wrong version, or device doesn't support the requested state.
632 * 0 if device already is in the requested state.
633 * 0 if device's power state has been successfully changed.
635 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
638 bool need_restore = false;
640 /* Check if we're already there */
641 if (dev->current_state == state)
647 if (state < PCI_D0 || state > PCI_D3hot)
650 /* Validate current state:
651 * Can enter D0 from any state, but if we can only go deeper
652 * to sleep if we're already in a low power state
654 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
655 && dev->current_state > state) {
656 pci_err(dev, "invalid power transition (from state %d to %d)\n",
657 dev->current_state, state);
661 /* check if this device supports the desired state */
662 if ((state == PCI_D1 && !dev->d1_support)
663 || (state == PCI_D2 && !dev->d2_support))
666 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
668 /* If we're (effectively) in D3, force entire word to 0.
669 * This doesn't affect PME_Status, disables PME_En, and
670 * sets PowerState to 0.
672 switch (dev->current_state) {
676 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
681 case PCI_UNKNOWN: /* Boot-up */
682 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
683 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
685 /* Fall-through: force to D0 */
691 /* enter specified state */
692 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
694 /* Mandatory power management transition delays */
695 /* see PCI PM 1.1 5.6.1 table 18 */
696 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
697 pci_dev_d3_sleep(dev);
698 else if (state == PCI_D2 || dev->current_state == PCI_D2)
699 udelay(PCI_PM_D2_DELAY);
701 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
702 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
703 if (dev->current_state != state && printk_ratelimit())
704 pci_info(dev, "Refused to change power state, currently in D%d\n",
708 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
709 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
710 * from D3hot to D0 _may_ perform an internal reset, thereby
711 * going to "D0 Uninitialized" rather than "D0 Initialized".
712 * For example, at least some versions of the 3c905B and the
713 * 3c556B exhibit this behaviour.
715 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
716 * devices in a D3hot state at boot. Consequently, we need to
717 * restore at least the BARs so that the device will be
718 * accessible to its driver.
721 pci_restore_bars(dev);
724 pcie_aspm_pm_state_change(dev->bus->self);
730 * pci_update_current_state - Read power state of given device and cache it
731 * @dev: PCI device to handle.
732 * @state: State to cache in case the device doesn't have the PM capability
734 * The power state is read from the PMCSR register, which however is
735 * inaccessible in D3cold. The platform firmware is therefore queried first
736 * to detect accessibility of the register. In case the platform firmware
737 * reports an incorrect state or the device isn't power manageable by the
738 * platform at all, we try to detect D3cold by testing accessibility of the
739 * vendor ID in config space.
741 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
743 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
744 !pci_device_is_present(dev)) {
745 dev->current_state = PCI_D3cold;
746 } else if (dev->pm_cap) {
749 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
750 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
752 dev->current_state = state;
757 * pci_power_up - Put the given device into D0 forcibly
758 * @dev: PCI device to power up
760 void pci_power_up(struct pci_dev *dev)
762 if (platform_pci_power_manageable(dev))
763 platform_pci_set_power_state(dev, PCI_D0);
765 pci_raw_set_power_state(dev, PCI_D0);
766 pci_update_current_state(dev, PCI_D0);
770 * pci_platform_power_transition - Use platform to change device power state
771 * @dev: PCI device to handle.
772 * @state: State to put the device into.
774 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
778 if (platform_pci_power_manageable(dev)) {
779 error = platform_pci_set_power_state(dev, state);
781 pci_update_current_state(dev, state);
785 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
786 dev->current_state = PCI_D0;
792 * pci_wakeup - Wake up a PCI device
793 * @pci_dev: Device to handle.
794 * @ign: ignored parameter
796 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
798 pci_wakeup_event(pci_dev);
799 pm_request_resume(&pci_dev->dev);
804 * pci_wakeup_bus - Walk given bus and wake up devices on it
805 * @bus: Top bus of the subtree to walk.
807 static void pci_wakeup_bus(struct pci_bus *bus)
810 pci_walk_bus(bus, pci_wakeup, NULL);
814 * __pci_start_power_transition - Start power transition of a PCI device
815 * @dev: PCI device to handle.
816 * @state: State to put the device into.
818 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
820 if (state == PCI_D0) {
821 pci_platform_power_transition(dev, PCI_D0);
823 * Mandatory power management transition delays, see
824 * PCI Express Base Specification Revision 2.0 Section
825 * 6.6.1: Conventional Reset. Do not delay for
826 * devices powered on/off by corresponding bridge,
827 * because have already delayed for the bridge.
829 if (dev->runtime_d3cold) {
830 if (dev->d3cold_delay)
831 msleep(dev->d3cold_delay);
833 * When powering on a bridge from D3cold, the
834 * whole hierarchy may be powered on into
835 * D0uninitialized state, resume them to give
836 * them a chance to suspend again
838 pci_wakeup_bus(dev->subordinate);
844 * __pci_dev_set_current_state - Set current state of a PCI device
845 * @dev: Device to handle
846 * @data: pointer to state to be set
848 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
850 pci_power_t state = *(pci_power_t *)data;
852 dev->current_state = state;
857 * __pci_bus_set_current_state - Walk given bus and set current state of devices
858 * @bus: Top bus of the subtree to walk.
859 * @state: state to be set
861 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
864 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
868 * __pci_complete_power_transition - Complete power transition of a PCI device
869 * @dev: PCI device to handle.
870 * @state: State to put the device into.
872 * This function should not be called directly by device drivers.
874 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
880 ret = pci_platform_power_transition(dev, state);
881 /* Power off the bridge may power off the whole hierarchy */
882 if (!ret && state == PCI_D3cold)
883 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
886 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
889 * pci_set_power_state - Set the power state of a PCI device
890 * @dev: PCI device to handle.
891 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
893 * Transition a device to a new power state, using the platform firmware and/or
894 * the device's PCI PM registers.
897 * -EINVAL if the requested state is invalid.
898 * -EIO if device does not support PCI PM or its PM capabilities register has a
899 * wrong version, or device doesn't support the requested state.
900 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
901 * 0 if device already is in the requested state.
902 * 0 if the transition is to D3 but D3 is not supported.
903 * 0 if device's power state has been successfully changed.
905 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
909 /* bound the state we're entering */
910 if (state > PCI_D3cold)
912 else if (state < PCI_D0)
914 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
916 * If the device or the parent bridge do not support PCI PM,
917 * ignore the request if we're doing anything other than putting
918 * it into D0 (which would only happen on boot).
922 /* Check if we're already there */
923 if (dev->current_state == state)
926 __pci_start_power_transition(dev, state);
928 /* This device is quirked not to be put into D3, so
929 don't put it in D3 */
930 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
934 * To put device in D3cold, we put device into D3hot in native
935 * way, then put device into D3cold with platform ops
937 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
940 if (!__pci_complete_power_transition(dev, state))
945 EXPORT_SYMBOL(pci_set_power_state);
948 * pci_choose_state - Choose the power state of a PCI device
949 * @dev: PCI device to be suspended
950 * @state: target sleep state for the whole system. This is the value
951 * that is passed to suspend() function.
953 * Returns PCI power state suitable for given device and given system
957 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
964 ret = platform_pci_choose_state(dev);
965 if (ret != PCI_POWER_ERROR)
968 switch (state.event) {
971 case PM_EVENT_FREEZE:
972 case PM_EVENT_PRETHAW:
973 /* REVISIT both freeze and pre-thaw "should" use D0 */
974 case PM_EVENT_SUSPEND:
975 case PM_EVENT_HIBERNATE:
978 pci_info(dev, "unrecognized suspend event %d\n",
984 EXPORT_SYMBOL(pci_choose_state);
986 #define PCI_EXP_SAVE_REGS 7
988 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
989 u16 cap, bool extended)
991 struct pci_cap_saved_state *tmp;
993 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
994 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1000 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1002 return _pci_find_saved_cap(dev, cap, false);
1005 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1007 return _pci_find_saved_cap(dev, cap, true);
1010 static int pci_save_pcie_state(struct pci_dev *dev)
1013 struct pci_cap_saved_state *save_state;
1016 if (!pci_is_pcie(dev))
1019 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1021 pci_err(dev, "buffer not found in %s\n", __func__);
1025 cap = (u16 *)&save_state->cap.data[0];
1026 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1029 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1030 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1031 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1032 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1037 static void pci_restore_pcie_state(struct pci_dev *dev)
1040 struct pci_cap_saved_state *save_state;
1043 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1047 cap = (u16 *)&save_state->cap.data[0];
1048 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1051 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1052 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1053 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1054 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1058 static int pci_save_pcix_state(struct pci_dev *dev)
1061 struct pci_cap_saved_state *save_state;
1063 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1067 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1069 pci_err(dev, "buffer not found in %s\n", __func__);
1073 pci_read_config_word(dev, pos + PCI_X_CMD,
1074 (u16 *)save_state->cap.data);
1079 static void pci_restore_pcix_state(struct pci_dev *dev)
1082 struct pci_cap_saved_state *save_state;
1085 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1086 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1087 if (!save_state || !pos)
1089 cap = (u16 *)&save_state->cap.data[0];
1091 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1096 * pci_save_state - save the PCI configuration space of a device before suspending
1097 * @dev: - PCI device that we're dealing with
1099 int pci_save_state(struct pci_dev *dev)
1102 /* XXX: 100% dword access ok here? */
1103 for (i = 0; i < 16; i++)
1104 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1105 dev->state_saved = true;
1107 i = pci_save_pcie_state(dev);
1111 i = pci_save_pcix_state(dev);
1115 return pci_save_vc_state(dev);
1117 EXPORT_SYMBOL(pci_save_state);
1119 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1120 u32 saved_val, int retry)
1124 pci_read_config_dword(pdev, offset, &val);
1125 if (val == saved_val)
1129 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1130 offset, val, saved_val);
1131 pci_write_config_dword(pdev, offset, saved_val);
1135 pci_read_config_dword(pdev, offset, &val);
1136 if (val == saved_val)
1143 static void pci_restore_config_space_range(struct pci_dev *pdev,
1144 int start, int end, int retry)
1148 for (index = end; index >= start; index--)
1149 pci_restore_config_dword(pdev, 4 * index,
1150 pdev->saved_config_space[index],
1154 static void pci_restore_config_space(struct pci_dev *pdev)
1156 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1157 pci_restore_config_space_range(pdev, 10, 15, 0);
1158 /* Restore BARs before the command register. */
1159 pci_restore_config_space_range(pdev, 4, 9, 10);
1160 pci_restore_config_space_range(pdev, 0, 3, 0);
1162 pci_restore_config_space_range(pdev, 0, 15, 0);
1167 * pci_restore_state - Restore the saved state of a PCI device
1168 * @dev: - PCI device that we're dealing with
1170 void pci_restore_state(struct pci_dev *dev)
1172 if (!dev->state_saved)
1175 /* PCI Express register must be restored first */
1176 pci_restore_pcie_state(dev);
1177 pci_restore_pasid_state(dev);
1178 pci_restore_pri_state(dev);
1179 pci_restore_ats_state(dev);
1180 pci_restore_vc_state(dev);
1182 pci_cleanup_aer_error_status_regs(dev);
1184 pci_restore_config_space(dev);
1186 pci_restore_pcix_state(dev);
1187 pci_restore_msi_state(dev);
1189 /* Restore ACS and IOV configuration state */
1190 pci_enable_acs(dev);
1191 pci_restore_iov_state(dev);
1193 dev->state_saved = false;
1195 EXPORT_SYMBOL(pci_restore_state);
1197 struct pci_saved_state {
1198 u32 config_space[16];
1199 struct pci_cap_saved_data cap[0];
1203 * pci_store_saved_state - Allocate and return an opaque struct containing
1204 * the device saved state.
1205 * @dev: PCI device that we're dealing with
1207 * Return NULL if no state or error.
1209 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1211 struct pci_saved_state *state;
1212 struct pci_cap_saved_state *tmp;
1213 struct pci_cap_saved_data *cap;
1216 if (!dev->state_saved)
1219 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1221 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1222 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1224 state = kzalloc(size, GFP_KERNEL);
1228 memcpy(state->config_space, dev->saved_config_space,
1229 sizeof(state->config_space));
1232 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1233 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1234 memcpy(cap, &tmp->cap, len);
1235 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1237 /* Empty cap_save terminates list */
1241 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1244 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1245 * @dev: PCI device that we're dealing with
1246 * @state: Saved state returned from pci_store_saved_state()
1248 int pci_load_saved_state(struct pci_dev *dev,
1249 struct pci_saved_state *state)
1251 struct pci_cap_saved_data *cap;
1253 dev->state_saved = false;
1258 memcpy(dev->saved_config_space, state->config_space,
1259 sizeof(state->config_space));
1263 struct pci_cap_saved_state *tmp;
1265 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1266 if (!tmp || tmp->cap.size != cap->size)
1269 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1270 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1271 sizeof(struct pci_cap_saved_data) + cap->size);
1274 dev->state_saved = true;
1277 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1280 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1281 * and free the memory allocated for it.
1282 * @dev: PCI device that we're dealing with
1283 * @state: Pointer to saved state returned from pci_store_saved_state()
1285 int pci_load_and_free_saved_state(struct pci_dev *dev,
1286 struct pci_saved_state **state)
1288 int ret = pci_load_saved_state(dev, *state);
1293 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1295 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1297 return pci_enable_resources(dev, bars);
1300 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1303 struct pci_dev *bridge;
1307 err = pci_set_power_state(dev, PCI_D0);
1308 if (err < 0 && err != -EIO)
1311 bridge = pci_upstream_bridge(dev);
1313 pcie_aspm_powersave_config_link(bridge);
1315 err = pcibios_enable_device(dev, bars);
1318 pci_fixup_device(pci_fixup_enable, dev);
1320 if (dev->msi_enabled || dev->msix_enabled)
1323 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1325 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1326 if (cmd & PCI_COMMAND_INTX_DISABLE)
1327 pci_write_config_word(dev, PCI_COMMAND,
1328 cmd & ~PCI_COMMAND_INTX_DISABLE);
1335 * pci_reenable_device - Resume abandoned device
1336 * @dev: PCI device to be resumed
1338 * Note this function is a backend of pci_default_resume and is not supposed
1339 * to be called by normal code, write proper resume handler and use it instead.
1341 int pci_reenable_device(struct pci_dev *dev)
1343 if (pci_is_enabled(dev))
1344 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1347 EXPORT_SYMBOL(pci_reenable_device);
1349 static void pci_enable_bridge(struct pci_dev *dev)
1351 struct pci_dev *bridge;
1354 bridge = pci_upstream_bridge(dev);
1356 pci_enable_bridge(bridge);
1358 if (pci_is_enabled(dev)) {
1359 if (!dev->is_busmaster)
1360 pci_set_master(dev);
1364 retval = pci_enable_device(dev);
1366 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1368 pci_set_master(dev);
1371 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1373 struct pci_dev *bridge;
1378 * Power state could be unknown at this point, either due to a fresh
1379 * boot or a device removal call. So get the current power state
1380 * so that things like MSI message writing will behave as expected
1381 * (e.g. if the device really is in D0 at enable time).
1385 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1386 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1389 if (atomic_inc_return(&dev->enable_cnt) > 1)
1390 return 0; /* already enabled */
1392 bridge = pci_upstream_bridge(dev);
1394 pci_enable_bridge(bridge);
1396 /* only skip sriov related */
1397 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1398 if (dev->resource[i].flags & flags)
1400 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1401 if (dev->resource[i].flags & flags)
1404 err = do_pci_enable_device(dev, bars);
1406 atomic_dec(&dev->enable_cnt);
1411 * pci_enable_device_io - Initialize a device for use with IO space
1412 * @dev: PCI device to be initialized
1414 * Initialize device before it's used by a driver. Ask low-level code
1415 * to enable I/O resources. Wake up the device if it was suspended.
1416 * Beware, this function can fail.
1418 int pci_enable_device_io(struct pci_dev *dev)
1420 return pci_enable_device_flags(dev, IORESOURCE_IO);
1422 EXPORT_SYMBOL(pci_enable_device_io);
1425 * pci_enable_device_mem - Initialize a device for use with Memory space
1426 * @dev: PCI device to be initialized
1428 * Initialize device before it's used by a driver. Ask low-level code
1429 * to enable Memory resources. Wake up the device if it was suspended.
1430 * Beware, this function can fail.
1432 int pci_enable_device_mem(struct pci_dev *dev)
1434 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1436 EXPORT_SYMBOL(pci_enable_device_mem);
1439 * pci_enable_device - Initialize device before it's used by a driver.
1440 * @dev: PCI device to be initialized
1442 * Initialize device before it's used by a driver. Ask low-level code
1443 * to enable I/O and memory. Wake up the device if it was suspended.
1444 * Beware, this function can fail.
1446 * Note we don't actually enable the device many times if we call
1447 * this function repeatedly (we just increment the count).
1449 int pci_enable_device(struct pci_dev *dev)
1451 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1453 EXPORT_SYMBOL(pci_enable_device);
1456 * Managed PCI resources. This manages device on/off, intx/msi/msix
1457 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1458 * there's no need to track it separately. pci_devres is initialized
1459 * when a device is enabled using managed PCI device enable interface.
1462 unsigned int enabled:1;
1463 unsigned int pinned:1;
1464 unsigned int orig_intx:1;
1465 unsigned int restore_intx:1;
1470 static void pcim_release(struct device *gendev, void *res)
1472 struct pci_dev *dev = to_pci_dev(gendev);
1473 struct pci_devres *this = res;
1476 if (dev->msi_enabled)
1477 pci_disable_msi(dev);
1478 if (dev->msix_enabled)
1479 pci_disable_msix(dev);
1481 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1482 if (this->region_mask & (1 << i))
1483 pci_release_region(dev, i);
1488 if (this->restore_intx)
1489 pci_intx(dev, this->orig_intx);
1491 if (this->enabled && !this->pinned)
1492 pci_disable_device(dev);
1495 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1497 struct pci_devres *dr, *new_dr;
1499 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1503 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1506 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1509 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1511 if (pci_is_managed(pdev))
1512 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1517 * pcim_enable_device - Managed pci_enable_device()
1518 * @pdev: PCI device to be initialized
1520 * Managed pci_enable_device().
1522 int pcim_enable_device(struct pci_dev *pdev)
1524 struct pci_devres *dr;
1527 dr = get_pci_dr(pdev);
1533 rc = pci_enable_device(pdev);
1535 pdev->is_managed = 1;
1540 EXPORT_SYMBOL(pcim_enable_device);
1543 * pcim_pin_device - Pin managed PCI device
1544 * @pdev: PCI device to pin
1546 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1547 * driver detach. @pdev must have been enabled with
1548 * pcim_enable_device().
1550 void pcim_pin_device(struct pci_dev *pdev)
1552 struct pci_devres *dr;
1554 dr = find_pci_dr(pdev);
1555 WARN_ON(!dr || !dr->enabled);
1559 EXPORT_SYMBOL(pcim_pin_device);
1562 * pcibios_add_device - provide arch specific hooks when adding device dev
1563 * @dev: the PCI device being added
1565 * Permits the platform to provide architecture specific functionality when
1566 * devices are added. This is the default implementation. Architecture
1567 * implementations can override this.
1569 int __weak pcibios_add_device(struct pci_dev *dev)
1575 * pcibios_release_device - provide arch specific hooks when releasing device dev
1576 * @dev: the PCI device being released
1578 * Permits the platform to provide architecture specific functionality when
1579 * devices are released. This is the default implementation. Architecture
1580 * implementations can override this.
1582 void __weak pcibios_release_device(struct pci_dev *dev) {}
1585 * pcibios_disable_device - disable arch specific PCI resources for device dev
1586 * @dev: the PCI device to disable
1588 * Disables architecture specific PCI resources for the device. This
1589 * is the default implementation. Architecture implementations can
1592 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1595 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1596 * @irq: ISA IRQ to penalize
1597 * @active: IRQ active or not
1599 * Permits the platform to provide architecture-specific functionality when
1600 * penalizing ISA IRQs. This is the default implementation. Architecture
1601 * implementations can override this.
1603 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1605 static void do_pci_disable_device(struct pci_dev *dev)
1609 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1610 if (pci_command & PCI_COMMAND_MASTER) {
1611 pci_command &= ~PCI_COMMAND_MASTER;
1612 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1615 pcibios_disable_device(dev);
1619 * pci_disable_enabled_device - Disable device without updating enable_cnt
1620 * @dev: PCI device to disable
1622 * NOTE: This function is a backend of PCI power management routines and is
1623 * not supposed to be called drivers.
1625 void pci_disable_enabled_device(struct pci_dev *dev)
1627 if (pci_is_enabled(dev))
1628 do_pci_disable_device(dev);
1632 * pci_disable_device - Disable PCI device after use
1633 * @dev: PCI device to be disabled
1635 * Signal to the system that the PCI device is not in use by the system
1636 * anymore. This only involves disabling PCI bus-mastering, if active.
1638 * Note we don't actually disable the device until all callers of
1639 * pci_enable_device() have called pci_disable_device().
1641 void pci_disable_device(struct pci_dev *dev)
1643 struct pci_devres *dr;
1645 dr = find_pci_dr(dev);
1649 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1650 "disabling already-disabled device");
1652 if (atomic_dec_return(&dev->enable_cnt) != 0)
1655 do_pci_disable_device(dev);
1657 dev->is_busmaster = 0;
1659 EXPORT_SYMBOL(pci_disable_device);
1662 * pcibios_set_pcie_reset_state - set reset state for device dev
1663 * @dev: the PCIe device reset
1664 * @state: Reset state to enter into
1667 * Sets the PCIe reset state for the device. This is the default
1668 * implementation. Architecture implementations can override this.
1670 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1671 enum pcie_reset_state state)
1677 * pci_set_pcie_reset_state - set reset state for device dev
1678 * @dev: the PCIe device reset
1679 * @state: Reset state to enter into
1682 * Sets the PCI reset state for the device.
1684 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1686 return pcibios_set_pcie_reset_state(dev, state);
1688 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1691 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1692 * @dev: PCIe root port or event collector.
1694 void pcie_clear_root_pme_status(struct pci_dev *dev)
1696 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1700 * pci_check_pme_status - Check if given device has generated PME.
1701 * @dev: Device to check.
1703 * Check the PME status of the device and if set, clear it and clear PME enable
1704 * (if set). Return 'true' if PME status and PME enable were both set or
1705 * 'false' otherwise.
1707 bool pci_check_pme_status(struct pci_dev *dev)
1716 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1717 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1718 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1721 /* Clear PME status. */
1722 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1723 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1724 /* Disable PME to avoid interrupt flood. */
1725 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1729 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1735 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1736 * @dev: Device to handle.
1737 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1739 * Check if @dev has generated PME and queue a resume request for it in that
1742 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1744 if (pme_poll_reset && dev->pme_poll)
1745 dev->pme_poll = false;
1747 if (pci_check_pme_status(dev)) {
1748 pci_wakeup_event(dev);
1749 pm_request_resume(&dev->dev);
1755 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1756 * @bus: Top bus of the subtree to walk.
1758 void pci_pme_wakeup_bus(struct pci_bus *bus)
1761 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1766 * pci_pme_capable - check the capability of PCI device to generate PME#
1767 * @dev: PCI device to handle.
1768 * @state: PCI state from which device will issue PME#.
1770 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1775 return !!(dev->pme_support & (1 << state));
1777 EXPORT_SYMBOL(pci_pme_capable);
1779 static void pci_pme_list_scan(struct work_struct *work)
1781 struct pci_pme_device *pme_dev, *n;
1783 mutex_lock(&pci_pme_list_mutex);
1784 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1785 if (pme_dev->dev->pme_poll) {
1786 struct pci_dev *bridge;
1788 bridge = pme_dev->dev->bus->self;
1790 * If bridge is in low power state, the
1791 * configuration space of subordinate devices
1792 * may be not accessible
1794 if (bridge && bridge->current_state != PCI_D0)
1796 pci_pme_wakeup(pme_dev->dev, NULL);
1798 list_del(&pme_dev->list);
1802 if (!list_empty(&pci_pme_list))
1803 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1804 msecs_to_jiffies(PME_TIMEOUT));
1805 mutex_unlock(&pci_pme_list_mutex);
1808 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1812 if (!dev->pme_support)
1815 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1816 /* Clear PME_Status by writing 1 to it and enable PME# */
1817 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1819 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1821 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1825 * pci_pme_restore - Restore PME configuration after config space restore.
1826 * @dev: PCI device to update.
1828 void pci_pme_restore(struct pci_dev *dev)
1832 if (!dev->pme_support)
1835 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1836 if (dev->wakeup_prepared) {
1837 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1838 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1840 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1841 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1843 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1847 * pci_pme_active - enable or disable PCI device's PME# function
1848 * @dev: PCI device to handle.
1849 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1851 * The caller must verify that the device is capable of generating PME# before
1852 * calling this function with @enable equal to 'true'.
1854 void pci_pme_active(struct pci_dev *dev, bool enable)
1856 __pci_pme_active(dev, enable);
1859 * PCI (as opposed to PCIe) PME requires that the device have
1860 * its PME# line hooked up correctly. Not all hardware vendors
1861 * do this, so the PME never gets delivered and the device
1862 * remains asleep. The easiest way around this is to
1863 * periodically walk the list of suspended devices and check
1864 * whether any have their PME flag set. The assumption is that
1865 * we'll wake up often enough anyway that this won't be a huge
1866 * hit, and the power savings from the devices will still be a
1869 * Although PCIe uses in-band PME message instead of PME# line
1870 * to report PME, PME does not work for some PCIe devices in
1871 * reality. For example, there are devices that set their PME
1872 * status bits, but don't really bother to send a PME message;
1873 * there are PCI Express Root Ports that don't bother to
1874 * trigger interrupts when they receive PME messages from the
1875 * devices below. So PME poll is used for PCIe devices too.
1878 if (dev->pme_poll) {
1879 struct pci_pme_device *pme_dev;
1881 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1884 pci_warn(dev, "can't enable PME#\n");
1888 mutex_lock(&pci_pme_list_mutex);
1889 list_add(&pme_dev->list, &pci_pme_list);
1890 if (list_is_singular(&pci_pme_list))
1891 queue_delayed_work(system_freezable_wq,
1893 msecs_to_jiffies(PME_TIMEOUT));
1894 mutex_unlock(&pci_pme_list_mutex);
1896 mutex_lock(&pci_pme_list_mutex);
1897 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1898 if (pme_dev->dev == dev) {
1899 list_del(&pme_dev->list);
1904 mutex_unlock(&pci_pme_list_mutex);
1908 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
1910 EXPORT_SYMBOL(pci_pme_active);
1913 * pci_enable_wake - enable PCI device as wakeup event source
1914 * @dev: PCI device affected
1915 * @state: PCI state from which device will issue wakeup events
1916 * @enable: True to enable event generation; false to disable
1918 * This enables the device as a wakeup event source, or disables it.
1919 * When such events involves platform-specific hooks, those hooks are
1920 * called automatically by this routine.
1922 * Devices with legacy power management (no standard PCI PM capabilities)
1923 * always require such platform hooks.
1926 * 0 is returned on success
1927 * -EINVAL is returned if device is not supposed to wake up the system
1928 * Error code depending on the platform is returned if both the platform and
1929 * the native mechanism fail to enable the generation of wake-up events
1931 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1936 * Bridges can only signal wakeup on behalf of subordinate devices,
1937 * but that is set up elsewhere, so skip them.
1939 if (pci_has_subordinate(dev))
1942 /* Don't do the same thing twice in a row for one device. */
1943 if (!!enable == !!dev->wakeup_prepared)
1947 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1948 * Anderson we should be doing PME# wake enable followed by ACPI wake
1949 * enable. To disable wake-up we call the platform first, for symmetry.
1955 if (pci_pme_capable(dev, state))
1956 pci_pme_active(dev, true);
1959 error = platform_pci_set_wakeup(dev, true);
1963 dev->wakeup_prepared = true;
1965 platform_pci_set_wakeup(dev, false);
1966 pci_pme_active(dev, false);
1967 dev->wakeup_prepared = false;
1972 EXPORT_SYMBOL(pci_enable_wake);
1975 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1976 * @dev: PCI device to prepare
1977 * @enable: True to enable wake-up event generation; false to disable
1979 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1980 * and this function allows them to set that up cleanly - pci_enable_wake()
1981 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1982 * ordering constraints.
1984 * This function only returns error code if the device is not capable of
1985 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1986 * enable wake-up power for it.
1988 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1990 return pci_pme_capable(dev, PCI_D3cold) ?
1991 pci_enable_wake(dev, PCI_D3cold, enable) :
1992 pci_enable_wake(dev, PCI_D3hot, enable);
1994 EXPORT_SYMBOL(pci_wake_from_d3);
1997 * pci_target_state - find an appropriate low power state for a given PCI dev
1999 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2001 * Use underlying platform code to find a supported low power state for @dev.
2002 * If the platform can't manage @dev, return the deepest state from which it
2003 * can generate wake events, based on any available PME info.
2005 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2007 pci_power_t target_state = PCI_D3hot;
2009 if (platform_pci_power_manageable(dev)) {
2011 * Call the platform to choose the target state of the device
2012 * and enable wake-up from this state if supported.
2014 pci_power_t state = platform_pci_choose_state(dev);
2017 case PCI_POWER_ERROR:
2022 if (pci_no_d1d2(dev))
2025 target_state = state;
2028 return target_state;
2032 target_state = PCI_D0;
2035 * If the device is in D3cold even though it's not power-manageable by
2036 * the platform, it may have been powered down by non-standard means.
2037 * Best to let it slumber.
2039 if (dev->current_state == PCI_D3cold)
2040 target_state = PCI_D3cold;
2044 * Find the deepest state from which the device can generate
2045 * wake-up events, make it the target state and enable device
2048 if (dev->pme_support) {
2050 && !(dev->pme_support & (1 << target_state)))
2055 return target_state;
2059 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2060 * @dev: Device to handle.
2062 * Choose the power state appropriate for the device depending on whether
2063 * it can wake up the system and/or is power manageable by the platform
2064 * (PCI_D3hot is the default) and put the device into that state.
2066 int pci_prepare_to_sleep(struct pci_dev *dev)
2068 bool wakeup = device_may_wakeup(&dev->dev);
2069 pci_power_t target_state = pci_target_state(dev, wakeup);
2072 if (target_state == PCI_POWER_ERROR)
2075 pci_enable_wake(dev, target_state, wakeup);
2077 error = pci_set_power_state(dev, target_state);
2080 pci_enable_wake(dev, target_state, false);
2084 EXPORT_SYMBOL(pci_prepare_to_sleep);
2087 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2088 * @dev: Device to handle.
2090 * Disable device's system wake-up capability and put it into D0.
2092 int pci_back_from_sleep(struct pci_dev *dev)
2094 pci_enable_wake(dev, PCI_D0, false);
2095 return pci_set_power_state(dev, PCI_D0);
2097 EXPORT_SYMBOL(pci_back_from_sleep);
2100 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2101 * @dev: PCI device being suspended.
2103 * Prepare @dev to generate wake-up events at run time and put it into a low
2106 int pci_finish_runtime_suspend(struct pci_dev *dev)
2108 pci_power_t target_state;
2111 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2112 if (target_state == PCI_POWER_ERROR)
2115 dev->runtime_d3cold = target_state == PCI_D3cold;
2117 pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2119 error = pci_set_power_state(dev, target_state);
2122 pci_enable_wake(dev, target_state, false);
2123 dev->runtime_d3cold = false;
2130 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2131 * @dev: Device to check.
2133 * Return true if the device itself is capable of generating wake-up events
2134 * (through the platform or using the native PCIe PME) or if the device supports
2135 * PME and one of its upstream bridges can generate wake-up events.
2137 bool pci_dev_run_wake(struct pci_dev *dev)
2139 struct pci_bus *bus = dev->bus;
2141 if (device_can_wakeup(&dev->dev))
2144 if (!dev->pme_support)
2147 /* PME-capable in principle, but not from the target power state */
2148 if (!pci_pme_capable(dev, pci_target_state(dev, false)))
2151 while (bus->parent) {
2152 struct pci_dev *bridge = bus->self;
2154 if (device_can_wakeup(&bridge->dev))
2160 /* We have reached the root bus. */
2162 return device_can_wakeup(bus->bridge);
2166 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2169 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2170 * @pci_dev: Device to check.
2172 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2173 * reconfigured due to wakeup settings difference between system and runtime
2174 * suspend and the current power state of it is suitable for the upcoming
2175 * (system) transition.
2177 * If the device is not configured for system wakeup, disable PME for it before
2178 * returning 'true' to prevent it from waking up the system unnecessarily.
2180 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2182 struct device *dev = &pci_dev->dev;
2183 bool wakeup = device_may_wakeup(dev);
2185 if (!pm_runtime_suspended(dev)
2186 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2187 || platform_pci_need_resume(pci_dev))
2191 * At this point the device is good to go unless it's been configured
2192 * to generate PME at the runtime suspend time, but it is not supposed
2193 * to wake up the system. In that case, simply disable PME for it
2194 * (it will have to be re-enabled on exit from system resume).
2196 * If the device's power state is D3cold and the platform check above
2197 * hasn't triggered, the device's configuration is suitable and we don't
2198 * need to manipulate it at all.
2200 spin_lock_irq(&dev->power.lock);
2202 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2204 __pci_pme_active(pci_dev, false);
2206 spin_unlock_irq(&dev->power.lock);
2211 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2212 * @pci_dev: Device to handle.
2214 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2215 * it might have been disabled during the prepare phase of system suspend if
2216 * the device was not configured for system wakeup.
2218 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2220 struct device *dev = &pci_dev->dev;
2222 if (!pci_dev_run_wake(pci_dev))
2225 spin_lock_irq(&dev->power.lock);
2227 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2228 __pci_pme_active(pci_dev, true);
2230 spin_unlock_irq(&dev->power.lock);
2233 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2235 struct device *dev = &pdev->dev;
2236 struct device *parent = dev->parent;
2239 pm_runtime_get_sync(parent);
2240 pm_runtime_get_noresume(dev);
2242 * pdev->current_state is set to PCI_D3cold during suspending,
2243 * so wait until suspending completes
2245 pm_runtime_barrier(dev);
2247 * Only need to resume devices in D3cold, because config
2248 * registers are still accessible for devices suspended but
2251 if (pdev->current_state == PCI_D3cold)
2252 pm_runtime_resume(dev);
2255 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2257 struct device *dev = &pdev->dev;
2258 struct device *parent = dev->parent;
2260 pm_runtime_put(dev);
2262 pm_runtime_put_sync(parent);
2266 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2267 * @bridge: Bridge to check
2269 * This function checks if it is possible to move the bridge to D3.
2270 * Currently we only allow D3 for recent enough PCIe ports.
2272 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2276 if (!pci_is_pcie(bridge))
2279 switch (pci_pcie_type(bridge)) {
2280 case PCI_EXP_TYPE_ROOT_PORT:
2281 case PCI_EXP_TYPE_UPSTREAM:
2282 case PCI_EXP_TYPE_DOWNSTREAM:
2283 if (pci_bridge_d3_disable)
2287 * Hotplug interrupts cannot be delivered if the link is down,
2288 * so parents of a hotplug port must stay awake. In addition,
2289 * hotplug ports handled by firmware in System Management Mode
2290 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2291 * For simplicity, disallow in general for now.
2293 if (bridge->is_hotplug_bridge)
2296 if (pci_bridge_d3_force)
2300 * It should be safe to put PCIe ports from 2015 or newer
2303 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2313 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2315 bool *d3cold_ok = data;
2317 if (/* The device needs to be allowed to go D3cold ... */
2318 dev->no_d3cold || !dev->d3cold_allowed ||
2320 /* ... and if it is wakeup capable to do so from D3cold. */
2321 (device_may_wakeup(&dev->dev) &&
2322 !pci_pme_capable(dev, PCI_D3cold)) ||
2324 /* If it is a bridge it must be allowed to go to D3. */
2325 !pci_power_manageable(dev))
2333 * pci_bridge_d3_update - Update bridge D3 capabilities
2334 * @dev: PCI device which is changed
2336 * Update upstream bridge PM capabilities accordingly depending on if the
2337 * device PM configuration was changed or the device is being removed. The
2338 * change is also propagated upstream.
2340 void pci_bridge_d3_update(struct pci_dev *dev)
2342 bool remove = !device_is_registered(&dev->dev);
2343 struct pci_dev *bridge;
2344 bool d3cold_ok = true;
2346 bridge = pci_upstream_bridge(dev);
2347 if (!bridge || !pci_bridge_d3_possible(bridge))
2351 * If D3 is currently allowed for the bridge, removing one of its
2352 * children won't change that.
2354 if (remove && bridge->bridge_d3)
2358 * If D3 is currently allowed for the bridge and a child is added or
2359 * changed, disallowance of D3 can only be caused by that child, so
2360 * we only need to check that single device, not any of its siblings.
2362 * If D3 is currently not allowed for the bridge, checking the device
2363 * first may allow us to skip checking its siblings.
2366 pci_dev_check_d3cold(dev, &d3cold_ok);
2369 * If D3 is currently not allowed for the bridge, this may be caused
2370 * either by the device being changed/removed or any of its siblings,
2371 * so we need to go through all children to find out if one of them
2372 * continues to block D3.
2374 if (d3cold_ok && !bridge->bridge_d3)
2375 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2378 if (bridge->bridge_d3 != d3cold_ok) {
2379 bridge->bridge_d3 = d3cold_ok;
2380 /* Propagate change to upstream bridges */
2381 pci_bridge_d3_update(bridge);
2386 * pci_d3cold_enable - Enable D3cold for device
2387 * @dev: PCI device to handle
2389 * This function can be used in drivers to enable D3cold from the device
2390 * they handle. It also updates upstream PCI bridge PM capabilities
2393 void pci_d3cold_enable(struct pci_dev *dev)
2395 if (dev->no_d3cold) {
2396 dev->no_d3cold = false;
2397 pci_bridge_d3_update(dev);
2400 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2403 * pci_d3cold_disable - Disable D3cold for device
2404 * @dev: PCI device to handle
2406 * This function can be used in drivers to disable D3cold from the device
2407 * they handle. It also updates upstream PCI bridge PM capabilities
2410 void pci_d3cold_disable(struct pci_dev *dev)
2412 if (!dev->no_d3cold) {
2413 dev->no_d3cold = true;
2414 pci_bridge_d3_update(dev);
2417 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2420 * pci_pm_init - Initialize PM functions of given PCI device
2421 * @dev: PCI device to handle.
2423 void pci_pm_init(struct pci_dev *dev)
2428 pm_runtime_forbid(&dev->dev);
2429 pm_runtime_set_active(&dev->dev);
2430 pm_runtime_enable(&dev->dev);
2431 device_enable_async_suspend(&dev->dev);
2432 dev->wakeup_prepared = false;
2435 dev->pme_support = 0;
2437 /* find PCI PM capability in list */
2438 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2441 /* Check device's ability to generate PME# */
2442 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2444 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2445 pci_err(dev, "unsupported PM cap regs version (%u)\n",
2446 pmc & PCI_PM_CAP_VER_MASK);
2451 dev->d3_delay = PCI_PM_D3_WAIT;
2452 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2453 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2454 dev->d3cold_allowed = true;
2456 dev->d1_support = false;
2457 dev->d2_support = false;
2458 if (!pci_no_d1d2(dev)) {
2459 if (pmc & PCI_PM_CAP_D1)
2460 dev->d1_support = true;
2461 if (pmc & PCI_PM_CAP_D2)
2462 dev->d2_support = true;
2464 if (dev->d1_support || dev->d2_support)
2465 pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2466 dev->d1_support ? " D1" : "",
2467 dev->d2_support ? " D2" : "");
2470 pmc &= PCI_PM_CAP_PME_MASK;
2472 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2473 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2474 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2475 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2476 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2477 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2478 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2479 dev->pme_poll = true;
2481 * Make device's PM flags reflect the wake-up capability, but
2482 * let the user space enable it to wake up the system as needed.
2484 device_set_wakeup_capable(&dev->dev, true);
2485 /* Disable the PME# generation functionality */
2486 pci_pme_active(dev, false);
2490 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2492 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2496 case PCI_EA_P_VF_MEM:
2497 flags |= IORESOURCE_MEM;
2499 case PCI_EA_P_MEM_PREFETCH:
2500 case PCI_EA_P_VF_MEM_PREFETCH:
2501 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2504 flags |= IORESOURCE_IO;
2513 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2516 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2517 return &dev->resource[bei];
2518 #ifdef CONFIG_PCI_IOV
2519 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2520 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2521 return &dev->resource[PCI_IOV_RESOURCES +
2522 bei - PCI_EA_BEI_VF_BAR0];
2524 else if (bei == PCI_EA_BEI_ROM)
2525 return &dev->resource[PCI_ROM_RESOURCE];
2530 /* Read an Enhanced Allocation (EA) entry */
2531 static int pci_ea_read(struct pci_dev *dev, int offset)
2533 struct resource *res;
2534 int ent_size, ent_offset = offset;
2535 resource_size_t start, end;
2536 unsigned long flags;
2537 u32 dw0, bei, base, max_offset;
2539 bool support_64 = (sizeof(resource_size_t) >= 8);
2541 pci_read_config_dword(dev, ent_offset, &dw0);
2544 /* Entry size field indicates DWORDs after 1st */
2545 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2547 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2550 bei = (dw0 & PCI_EA_BEI) >> 4;
2551 prop = (dw0 & PCI_EA_PP) >> 8;
2554 * If the Property is in the reserved range, try the Secondary
2557 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2558 prop = (dw0 & PCI_EA_SP) >> 16;
2559 if (prop > PCI_EA_P_BRIDGE_IO)
2562 res = pci_ea_get_resource(dev, bei, prop);
2564 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2568 flags = pci_ea_flags(dev, prop);
2570 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2575 pci_read_config_dword(dev, ent_offset, &base);
2576 start = (base & PCI_EA_FIELD_MASK);
2579 /* Read MaxOffset */
2580 pci_read_config_dword(dev, ent_offset, &max_offset);
2583 /* Read Base MSBs (if 64-bit entry) */
2584 if (base & PCI_EA_IS_64) {
2587 pci_read_config_dword(dev, ent_offset, &base_upper);
2590 flags |= IORESOURCE_MEM_64;
2592 /* entry starts above 32-bit boundary, can't use */
2593 if (!support_64 && base_upper)
2597 start |= ((u64)base_upper << 32);
2600 end = start + (max_offset | 0x03);
2602 /* Read MaxOffset MSBs (if 64-bit entry) */
2603 if (max_offset & PCI_EA_IS_64) {
2604 u32 max_offset_upper;
2606 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2609 flags |= IORESOURCE_MEM_64;
2611 /* entry too big, can't use */
2612 if (!support_64 && max_offset_upper)
2616 end += ((u64)max_offset_upper << 32);
2620 pci_err(dev, "EA Entry crosses address boundary\n");
2624 if (ent_size != ent_offset - offset) {
2625 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2626 ent_size, ent_offset - offset);
2630 res->name = pci_name(dev);
2635 if (bei <= PCI_EA_BEI_BAR5)
2636 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2638 else if (bei == PCI_EA_BEI_ROM)
2639 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2641 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2642 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2643 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2645 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2649 return offset + ent_size;
2652 /* Enhanced Allocation Initialization */
2653 void pci_ea_init(struct pci_dev *dev)
2660 /* find PCI EA capability in list */
2661 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2665 /* determine the number of entries */
2666 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2668 num_ent &= PCI_EA_NUM_ENT_MASK;
2670 offset = ea + PCI_EA_FIRST_ENT;
2672 /* Skip DWORD 2 for type 1 functions */
2673 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2676 /* parse each EA entry */
2677 for (i = 0; i < num_ent; ++i)
2678 offset = pci_ea_read(dev, offset);
2681 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2682 struct pci_cap_saved_state *new_cap)
2684 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2688 * _pci_add_cap_save_buffer - allocate buffer for saving given
2689 * capability registers
2690 * @dev: the PCI device
2691 * @cap: the capability to allocate the buffer for
2692 * @extended: Standard or Extended capability ID
2693 * @size: requested size of the buffer
2695 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2696 bool extended, unsigned int size)
2699 struct pci_cap_saved_state *save_state;
2702 pos = pci_find_ext_capability(dev, cap);
2704 pos = pci_find_capability(dev, cap);
2709 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2713 save_state->cap.cap_nr = cap;
2714 save_state->cap.cap_extended = extended;
2715 save_state->cap.size = size;
2716 pci_add_saved_cap(dev, save_state);
2721 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2723 return _pci_add_cap_save_buffer(dev, cap, false, size);
2726 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2728 return _pci_add_cap_save_buffer(dev, cap, true, size);
2732 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2733 * @dev: the PCI device
2735 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2739 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2740 PCI_EXP_SAVE_REGS * sizeof(u16));
2742 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
2744 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2746 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
2748 pci_allocate_vc_save_buffers(dev);
2751 void pci_free_cap_save_buffers(struct pci_dev *dev)
2753 struct pci_cap_saved_state *tmp;
2754 struct hlist_node *n;
2756 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2761 * pci_configure_ari - enable or disable ARI forwarding
2762 * @dev: the PCI device
2764 * If @dev and its upstream bridge both support ARI, enable ARI in the
2765 * bridge. Otherwise, disable ARI in the bridge.
2767 void pci_configure_ari(struct pci_dev *dev)
2770 struct pci_dev *bridge;
2772 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2775 bridge = dev->bus->self;
2779 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2780 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2783 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2784 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2785 PCI_EXP_DEVCTL2_ARI);
2786 bridge->ari_enabled = 1;
2788 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2789 PCI_EXP_DEVCTL2_ARI);
2790 bridge->ari_enabled = 0;
2794 static int pci_acs_enable;
2797 * pci_request_acs - ask for ACS to be enabled if supported
2799 void pci_request_acs(void)
2805 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2806 * @dev: the PCI device
2808 static void pci_std_enable_acs(struct pci_dev *dev)
2814 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2818 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2819 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2821 /* Source Validation */
2822 ctrl |= (cap & PCI_ACS_SV);
2824 /* P2P Request Redirect */
2825 ctrl |= (cap & PCI_ACS_RR);
2827 /* P2P Completion Redirect */
2828 ctrl |= (cap & PCI_ACS_CR);
2830 /* Upstream Forwarding */
2831 ctrl |= (cap & PCI_ACS_UF);
2833 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2837 * pci_enable_acs - enable ACS if hardware support it
2838 * @dev: the PCI device
2840 void pci_enable_acs(struct pci_dev *dev)
2842 if (!pci_acs_enable)
2845 if (!pci_dev_specific_enable_acs(dev))
2848 pci_std_enable_acs(dev);
2851 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2856 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2861 * Except for egress control, capabilities are either required
2862 * or only required if controllable. Features missing from the
2863 * capability field can therefore be assumed as hard-wired enabled.
2865 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2866 acs_flags &= (cap | PCI_ACS_EC);
2868 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2869 return (ctrl & acs_flags) == acs_flags;
2873 * pci_acs_enabled - test ACS against required flags for a given device
2874 * @pdev: device to test
2875 * @acs_flags: required PCI ACS flags
2877 * Return true if the device supports the provided flags. Automatically
2878 * filters out flags that are not implemented on multifunction devices.
2880 * Note that this interface checks the effective ACS capabilities of the
2881 * device rather than the actual capabilities. For instance, most single
2882 * function endpoints are not required to support ACS because they have no
2883 * opportunity for peer-to-peer access. We therefore return 'true'
2884 * regardless of whether the device exposes an ACS capability. This makes
2885 * it much easier for callers of this function to ignore the actual type
2886 * or topology of the device when testing ACS support.
2888 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2892 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2897 * Conventional PCI and PCI-X devices never support ACS, either
2898 * effectively or actually. The shared bus topology implies that
2899 * any device on the bus can receive or snoop DMA.
2901 if (!pci_is_pcie(pdev))
2904 switch (pci_pcie_type(pdev)) {
2906 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2907 * but since their primary interface is PCI/X, we conservatively
2908 * handle them as we would a non-PCIe device.
2910 case PCI_EXP_TYPE_PCIE_BRIDGE:
2912 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2913 * applicable... must never implement an ACS Extended Capability...".
2914 * This seems arbitrary, but we take a conservative interpretation
2915 * of this statement.
2917 case PCI_EXP_TYPE_PCI_BRIDGE:
2918 case PCI_EXP_TYPE_RC_EC:
2921 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2922 * implement ACS in order to indicate their peer-to-peer capabilities,
2923 * regardless of whether they are single- or multi-function devices.
2925 case PCI_EXP_TYPE_DOWNSTREAM:
2926 case PCI_EXP_TYPE_ROOT_PORT:
2927 return pci_acs_flags_enabled(pdev, acs_flags);
2929 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2930 * implemented by the remaining PCIe types to indicate peer-to-peer
2931 * capabilities, but only when they are part of a multifunction
2932 * device. The footnote for section 6.12 indicates the specific
2933 * PCIe types included here.
2935 case PCI_EXP_TYPE_ENDPOINT:
2936 case PCI_EXP_TYPE_UPSTREAM:
2937 case PCI_EXP_TYPE_LEG_END:
2938 case PCI_EXP_TYPE_RC_END:
2939 if (!pdev->multifunction)
2942 return pci_acs_flags_enabled(pdev, acs_flags);
2946 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2947 * to single function devices with the exception of downstream ports.
2953 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2954 * @start: starting downstream device
2955 * @end: ending upstream device or NULL to search to the root bus
2956 * @acs_flags: required flags
2958 * Walk up a device tree from start to end testing PCI ACS support. If
2959 * any step along the way does not support the required flags, return false.
2961 bool pci_acs_path_enabled(struct pci_dev *start,
2962 struct pci_dev *end, u16 acs_flags)
2964 struct pci_dev *pdev, *parent = start;
2969 if (!pci_acs_enabled(pdev, acs_flags))
2972 if (pci_is_root_bus(pdev->bus))
2973 return (end == NULL);
2975 parent = pdev->bus->self;
2976 } while (pdev != end);
2982 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
2986 * Helper to find the position of the ctrl register for a BAR.
2987 * Returns -ENOTSUPP if resizable BARs are not supported at all.
2988 * Returns -ENOENT if no ctrl register for the BAR could be found.
2990 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
2992 unsigned int pos, nbars, i;
2995 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
2999 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3000 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3001 PCI_REBAR_CTRL_NBAR_SHIFT;
3003 for (i = 0; i < nbars; i++, pos += 8) {
3006 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3007 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3016 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3018 * @bar: BAR to query
3020 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3021 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3023 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3028 pos = pci_rebar_find_pos(pdev, bar);
3032 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3033 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3037 * pci_rebar_get_current_size - get the current size of a BAR
3039 * @bar: BAR to set size to
3041 * Read the size of a BAR from the resizable BAR config.
3042 * Returns size if found or negative error code.
3044 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3049 pos = pci_rebar_find_pos(pdev, bar);
3053 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3054 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3058 * pci_rebar_set_size - set a new size for a BAR
3060 * @bar: BAR to set size to
3061 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3063 * Set the new size of a BAR as defined in the spec.
3064 * Returns zero if resizing was successful, error code otherwise.
3066 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3071 pos = pci_rebar_find_pos(pdev, bar);
3075 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3076 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3078 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3083 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3084 * @dev: the PCI device
3085 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3086 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3087 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3088 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3090 * Return 0 if all upstream bridges support AtomicOp routing, egress
3091 * blocking is disabled on all upstream ports, and the root port supports
3092 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3093 * AtomicOp completion), or negative otherwise.
3095 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3097 struct pci_bus *bus = dev->bus;
3098 struct pci_dev *bridge;
3101 if (!pci_is_pcie(dev))
3105 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3106 * AtomicOp requesters. For now, we only support endpoints as
3107 * requesters and root ports as completers. No endpoints as
3108 * completers, and no peer-to-peer.
3111 switch (pci_pcie_type(dev)) {
3112 case PCI_EXP_TYPE_ENDPOINT:
3113 case PCI_EXP_TYPE_LEG_END:
3114 case PCI_EXP_TYPE_RC_END:
3120 while (bus->parent) {
3123 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3125 switch (pci_pcie_type(bridge)) {
3126 /* Ensure switch ports support AtomicOp routing */
3127 case PCI_EXP_TYPE_UPSTREAM:
3128 case PCI_EXP_TYPE_DOWNSTREAM:
3129 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3133 /* Ensure root port supports all the sizes we care about */
3134 case PCI_EXP_TYPE_ROOT_PORT:
3135 if ((cap & cap_mask) != cap_mask)
3140 /* Ensure upstream ports don't block AtomicOps on egress */
3141 if (!bridge->has_secondary_link) {
3142 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3144 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3151 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3152 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3155 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3158 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3159 * @dev: the PCI device
3160 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3162 * Perform INTx swizzling for a device behind one level of bridge. This is
3163 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3164 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3165 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3166 * the PCI Express Base Specification, Revision 2.1)
3168 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3172 if (pci_ari_enabled(dev->bus))
3175 slot = PCI_SLOT(dev->devfn);
3177 return (((pin - 1) + slot) % 4) + 1;
3180 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3188 while (!pci_is_root_bus(dev->bus)) {
3189 pin = pci_swizzle_interrupt_pin(dev, pin);
3190 dev = dev->bus->self;
3197 * pci_common_swizzle - swizzle INTx all the way to root bridge
3198 * @dev: the PCI device
3199 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3201 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3202 * bridges all the way up to a PCI root bus.
3204 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3208 while (!pci_is_root_bus(dev->bus)) {
3209 pin = pci_swizzle_interrupt_pin(dev, pin);
3210 dev = dev->bus->self;
3213 return PCI_SLOT(dev->devfn);
3215 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3218 * pci_release_region - Release a PCI bar
3219 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3220 * @bar: BAR to release
3222 * Releases the PCI I/O and memory resources previously reserved by a
3223 * successful call to pci_request_region. Call this function only
3224 * after all use of the PCI regions has ceased.
3226 void pci_release_region(struct pci_dev *pdev, int bar)
3228 struct pci_devres *dr;
3230 if (pci_resource_len(pdev, bar) == 0)
3232 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3233 release_region(pci_resource_start(pdev, bar),
3234 pci_resource_len(pdev, bar));
3235 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3236 release_mem_region(pci_resource_start(pdev, bar),
3237 pci_resource_len(pdev, bar));
3239 dr = find_pci_dr(pdev);
3241 dr->region_mask &= ~(1 << bar);
3243 EXPORT_SYMBOL(pci_release_region);
3246 * __pci_request_region - Reserved PCI I/O and memory resource
3247 * @pdev: PCI device whose resources are to be reserved
3248 * @bar: BAR to be reserved
3249 * @res_name: Name to be associated with resource.
3250 * @exclusive: whether the region access is exclusive or not
3252 * Mark the PCI region associated with PCI device @pdev BR @bar as
3253 * being reserved by owner @res_name. Do not access any
3254 * address inside the PCI regions unless this call returns
3257 * If @exclusive is set, then the region is marked so that userspace
3258 * is explicitly not allowed to map the resource via /dev/mem or
3259 * sysfs MMIO access.
3261 * Returns 0 on success, or %EBUSY on error. A warning
3262 * message is also printed on failure.
3264 static int __pci_request_region(struct pci_dev *pdev, int bar,
3265 const char *res_name, int exclusive)
3267 struct pci_devres *dr;
3269 if (pci_resource_len(pdev, bar) == 0)
3272 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3273 if (!request_region(pci_resource_start(pdev, bar),
3274 pci_resource_len(pdev, bar), res_name))
3276 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3277 if (!__request_mem_region(pci_resource_start(pdev, bar),
3278 pci_resource_len(pdev, bar), res_name,
3283 dr = find_pci_dr(pdev);
3285 dr->region_mask |= 1 << bar;
3290 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3291 &pdev->resource[bar]);
3296 * pci_request_region - Reserve PCI I/O and memory resource
3297 * @pdev: PCI device whose resources are to be reserved
3298 * @bar: BAR to be reserved
3299 * @res_name: Name to be associated with resource
3301 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3302 * being reserved by owner @res_name. Do not access any
3303 * address inside the PCI regions unless this call returns
3306 * Returns 0 on success, or %EBUSY on error. A warning
3307 * message is also printed on failure.
3309 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3311 return __pci_request_region(pdev, bar, res_name, 0);
3313 EXPORT_SYMBOL(pci_request_region);
3316 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3317 * @pdev: PCI device whose resources are to be reserved
3318 * @bar: BAR to be reserved
3319 * @res_name: Name to be associated with resource.
3321 * Mark the PCI region associated with PCI device @pdev BR @bar as
3322 * being reserved by owner @res_name. Do not access any
3323 * address inside the PCI regions unless this call returns
3326 * Returns 0 on success, or %EBUSY on error. A warning
3327 * message is also printed on failure.
3329 * The key difference that _exclusive makes it that userspace is
3330 * explicitly not allowed to map the resource via /dev/mem or
3333 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3334 const char *res_name)
3336 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3338 EXPORT_SYMBOL(pci_request_region_exclusive);
3341 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3342 * @pdev: PCI device whose resources were previously reserved
3343 * @bars: Bitmask of BARs to be released
3345 * Release selected PCI I/O and memory resources previously reserved.
3346 * Call this function only after all use of the PCI regions has ceased.
3348 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3352 for (i = 0; i < 6; i++)
3353 if (bars & (1 << i))
3354 pci_release_region(pdev, i);
3356 EXPORT_SYMBOL(pci_release_selected_regions);
3358 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3359 const char *res_name, int excl)
3363 for (i = 0; i < 6; i++)
3364 if (bars & (1 << i))
3365 if (__pci_request_region(pdev, i, res_name, excl))
3371 if (bars & (1 << i))
3372 pci_release_region(pdev, i);
3379 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3380 * @pdev: PCI device whose resources are to be reserved
3381 * @bars: Bitmask of BARs to be requested
3382 * @res_name: Name to be associated with resource
3384 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3385 const char *res_name)
3387 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3389 EXPORT_SYMBOL(pci_request_selected_regions);
3391 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3392 const char *res_name)
3394 return __pci_request_selected_regions(pdev, bars, res_name,
3395 IORESOURCE_EXCLUSIVE);
3397 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3400 * pci_release_regions - Release reserved PCI I/O and memory resources
3401 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3403 * Releases all PCI I/O and memory resources previously reserved by a
3404 * successful call to pci_request_regions. Call this function only
3405 * after all use of the PCI regions has ceased.
3408 void pci_release_regions(struct pci_dev *pdev)
3410 pci_release_selected_regions(pdev, (1 << 6) - 1);
3412 EXPORT_SYMBOL(pci_release_regions);
3415 * pci_request_regions - Reserved PCI I/O and memory resources
3416 * @pdev: PCI device whose resources are to be reserved
3417 * @res_name: Name to be associated with resource.
3419 * Mark all PCI regions associated with PCI device @pdev as
3420 * being reserved by owner @res_name. Do not access any
3421 * address inside the PCI regions unless this call returns
3424 * Returns 0 on success, or %EBUSY on error. A warning
3425 * message is also printed on failure.
3427 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3429 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3431 EXPORT_SYMBOL(pci_request_regions);
3434 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3435 * @pdev: PCI device whose resources are to be reserved
3436 * @res_name: Name to be associated with resource.
3438 * Mark all PCI regions associated with PCI device @pdev as
3439 * being reserved by owner @res_name. Do not access any
3440 * address inside the PCI regions unless this call returns
3443 * pci_request_regions_exclusive() will mark the region so that
3444 * /dev/mem and the sysfs MMIO access will not be allowed.
3446 * Returns 0 on success, or %EBUSY on error. A warning
3447 * message is also printed on failure.
3449 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3451 return pci_request_selected_regions_exclusive(pdev,
3452 ((1 << 6) - 1), res_name);
3454 EXPORT_SYMBOL(pci_request_regions_exclusive);
3457 * Record the PCI IO range (expressed as CPU physical address + size).
3458 * Return a negative value if an error has occured, zero otherwise
3460 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3461 resource_size_t size)
3465 struct logic_pio_hwaddr *range;
3467 if (!size || addr + size < addr)
3470 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3474 range->fwnode = fwnode;
3476 range->hw_start = addr;
3477 range->flags = LOGIC_PIO_CPU_MMIO;
3479 ret = logic_pio_register_range(range);
3487 phys_addr_t pci_pio_to_address(unsigned long pio)
3489 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3492 if (pio >= MMIO_UPPER_LIMIT)
3495 address = logic_pio_to_hwaddr(pio);
3501 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3504 return logic_pio_trans_cpuaddr(address);
3506 if (address > IO_SPACE_LIMIT)
3507 return (unsigned long)-1;
3509 return (unsigned long) address;
3514 * pci_remap_iospace - Remap the memory mapped I/O space
3515 * @res: Resource describing the I/O space
3516 * @phys_addr: physical address of range to be mapped
3518 * Remap the memory mapped I/O space described by the @res
3519 * and the CPU physical address @phys_addr into virtual address space.
3520 * Only architectures that have memory mapped IO functions defined
3521 * (and the PCI_IOBASE value defined) should call this function.
3523 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3525 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3526 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3528 if (!(res->flags & IORESOURCE_IO))
3531 if (res->end > IO_SPACE_LIMIT)
3534 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3535 pgprot_device(PAGE_KERNEL));
3537 /* this architecture does not have memory mapped I/O space,
3538 so this function should never be called */
3539 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3543 EXPORT_SYMBOL(pci_remap_iospace);
3546 * pci_unmap_iospace - Unmap the memory mapped I/O space
3547 * @res: resource to be unmapped
3549 * Unmap the CPU virtual address @res from virtual address space.
3550 * Only architectures that have memory mapped IO functions defined
3551 * (and the PCI_IOBASE value defined) should call this function.
3553 void pci_unmap_iospace(struct resource *res)
3555 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3556 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3558 unmap_kernel_range(vaddr, resource_size(res));
3561 EXPORT_SYMBOL(pci_unmap_iospace);
3564 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3565 * @dev: Generic device to remap IO address for
3566 * @offset: Resource address to map
3567 * @size: Size of map
3569 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3572 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3573 resource_size_t offset,
3574 resource_size_t size)
3576 void __iomem **ptr, *addr;
3578 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3582 addr = pci_remap_cfgspace(offset, size);
3585 devres_add(dev, ptr);
3591 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3594 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3595 * @dev: generic device to handle the resource for
3596 * @res: configuration space resource to be handled
3598 * Checks that a resource is a valid memory region, requests the memory
3599 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3600 * proper PCI configuration space memory attributes are guaranteed.
3602 * All operations are managed and will be undone on driver detach.
3604 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3605 * on failure. Usage example::
3607 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3608 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3610 * return PTR_ERR(base);
3612 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3613 struct resource *res)
3615 resource_size_t size;
3617 void __iomem *dest_ptr;
3621 if (!res || resource_type(res) != IORESOURCE_MEM) {
3622 dev_err(dev, "invalid resource\n");
3623 return IOMEM_ERR_PTR(-EINVAL);
3626 size = resource_size(res);
3627 name = res->name ?: dev_name(dev);
3629 if (!devm_request_mem_region(dev, res->start, size, name)) {
3630 dev_err(dev, "can't request region for resource %pR\n", res);
3631 return IOMEM_ERR_PTR(-EBUSY);
3634 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3636 dev_err(dev, "ioremap failed for resource %pR\n", res);
3637 devm_release_mem_region(dev, res->start, size);
3638 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3643 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3645 static void __pci_set_master(struct pci_dev *dev, bool enable)
3649 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3651 cmd = old_cmd | PCI_COMMAND_MASTER;
3653 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3654 if (cmd != old_cmd) {
3655 pci_dbg(dev, "%s bus mastering\n",
3656 enable ? "enabling" : "disabling");
3657 pci_write_config_word(dev, PCI_COMMAND, cmd);
3659 dev->is_busmaster = enable;
3663 * pcibios_setup - process "pci=" kernel boot arguments
3664 * @str: string used to pass in "pci=" kernel boot arguments
3666 * Process kernel boot arguments. This is the default implementation.
3667 * Architecture specific implementations can override this as necessary.
3669 char * __weak __init pcibios_setup(char *str)