1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
36 #include <linux/aer.h>
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 EXPORT_SYMBOL_GPL(pci_power_names);
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
48 EXPORT_SYMBOL(pci_pci_problems);
50 unsigned int pci_pm_d3_delay;
52 static void pci_pme_list_scan(struct work_struct *work);
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 struct pci_pme_device {
59 struct list_head list;
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 static void pci_dev_d3_sleep(struct pci_dev *dev)
67 unsigned int delay = dev->d3_delay;
69 if (delay < pci_pm_d3_delay)
70 delay = pci_pm_d3_delay;
76 #ifdef CONFIG_PCI_DOMAINS
77 int pci_domains_supported = 1;
80 #define DEFAULT_CARDBUS_IO_SIZE (256)
81 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
82 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
83 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
84 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
86 #define DEFAULT_HOTPLUG_IO_SIZE (256)
87 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
88 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
90 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
92 #define DEFAULT_HOTPLUG_BUS_SIZE 1
93 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
95 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
98 * The default CLS is used if arch didn't set CLS explicitly and not
99 * all pci devices agree on the same value. Arch can override either
100 * the dfl or actual value as it sees fit. Don't forget this is
101 * measured in 32-bit words, not bytes.
103 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
104 u8 pci_cache_line_size;
107 * If we set up a device for bus mastering, we need to check the latency
108 * timer as certain BIOSes forget to set it properly.
110 unsigned int pcibios_max_latency = 255;
112 /* If set, the PCIe ARI capability will not be used. */
113 static bool pcie_ari_disabled;
115 /* Disable bridge_d3 for all PCIe ports */
116 static bool pci_bridge_d3_disable;
117 /* Force bridge_d3 for all PCIe ports */
118 static bool pci_bridge_d3_force;
120 static int __init pcie_port_pm_setup(char *str)
122 if (!strcmp(str, "off"))
123 pci_bridge_d3_disable = true;
124 else if (!strcmp(str, "force"))
125 pci_bridge_d3_force = true;
128 __setup("pcie_port_pm=", pcie_port_pm_setup);
131 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
132 * @bus: pointer to PCI bus structure to search
134 * Given a PCI bus, returns the highest PCI bus number present in the set
135 * including the given PCI bus and its list of child PCI buses.
137 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
140 unsigned char max, n;
142 max = bus->busn_res.end;
143 list_for_each_entry(tmp, &bus->children, node) {
144 n = pci_bus_max_busnr(tmp);
150 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
152 #ifdef CONFIG_HAS_IOMEM
153 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
155 struct resource *res = &pdev->resource[bar];
158 * Make sure the BAR is actually a memory resource, not an IO resource
160 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
161 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
164 return ioremap_nocache(res->start, resource_size(res));
166 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
168 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
171 * Make sure the BAR is actually a memory resource, not an IO resource
173 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
177 return ioremap_wc(pci_resource_start(pdev, bar),
178 pci_resource_len(pdev, bar));
180 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
184 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
185 u8 pos, int cap, int *ttl)
190 pci_bus_read_config_byte(bus, devfn, pos, &pos);
196 pci_bus_read_config_word(bus, devfn, pos, &ent);
208 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
211 int ttl = PCI_FIND_CAP_TTL;
213 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
216 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
218 return __pci_find_next_cap(dev->bus, dev->devfn,
219 pos + PCI_CAP_LIST_NEXT, cap);
221 EXPORT_SYMBOL_GPL(pci_find_next_capability);
223 static int __pci_bus_find_cap_start(struct pci_bus *bus,
224 unsigned int devfn, u8 hdr_type)
228 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
229 if (!(status & PCI_STATUS_CAP_LIST))
233 case PCI_HEADER_TYPE_NORMAL:
234 case PCI_HEADER_TYPE_BRIDGE:
235 return PCI_CAPABILITY_LIST;
236 case PCI_HEADER_TYPE_CARDBUS:
237 return PCI_CB_CAPABILITY_LIST;
244 * pci_find_capability - query for devices' capabilities
245 * @dev: PCI device to query
246 * @cap: capability code
248 * Tell if a device supports a given PCI capability.
249 * Returns the address of the requested capability structure within the
250 * device's PCI configuration space or 0 in case the device does not
251 * support it. Possible values for @cap:
253 * %PCI_CAP_ID_PM Power Management
254 * %PCI_CAP_ID_AGP Accelerated Graphics Port
255 * %PCI_CAP_ID_VPD Vital Product Data
256 * %PCI_CAP_ID_SLOTID Slot Identification
257 * %PCI_CAP_ID_MSI Message Signalled Interrupts
258 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
259 * %PCI_CAP_ID_PCIX PCI-X
260 * %PCI_CAP_ID_EXP PCI Express
262 int pci_find_capability(struct pci_dev *dev, int cap)
266 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
268 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
272 EXPORT_SYMBOL(pci_find_capability);
275 * pci_bus_find_capability - query for devices' capabilities
276 * @bus: the PCI bus to query
277 * @devfn: PCI device to query
278 * @cap: capability code
280 * Like pci_find_capability() but works for pci devices that do not have a
281 * pci_dev structure set up yet.
283 * Returns the address of the requested capability structure within the
284 * device's PCI configuration space or 0 in case the device does not
287 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
292 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
294 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
296 pos = __pci_find_next_cap(bus, devfn, pos, cap);
300 EXPORT_SYMBOL(pci_bus_find_capability);
303 * pci_find_next_ext_capability - Find an extended capability
304 * @dev: PCI device to query
305 * @start: address at which to start looking (0 to start at beginning of list)
306 * @cap: capability code
308 * Returns the address of the next matching extended capability structure
309 * within the device's PCI configuration space or 0 if the device does
310 * not support it. Some capabilities can occur several times, e.g., the
311 * vendor-specific capability, and this provides a way to find them all.
313 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
317 int pos = PCI_CFG_SPACE_SIZE;
319 /* minimum 8 bytes per capability */
320 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
322 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
328 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
332 * If we have no capabilities, this is indicated by cap ID,
333 * cap version and next pointer all being 0.
339 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
342 pos = PCI_EXT_CAP_NEXT(header);
343 if (pos < PCI_CFG_SPACE_SIZE)
346 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
352 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
355 * pci_find_ext_capability - Find an extended capability
356 * @dev: PCI device to query
357 * @cap: capability code
359 * Returns the address of the requested extended capability structure
360 * within the device's PCI configuration space or 0 if the device does
361 * not support it. Possible values for @cap:
363 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
364 * %PCI_EXT_CAP_ID_VC Virtual Channel
365 * %PCI_EXT_CAP_ID_DSN Device Serial Number
366 * %PCI_EXT_CAP_ID_PWR Power Budgeting
368 int pci_find_ext_capability(struct pci_dev *dev, int cap)
370 return pci_find_next_ext_capability(dev, 0, cap);
372 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
374 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
376 int rc, ttl = PCI_FIND_CAP_TTL;
379 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
380 mask = HT_3BIT_CAP_MASK;
382 mask = HT_5BIT_CAP_MASK;
384 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
385 PCI_CAP_ID_HT, &ttl);
387 rc = pci_read_config_byte(dev, pos + 3, &cap);
388 if (rc != PCIBIOS_SUCCESSFUL)
391 if ((cap & mask) == ht_cap)
394 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
395 pos + PCI_CAP_LIST_NEXT,
396 PCI_CAP_ID_HT, &ttl);
402 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
403 * @dev: PCI device to query
404 * @pos: Position from which to continue searching
405 * @ht_cap: Hypertransport capability code
407 * To be used in conjunction with pci_find_ht_capability() to search for
408 * all capabilities matching @ht_cap. @pos should always be a value returned
409 * from pci_find_ht_capability().
411 * NB. To be 100% safe against broken PCI devices, the caller should take
412 * steps to avoid an infinite loop.
414 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
416 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
418 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
421 * pci_find_ht_capability - query a device's Hypertransport capabilities
422 * @dev: PCI device to query
423 * @ht_cap: Hypertransport capability code
425 * Tell if a device supports a given Hypertransport capability.
426 * Returns an address within the device's PCI configuration space
427 * or 0 in case the device does not support the request capability.
428 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
429 * which has a Hypertransport capability matching @ht_cap.
431 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
435 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
437 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
441 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
444 * pci_find_parent_resource - return resource region of parent bus of given region
445 * @dev: PCI device structure contains resources to be searched
446 * @res: child resource record for which parent is sought
448 * For given resource region of given device, return the resource
449 * region of parent bus the given region is contained in.
451 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
452 struct resource *res)
454 const struct pci_bus *bus = dev->bus;
458 pci_bus_for_each_resource(bus, r, i) {
461 if (resource_contains(r, res)) {
464 * If the window is prefetchable but the BAR is
465 * not, the allocator made a mistake.
467 if (r->flags & IORESOURCE_PREFETCH &&
468 !(res->flags & IORESOURCE_PREFETCH))
472 * If we're below a transparent bridge, there may
473 * be both a positively-decoded aperture and a
474 * subtractively-decoded region that contain the BAR.
475 * We want the positively-decoded one, so this depends
476 * on pci_bus_for_each_resource() giving us those
484 EXPORT_SYMBOL(pci_find_parent_resource);
487 * pci_find_resource - Return matching PCI device resource
488 * @dev: PCI device to query
489 * @res: Resource to look for
491 * Goes over standard PCI resources (BARs) and checks if the given resource
492 * is partially or fully contained in any of them. In that case the
493 * matching resource is returned, %NULL otherwise.
495 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
499 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
500 struct resource *r = &dev->resource[i];
502 if (r->start && resource_contains(r, res))
508 EXPORT_SYMBOL(pci_find_resource);
511 * pci_find_pcie_root_port - return PCIe Root Port
512 * @dev: PCI device to query
514 * Traverse up the parent chain and return the PCIe Root Port PCI Device
515 * for a given PCI Device.
517 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
519 struct pci_dev *bridge, *highest_pcie_bridge = dev;
521 bridge = pci_upstream_bridge(dev);
522 while (bridge && pci_is_pcie(bridge)) {
523 highest_pcie_bridge = bridge;
524 bridge = pci_upstream_bridge(bridge);
527 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
530 return highest_pcie_bridge;
532 EXPORT_SYMBOL(pci_find_pcie_root_port);
535 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
536 * @dev: the PCI device to operate on
537 * @pos: config space offset of status word
538 * @mask: mask of bit(s) to care about in status word
540 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
542 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
546 /* Wait for Transaction Pending bit clean */
547 for (i = 0; i < 4; i++) {
550 msleep((1 << (i - 1)) * 100);
552 pci_read_config_word(dev, pos, &status);
553 if (!(status & mask))
561 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
562 * @dev: PCI device to have its BARs restored
564 * Restore the BAR values for a given device, so as to make it
565 * accessible by its driver.
567 static void pci_restore_bars(struct pci_dev *dev)
571 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
572 pci_update_resource(dev, i);
575 static const struct pci_platform_pm_ops *pci_platform_pm;
577 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
579 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
580 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
582 pci_platform_pm = ops;
586 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
588 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
591 static inline int platform_pci_set_power_state(struct pci_dev *dev,
594 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
597 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
599 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
602 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
604 return pci_platform_pm ?
605 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
608 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
610 return pci_platform_pm ?
611 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
614 static inline bool platform_pci_need_resume(struct pci_dev *dev)
616 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
620 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
622 * @dev: PCI device to handle.
623 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
626 * -EINVAL if the requested state is invalid.
627 * -EIO if device does not support PCI PM or its PM capabilities register has a
628 * wrong version, or device doesn't support the requested state.
629 * 0 if device already is in the requested state.
630 * 0 if device's power state has been successfully changed.
632 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
635 bool need_restore = false;
637 /* Check if we're already there */
638 if (dev->current_state == state)
644 if (state < PCI_D0 || state > PCI_D3hot)
647 /* Validate current state:
648 * Can enter D0 from any state, but if we can only go deeper
649 * to sleep if we're already in a low power state
651 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
652 && dev->current_state > state) {
653 pci_err(dev, "invalid power transition (from state %d to %d)\n",
654 dev->current_state, state);
658 /* check if this device supports the desired state */
659 if ((state == PCI_D1 && !dev->d1_support)
660 || (state == PCI_D2 && !dev->d2_support))
663 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
665 /* If we're (effectively) in D3, force entire word to 0.
666 * This doesn't affect PME_Status, disables PME_En, and
667 * sets PowerState to 0.
669 switch (dev->current_state) {
673 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
678 case PCI_UNKNOWN: /* Boot-up */
679 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
680 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
682 /* Fall-through: force to D0 */
688 /* enter specified state */
689 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
691 /* Mandatory power management transition delays */
692 /* see PCI PM 1.1 5.6.1 table 18 */
693 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
694 pci_dev_d3_sleep(dev);
695 else if (state == PCI_D2 || dev->current_state == PCI_D2)
696 udelay(PCI_PM_D2_DELAY);
698 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
699 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
700 if (dev->current_state != state && printk_ratelimit())
701 pci_info(dev, "Refused to change power state, currently in D%d\n",
705 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
706 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
707 * from D3hot to D0 _may_ perform an internal reset, thereby
708 * going to "D0 Uninitialized" rather than "D0 Initialized".
709 * For example, at least some versions of the 3c905B and the
710 * 3c556B exhibit this behaviour.
712 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
713 * devices in a D3hot state at boot. Consequently, we need to
714 * restore at least the BARs so that the device will be
715 * accessible to its driver.
718 pci_restore_bars(dev);
721 pcie_aspm_pm_state_change(dev->bus->self);
727 * pci_update_current_state - Read power state of given device and cache it
728 * @dev: PCI device to handle.
729 * @state: State to cache in case the device doesn't have the PM capability
731 * The power state is read from the PMCSR register, which however is
732 * inaccessible in D3cold. The platform firmware is therefore queried first
733 * to detect accessibility of the register. In case the platform firmware
734 * reports an incorrect state or the device isn't power manageable by the
735 * platform at all, we try to detect D3cold by testing accessibility of the
736 * vendor ID in config space.
738 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
740 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
741 !pci_device_is_present(dev)) {
742 dev->current_state = PCI_D3cold;
743 } else if (dev->pm_cap) {
746 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
747 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
749 dev->current_state = state;
754 * pci_power_up - Put the given device into D0 forcibly
755 * @dev: PCI device to power up
757 void pci_power_up(struct pci_dev *dev)
759 if (platform_pci_power_manageable(dev))
760 platform_pci_set_power_state(dev, PCI_D0);
762 pci_raw_set_power_state(dev, PCI_D0);
763 pci_update_current_state(dev, PCI_D0);
767 * pci_platform_power_transition - Use platform to change device power state
768 * @dev: PCI device to handle.
769 * @state: State to put the device into.
771 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
775 if (platform_pci_power_manageable(dev)) {
776 error = platform_pci_set_power_state(dev, state);
778 pci_update_current_state(dev, state);
782 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
783 dev->current_state = PCI_D0;
789 * pci_wakeup - Wake up a PCI device
790 * @pci_dev: Device to handle.
791 * @ign: ignored parameter
793 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
795 pci_wakeup_event(pci_dev);
796 pm_request_resume(&pci_dev->dev);
801 * pci_wakeup_bus - Walk given bus and wake up devices on it
802 * @bus: Top bus of the subtree to walk.
804 static void pci_wakeup_bus(struct pci_bus *bus)
807 pci_walk_bus(bus, pci_wakeup, NULL);
811 * __pci_start_power_transition - Start power transition of a PCI device
812 * @dev: PCI device to handle.
813 * @state: State to put the device into.
815 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
817 if (state == PCI_D0) {
818 pci_platform_power_transition(dev, PCI_D0);
820 * Mandatory power management transition delays, see
821 * PCI Express Base Specification Revision 2.0 Section
822 * 6.6.1: Conventional Reset. Do not delay for
823 * devices powered on/off by corresponding bridge,
824 * because have already delayed for the bridge.
826 if (dev->runtime_d3cold) {
827 if (dev->d3cold_delay)
828 msleep(dev->d3cold_delay);
830 * When powering on a bridge from D3cold, the
831 * whole hierarchy may be powered on into
832 * D0uninitialized state, resume them to give
833 * them a chance to suspend again
835 pci_wakeup_bus(dev->subordinate);
841 * __pci_dev_set_current_state - Set current state of a PCI device
842 * @dev: Device to handle
843 * @data: pointer to state to be set
845 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
847 pci_power_t state = *(pci_power_t *)data;
849 dev->current_state = state;
854 * __pci_bus_set_current_state - Walk given bus and set current state of devices
855 * @bus: Top bus of the subtree to walk.
856 * @state: state to be set
858 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
861 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
865 * __pci_complete_power_transition - Complete power transition of a PCI device
866 * @dev: PCI device to handle.
867 * @state: State to put the device into.
869 * This function should not be called directly by device drivers.
871 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
877 ret = pci_platform_power_transition(dev, state);
878 /* Power off the bridge may power off the whole hierarchy */
879 if (!ret && state == PCI_D3cold)
880 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
883 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
886 * pci_set_power_state - Set the power state of a PCI device
887 * @dev: PCI device to handle.
888 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
890 * Transition a device to a new power state, using the platform firmware and/or
891 * the device's PCI PM registers.
894 * -EINVAL if the requested state is invalid.
895 * -EIO if device does not support PCI PM or its PM capabilities register has a
896 * wrong version, or device doesn't support the requested state.
897 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
898 * 0 if device already is in the requested state.
899 * 0 if the transition is to D3 but D3 is not supported.
900 * 0 if device's power state has been successfully changed.
902 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
906 /* bound the state we're entering */
907 if (state > PCI_D3cold)
909 else if (state < PCI_D0)
911 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
913 * If the device or the parent bridge do not support PCI PM,
914 * ignore the request if we're doing anything other than putting
915 * it into D0 (which would only happen on boot).
919 /* Check if we're already there */
920 if (dev->current_state == state)
923 __pci_start_power_transition(dev, state);
925 /* This device is quirked not to be put into D3, so
926 don't put it in D3 */
927 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
931 * To put device in D3cold, we put device into D3hot in native
932 * way, then put device into D3cold with platform ops
934 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
937 if (!__pci_complete_power_transition(dev, state))
942 EXPORT_SYMBOL(pci_set_power_state);
945 * pci_choose_state - Choose the power state of a PCI device
946 * @dev: PCI device to be suspended
947 * @state: target sleep state for the whole system. This is the value
948 * that is passed to suspend() function.
950 * Returns PCI power state suitable for given device and given system
954 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
961 ret = platform_pci_choose_state(dev);
962 if (ret != PCI_POWER_ERROR)
965 switch (state.event) {
968 case PM_EVENT_FREEZE:
969 case PM_EVENT_PRETHAW:
970 /* REVISIT both freeze and pre-thaw "should" use D0 */
971 case PM_EVENT_SUSPEND:
972 case PM_EVENT_HIBERNATE:
975 pci_info(dev, "unrecognized suspend event %d\n",
981 EXPORT_SYMBOL(pci_choose_state);
983 #define PCI_EXP_SAVE_REGS 7
985 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
986 u16 cap, bool extended)
988 struct pci_cap_saved_state *tmp;
990 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
991 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
997 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
999 return _pci_find_saved_cap(dev, cap, false);
1002 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1004 return _pci_find_saved_cap(dev, cap, true);
1007 static int pci_save_pcie_state(struct pci_dev *dev)
1010 struct pci_cap_saved_state *save_state;
1013 if (!pci_is_pcie(dev))
1016 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1018 pci_err(dev, "buffer not found in %s\n", __func__);
1022 cap = (u16 *)&save_state->cap.data[0];
1023 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1024 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1025 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1029 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1034 static void pci_restore_pcie_state(struct pci_dev *dev)
1037 struct pci_cap_saved_state *save_state;
1040 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1044 cap = (u16 *)&save_state->cap.data[0];
1045 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1046 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1047 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1051 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1055 static int pci_save_pcix_state(struct pci_dev *dev)
1058 struct pci_cap_saved_state *save_state;
1060 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1064 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1066 pci_err(dev, "buffer not found in %s\n", __func__);
1070 pci_read_config_word(dev, pos + PCI_X_CMD,
1071 (u16 *)save_state->cap.data);
1076 static void pci_restore_pcix_state(struct pci_dev *dev)
1079 struct pci_cap_saved_state *save_state;
1082 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1083 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1084 if (!save_state || !pos)
1086 cap = (u16 *)&save_state->cap.data[0];
1088 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1093 * pci_save_state - save the PCI configuration space of a device before suspending
1094 * @dev: - PCI device that we're dealing with
1096 int pci_save_state(struct pci_dev *dev)
1099 /* XXX: 100% dword access ok here? */
1100 for (i = 0; i < 16; i++)
1101 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1102 dev->state_saved = true;
1104 i = pci_save_pcie_state(dev);
1108 i = pci_save_pcix_state(dev);
1112 return pci_save_vc_state(dev);
1114 EXPORT_SYMBOL(pci_save_state);
1116 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1117 u32 saved_val, int retry)
1121 pci_read_config_dword(pdev, offset, &val);
1122 if (val == saved_val)
1126 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1127 offset, val, saved_val);
1128 pci_write_config_dword(pdev, offset, saved_val);
1132 pci_read_config_dword(pdev, offset, &val);
1133 if (val == saved_val)
1140 static void pci_restore_config_space_range(struct pci_dev *pdev,
1141 int start, int end, int retry)
1145 for (index = end; index >= start; index--)
1146 pci_restore_config_dword(pdev, 4 * index,
1147 pdev->saved_config_space[index],
1151 static void pci_restore_config_space(struct pci_dev *pdev)
1153 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1154 pci_restore_config_space_range(pdev, 10, 15, 0);
1155 /* Restore BARs before the command register. */
1156 pci_restore_config_space_range(pdev, 4, 9, 10);
1157 pci_restore_config_space_range(pdev, 0, 3, 0);
1159 pci_restore_config_space_range(pdev, 0, 15, 0);
1164 * pci_restore_state - Restore the saved state of a PCI device
1165 * @dev: - PCI device that we're dealing with
1167 void pci_restore_state(struct pci_dev *dev)
1169 if (!dev->state_saved)
1172 /* PCI Express register must be restored first */
1173 pci_restore_pcie_state(dev);
1174 pci_restore_pasid_state(dev);
1175 pci_restore_pri_state(dev);
1176 pci_restore_ats_state(dev);
1177 pci_restore_vc_state(dev);
1179 pci_cleanup_aer_error_status_regs(dev);
1181 pci_restore_config_space(dev);
1183 pci_restore_pcix_state(dev);
1184 pci_restore_msi_state(dev);
1186 /* Restore ACS and IOV configuration state */
1187 pci_enable_acs(dev);
1188 pci_restore_iov_state(dev);
1190 dev->state_saved = false;
1192 EXPORT_SYMBOL(pci_restore_state);
1194 struct pci_saved_state {
1195 u32 config_space[16];
1196 struct pci_cap_saved_data cap[0];
1200 * pci_store_saved_state - Allocate and return an opaque struct containing
1201 * the device saved state.
1202 * @dev: PCI device that we're dealing with
1204 * Return NULL if no state or error.
1206 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1208 struct pci_saved_state *state;
1209 struct pci_cap_saved_state *tmp;
1210 struct pci_cap_saved_data *cap;
1213 if (!dev->state_saved)
1216 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1218 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1219 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1221 state = kzalloc(size, GFP_KERNEL);
1225 memcpy(state->config_space, dev->saved_config_space,
1226 sizeof(state->config_space));
1229 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1230 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1231 memcpy(cap, &tmp->cap, len);
1232 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1234 /* Empty cap_save terminates list */
1238 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1241 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1242 * @dev: PCI device that we're dealing with
1243 * @state: Saved state returned from pci_store_saved_state()
1245 int pci_load_saved_state(struct pci_dev *dev,
1246 struct pci_saved_state *state)
1248 struct pci_cap_saved_data *cap;
1250 dev->state_saved = false;
1255 memcpy(dev->saved_config_space, state->config_space,
1256 sizeof(state->config_space));
1260 struct pci_cap_saved_state *tmp;
1262 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1263 if (!tmp || tmp->cap.size != cap->size)
1266 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1267 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1268 sizeof(struct pci_cap_saved_data) + cap->size);
1271 dev->state_saved = true;
1274 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1277 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1278 * and free the memory allocated for it.
1279 * @dev: PCI device that we're dealing with
1280 * @state: Pointer to saved state returned from pci_store_saved_state()
1282 int pci_load_and_free_saved_state(struct pci_dev *dev,
1283 struct pci_saved_state **state)
1285 int ret = pci_load_saved_state(dev, *state);
1290 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1292 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1294 return pci_enable_resources(dev, bars);
1297 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1300 struct pci_dev *bridge;
1304 err = pci_set_power_state(dev, PCI_D0);
1305 if (err < 0 && err != -EIO)
1308 bridge = pci_upstream_bridge(dev);
1310 pcie_aspm_powersave_config_link(bridge);
1312 err = pcibios_enable_device(dev, bars);
1315 pci_fixup_device(pci_fixup_enable, dev);
1317 if (dev->msi_enabled || dev->msix_enabled)
1320 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1322 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1323 if (cmd & PCI_COMMAND_INTX_DISABLE)
1324 pci_write_config_word(dev, PCI_COMMAND,
1325 cmd & ~PCI_COMMAND_INTX_DISABLE);
1332 * pci_reenable_device - Resume abandoned device
1333 * @dev: PCI device to be resumed
1335 * Note this function is a backend of pci_default_resume and is not supposed
1336 * to be called by normal code, write proper resume handler and use it instead.
1338 int pci_reenable_device(struct pci_dev *dev)
1340 if (pci_is_enabled(dev))
1341 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1344 EXPORT_SYMBOL(pci_reenable_device);
1346 static void pci_enable_bridge(struct pci_dev *dev)
1348 struct pci_dev *bridge;
1351 bridge = pci_upstream_bridge(dev);
1353 pci_enable_bridge(bridge);
1355 if (pci_is_enabled(dev)) {
1356 if (!dev->is_busmaster)
1357 pci_set_master(dev);
1361 retval = pci_enable_device(dev);
1363 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1365 pci_set_master(dev);
1368 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1370 struct pci_dev *bridge;
1375 * Power state could be unknown at this point, either due to a fresh
1376 * boot or a device removal call. So get the current power state
1377 * so that things like MSI message writing will behave as expected
1378 * (e.g. if the device really is in D0 at enable time).
1382 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1383 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1386 if (atomic_inc_return(&dev->enable_cnt) > 1)
1387 return 0; /* already enabled */
1389 bridge = pci_upstream_bridge(dev);
1391 pci_enable_bridge(bridge);
1393 /* only skip sriov related */
1394 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1395 if (dev->resource[i].flags & flags)
1397 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1398 if (dev->resource[i].flags & flags)
1401 err = do_pci_enable_device(dev, bars);
1403 atomic_dec(&dev->enable_cnt);
1408 * pci_enable_device_io - Initialize a device for use with IO space
1409 * @dev: PCI device to be initialized
1411 * Initialize device before it's used by a driver. Ask low-level code
1412 * to enable I/O resources. Wake up the device if it was suspended.
1413 * Beware, this function can fail.
1415 int pci_enable_device_io(struct pci_dev *dev)
1417 return pci_enable_device_flags(dev, IORESOURCE_IO);
1419 EXPORT_SYMBOL(pci_enable_device_io);
1422 * pci_enable_device_mem - Initialize a device for use with Memory space
1423 * @dev: PCI device to be initialized
1425 * Initialize device before it's used by a driver. Ask low-level code
1426 * to enable Memory resources. Wake up the device if it was suspended.
1427 * Beware, this function can fail.
1429 int pci_enable_device_mem(struct pci_dev *dev)
1431 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1433 EXPORT_SYMBOL(pci_enable_device_mem);
1436 * pci_enable_device - Initialize device before it's used by a driver.
1437 * @dev: PCI device to be initialized
1439 * Initialize device before it's used by a driver. Ask low-level code
1440 * to enable I/O and memory. Wake up the device if it was suspended.
1441 * Beware, this function can fail.
1443 * Note we don't actually enable the device many times if we call
1444 * this function repeatedly (we just increment the count).
1446 int pci_enable_device(struct pci_dev *dev)
1448 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1450 EXPORT_SYMBOL(pci_enable_device);
1453 * Managed PCI resources. This manages device on/off, intx/msi/msix
1454 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1455 * there's no need to track it separately. pci_devres is initialized
1456 * when a device is enabled using managed PCI device enable interface.
1459 unsigned int enabled:1;
1460 unsigned int pinned:1;
1461 unsigned int orig_intx:1;
1462 unsigned int restore_intx:1;
1467 static void pcim_release(struct device *gendev, void *res)
1469 struct pci_dev *dev = to_pci_dev(gendev);
1470 struct pci_devres *this = res;
1473 if (dev->msi_enabled)
1474 pci_disable_msi(dev);
1475 if (dev->msix_enabled)
1476 pci_disable_msix(dev);
1478 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1479 if (this->region_mask & (1 << i))
1480 pci_release_region(dev, i);
1485 if (this->restore_intx)
1486 pci_intx(dev, this->orig_intx);
1488 if (this->enabled && !this->pinned)
1489 pci_disable_device(dev);
1492 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1494 struct pci_devres *dr, *new_dr;
1496 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1500 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1503 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1506 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1508 if (pci_is_managed(pdev))
1509 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1514 * pcim_enable_device - Managed pci_enable_device()
1515 * @pdev: PCI device to be initialized
1517 * Managed pci_enable_device().
1519 int pcim_enable_device(struct pci_dev *pdev)
1521 struct pci_devres *dr;
1524 dr = get_pci_dr(pdev);
1530 rc = pci_enable_device(pdev);
1532 pdev->is_managed = 1;
1537 EXPORT_SYMBOL(pcim_enable_device);
1540 * pcim_pin_device - Pin managed PCI device
1541 * @pdev: PCI device to pin
1543 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1544 * driver detach. @pdev must have been enabled with
1545 * pcim_enable_device().
1547 void pcim_pin_device(struct pci_dev *pdev)
1549 struct pci_devres *dr;
1551 dr = find_pci_dr(pdev);
1552 WARN_ON(!dr || !dr->enabled);
1556 EXPORT_SYMBOL(pcim_pin_device);
1559 * pcibios_add_device - provide arch specific hooks when adding device dev
1560 * @dev: the PCI device being added
1562 * Permits the platform to provide architecture specific functionality when
1563 * devices are added. This is the default implementation. Architecture
1564 * implementations can override this.
1566 int __weak pcibios_add_device(struct pci_dev *dev)
1572 * pcibios_release_device - provide arch specific hooks when releasing device dev
1573 * @dev: the PCI device being released
1575 * Permits the platform to provide architecture specific functionality when
1576 * devices are released. This is the default implementation. Architecture
1577 * implementations can override this.
1579 void __weak pcibios_release_device(struct pci_dev *dev) {}
1582 * pcibios_disable_device - disable arch specific PCI resources for device dev
1583 * @dev: the PCI device to disable
1585 * Disables architecture specific PCI resources for the device. This
1586 * is the default implementation. Architecture implementations can
1589 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1592 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1593 * @irq: ISA IRQ to penalize
1594 * @active: IRQ active or not
1596 * Permits the platform to provide architecture-specific functionality when
1597 * penalizing ISA IRQs. This is the default implementation. Architecture
1598 * implementations can override this.
1600 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1602 static void do_pci_disable_device(struct pci_dev *dev)
1606 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1607 if (pci_command & PCI_COMMAND_MASTER) {
1608 pci_command &= ~PCI_COMMAND_MASTER;
1609 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1612 pcibios_disable_device(dev);
1616 * pci_disable_enabled_device - Disable device without updating enable_cnt
1617 * @dev: PCI device to disable
1619 * NOTE: This function is a backend of PCI power management routines and is
1620 * not supposed to be called drivers.
1622 void pci_disable_enabled_device(struct pci_dev *dev)
1624 if (pci_is_enabled(dev))
1625 do_pci_disable_device(dev);
1629 * pci_disable_device - Disable PCI device after use
1630 * @dev: PCI device to be disabled
1632 * Signal to the system that the PCI device is not in use by the system
1633 * anymore. This only involves disabling PCI bus-mastering, if active.
1635 * Note we don't actually disable the device until all callers of
1636 * pci_enable_device() have called pci_disable_device().
1638 void pci_disable_device(struct pci_dev *dev)
1640 struct pci_devres *dr;
1642 dr = find_pci_dr(dev);
1646 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1647 "disabling already-disabled device");
1649 if (atomic_dec_return(&dev->enable_cnt) != 0)
1652 do_pci_disable_device(dev);
1654 dev->is_busmaster = 0;
1656 EXPORT_SYMBOL(pci_disable_device);
1659 * pcibios_set_pcie_reset_state - set reset state for device dev
1660 * @dev: the PCIe device reset
1661 * @state: Reset state to enter into
1664 * Sets the PCIe reset state for the device. This is the default
1665 * implementation. Architecture implementations can override this.
1667 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1668 enum pcie_reset_state state)
1674 * pci_set_pcie_reset_state - set reset state for device dev
1675 * @dev: the PCIe device reset
1676 * @state: Reset state to enter into
1679 * Sets the PCI reset state for the device.
1681 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1683 return pcibios_set_pcie_reset_state(dev, state);
1685 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1688 * pci_check_pme_status - Check if given device has generated PME.
1689 * @dev: Device to check.
1691 * Check the PME status of the device and if set, clear it and clear PME enable
1692 * (if set). Return 'true' if PME status and PME enable were both set or
1693 * 'false' otherwise.
1695 bool pci_check_pme_status(struct pci_dev *dev)
1704 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1705 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1706 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1709 /* Clear PME status. */
1710 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1711 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1712 /* Disable PME to avoid interrupt flood. */
1713 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1717 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1723 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1724 * @dev: Device to handle.
1725 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1727 * Check if @dev has generated PME and queue a resume request for it in that
1730 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1732 if (pme_poll_reset && dev->pme_poll)
1733 dev->pme_poll = false;
1735 if (pci_check_pme_status(dev)) {
1736 pci_wakeup_event(dev);
1737 pm_request_resume(&dev->dev);
1743 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1744 * @bus: Top bus of the subtree to walk.
1746 void pci_pme_wakeup_bus(struct pci_bus *bus)
1749 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1754 * pci_pme_capable - check the capability of PCI device to generate PME#
1755 * @dev: PCI device to handle.
1756 * @state: PCI state from which device will issue PME#.
1758 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1763 return !!(dev->pme_support & (1 << state));
1765 EXPORT_SYMBOL(pci_pme_capable);
1767 static void pci_pme_list_scan(struct work_struct *work)
1769 struct pci_pme_device *pme_dev, *n;
1771 mutex_lock(&pci_pme_list_mutex);
1772 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1773 if (pme_dev->dev->pme_poll) {
1774 struct pci_dev *bridge;
1776 bridge = pme_dev->dev->bus->self;
1778 * If bridge is in low power state, the
1779 * configuration space of subordinate devices
1780 * may be not accessible
1782 if (bridge && bridge->current_state != PCI_D0)
1784 pci_pme_wakeup(pme_dev->dev, NULL);
1786 list_del(&pme_dev->list);
1790 if (!list_empty(&pci_pme_list))
1791 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1792 msecs_to_jiffies(PME_TIMEOUT));
1793 mutex_unlock(&pci_pme_list_mutex);
1796 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1800 if (!dev->pme_support)
1803 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1804 /* Clear PME_Status by writing 1 to it and enable PME# */
1805 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1807 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1809 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1813 * pci_pme_restore - Restore PME configuration after config space restore.
1814 * @dev: PCI device to update.
1816 void pci_pme_restore(struct pci_dev *dev)
1820 if (!dev->pme_support)
1823 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1824 if (dev->wakeup_prepared) {
1825 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1826 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1828 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1829 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1831 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1835 * pci_pme_active - enable or disable PCI device's PME# function
1836 * @dev: PCI device to handle.
1837 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1839 * The caller must verify that the device is capable of generating PME# before
1840 * calling this function with @enable equal to 'true'.
1842 void pci_pme_active(struct pci_dev *dev, bool enable)
1844 __pci_pme_active(dev, enable);
1847 * PCI (as opposed to PCIe) PME requires that the device have
1848 * its PME# line hooked up correctly. Not all hardware vendors
1849 * do this, so the PME never gets delivered and the device
1850 * remains asleep. The easiest way around this is to
1851 * periodically walk the list of suspended devices and check
1852 * whether any have their PME flag set. The assumption is that
1853 * we'll wake up often enough anyway that this won't be a huge
1854 * hit, and the power savings from the devices will still be a
1857 * Although PCIe uses in-band PME message instead of PME# line
1858 * to report PME, PME does not work for some PCIe devices in
1859 * reality. For example, there are devices that set their PME
1860 * status bits, but don't really bother to send a PME message;
1861 * there are PCI Express Root Ports that don't bother to
1862 * trigger interrupts when they receive PME messages from the
1863 * devices below. So PME poll is used for PCIe devices too.
1866 if (dev->pme_poll) {
1867 struct pci_pme_device *pme_dev;
1869 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1872 pci_warn(dev, "can't enable PME#\n");
1876 mutex_lock(&pci_pme_list_mutex);
1877 list_add(&pme_dev->list, &pci_pme_list);
1878 if (list_is_singular(&pci_pme_list))
1879 queue_delayed_work(system_freezable_wq,
1881 msecs_to_jiffies(PME_TIMEOUT));
1882 mutex_unlock(&pci_pme_list_mutex);
1884 mutex_lock(&pci_pme_list_mutex);
1885 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1886 if (pme_dev->dev == dev) {
1887 list_del(&pme_dev->list);
1892 mutex_unlock(&pci_pme_list_mutex);
1896 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
1898 EXPORT_SYMBOL(pci_pme_active);
1901 * pci_enable_wake - enable PCI device as wakeup event source
1902 * @dev: PCI device affected
1903 * @state: PCI state from which device will issue wakeup events
1904 * @enable: True to enable event generation; false to disable
1906 * This enables the device as a wakeup event source, or disables it.
1907 * When such events involves platform-specific hooks, those hooks are
1908 * called automatically by this routine.
1910 * Devices with legacy power management (no standard PCI PM capabilities)
1911 * always require such platform hooks.
1914 * 0 is returned on success
1915 * -EINVAL is returned if device is not supposed to wake up the system
1916 * Error code depending on the platform is returned if both the platform and
1917 * the native mechanism fail to enable the generation of wake-up events
1919 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1924 * Bridges can only signal wakeup on behalf of subordinate devices,
1925 * but that is set up elsewhere, so skip them.
1927 if (pci_has_subordinate(dev))
1930 /* Don't do the same thing twice in a row for one device. */
1931 if (!!enable == !!dev->wakeup_prepared)
1935 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1936 * Anderson we should be doing PME# wake enable followed by ACPI wake
1937 * enable. To disable wake-up we call the platform first, for symmetry.
1943 if (pci_pme_capable(dev, state))
1944 pci_pme_active(dev, true);
1947 error = platform_pci_set_wakeup(dev, true);
1951 dev->wakeup_prepared = true;
1953 platform_pci_set_wakeup(dev, false);
1954 pci_pme_active(dev, false);
1955 dev->wakeup_prepared = false;
1960 EXPORT_SYMBOL(pci_enable_wake);
1963 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1964 * @dev: PCI device to prepare
1965 * @enable: True to enable wake-up event generation; false to disable
1967 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1968 * and this function allows them to set that up cleanly - pci_enable_wake()
1969 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1970 * ordering constraints.
1972 * This function only returns error code if the device is not capable of
1973 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1974 * enable wake-up power for it.
1976 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1978 return pci_pme_capable(dev, PCI_D3cold) ?
1979 pci_enable_wake(dev, PCI_D3cold, enable) :
1980 pci_enable_wake(dev, PCI_D3hot, enable);
1982 EXPORT_SYMBOL(pci_wake_from_d3);
1985 * pci_target_state - find an appropriate low power state for a given PCI dev
1987 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
1989 * Use underlying platform code to find a supported low power state for @dev.
1990 * If the platform can't manage @dev, return the deepest state from which it
1991 * can generate wake events, based on any available PME info.
1993 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
1995 pci_power_t target_state = PCI_D3hot;
1997 if (platform_pci_power_manageable(dev)) {
1999 * Call the platform to choose the target state of the device
2000 * and enable wake-up from this state if supported.
2002 pci_power_t state = platform_pci_choose_state(dev);
2005 case PCI_POWER_ERROR:
2010 if (pci_no_d1d2(dev))
2013 target_state = state;
2016 return target_state;
2020 target_state = PCI_D0;
2023 * If the device is in D3cold even though it's not power-manageable by
2024 * the platform, it may have been powered down by non-standard means.
2025 * Best to let it slumber.
2027 if (dev->current_state == PCI_D3cold)
2028 target_state = PCI_D3cold;
2032 * Find the deepest state from which the device can generate
2033 * wake-up events, make it the target state and enable device
2036 if (dev->pme_support) {
2038 && !(dev->pme_support & (1 << target_state)))
2043 return target_state;
2047 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2048 * @dev: Device to handle.
2050 * Choose the power state appropriate for the device depending on whether
2051 * it can wake up the system and/or is power manageable by the platform
2052 * (PCI_D3hot is the default) and put the device into that state.
2054 int pci_prepare_to_sleep(struct pci_dev *dev)
2056 bool wakeup = device_may_wakeup(&dev->dev);
2057 pci_power_t target_state = pci_target_state(dev, wakeup);
2060 if (target_state == PCI_POWER_ERROR)
2063 pci_enable_wake(dev, target_state, wakeup);
2065 error = pci_set_power_state(dev, target_state);
2068 pci_enable_wake(dev, target_state, false);
2072 EXPORT_SYMBOL(pci_prepare_to_sleep);
2075 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2076 * @dev: Device to handle.
2078 * Disable device's system wake-up capability and put it into D0.
2080 int pci_back_from_sleep(struct pci_dev *dev)
2082 pci_enable_wake(dev, PCI_D0, false);
2083 return pci_set_power_state(dev, PCI_D0);
2085 EXPORT_SYMBOL(pci_back_from_sleep);
2088 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2089 * @dev: PCI device being suspended.
2091 * Prepare @dev to generate wake-up events at run time and put it into a low
2094 int pci_finish_runtime_suspend(struct pci_dev *dev)
2096 pci_power_t target_state;
2099 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2100 if (target_state == PCI_POWER_ERROR)
2103 dev->runtime_d3cold = target_state == PCI_D3cold;
2105 pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2107 error = pci_set_power_state(dev, target_state);
2110 pci_enable_wake(dev, target_state, false);
2111 dev->runtime_d3cold = false;
2118 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2119 * @dev: Device to check.
2121 * Return true if the device itself is capable of generating wake-up events
2122 * (through the platform or using the native PCIe PME) or if the device supports
2123 * PME and one of its upstream bridges can generate wake-up events.
2125 bool pci_dev_run_wake(struct pci_dev *dev)
2127 struct pci_bus *bus = dev->bus;
2129 if (device_can_wakeup(&dev->dev))
2132 if (!dev->pme_support)
2135 /* PME-capable in principle, but not from the target power state */
2136 if (!pci_pme_capable(dev, pci_target_state(dev, false)))
2139 while (bus->parent) {
2140 struct pci_dev *bridge = bus->self;
2142 if (device_can_wakeup(&bridge->dev))
2148 /* We have reached the root bus. */
2150 return device_can_wakeup(bus->bridge);
2154 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2157 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2158 * @pci_dev: Device to check.
2160 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2161 * reconfigured due to wakeup settings difference between system and runtime
2162 * suspend and the current power state of it is suitable for the upcoming
2163 * (system) transition.
2165 * If the device is not configured for system wakeup, disable PME for it before
2166 * returning 'true' to prevent it from waking up the system unnecessarily.
2168 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2170 struct device *dev = &pci_dev->dev;
2171 bool wakeup = device_may_wakeup(dev);
2173 if (!pm_runtime_suspended(dev)
2174 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2175 || platform_pci_need_resume(pci_dev))
2179 * At this point the device is good to go unless it's been configured
2180 * to generate PME at the runtime suspend time, but it is not supposed
2181 * to wake up the system. In that case, simply disable PME for it
2182 * (it will have to be re-enabled on exit from system resume).
2184 * If the device's power state is D3cold and the platform check above
2185 * hasn't triggered, the device's configuration is suitable and we don't
2186 * need to manipulate it at all.
2188 spin_lock_irq(&dev->power.lock);
2190 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2192 __pci_pme_active(pci_dev, false);
2194 spin_unlock_irq(&dev->power.lock);
2199 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2200 * @pci_dev: Device to handle.
2202 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2203 * it might have been disabled during the prepare phase of system suspend if
2204 * the device was not configured for system wakeup.
2206 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2208 struct device *dev = &pci_dev->dev;
2210 if (!pci_dev_run_wake(pci_dev))
2213 spin_lock_irq(&dev->power.lock);
2215 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2216 __pci_pme_active(pci_dev, true);
2218 spin_unlock_irq(&dev->power.lock);
2221 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2223 struct device *dev = &pdev->dev;
2224 struct device *parent = dev->parent;
2227 pm_runtime_get_sync(parent);
2228 pm_runtime_get_noresume(dev);
2230 * pdev->current_state is set to PCI_D3cold during suspending,
2231 * so wait until suspending completes
2233 pm_runtime_barrier(dev);
2235 * Only need to resume devices in D3cold, because config
2236 * registers are still accessible for devices suspended but
2239 if (pdev->current_state == PCI_D3cold)
2240 pm_runtime_resume(dev);
2243 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2245 struct device *dev = &pdev->dev;
2246 struct device *parent = dev->parent;
2248 pm_runtime_put(dev);
2250 pm_runtime_put_sync(parent);
2254 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2255 * @bridge: Bridge to check
2257 * This function checks if it is possible to move the bridge to D3.
2258 * Currently we only allow D3 for recent enough PCIe ports.
2260 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2264 if (!pci_is_pcie(bridge))
2267 switch (pci_pcie_type(bridge)) {
2268 case PCI_EXP_TYPE_ROOT_PORT:
2269 case PCI_EXP_TYPE_UPSTREAM:
2270 case PCI_EXP_TYPE_DOWNSTREAM:
2271 if (pci_bridge_d3_disable)
2275 * Hotplug interrupts cannot be delivered if the link is down,
2276 * so parents of a hotplug port must stay awake. In addition,
2277 * hotplug ports handled by firmware in System Management Mode
2278 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2279 * For simplicity, disallow in general for now.
2281 if (bridge->is_hotplug_bridge)
2284 if (pci_bridge_d3_force)
2288 * It should be safe to put PCIe ports from 2015 or newer
2291 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2301 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2303 bool *d3cold_ok = data;
2305 if (/* The device needs to be allowed to go D3cold ... */
2306 dev->no_d3cold || !dev->d3cold_allowed ||
2308 /* ... and if it is wakeup capable to do so from D3cold. */
2309 (device_may_wakeup(&dev->dev) &&
2310 !pci_pme_capable(dev, PCI_D3cold)) ||
2312 /* If it is a bridge it must be allowed to go to D3. */
2313 !pci_power_manageable(dev))
2321 * pci_bridge_d3_update - Update bridge D3 capabilities
2322 * @dev: PCI device which is changed
2324 * Update upstream bridge PM capabilities accordingly depending on if the
2325 * device PM configuration was changed or the device is being removed. The
2326 * change is also propagated upstream.
2328 void pci_bridge_d3_update(struct pci_dev *dev)
2330 bool remove = !device_is_registered(&dev->dev);
2331 struct pci_dev *bridge;
2332 bool d3cold_ok = true;
2334 bridge = pci_upstream_bridge(dev);
2335 if (!bridge || !pci_bridge_d3_possible(bridge))
2339 * If D3 is currently allowed for the bridge, removing one of its
2340 * children won't change that.
2342 if (remove && bridge->bridge_d3)
2346 * If D3 is currently allowed for the bridge and a child is added or
2347 * changed, disallowance of D3 can only be caused by that child, so
2348 * we only need to check that single device, not any of its siblings.
2350 * If D3 is currently not allowed for the bridge, checking the device
2351 * first may allow us to skip checking its siblings.
2354 pci_dev_check_d3cold(dev, &d3cold_ok);
2357 * If D3 is currently not allowed for the bridge, this may be caused
2358 * either by the device being changed/removed or any of its siblings,
2359 * so we need to go through all children to find out if one of them
2360 * continues to block D3.
2362 if (d3cold_ok && !bridge->bridge_d3)
2363 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2366 if (bridge->bridge_d3 != d3cold_ok) {
2367 bridge->bridge_d3 = d3cold_ok;
2368 /* Propagate change to upstream bridges */
2369 pci_bridge_d3_update(bridge);
2374 * pci_d3cold_enable - Enable D3cold for device
2375 * @dev: PCI device to handle
2377 * This function can be used in drivers to enable D3cold from the device
2378 * they handle. It also updates upstream PCI bridge PM capabilities
2381 void pci_d3cold_enable(struct pci_dev *dev)
2383 if (dev->no_d3cold) {
2384 dev->no_d3cold = false;
2385 pci_bridge_d3_update(dev);
2388 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2391 * pci_d3cold_disable - Disable D3cold for device
2392 * @dev: PCI device to handle
2394 * This function can be used in drivers to disable D3cold from the device
2395 * they handle. It also updates upstream PCI bridge PM capabilities
2398 void pci_d3cold_disable(struct pci_dev *dev)
2400 if (!dev->no_d3cold) {
2401 dev->no_d3cold = true;
2402 pci_bridge_d3_update(dev);
2405 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2408 * pci_pm_init - Initialize PM functions of given PCI device
2409 * @dev: PCI device to handle.
2411 void pci_pm_init(struct pci_dev *dev)
2416 pm_runtime_forbid(&dev->dev);
2417 pm_runtime_set_active(&dev->dev);
2418 pm_runtime_enable(&dev->dev);
2419 device_enable_async_suspend(&dev->dev);
2420 dev->wakeup_prepared = false;
2423 dev->pme_support = 0;
2425 /* find PCI PM capability in list */
2426 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2429 /* Check device's ability to generate PME# */
2430 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2432 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2433 pci_err(dev, "unsupported PM cap regs version (%u)\n",
2434 pmc & PCI_PM_CAP_VER_MASK);
2439 dev->d3_delay = PCI_PM_D3_WAIT;
2440 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2441 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2442 dev->d3cold_allowed = true;
2444 dev->d1_support = false;
2445 dev->d2_support = false;
2446 if (!pci_no_d1d2(dev)) {
2447 if (pmc & PCI_PM_CAP_D1)
2448 dev->d1_support = true;
2449 if (pmc & PCI_PM_CAP_D2)
2450 dev->d2_support = true;
2452 if (dev->d1_support || dev->d2_support)
2453 pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2454 dev->d1_support ? " D1" : "",
2455 dev->d2_support ? " D2" : "");
2458 pmc &= PCI_PM_CAP_PME_MASK;
2460 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2461 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2462 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2463 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2464 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2465 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2466 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2467 dev->pme_poll = true;
2469 * Make device's PM flags reflect the wake-up capability, but
2470 * let the user space enable it to wake up the system as needed.
2472 device_set_wakeup_capable(&dev->dev, true);
2473 /* Disable the PME# generation functionality */
2474 pci_pme_active(dev, false);
2478 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2480 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2484 case PCI_EA_P_VF_MEM:
2485 flags |= IORESOURCE_MEM;
2487 case PCI_EA_P_MEM_PREFETCH:
2488 case PCI_EA_P_VF_MEM_PREFETCH:
2489 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2492 flags |= IORESOURCE_IO;
2501 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2504 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2505 return &dev->resource[bei];
2506 #ifdef CONFIG_PCI_IOV
2507 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2508 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2509 return &dev->resource[PCI_IOV_RESOURCES +
2510 bei - PCI_EA_BEI_VF_BAR0];
2512 else if (bei == PCI_EA_BEI_ROM)
2513 return &dev->resource[PCI_ROM_RESOURCE];
2518 /* Read an Enhanced Allocation (EA) entry */
2519 static int pci_ea_read(struct pci_dev *dev, int offset)
2521 struct resource *res;
2522 int ent_size, ent_offset = offset;
2523 resource_size_t start, end;
2524 unsigned long flags;
2525 u32 dw0, bei, base, max_offset;
2527 bool support_64 = (sizeof(resource_size_t) >= 8);
2529 pci_read_config_dword(dev, ent_offset, &dw0);
2532 /* Entry size field indicates DWORDs after 1st */
2533 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2535 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2538 bei = (dw0 & PCI_EA_BEI) >> 4;
2539 prop = (dw0 & PCI_EA_PP) >> 8;
2542 * If the Property is in the reserved range, try the Secondary
2545 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2546 prop = (dw0 & PCI_EA_SP) >> 16;
2547 if (prop > PCI_EA_P_BRIDGE_IO)
2550 res = pci_ea_get_resource(dev, bei, prop);
2552 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2556 flags = pci_ea_flags(dev, prop);
2558 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2563 pci_read_config_dword(dev, ent_offset, &base);
2564 start = (base & PCI_EA_FIELD_MASK);
2567 /* Read MaxOffset */
2568 pci_read_config_dword(dev, ent_offset, &max_offset);
2571 /* Read Base MSBs (if 64-bit entry) */
2572 if (base & PCI_EA_IS_64) {
2575 pci_read_config_dword(dev, ent_offset, &base_upper);
2578 flags |= IORESOURCE_MEM_64;
2580 /* entry starts above 32-bit boundary, can't use */
2581 if (!support_64 && base_upper)
2585 start |= ((u64)base_upper << 32);
2588 end = start + (max_offset | 0x03);
2590 /* Read MaxOffset MSBs (if 64-bit entry) */
2591 if (max_offset & PCI_EA_IS_64) {
2592 u32 max_offset_upper;
2594 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2597 flags |= IORESOURCE_MEM_64;
2599 /* entry too big, can't use */
2600 if (!support_64 && max_offset_upper)
2604 end += ((u64)max_offset_upper << 32);
2608 pci_err(dev, "EA Entry crosses address boundary\n");
2612 if (ent_size != ent_offset - offset) {
2613 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2614 ent_size, ent_offset - offset);
2618 res->name = pci_name(dev);
2623 if (bei <= PCI_EA_BEI_BAR5)
2624 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2626 else if (bei == PCI_EA_BEI_ROM)
2627 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2629 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2630 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2631 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2633 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2637 return offset + ent_size;
2640 /* Enhanced Allocation Initialization */
2641 void pci_ea_init(struct pci_dev *dev)
2648 /* find PCI EA capability in list */
2649 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2653 /* determine the number of entries */
2654 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2656 num_ent &= PCI_EA_NUM_ENT_MASK;
2658 offset = ea + PCI_EA_FIRST_ENT;
2660 /* Skip DWORD 2 for type 1 functions */
2661 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2664 /* parse each EA entry */
2665 for (i = 0; i < num_ent; ++i)
2666 offset = pci_ea_read(dev, offset);
2669 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2670 struct pci_cap_saved_state *new_cap)
2672 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2676 * _pci_add_cap_save_buffer - allocate buffer for saving given
2677 * capability registers
2678 * @dev: the PCI device
2679 * @cap: the capability to allocate the buffer for
2680 * @extended: Standard or Extended capability ID
2681 * @size: requested size of the buffer
2683 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2684 bool extended, unsigned int size)
2687 struct pci_cap_saved_state *save_state;
2690 pos = pci_find_ext_capability(dev, cap);
2692 pos = pci_find_capability(dev, cap);
2697 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2701 save_state->cap.cap_nr = cap;
2702 save_state->cap.cap_extended = extended;
2703 save_state->cap.size = size;
2704 pci_add_saved_cap(dev, save_state);
2709 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2711 return _pci_add_cap_save_buffer(dev, cap, false, size);
2714 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2716 return _pci_add_cap_save_buffer(dev, cap, true, size);
2720 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2721 * @dev: the PCI device
2723 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2727 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2728 PCI_EXP_SAVE_REGS * sizeof(u16));
2730 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
2732 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2734 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
2736 pci_allocate_vc_save_buffers(dev);
2739 void pci_free_cap_save_buffers(struct pci_dev *dev)
2741 struct pci_cap_saved_state *tmp;
2742 struct hlist_node *n;
2744 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2749 * pci_configure_ari - enable or disable ARI forwarding
2750 * @dev: the PCI device
2752 * If @dev and its upstream bridge both support ARI, enable ARI in the
2753 * bridge. Otherwise, disable ARI in the bridge.
2755 void pci_configure_ari(struct pci_dev *dev)
2758 struct pci_dev *bridge;
2760 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2763 bridge = dev->bus->self;
2767 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2768 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2771 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2772 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2773 PCI_EXP_DEVCTL2_ARI);
2774 bridge->ari_enabled = 1;
2776 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2777 PCI_EXP_DEVCTL2_ARI);
2778 bridge->ari_enabled = 0;
2782 static int pci_acs_enable;
2785 * pci_request_acs - ask for ACS to be enabled if supported
2787 void pci_request_acs(void)
2793 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2794 * @dev: the PCI device
2796 static void pci_std_enable_acs(struct pci_dev *dev)
2802 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2806 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2807 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2809 /* Source Validation */
2810 ctrl |= (cap & PCI_ACS_SV);
2812 /* P2P Request Redirect */
2813 ctrl |= (cap & PCI_ACS_RR);
2815 /* P2P Completion Redirect */
2816 ctrl |= (cap & PCI_ACS_CR);
2818 /* Upstream Forwarding */
2819 ctrl |= (cap & PCI_ACS_UF);
2821 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2825 * pci_enable_acs - enable ACS if hardware support it
2826 * @dev: the PCI device
2828 void pci_enable_acs(struct pci_dev *dev)
2830 if (!pci_acs_enable)
2833 if (!pci_dev_specific_enable_acs(dev))
2836 pci_std_enable_acs(dev);
2839 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2844 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2849 * Except for egress control, capabilities are either required
2850 * or only required if controllable. Features missing from the
2851 * capability field can therefore be assumed as hard-wired enabled.
2853 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2854 acs_flags &= (cap | PCI_ACS_EC);
2856 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2857 return (ctrl & acs_flags) == acs_flags;
2861 * pci_acs_enabled - test ACS against required flags for a given device
2862 * @pdev: device to test
2863 * @acs_flags: required PCI ACS flags
2865 * Return true if the device supports the provided flags. Automatically
2866 * filters out flags that are not implemented on multifunction devices.
2868 * Note that this interface checks the effective ACS capabilities of the
2869 * device rather than the actual capabilities. For instance, most single
2870 * function endpoints are not required to support ACS because they have no
2871 * opportunity for peer-to-peer access. We therefore return 'true'
2872 * regardless of whether the device exposes an ACS capability. This makes
2873 * it much easier for callers of this function to ignore the actual type
2874 * or topology of the device when testing ACS support.
2876 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2880 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2885 * Conventional PCI and PCI-X devices never support ACS, either
2886 * effectively or actually. The shared bus topology implies that
2887 * any device on the bus can receive or snoop DMA.
2889 if (!pci_is_pcie(pdev))
2892 switch (pci_pcie_type(pdev)) {
2894 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2895 * but since their primary interface is PCI/X, we conservatively
2896 * handle them as we would a non-PCIe device.
2898 case PCI_EXP_TYPE_PCIE_BRIDGE:
2900 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2901 * applicable... must never implement an ACS Extended Capability...".
2902 * This seems arbitrary, but we take a conservative interpretation
2903 * of this statement.
2905 case PCI_EXP_TYPE_PCI_BRIDGE:
2906 case PCI_EXP_TYPE_RC_EC:
2909 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2910 * implement ACS in order to indicate their peer-to-peer capabilities,
2911 * regardless of whether they are single- or multi-function devices.
2913 case PCI_EXP_TYPE_DOWNSTREAM:
2914 case PCI_EXP_TYPE_ROOT_PORT:
2915 return pci_acs_flags_enabled(pdev, acs_flags);
2917 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2918 * implemented by the remaining PCIe types to indicate peer-to-peer
2919 * capabilities, but only when they are part of a multifunction
2920 * device. The footnote for section 6.12 indicates the specific
2921 * PCIe types included here.
2923 case PCI_EXP_TYPE_ENDPOINT:
2924 case PCI_EXP_TYPE_UPSTREAM:
2925 case PCI_EXP_TYPE_LEG_END:
2926 case PCI_EXP_TYPE_RC_END:
2927 if (!pdev->multifunction)
2930 return pci_acs_flags_enabled(pdev, acs_flags);
2934 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2935 * to single function devices with the exception of downstream ports.
2941 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2942 * @start: starting downstream device
2943 * @end: ending upstream device or NULL to search to the root bus
2944 * @acs_flags: required flags
2946 * Walk up a device tree from start to end testing PCI ACS support. If
2947 * any step along the way does not support the required flags, return false.
2949 bool pci_acs_path_enabled(struct pci_dev *start,
2950 struct pci_dev *end, u16 acs_flags)
2952 struct pci_dev *pdev, *parent = start;
2957 if (!pci_acs_enabled(pdev, acs_flags))
2960 if (pci_is_root_bus(pdev->bus))
2961 return (end == NULL);
2963 parent = pdev->bus->self;
2964 } while (pdev != end);
2970 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
2974 * Helper to find the position of the ctrl register for a BAR.
2975 * Returns -ENOTSUPP if resizable BARs are not supported at all.
2976 * Returns -ENOENT if no ctrl register for the BAR could be found.
2978 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
2980 unsigned int pos, nbars, i;
2983 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
2987 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
2988 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
2989 PCI_REBAR_CTRL_NBAR_SHIFT;
2991 for (i = 0; i < nbars; i++, pos += 8) {
2994 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
2995 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3004 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3006 * @bar: BAR to query
3008 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3009 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3011 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3016 pos = pci_rebar_find_pos(pdev, bar);
3020 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3021 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3025 * pci_rebar_get_current_size - get the current size of a BAR
3027 * @bar: BAR to set size to
3029 * Read the size of a BAR from the resizable BAR config.
3030 * Returns size if found or negative error code.
3032 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3037 pos = pci_rebar_find_pos(pdev, bar);
3041 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3042 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3046 * pci_rebar_set_size - set a new size for a BAR
3048 * @bar: BAR to set size to
3049 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3051 * Set the new size of a BAR as defined in the spec.
3052 * Returns zero if resizing was successful, error code otherwise.
3054 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3059 pos = pci_rebar_find_pos(pdev, bar);
3063 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3064 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3066 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3071 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3072 * @dev: the PCI device
3073 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3074 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3075 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3076 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3078 * Return 0 if all upstream bridges support AtomicOp routing, egress
3079 * blocking is disabled on all upstream ports, and the root port supports
3080 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3081 * AtomicOp completion), or negative otherwise.
3083 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3085 struct pci_bus *bus = dev->bus;
3086 struct pci_dev *bridge;
3089 if (!pci_is_pcie(dev))
3093 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3094 * AtomicOp requesters. For now, we only support endpoints as
3095 * requesters and root ports as completers. No endpoints as
3096 * completers, and no peer-to-peer.
3099 switch (pci_pcie_type(dev)) {
3100 case PCI_EXP_TYPE_ENDPOINT:
3101 case PCI_EXP_TYPE_LEG_END:
3102 case PCI_EXP_TYPE_RC_END:
3108 while (bus->parent) {
3111 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3113 switch (pci_pcie_type(bridge)) {
3114 /* Ensure switch ports support AtomicOp routing */
3115 case PCI_EXP_TYPE_UPSTREAM:
3116 case PCI_EXP_TYPE_DOWNSTREAM:
3117 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3121 /* Ensure root port supports all the sizes we care about */
3122 case PCI_EXP_TYPE_ROOT_PORT:
3123 if ((cap & cap_mask) != cap_mask)
3128 /* Ensure upstream ports don't block AtomicOps on egress */
3129 if (!bridge->has_secondary_link) {
3130 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3132 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3139 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3140 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3143 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3146 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3147 * @dev: the PCI device
3148 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3150 * Perform INTx swizzling for a device behind one level of bridge. This is
3151 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3152 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3153 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3154 * the PCI Express Base Specification, Revision 2.1)
3156 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3160 if (pci_ari_enabled(dev->bus))
3163 slot = PCI_SLOT(dev->devfn);
3165 return (((pin - 1) + slot) % 4) + 1;
3168 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3176 while (!pci_is_root_bus(dev->bus)) {
3177 pin = pci_swizzle_interrupt_pin(dev, pin);
3178 dev = dev->bus->self;
3185 * pci_common_swizzle - swizzle INTx all the way to root bridge
3186 * @dev: the PCI device
3187 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3189 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3190 * bridges all the way up to a PCI root bus.
3192 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3196 while (!pci_is_root_bus(dev->bus)) {
3197 pin = pci_swizzle_interrupt_pin(dev, pin);
3198 dev = dev->bus->self;
3201 return PCI_SLOT(dev->devfn);
3203 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3206 * pci_release_region - Release a PCI bar
3207 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3208 * @bar: BAR to release
3210 * Releases the PCI I/O and memory resources previously reserved by a
3211 * successful call to pci_request_region. Call this function only
3212 * after all use of the PCI regions has ceased.
3214 void pci_release_region(struct pci_dev *pdev, int bar)
3216 struct pci_devres *dr;
3218 if (pci_resource_len(pdev, bar) == 0)
3220 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3221 release_region(pci_resource_start(pdev, bar),
3222 pci_resource_len(pdev, bar));
3223 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3224 release_mem_region(pci_resource_start(pdev, bar),
3225 pci_resource_len(pdev, bar));
3227 dr = find_pci_dr(pdev);
3229 dr->region_mask &= ~(1 << bar);
3231 EXPORT_SYMBOL(pci_release_region);
3234 * __pci_request_region - Reserved PCI I/O and memory resource
3235 * @pdev: PCI device whose resources are to be reserved
3236 * @bar: BAR to be reserved
3237 * @res_name: Name to be associated with resource.
3238 * @exclusive: whether the region access is exclusive or not
3240 * Mark the PCI region associated with PCI device @pdev BR @bar as
3241 * being reserved by owner @res_name. Do not access any
3242 * address inside the PCI regions unless this call returns
3245 * If @exclusive is set, then the region is marked so that userspace
3246 * is explicitly not allowed to map the resource via /dev/mem or
3247 * sysfs MMIO access.
3249 * Returns 0 on success, or %EBUSY on error. A warning
3250 * message is also printed on failure.
3252 static int __pci_request_region(struct pci_dev *pdev, int bar,
3253 const char *res_name, int exclusive)
3255 struct pci_devres *dr;
3257 if (pci_resource_len(pdev, bar) == 0)
3260 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3261 if (!request_region(pci_resource_start(pdev, bar),
3262 pci_resource_len(pdev, bar), res_name))
3264 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3265 if (!__request_mem_region(pci_resource_start(pdev, bar),
3266 pci_resource_len(pdev, bar), res_name,
3271 dr = find_pci_dr(pdev);
3273 dr->region_mask |= 1 << bar;
3278 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3279 &pdev->resource[bar]);
3284 * pci_request_region - Reserve PCI I/O and memory resource
3285 * @pdev: PCI device whose resources are to be reserved
3286 * @bar: BAR to be reserved
3287 * @res_name: Name to be associated with resource
3289 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3290 * being reserved by owner @res_name. Do not access any
3291 * address inside the PCI regions unless this call returns
3294 * Returns 0 on success, or %EBUSY on error. A warning
3295 * message is also printed on failure.
3297 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3299 return __pci_request_region(pdev, bar, res_name, 0);
3301 EXPORT_SYMBOL(pci_request_region);
3304 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3305 * @pdev: PCI device whose resources are to be reserved
3306 * @bar: BAR to be reserved
3307 * @res_name: Name to be associated with resource.
3309 * Mark the PCI region associated with PCI device @pdev BR @bar as
3310 * being reserved by owner @res_name. Do not access any
3311 * address inside the PCI regions unless this call returns
3314 * Returns 0 on success, or %EBUSY on error. A warning
3315 * message is also printed on failure.
3317 * The key difference that _exclusive makes it that userspace is
3318 * explicitly not allowed to map the resource via /dev/mem or
3321 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3322 const char *res_name)
3324 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3326 EXPORT_SYMBOL(pci_request_region_exclusive);
3329 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3330 * @pdev: PCI device whose resources were previously reserved
3331 * @bars: Bitmask of BARs to be released
3333 * Release selected PCI I/O and memory resources previously reserved.
3334 * Call this function only after all use of the PCI regions has ceased.
3336 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3340 for (i = 0; i < 6; i++)
3341 if (bars & (1 << i))
3342 pci_release_region(pdev, i);
3344 EXPORT_SYMBOL(pci_release_selected_regions);
3346 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3347 const char *res_name, int excl)
3351 for (i = 0; i < 6; i++)
3352 if (bars & (1 << i))
3353 if (__pci_request_region(pdev, i, res_name, excl))
3359 if (bars & (1 << i))
3360 pci_release_region(pdev, i);
3367 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3368 * @pdev: PCI device whose resources are to be reserved
3369 * @bars: Bitmask of BARs to be requested
3370 * @res_name: Name to be associated with resource
3372 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3373 const char *res_name)
3375 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3377 EXPORT_SYMBOL(pci_request_selected_regions);
3379 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3380 const char *res_name)
3382 return __pci_request_selected_regions(pdev, bars, res_name,
3383 IORESOURCE_EXCLUSIVE);
3385 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3388 * pci_release_regions - Release reserved PCI I/O and memory resources
3389 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3391 * Releases all PCI I/O and memory resources previously reserved by a
3392 * successful call to pci_request_regions. Call this function only
3393 * after all use of the PCI regions has ceased.
3396 void pci_release_regions(struct pci_dev *pdev)
3398 pci_release_selected_regions(pdev, (1 << 6) - 1);
3400 EXPORT_SYMBOL(pci_release_regions);
3403 * pci_request_regions - Reserved PCI I/O and memory resources
3404 * @pdev: PCI device whose resources are to be reserved
3405 * @res_name: Name to be associated with resource.
3407 * Mark all PCI regions associated with PCI device @pdev as
3408 * being reserved by owner @res_name. Do not access any
3409 * address inside the PCI regions unless this call returns
3412 * Returns 0 on success, or %EBUSY on error. A warning
3413 * message is also printed on failure.
3415 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3417 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3419 EXPORT_SYMBOL(pci_request_regions);
3422 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3423 * @pdev: PCI device whose resources are to be reserved
3424 * @res_name: Name to be associated with resource.
3426 * Mark all PCI regions associated with PCI device @pdev as
3427 * being reserved by owner @res_name. Do not access any
3428 * address inside the PCI regions unless this call returns
3431 * pci_request_regions_exclusive() will mark the region so that
3432 * /dev/mem and the sysfs MMIO access will not be allowed.
3434 * Returns 0 on success, or %EBUSY on error. A warning
3435 * message is also printed on failure.
3437 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3439 return pci_request_selected_regions_exclusive(pdev,
3440 ((1 << 6) - 1), res_name);
3442 EXPORT_SYMBOL(pci_request_regions_exclusive);
3445 * Record the PCI IO range (expressed as CPU physical address + size).
3446 * Return a negative value if an error has occured, zero otherwise
3448 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3449 resource_size_t size)
3453 struct logic_pio_hwaddr *range;
3455 if (!size || addr + size < addr)
3458 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3462 range->fwnode = fwnode;
3464 range->hw_start = addr;
3465 range->flags = LOGIC_PIO_CPU_MMIO;
3467 ret = logic_pio_register_range(range);
3475 phys_addr_t pci_pio_to_address(unsigned long pio)
3477 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3480 if (pio >= MMIO_UPPER_LIMIT)
3483 address = logic_pio_to_hwaddr(pio);
3489 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3492 return logic_pio_trans_cpuaddr(address);
3494 if (address > IO_SPACE_LIMIT)
3495 return (unsigned long)-1;
3497 return (unsigned long) address;
3502 * pci_remap_iospace - Remap the memory mapped I/O space
3503 * @res: Resource describing the I/O space
3504 * @phys_addr: physical address of range to be mapped
3506 * Remap the memory mapped I/O space described by the @res
3507 * and the CPU physical address @phys_addr into virtual address space.
3508 * Only architectures that have memory mapped IO functions defined
3509 * (and the PCI_IOBASE value defined) should call this function.
3511 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3513 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3514 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3516 if (!(res->flags & IORESOURCE_IO))
3519 if (res->end > IO_SPACE_LIMIT)
3522 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3523 pgprot_device(PAGE_KERNEL));
3525 /* this architecture does not have memory mapped I/O space,
3526 so this function should never be called */
3527 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3531 EXPORT_SYMBOL(pci_remap_iospace);
3534 * pci_unmap_iospace - Unmap the memory mapped I/O space
3535 * @res: resource to be unmapped
3537 * Unmap the CPU virtual address @res from virtual address space.
3538 * Only architectures that have memory mapped IO functions defined
3539 * (and the PCI_IOBASE value defined) should call this function.
3541 void pci_unmap_iospace(struct resource *res)
3543 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3544 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3546 unmap_kernel_range(vaddr, resource_size(res));
3549 EXPORT_SYMBOL(pci_unmap_iospace);
3552 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3553 * @dev: Generic device to remap IO address for
3554 * @offset: Resource address to map
3555 * @size: Size of map
3557 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3560 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3561 resource_size_t offset,
3562 resource_size_t size)
3564 void __iomem **ptr, *addr;
3566 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3570 addr = pci_remap_cfgspace(offset, size);
3573 devres_add(dev, ptr);
3579 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3582 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3583 * @dev: generic device to handle the resource for
3584 * @res: configuration space resource to be handled
3586 * Checks that a resource is a valid memory region, requests the memory
3587 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3588 * proper PCI configuration space memory attributes are guaranteed.
3590 * All operations are managed and will be undone on driver detach.
3592 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3593 * on failure. Usage example::
3595 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3596 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3598 * return PTR_ERR(base);
3600 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3601 struct resource *res)
3603 resource_size_t size;
3605 void __iomem *dest_ptr;
3609 if (!res || resource_type(res) != IORESOURCE_MEM) {
3610 dev_err(dev, "invalid resource\n");
3611 return IOMEM_ERR_PTR(-EINVAL);
3614 size = resource_size(res);
3615 name = res->name ?: dev_name(dev);
3617 if (!devm_request_mem_region(dev, res->start, size, name)) {
3618 dev_err(dev, "can't request region for resource %pR\n", res);
3619 return IOMEM_ERR_PTR(-EBUSY);
3622 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3624 dev_err(dev, "ioremap failed for resource %pR\n", res);
3625 devm_release_mem_region(dev, res->start, size);
3626 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3631 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3633 static void __pci_set_master(struct pci_dev *dev, bool enable)
3637 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3639 cmd = old_cmd | PCI_COMMAND_MASTER;
3641 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3642 if (cmd != old_cmd) {
3643 pci_dbg(dev, "%s bus mastering\n",
3644 enable ? "enabling" : "disabling");
3645 pci_write_config_word(dev, PCI_COMMAND, cmd);
3647 dev->is_busmaster = enable;
3651 * pcibios_setup - process "pci=" kernel boot arguments
3652 * @str: string used to pass in "pci=" kernel boot arguments
3654 * Process kernel boot arguments. This is the default implementation.
3655 * Architecture specific implementations can override this as necessary.
3657 char * __weak __init pcibios_setup(char *str)
3663 * pcibios_set_master - enable PCI bus-mastering for device dev
3664 * @dev: the PCI device to enable
3666 * Enables PCI bus-mastering for the device. This is the default
3667 * implementation. Architecture specific implementations can override