2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pci-ats.h>
32 #include <asm/setup.h>
34 #include <linux/aer.h>
37 const char *pci_power_names[] = {
38 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 EXPORT_SYMBOL_GPL(pci_power_names);
42 int isa_dma_bridge_buggy;
43 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 EXPORT_SYMBOL(pci_pci_problems);
48 unsigned int pci_pm_d3_delay;
50 static void pci_pme_list_scan(struct work_struct *work);
52 static LIST_HEAD(pci_pme_list);
53 static DEFINE_MUTEX(pci_pme_list_mutex);
54 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
55 static DEFINE_MUTEX(pci_bridge_mutex);
57 struct pci_pme_device {
58 struct list_head list;
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 unsigned int delay = dev->d3_delay;
68 if (delay < pci_pm_d3_delay)
69 delay = pci_pm_d3_delay;
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
79 #define DEFAULT_CARDBUS_IO_SIZE (256)
80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
85 #define DEFAULT_HOTPLUG_IO_SIZE (256)
86 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
87 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
88 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
89 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
91 #define DEFAULT_HOTPLUG_BUS_SIZE 1
92 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
94 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
97 * The default CLS is used if arch didn't set CLS explicitly and not
98 * all pci devices agree on the same value. Arch can override either
99 * the dfl or actual value as it sees fit. Don't forget this is
100 * measured in 32-bit words, not bytes.
102 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
103 u8 pci_cache_line_size;
106 * If we set up a device for bus mastering, we need to check the latency
107 * timer as certain BIOSes forget to set it properly.
109 unsigned int pcibios_max_latency = 255;
111 /* If set, the PCIe ARI capability will not be used. */
112 static bool pcie_ari_disabled;
114 /* Disable bridge_d3 for all PCIe ports */
115 static bool pci_bridge_d3_disable;
116 /* Force bridge_d3 for all PCIe ports */
117 static bool pci_bridge_d3_force;
119 static int __init pcie_port_pm_setup(char *str)
121 if (!strcmp(str, "off"))
122 pci_bridge_d3_disable = true;
123 else if (!strcmp(str, "force"))
124 pci_bridge_d3_force = true;
127 __setup("pcie_port_pm=", pcie_port_pm_setup);
130 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
131 * @bus: pointer to PCI bus structure to search
133 * Given a PCI bus, returns the highest PCI bus number present in the set
134 * including the given PCI bus and its list of child PCI buses.
136 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
139 unsigned char max, n;
141 max = bus->busn_res.end;
142 list_for_each_entry(tmp, &bus->children, node) {
143 n = pci_bus_max_busnr(tmp);
149 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
151 #ifdef CONFIG_HAS_IOMEM
152 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
154 struct resource *res = &pdev->resource[bar];
157 * Make sure the BAR is actually a memory resource, not an IO resource
159 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
160 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
163 return ioremap_nocache(res->start, resource_size(res));
165 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
167 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
170 * Make sure the BAR is actually a memory resource, not an IO resource
172 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
176 return ioremap_wc(pci_resource_start(pdev, bar),
177 pci_resource_len(pdev, bar));
179 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
183 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
184 u8 pos, int cap, int *ttl)
189 pci_bus_read_config_byte(bus, devfn, pos, &pos);
195 pci_bus_read_config_word(bus, devfn, pos, &ent);
207 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
210 int ttl = PCI_FIND_CAP_TTL;
212 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
215 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
217 return __pci_find_next_cap(dev->bus, dev->devfn,
218 pos + PCI_CAP_LIST_NEXT, cap);
220 EXPORT_SYMBOL_GPL(pci_find_next_capability);
222 static int __pci_bus_find_cap_start(struct pci_bus *bus,
223 unsigned int devfn, u8 hdr_type)
227 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
228 if (!(status & PCI_STATUS_CAP_LIST))
232 case PCI_HEADER_TYPE_NORMAL:
233 case PCI_HEADER_TYPE_BRIDGE:
234 return PCI_CAPABILITY_LIST;
235 case PCI_HEADER_TYPE_CARDBUS:
236 return PCI_CB_CAPABILITY_LIST;
243 * pci_find_capability - query for devices' capabilities
244 * @dev: PCI device to query
245 * @cap: capability code
247 * Tell if a device supports a given PCI capability.
248 * Returns the address of the requested capability structure within the
249 * device's PCI configuration space or 0 in case the device does not
250 * support it. Possible values for @cap:
252 * %PCI_CAP_ID_PM Power Management
253 * %PCI_CAP_ID_AGP Accelerated Graphics Port
254 * %PCI_CAP_ID_VPD Vital Product Data
255 * %PCI_CAP_ID_SLOTID Slot Identification
256 * %PCI_CAP_ID_MSI Message Signalled Interrupts
257 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
258 * %PCI_CAP_ID_PCIX PCI-X
259 * %PCI_CAP_ID_EXP PCI Express
261 int pci_find_capability(struct pci_dev *dev, int cap)
265 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
267 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
271 EXPORT_SYMBOL(pci_find_capability);
274 * pci_bus_find_capability - query for devices' capabilities
275 * @bus: the PCI bus to query
276 * @devfn: PCI device to query
277 * @cap: capability code
279 * Like pci_find_capability() but works for pci devices that do not have a
280 * pci_dev structure set up yet.
282 * Returns the address of the requested capability structure within the
283 * device's PCI configuration space or 0 in case the device does not
286 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
291 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
293 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
295 pos = __pci_find_next_cap(bus, devfn, pos, cap);
299 EXPORT_SYMBOL(pci_bus_find_capability);
302 * pci_find_next_ext_capability - Find an extended capability
303 * @dev: PCI device to query
304 * @start: address at which to start looking (0 to start at beginning of list)
305 * @cap: capability code
307 * Returns the address of the next matching extended capability structure
308 * within the device's PCI configuration space or 0 if the device does
309 * not support it. Some capabilities can occur several times, e.g., the
310 * vendor-specific capability, and this provides a way to find them all.
312 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
316 int pos = PCI_CFG_SPACE_SIZE;
318 /* minimum 8 bytes per capability */
319 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
321 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
327 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
331 * If we have no capabilities, this is indicated by cap ID,
332 * cap version and next pointer all being 0.
338 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
341 pos = PCI_EXT_CAP_NEXT(header);
342 if (pos < PCI_CFG_SPACE_SIZE)
345 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
351 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
354 * pci_find_ext_capability - Find an extended capability
355 * @dev: PCI device to query
356 * @cap: capability code
358 * Returns the address of the requested extended capability structure
359 * within the device's PCI configuration space or 0 if the device does
360 * not support it. Possible values for @cap:
362 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
363 * %PCI_EXT_CAP_ID_VC Virtual Channel
364 * %PCI_EXT_CAP_ID_DSN Device Serial Number
365 * %PCI_EXT_CAP_ID_PWR Power Budgeting
367 int pci_find_ext_capability(struct pci_dev *dev, int cap)
369 return pci_find_next_ext_capability(dev, 0, cap);
371 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
373 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
375 int rc, ttl = PCI_FIND_CAP_TTL;
378 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
379 mask = HT_3BIT_CAP_MASK;
381 mask = HT_5BIT_CAP_MASK;
383 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
384 PCI_CAP_ID_HT, &ttl);
386 rc = pci_read_config_byte(dev, pos + 3, &cap);
387 if (rc != PCIBIOS_SUCCESSFUL)
390 if ((cap & mask) == ht_cap)
393 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
394 pos + PCI_CAP_LIST_NEXT,
395 PCI_CAP_ID_HT, &ttl);
401 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
402 * @dev: PCI device to query
403 * @pos: Position from which to continue searching
404 * @ht_cap: Hypertransport capability code
406 * To be used in conjunction with pci_find_ht_capability() to search for
407 * all capabilities matching @ht_cap. @pos should always be a value returned
408 * from pci_find_ht_capability().
410 * NB. To be 100% safe against broken PCI devices, the caller should take
411 * steps to avoid an infinite loop.
413 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
415 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
417 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
420 * pci_find_ht_capability - query a device's Hypertransport capabilities
421 * @dev: PCI device to query
422 * @ht_cap: Hypertransport capability code
424 * Tell if a device supports a given Hypertransport capability.
425 * Returns an address within the device's PCI configuration space
426 * or 0 in case the device does not support the request capability.
427 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
428 * which has a Hypertransport capability matching @ht_cap.
430 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
434 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
436 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
440 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
443 * pci_find_parent_resource - return resource region of parent bus of given region
444 * @dev: PCI device structure contains resources to be searched
445 * @res: child resource record for which parent is sought
447 * For given resource region of given device, return the resource
448 * region of parent bus the given region is contained in.
450 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
451 struct resource *res)
453 const struct pci_bus *bus = dev->bus;
457 pci_bus_for_each_resource(bus, r, i) {
460 if (resource_contains(r, res)) {
463 * If the window is prefetchable but the BAR is
464 * not, the allocator made a mistake.
466 if (r->flags & IORESOURCE_PREFETCH &&
467 !(res->flags & IORESOURCE_PREFETCH))
471 * If we're below a transparent bridge, there may
472 * be both a positively-decoded aperture and a
473 * subtractively-decoded region that contain the BAR.
474 * We want the positively-decoded one, so this depends
475 * on pci_bus_for_each_resource() giving us those
483 EXPORT_SYMBOL(pci_find_parent_resource);
486 * pci_find_resource - Return matching PCI device resource
487 * @dev: PCI device to query
488 * @res: Resource to look for
490 * Goes over standard PCI resources (BARs) and checks if the given resource
491 * is partially or fully contained in any of them. In that case the
492 * matching resource is returned, %NULL otherwise.
494 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
498 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
499 struct resource *r = &dev->resource[i];
501 if (r->start && resource_contains(r, res))
507 EXPORT_SYMBOL(pci_find_resource);
510 * pci_find_pcie_root_port - return PCIe Root Port
511 * @dev: PCI device to query
513 * Traverse up the parent chain and return the PCIe Root Port PCI Device
514 * for a given PCI Device.
516 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
518 struct pci_dev *bridge, *highest_pcie_bridge = dev;
520 bridge = pci_upstream_bridge(dev);
521 while (bridge && pci_is_pcie(bridge)) {
522 highest_pcie_bridge = bridge;
523 bridge = pci_upstream_bridge(bridge);
526 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
529 return highest_pcie_bridge;
531 EXPORT_SYMBOL(pci_find_pcie_root_port);
534 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
535 * @dev: the PCI device to operate on
536 * @pos: config space offset of status word
537 * @mask: mask of bit(s) to care about in status word
539 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
541 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
545 /* Wait for Transaction Pending bit clean */
546 for (i = 0; i < 4; i++) {
549 msleep((1 << (i - 1)) * 100);
551 pci_read_config_word(dev, pos, &status);
552 if (!(status & mask))
560 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
561 * @dev: PCI device to have its BARs restored
563 * Restore the BAR values for a given device, so as to make it
564 * accessible by its driver.
566 static void pci_restore_bars(struct pci_dev *dev)
570 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
571 pci_update_resource(dev, i);
574 static const struct pci_platform_pm_ops *pci_platform_pm;
576 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
578 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
579 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
581 pci_platform_pm = ops;
585 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
587 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
590 static inline int platform_pci_set_power_state(struct pci_dev *dev,
593 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
596 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
598 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
601 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
603 return pci_platform_pm ?
604 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
607 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
609 return pci_platform_pm ?
610 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
613 static inline bool platform_pci_need_resume(struct pci_dev *dev)
615 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
619 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
621 * @dev: PCI device to handle.
622 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
625 * -EINVAL if the requested state is invalid.
626 * -EIO if device does not support PCI PM or its PM capabilities register has a
627 * wrong version, or device doesn't support the requested state.
628 * 0 if device already is in the requested state.
629 * 0 if device's power state has been successfully changed.
631 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
634 bool need_restore = false;
636 /* Check if we're already there */
637 if (dev->current_state == state)
643 if (state < PCI_D0 || state > PCI_D3hot)
646 /* Validate current state:
647 * Can enter D0 from any state, but if we can only go deeper
648 * to sleep if we're already in a low power state
650 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
651 && dev->current_state > state) {
652 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
653 dev->current_state, state);
657 /* check if this device supports the desired state */
658 if ((state == PCI_D1 && !dev->d1_support)
659 || (state == PCI_D2 && !dev->d2_support))
662 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
664 /* If we're (effectively) in D3, force entire word to 0.
665 * This doesn't affect PME_Status, disables PME_En, and
666 * sets PowerState to 0.
668 switch (dev->current_state) {
672 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
677 case PCI_UNKNOWN: /* Boot-up */
678 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
679 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
681 /* Fall-through: force to D0 */
687 /* enter specified state */
688 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
690 /* Mandatory power management transition delays */
691 /* see PCI PM 1.1 5.6.1 table 18 */
692 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
693 pci_dev_d3_sleep(dev);
694 else if (state == PCI_D2 || dev->current_state == PCI_D2)
695 udelay(PCI_PM_D2_DELAY);
697 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
698 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
699 if (dev->current_state != state && printk_ratelimit())
700 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
704 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
705 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
706 * from D3hot to D0 _may_ perform an internal reset, thereby
707 * going to "D0 Uninitialized" rather than "D0 Initialized".
708 * For example, at least some versions of the 3c905B and the
709 * 3c556B exhibit this behaviour.
711 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
712 * devices in a D3hot state at boot. Consequently, we need to
713 * restore at least the BARs so that the device will be
714 * accessible to its driver.
717 pci_restore_bars(dev);
720 pcie_aspm_pm_state_change(dev->bus->self);
726 * pci_update_current_state - Read power state of given device and cache it
727 * @dev: PCI device to handle.
728 * @state: State to cache in case the device doesn't have the PM capability
730 * The power state is read from the PMCSR register, which however is
731 * inaccessible in D3cold. The platform firmware is therefore queried first
732 * to detect accessibility of the register. In case the platform firmware
733 * reports an incorrect state or the device isn't power manageable by the
734 * platform at all, we try to detect D3cold by testing accessibility of the
735 * vendor ID in config space.
737 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
739 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
740 !pci_device_is_present(dev)) {
741 dev->current_state = PCI_D3cold;
742 } else if (dev->pm_cap) {
745 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
746 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
748 dev->current_state = state;
753 * pci_power_up - Put the given device into D0 forcibly
754 * @dev: PCI device to power up
756 void pci_power_up(struct pci_dev *dev)
758 if (platform_pci_power_manageable(dev))
759 platform_pci_set_power_state(dev, PCI_D0);
761 pci_raw_set_power_state(dev, PCI_D0);
762 pci_update_current_state(dev, PCI_D0);
766 * pci_platform_power_transition - Use platform to change device power state
767 * @dev: PCI device to handle.
768 * @state: State to put the device into.
770 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
774 if (platform_pci_power_manageable(dev)) {
775 error = platform_pci_set_power_state(dev, state);
777 pci_update_current_state(dev, state);
781 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
782 dev->current_state = PCI_D0;
788 * pci_wakeup - Wake up a PCI device
789 * @pci_dev: Device to handle.
790 * @ign: ignored parameter
792 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
794 pci_wakeup_event(pci_dev);
795 pm_request_resume(&pci_dev->dev);
800 * pci_wakeup_bus - Walk given bus and wake up devices on it
801 * @bus: Top bus of the subtree to walk.
803 static void pci_wakeup_bus(struct pci_bus *bus)
806 pci_walk_bus(bus, pci_wakeup, NULL);
810 * __pci_start_power_transition - Start power transition of a PCI device
811 * @dev: PCI device to handle.
812 * @state: State to put the device into.
814 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
816 if (state == PCI_D0) {
817 pci_platform_power_transition(dev, PCI_D0);
819 * Mandatory power management transition delays, see
820 * PCI Express Base Specification Revision 2.0 Section
821 * 6.6.1: Conventional Reset. Do not delay for
822 * devices powered on/off by corresponding bridge,
823 * because have already delayed for the bridge.
825 if (dev->runtime_d3cold) {
826 if (dev->d3cold_delay)
827 msleep(dev->d3cold_delay);
829 * When powering on a bridge from D3cold, the
830 * whole hierarchy may be powered on into
831 * D0uninitialized state, resume them to give
832 * them a chance to suspend again
834 pci_wakeup_bus(dev->subordinate);
840 * __pci_dev_set_current_state - Set current state of a PCI device
841 * @dev: Device to handle
842 * @data: pointer to state to be set
844 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
846 pci_power_t state = *(pci_power_t *)data;
848 dev->current_state = state;
853 * __pci_bus_set_current_state - Walk given bus and set current state of devices
854 * @bus: Top bus of the subtree to walk.
855 * @state: state to be set
857 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
860 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
864 * __pci_complete_power_transition - Complete power transition of a PCI device
865 * @dev: PCI device to handle.
866 * @state: State to put the device into.
868 * This function should not be called directly by device drivers.
870 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
876 ret = pci_platform_power_transition(dev, state);
877 /* Power off the bridge may power off the whole hierarchy */
878 if (!ret && state == PCI_D3cold)
879 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
882 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
885 * pci_set_power_state - Set the power state of a PCI device
886 * @dev: PCI device to handle.
887 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
889 * Transition a device to a new power state, using the platform firmware and/or
890 * the device's PCI PM registers.
893 * -EINVAL if the requested state is invalid.
894 * -EIO if device does not support PCI PM or its PM capabilities register has a
895 * wrong version, or device doesn't support the requested state.
896 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
897 * 0 if device already is in the requested state.
898 * 0 if the transition is to D3 but D3 is not supported.
899 * 0 if device's power state has been successfully changed.
901 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
905 /* bound the state we're entering */
906 if (state > PCI_D3cold)
908 else if (state < PCI_D0)
910 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
912 * If the device or the parent bridge do not support PCI PM,
913 * ignore the request if we're doing anything other than putting
914 * it into D0 (which would only happen on boot).
918 /* Check if we're already there */
919 if (dev->current_state == state)
922 __pci_start_power_transition(dev, state);
924 /* This device is quirked not to be put into D3, so
925 don't put it in D3 */
926 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
930 * To put device in D3cold, we put device into D3hot in native
931 * way, then put device into D3cold with platform ops
933 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
936 if (!__pci_complete_power_transition(dev, state))
941 EXPORT_SYMBOL(pci_set_power_state);
944 * pci_choose_state - Choose the power state of a PCI device
945 * @dev: PCI device to be suspended
946 * @state: target sleep state for the whole system. This is the value
947 * that is passed to suspend() function.
949 * Returns PCI power state suitable for given device and given system
953 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
960 ret = platform_pci_choose_state(dev);
961 if (ret != PCI_POWER_ERROR)
964 switch (state.event) {
967 case PM_EVENT_FREEZE:
968 case PM_EVENT_PRETHAW:
969 /* REVISIT both freeze and pre-thaw "should" use D0 */
970 case PM_EVENT_SUSPEND:
971 case PM_EVENT_HIBERNATE:
974 dev_info(&dev->dev, "unrecognized suspend event %d\n",
980 EXPORT_SYMBOL(pci_choose_state);
982 #define PCI_EXP_SAVE_REGS 7
984 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
985 u16 cap, bool extended)
987 struct pci_cap_saved_state *tmp;
989 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
990 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
996 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
998 return _pci_find_saved_cap(dev, cap, false);
1001 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1003 return _pci_find_saved_cap(dev, cap, true);
1006 static int pci_save_pcie_state(struct pci_dev *dev)
1009 struct pci_cap_saved_state *save_state;
1012 if (!pci_is_pcie(dev))
1015 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1017 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1021 cap = (u16 *)&save_state->cap.data[0];
1022 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1023 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1024 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1025 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1033 static void pci_restore_pcie_state(struct pci_dev *dev)
1036 struct pci_cap_saved_state *save_state;
1039 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1043 cap = (u16 *)&save_state->cap.data[0];
1044 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1045 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1046 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1047 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1054 static int pci_save_pcix_state(struct pci_dev *dev)
1057 struct pci_cap_saved_state *save_state;
1059 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1063 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1065 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1069 pci_read_config_word(dev, pos + PCI_X_CMD,
1070 (u16 *)save_state->cap.data);
1075 static void pci_restore_pcix_state(struct pci_dev *dev)
1078 struct pci_cap_saved_state *save_state;
1081 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1082 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1083 if (!save_state || !pos)
1085 cap = (u16 *)&save_state->cap.data[0];
1087 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1092 * pci_save_state - save the PCI configuration space of a device before suspending
1093 * @dev: - PCI device that we're dealing with
1095 int pci_save_state(struct pci_dev *dev)
1098 /* XXX: 100% dword access ok here? */
1099 for (i = 0; i < 16; i++)
1100 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1101 dev->state_saved = true;
1103 i = pci_save_pcie_state(dev);
1107 i = pci_save_pcix_state(dev);
1111 return pci_save_vc_state(dev);
1113 EXPORT_SYMBOL(pci_save_state);
1115 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1116 u32 saved_val, int retry)
1120 pci_read_config_dword(pdev, offset, &val);
1121 if (val == saved_val)
1125 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1126 offset, val, saved_val);
1127 pci_write_config_dword(pdev, offset, saved_val);
1131 pci_read_config_dword(pdev, offset, &val);
1132 if (val == saved_val)
1139 static void pci_restore_config_space_range(struct pci_dev *pdev,
1140 int start, int end, int retry)
1144 for (index = end; index >= start; index--)
1145 pci_restore_config_dword(pdev, 4 * index,
1146 pdev->saved_config_space[index],
1150 static void pci_restore_config_space(struct pci_dev *pdev)
1152 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1153 pci_restore_config_space_range(pdev, 10, 15, 0);
1154 /* Restore BARs before the command register. */
1155 pci_restore_config_space_range(pdev, 4, 9, 10);
1156 pci_restore_config_space_range(pdev, 0, 3, 0);
1158 pci_restore_config_space_range(pdev, 0, 15, 0);
1163 * pci_restore_state - Restore the saved state of a PCI device
1164 * @dev: - PCI device that we're dealing with
1166 void pci_restore_state(struct pci_dev *dev)
1168 if (!dev->state_saved)
1171 /* PCI Express register must be restored first */
1172 pci_restore_pcie_state(dev);
1173 pci_restore_pasid_state(dev);
1174 pci_restore_pri_state(dev);
1175 pci_restore_ats_state(dev);
1176 pci_restore_vc_state(dev);
1178 pci_cleanup_aer_error_status_regs(dev);
1180 pci_restore_config_space(dev);
1182 pci_restore_pcix_state(dev);
1183 pci_restore_msi_state(dev);
1185 /* Restore ACS and IOV configuration state */
1186 pci_enable_acs(dev);
1187 pci_restore_iov_state(dev);
1189 dev->state_saved = false;
1191 EXPORT_SYMBOL(pci_restore_state);
1193 struct pci_saved_state {
1194 u32 config_space[16];
1195 struct pci_cap_saved_data cap[0];
1199 * pci_store_saved_state - Allocate and return an opaque struct containing
1200 * the device saved state.
1201 * @dev: PCI device that we're dealing with
1203 * Return NULL if no state or error.
1205 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1207 struct pci_saved_state *state;
1208 struct pci_cap_saved_state *tmp;
1209 struct pci_cap_saved_data *cap;
1212 if (!dev->state_saved)
1215 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1217 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1218 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1220 state = kzalloc(size, GFP_KERNEL);
1224 memcpy(state->config_space, dev->saved_config_space,
1225 sizeof(state->config_space));
1228 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1229 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1230 memcpy(cap, &tmp->cap, len);
1231 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1233 /* Empty cap_save terminates list */
1237 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1240 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1241 * @dev: PCI device that we're dealing with
1242 * @state: Saved state returned from pci_store_saved_state()
1244 int pci_load_saved_state(struct pci_dev *dev,
1245 struct pci_saved_state *state)
1247 struct pci_cap_saved_data *cap;
1249 dev->state_saved = false;
1254 memcpy(dev->saved_config_space, state->config_space,
1255 sizeof(state->config_space));
1259 struct pci_cap_saved_state *tmp;
1261 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1262 if (!tmp || tmp->cap.size != cap->size)
1265 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1266 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1267 sizeof(struct pci_cap_saved_data) + cap->size);
1270 dev->state_saved = true;
1273 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1276 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1277 * and free the memory allocated for it.
1278 * @dev: PCI device that we're dealing with
1279 * @state: Pointer to saved state returned from pci_store_saved_state()
1281 int pci_load_and_free_saved_state(struct pci_dev *dev,
1282 struct pci_saved_state **state)
1284 int ret = pci_load_saved_state(dev, *state);
1289 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1291 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1293 return pci_enable_resources(dev, bars);
1296 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1299 struct pci_dev *bridge;
1303 err = pci_set_power_state(dev, PCI_D0);
1304 if (err < 0 && err != -EIO)
1307 bridge = pci_upstream_bridge(dev);
1309 pcie_aspm_powersave_config_link(bridge);
1311 err = pcibios_enable_device(dev, bars);
1314 pci_fixup_device(pci_fixup_enable, dev);
1316 if (dev->msi_enabled || dev->msix_enabled)
1319 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1321 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1322 if (cmd & PCI_COMMAND_INTX_DISABLE)
1323 pci_write_config_word(dev, PCI_COMMAND,
1324 cmd & ~PCI_COMMAND_INTX_DISABLE);
1331 * pci_reenable_device - Resume abandoned device
1332 * @dev: PCI device to be resumed
1334 * Note this function is a backend of pci_default_resume and is not supposed
1335 * to be called by normal code, write proper resume handler and use it instead.
1337 int pci_reenable_device(struct pci_dev *dev)
1339 if (pci_is_enabled(dev))
1340 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1343 EXPORT_SYMBOL(pci_reenable_device);
1345 static void pci_enable_bridge(struct pci_dev *dev)
1347 struct pci_dev *bridge;
1350 bridge = pci_upstream_bridge(dev);
1352 pci_enable_bridge(bridge);
1355 * Hold pci_bridge_mutex to prevent a race when enabling two
1356 * devices below the bridge simultaneously. The race may cause a
1357 * PCI_COMMAND_MEMORY update to be lost (see changelog).
1359 mutex_lock(&pci_bridge_mutex);
1360 if (pci_is_enabled(dev)) {
1361 if (!dev->is_busmaster)
1362 pci_set_master(dev);
1366 retval = pci_enable_device(dev);
1368 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1370 pci_set_master(dev);
1372 mutex_unlock(&pci_bridge_mutex);
1375 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1377 struct pci_dev *bridge;
1382 * Power state could be unknown at this point, either due to a fresh
1383 * boot or a device removal call. So get the current power state
1384 * so that things like MSI message writing will behave as expected
1385 * (e.g. if the device really is in D0 at enable time).
1389 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1390 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1393 if (atomic_inc_return(&dev->enable_cnt) > 1)
1394 return 0; /* already enabled */
1396 bridge = pci_upstream_bridge(dev);
1397 if (bridge && !pci_is_enabled(bridge))
1398 pci_enable_bridge(bridge);
1400 /* only skip sriov related */
1401 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1402 if (dev->resource[i].flags & flags)
1404 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1405 if (dev->resource[i].flags & flags)
1408 err = do_pci_enable_device(dev, bars);
1410 atomic_dec(&dev->enable_cnt);
1415 * pci_enable_device_io - Initialize a device for use with IO space
1416 * @dev: PCI device to be initialized
1418 * Initialize device before it's used by a driver. Ask low-level code
1419 * to enable I/O resources. Wake up the device if it was suspended.
1420 * Beware, this function can fail.
1422 int pci_enable_device_io(struct pci_dev *dev)
1424 return pci_enable_device_flags(dev, IORESOURCE_IO);
1426 EXPORT_SYMBOL(pci_enable_device_io);
1429 * pci_enable_device_mem - Initialize a device for use with Memory space
1430 * @dev: PCI device to be initialized
1432 * Initialize device before it's used by a driver. Ask low-level code
1433 * to enable Memory resources. Wake up the device if it was suspended.
1434 * Beware, this function can fail.
1436 int pci_enable_device_mem(struct pci_dev *dev)
1438 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1440 EXPORT_SYMBOL(pci_enable_device_mem);
1443 * pci_enable_device - Initialize device before it's used by a driver.
1444 * @dev: PCI device to be initialized
1446 * Initialize device before it's used by a driver. Ask low-level code
1447 * to enable I/O and memory. Wake up the device if it was suspended.
1448 * Beware, this function can fail.
1450 * Note we don't actually enable the device many times if we call
1451 * this function repeatedly (we just increment the count).
1453 int pci_enable_device(struct pci_dev *dev)
1455 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1457 EXPORT_SYMBOL(pci_enable_device);
1460 * Managed PCI resources. This manages device on/off, intx/msi/msix
1461 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1462 * there's no need to track it separately. pci_devres is initialized
1463 * when a device is enabled using managed PCI device enable interface.
1466 unsigned int enabled:1;
1467 unsigned int pinned:1;
1468 unsigned int orig_intx:1;
1469 unsigned int restore_intx:1;
1473 static void pcim_release(struct device *gendev, void *res)
1475 struct pci_dev *dev = to_pci_dev(gendev);
1476 struct pci_devres *this = res;
1479 if (dev->msi_enabled)
1480 pci_disable_msi(dev);
1481 if (dev->msix_enabled)
1482 pci_disable_msix(dev);
1484 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1485 if (this->region_mask & (1 << i))
1486 pci_release_region(dev, i);
1488 if (this->restore_intx)
1489 pci_intx(dev, this->orig_intx);
1491 if (this->enabled && !this->pinned)
1492 pci_disable_device(dev);
1495 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1497 struct pci_devres *dr, *new_dr;
1499 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1503 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1506 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1509 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1511 if (pci_is_managed(pdev))
1512 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1517 * pcim_enable_device - Managed pci_enable_device()
1518 * @pdev: PCI device to be initialized
1520 * Managed pci_enable_device().
1522 int pcim_enable_device(struct pci_dev *pdev)
1524 struct pci_devres *dr;
1527 dr = get_pci_dr(pdev);
1533 rc = pci_enable_device(pdev);
1535 pdev->is_managed = 1;
1540 EXPORT_SYMBOL(pcim_enable_device);
1543 * pcim_pin_device - Pin managed PCI device
1544 * @pdev: PCI device to pin
1546 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1547 * driver detach. @pdev must have been enabled with
1548 * pcim_enable_device().
1550 void pcim_pin_device(struct pci_dev *pdev)
1552 struct pci_devres *dr;
1554 dr = find_pci_dr(pdev);
1555 WARN_ON(!dr || !dr->enabled);
1559 EXPORT_SYMBOL(pcim_pin_device);
1562 * pcibios_add_device - provide arch specific hooks when adding device dev
1563 * @dev: the PCI device being added
1565 * Permits the platform to provide architecture specific functionality when
1566 * devices are added. This is the default implementation. Architecture
1567 * implementations can override this.
1569 int __weak pcibios_add_device(struct pci_dev *dev)
1575 * pcibios_release_device - provide arch specific hooks when releasing device dev
1576 * @dev: the PCI device being released
1578 * Permits the platform to provide architecture specific functionality when
1579 * devices are released. This is the default implementation. Architecture
1580 * implementations can override this.
1582 void __weak pcibios_release_device(struct pci_dev *dev) {}
1585 * pcibios_disable_device - disable arch specific PCI resources for device dev
1586 * @dev: the PCI device to disable
1588 * Disables architecture specific PCI resources for the device. This
1589 * is the default implementation. Architecture implementations can
1592 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1595 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1596 * @irq: ISA IRQ to penalize
1597 * @active: IRQ active or not
1599 * Permits the platform to provide architecture-specific functionality when
1600 * penalizing ISA IRQs. This is the default implementation. Architecture
1601 * implementations can override this.
1603 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1605 static void do_pci_disable_device(struct pci_dev *dev)
1609 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1610 if (pci_command & PCI_COMMAND_MASTER) {
1611 pci_command &= ~PCI_COMMAND_MASTER;
1612 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1615 pcibios_disable_device(dev);
1619 * pci_disable_enabled_device - Disable device without updating enable_cnt
1620 * @dev: PCI device to disable
1622 * NOTE: This function is a backend of PCI power management routines and is
1623 * not supposed to be called drivers.
1625 void pci_disable_enabled_device(struct pci_dev *dev)
1627 if (pci_is_enabled(dev))
1628 do_pci_disable_device(dev);
1632 * pci_disable_device - Disable PCI device after use
1633 * @dev: PCI device to be disabled
1635 * Signal to the system that the PCI device is not in use by the system
1636 * anymore. This only involves disabling PCI bus-mastering, if active.
1638 * Note we don't actually disable the device until all callers of
1639 * pci_enable_device() have called pci_disable_device().
1641 void pci_disable_device(struct pci_dev *dev)
1643 struct pci_devres *dr;
1645 dr = find_pci_dr(dev);
1649 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1650 "disabling already-disabled device");
1652 if (atomic_dec_return(&dev->enable_cnt) != 0)
1655 do_pci_disable_device(dev);
1657 dev->is_busmaster = 0;
1659 EXPORT_SYMBOL(pci_disable_device);
1662 * pcibios_set_pcie_reset_state - set reset state for device dev
1663 * @dev: the PCIe device reset
1664 * @state: Reset state to enter into
1667 * Sets the PCIe reset state for the device. This is the default
1668 * implementation. Architecture implementations can override this.
1670 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1671 enum pcie_reset_state state)
1677 * pci_set_pcie_reset_state - set reset state for device dev
1678 * @dev: the PCIe device reset
1679 * @state: Reset state to enter into
1682 * Sets the PCI reset state for the device.
1684 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1686 return pcibios_set_pcie_reset_state(dev, state);
1688 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1691 * pci_check_pme_status - Check if given device has generated PME.
1692 * @dev: Device to check.
1694 * Check the PME status of the device and if set, clear it and clear PME enable
1695 * (if set). Return 'true' if PME status and PME enable were both set or
1696 * 'false' otherwise.
1698 bool pci_check_pme_status(struct pci_dev *dev)
1707 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1708 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1709 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1712 /* Clear PME status. */
1713 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1714 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1715 /* Disable PME to avoid interrupt flood. */
1716 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1720 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1726 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1727 * @dev: Device to handle.
1728 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1730 * Check if @dev has generated PME and queue a resume request for it in that
1733 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1735 if (pme_poll_reset && dev->pme_poll)
1736 dev->pme_poll = false;
1738 if (pci_check_pme_status(dev)) {
1739 pci_wakeup_event(dev);
1740 pm_request_resume(&dev->dev);
1746 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1747 * @bus: Top bus of the subtree to walk.
1749 void pci_pme_wakeup_bus(struct pci_bus *bus)
1752 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1757 * pci_pme_capable - check the capability of PCI device to generate PME#
1758 * @dev: PCI device to handle.
1759 * @state: PCI state from which device will issue PME#.
1761 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1766 return !!(dev->pme_support & (1 << state));
1768 EXPORT_SYMBOL(pci_pme_capable);
1770 static void pci_pme_list_scan(struct work_struct *work)
1772 struct pci_pme_device *pme_dev, *n;
1774 mutex_lock(&pci_pme_list_mutex);
1775 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1776 if (pme_dev->dev->pme_poll) {
1777 struct pci_dev *bridge;
1779 bridge = pme_dev->dev->bus->self;
1781 * If bridge is in low power state, the
1782 * configuration space of subordinate devices
1783 * may be not accessible
1785 if (bridge && bridge->current_state != PCI_D0)
1787 pci_pme_wakeup(pme_dev->dev, NULL);
1789 list_del(&pme_dev->list);
1793 if (!list_empty(&pci_pme_list))
1794 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1795 msecs_to_jiffies(PME_TIMEOUT));
1796 mutex_unlock(&pci_pme_list_mutex);
1799 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1803 if (!dev->pme_support)
1806 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1807 /* Clear PME_Status by writing 1 to it and enable PME# */
1808 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1810 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1812 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1816 * pci_pme_restore - Restore PME configuration after config space restore.
1817 * @dev: PCI device to update.
1819 void pci_pme_restore(struct pci_dev *dev)
1823 if (!dev->pme_support)
1826 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1827 if (dev->wakeup_prepared) {
1828 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1829 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1831 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1832 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1834 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1838 * pci_pme_active - enable or disable PCI device's PME# function
1839 * @dev: PCI device to handle.
1840 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1842 * The caller must verify that the device is capable of generating PME# before
1843 * calling this function with @enable equal to 'true'.
1845 void pci_pme_active(struct pci_dev *dev, bool enable)
1847 __pci_pme_active(dev, enable);
1850 * PCI (as opposed to PCIe) PME requires that the device have
1851 * its PME# line hooked up correctly. Not all hardware vendors
1852 * do this, so the PME never gets delivered and the device
1853 * remains asleep. The easiest way around this is to
1854 * periodically walk the list of suspended devices and check
1855 * whether any have their PME flag set. The assumption is that
1856 * we'll wake up often enough anyway that this won't be a huge
1857 * hit, and the power savings from the devices will still be a
1860 * Although PCIe uses in-band PME message instead of PME# line
1861 * to report PME, PME does not work for some PCIe devices in
1862 * reality. For example, there are devices that set their PME
1863 * status bits, but don't really bother to send a PME message;
1864 * there are PCI Express Root Ports that don't bother to
1865 * trigger interrupts when they receive PME messages from the
1866 * devices below. So PME poll is used for PCIe devices too.
1869 if (dev->pme_poll) {
1870 struct pci_pme_device *pme_dev;
1872 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1875 dev_warn(&dev->dev, "can't enable PME#\n");
1879 mutex_lock(&pci_pme_list_mutex);
1880 list_add(&pme_dev->list, &pci_pme_list);
1881 if (list_is_singular(&pci_pme_list))
1882 queue_delayed_work(system_freezable_wq,
1884 msecs_to_jiffies(PME_TIMEOUT));
1885 mutex_unlock(&pci_pme_list_mutex);
1887 mutex_lock(&pci_pme_list_mutex);
1888 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1889 if (pme_dev->dev == dev) {
1890 list_del(&pme_dev->list);
1895 mutex_unlock(&pci_pme_list_mutex);
1899 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1901 EXPORT_SYMBOL(pci_pme_active);
1904 * pci_enable_wake - enable PCI device as wakeup event source
1905 * @dev: PCI device affected
1906 * @state: PCI state from which device will issue wakeup events
1907 * @enable: True to enable event generation; false to disable
1909 * This enables the device as a wakeup event source, or disables it.
1910 * When such events involves platform-specific hooks, those hooks are
1911 * called automatically by this routine.
1913 * Devices with legacy power management (no standard PCI PM capabilities)
1914 * always require such platform hooks.
1917 * 0 is returned on success
1918 * -EINVAL is returned if device is not supposed to wake up the system
1919 * Error code depending on the platform is returned if both the platform and
1920 * the native mechanism fail to enable the generation of wake-up events
1922 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1927 * Bridges can only signal wakeup on behalf of subordinate devices,
1928 * but that is set up elsewhere, so skip them.
1930 if (pci_has_subordinate(dev))
1933 /* Don't do the same thing twice in a row for one device. */
1934 if (!!enable == !!dev->wakeup_prepared)
1938 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1939 * Anderson we should be doing PME# wake enable followed by ACPI wake
1940 * enable. To disable wake-up we call the platform first, for symmetry.
1946 if (pci_pme_capable(dev, state))
1947 pci_pme_active(dev, true);
1950 error = platform_pci_set_wakeup(dev, true);
1954 dev->wakeup_prepared = true;
1956 platform_pci_set_wakeup(dev, false);
1957 pci_pme_active(dev, false);
1958 dev->wakeup_prepared = false;
1963 EXPORT_SYMBOL(pci_enable_wake);
1966 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1967 * @dev: PCI device to prepare
1968 * @enable: True to enable wake-up event generation; false to disable
1970 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1971 * and this function allows them to set that up cleanly - pci_enable_wake()
1972 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1973 * ordering constraints.
1975 * This function only returns error code if the device is not capable of
1976 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1977 * enable wake-up power for it.
1979 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1981 return pci_pme_capable(dev, PCI_D3cold) ?
1982 pci_enable_wake(dev, PCI_D3cold, enable) :
1983 pci_enable_wake(dev, PCI_D3hot, enable);
1985 EXPORT_SYMBOL(pci_wake_from_d3);
1988 * pci_target_state - find an appropriate low power state for a given PCI dev
1990 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
1992 * Use underlying platform code to find a supported low power state for @dev.
1993 * If the platform can't manage @dev, return the deepest state from which it
1994 * can generate wake events, based on any available PME info.
1996 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
1998 pci_power_t target_state = PCI_D3hot;
2000 if (platform_pci_power_manageable(dev)) {
2002 * Call the platform to choose the target state of the device
2003 * and enable wake-up from this state if supported.
2005 pci_power_t state = platform_pci_choose_state(dev);
2008 case PCI_POWER_ERROR:
2013 if (pci_no_d1d2(dev))
2016 target_state = state;
2019 return target_state;
2023 target_state = PCI_D0;
2026 * If the device is in D3cold even though it's not power-manageable by
2027 * the platform, it may have been powered down by non-standard means.
2028 * Best to let it slumber.
2030 if (dev->current_state == PCI_D3cold)
2031 target_state = PCI_D3cold;
2035 * Find the deepest state from which the device can generate
2036 * wake-up events, make it the target state and enable device
2039 if (dev->pme_support) {
2041 && !(dev->pme_support & (1 << target_state)))
2046 return target_state;
2050 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2051 * @dev: Device to handle.
2053 * Choose the power state appropriate for the device depending on whether
2054 * it can wake up the system and/or is power manageable by the platform
2055 * (PCI_D3hot is the default) and put the device into that state.
2057 int pci_prepare_to_sleep(struct pci_dev *dev)
2059 bool wakeup = device_may_wakeup(&dev->dev);
2060 pci_power_t target_state = pci_target_state(dev, wakeup);
2063 if (target_state == PCI_POWER_ERROR)
2066 pci_enable_wake(dev, target_state, wakeup);
2068 error = pci_set_power_state(dev, target_state);
2071 pci_enable_wake(dev, target_state, false);
2075 EXPORT_SYMBOL(pci_prepare_to_sleep);
2078 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2079 * @dev: Device to handle.
2081 * Disable device's system wake-up capability and put it into D0.
2083 int pci_back_from_sleep(struct pci_dev *dev)
2085 pci_enable_wake(dev, PCI_D0, false);
2086 return pci_set_power_state(dev, PCI_D0);
2088 EXPORT_SYMBOL(pci_back_from_sleep);
2091 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2092 * @dev: PCI device being suspended.
2094 * Prepare @dev to generate wake-up events at run time and put it into a low
2097 int pci_finish_runtime_suspend(struct pci_dev *dev)
2099 pci_power_t target_state;
2102 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2103 if (target_state == PCI_POWER_ERROR)
2106 dev->runtime_d3cold = target_state == PCI_D3cold;
2108 pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2110 error = pci_set_power_state(dev, target_state);
2113 pci_enable_wake(dev, target_state, false);
2114 dev->runtime_d3cold = false;
2121 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2122 * @dev: Device to check.
2124 * Return true if the device itself is capable of generating wake-up events
2125 * (through the platform or using the native PCIe PME) or if the device supports
2126 * PME and one of its upstream bridges can generate wake-up events.
2128 bool pci_dev_run_wake(struct pci_dev *dev)
2130 struct pci_bus *bus = dev->bus;
2132 if (device_can_wakeup(&dev->dev))
2135 if (!dev->pme_support)
2138 /* PME-capable in principle, but not from the target power state */
2139 if (!pci_pme_capable(dev, pci_target_state(dev, false)))
2142 while (bus->parent) {
2143 struct pci_dev *bridge = bus->self;
2145 if (device_can_wakeup(&bridge->dev))
2151 /* We have reached the root bus. */
2153 return device_can_wakeup(bus->bridge);
2157 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2160 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2161 * @pci_dev: Device to check.
2163 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2164 * reconfigured due to wakeup settings difference between system and runtime
2165 * suspend and the current power state of it is suitable for the upcoming
2166 * (system) transition.
2168 * If the device is not configured for system wakeup, disable PME for it before
2169 * returning 'true' to prevent it from waking up the system unnecessarily.
2171 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2173 struct device *dev = &pci_dev->dev;
2174 bool wakeup = device_may_wakeup(dev);
2176 if (!pm_runtime_suspended(dev)
2177 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2178 || platform_pci_need_resume(pci_dev)
2179 || (pci_dev->dev_flags & PCI_DEV_FLAGS_NEEDS_RESUME))
2183 * At this point the device is good to go unless it's been configured
2184 * to generate PME at the runtime suspend time, but it is not supposed
2185 * to wake up the system. In that case, simply disable PME for it
2186 * (it will have to be re-enabled on exit from system resume).
2188 * If the device's power state is D3cold and the platform check above
2189 * hasn't triggered, the device's configuration is suitable and we don't
2190 * need to manipulate it at all.
2192 spin_lock_irq(&dev->power.lock);
2194 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2196 __pci_pme_active(pci_dev, false);
2198 spin_unlock_irq(&dev->power.lock);
2203 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2204 * @pci_dev: Device to handle.
2206 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2207 * it might have been disabled during the prepare phase of system suspend if
2208 * the device was not configured for system wakeup.
2210 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2212 struct device *dev = &pci_dev->dev;
2214 if (!pci_dev_run_wake(pci_dev))
2217 spin_lock_irq(&dev->power.lock);
2219 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2220 __pci_pme_active(pci_dev, true);
2222 spin_unlock_irq(&dev->power.lock);
2225 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2227 struct device *dev = &pdev->dev;
2228 struct device *parent = dev->parent;
2231 pm_runtime_get_sync(parent);
2232 pm_runtime_get_noresume(dev);
2234 * pdev->current_state is set to PCI_D3cold during suspending,
2235 * so wait until suspending completes
2237 pm_runtime_barrier(dev);
2239 * Only need to resume devices in D3cold, because config
2240 * registers are still accessible for devices suspended but
2243 if (pdev->current_state == PCI_D3cold)
2244 pm_runtime_resume(dev);
2247 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2249 struct device *dev = &pdev->dev;
2250 struct device *parent = dev->parent;
2252 pm_runtime_put(dev);
2254 pm_runtime_put_sync(parent);
2258 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2259 * @bridge: Bridge to check
2261 * This function checks if it is possible to move the bridge to D3.
2262 * Currently we only allow D3 for recent enough PCIe ports.
2264 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2268 if (!pci_is_pcie(bridge))
2271 switch (pci_pcie_type(bridge)) {
2272 case PCI_EXP_TYPE_ROOT_PORT:
2273 case PCI_EXP_TYPE_UPSTREAM:
2274 case PCI_EXP_TYPE_DOWNSTREAM:
2275 if (pci_bridge_d3_disable)
2279 * Hotplug interrupts cannot be delivered if the link is down,
2280 * so parents of a hotplug port must stay awake. In addition,
2281 * hotplug ports handled by firmware in System Management Mode
2282 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2283 * For simplicity, disallow in general for now.
2285 if (bridge->is_hotplug_bridge)
2288 if (pci_bridge_d3_force)
2292 * It should be safe to put PCIe ports from 2015 or newer
2295 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2305 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2307 bool *d3cold_ok = data;
2309 if (/* The device needs to be allowed to go D3cold ... */
2310 dev->no_d3cold || !dev->d3cold_allowed ||
2312 /* ... and if it is wakeup capable to do so from D3cold. */
2313 (device_may_wakeup(&dev->dev) &&
2314 !pci_pme_capable(dev, PCI_D3cold)) ||
2316 /* If it is a bridge it must be allowed to go to D3. */
2317 !pci_power_manageable(dev))
2325 * pci_bridge_d3_update - Update bridge D3 capabilities
2326 * @dev: PCI device which is changed
2328 * Update upstream bridge PM capabilities accordingly depending on if the
2329 * device PM configuration was changed or the device is being removed. The
2330 * change is also propagated upstream.
2332 void pci_bridge_d3_update(struct pci_dev *dev)
2334 bool remove = !device_is_registered(&dev->dev);
2335 struct pci_dev *bridge;
2336 bool d3cold_ok = true;
2338 bridge = pci_upstream_bridge(dev);
2339 if (!bridge || !pci_bridge_d3_possible(bridge))
2343 * If D3 is currently allowed for the bridge, removing one of its
2344 * children won't change that.
2346 if (remove && bridge->bridge_d3)
2350 * If D3 is currently allowed for the bridge and a child is added or
2351 * changed, disallowance of D3 can only be caused by that child, so
2352 * we only need to check that single device, not any of its siblings.
2354 * If D3 is currently not allowed for the bridge, checking the device
2355 * first may allow us to skip checking its siblings.
2358 pci_dev_check_d3cold(dev, &d3cold_ok);
2361 * If D3 is currently not allowed for the bridge, this may be caused
2362 * either by the device being changed/removed or any of its siblings,
2363 * so we need to go through all children to find out if one of them
2364 * continues to block D3.
2366 if (d3cold_ok && !bridge->bridge_d3)
2367 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2370 if (bridge->bridge_d3 != d3cold_ok) {
2371 bridge->bridge_d3 = d3cold_ok;
2372 /* Propagate change to upstream bridges */
2373 pci_bridge_d3_update(bridge);
2378 * pci_d3cold_enable - Enable D3cold for device
2379 * @dev: PCI device to handle
2381 * This function can be used in drivers to enable D3cold from the device
2382 * they handle. It also updates upstream PCI bridge PM capabilities
2385 void pci_d3cold_enable(struct pci_dev *dev)
2387 if (dev->no_d3cold) {
2388 dev->no_d3cold = false;
2389 pci_bridge_d3_update(dev);
2392 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2395 * pci_d3cold_disable - Disable D3cold for device
2396 * @dev: PCI device to handle
2398 * This function can be used in drivers to disable D3cold from the device
2399 * they handle. It also updates upstream PCI bridge PM capabilities
2402 void pci_d3cold_disable(struct pci_dev *dev)
2404 if (!dev->no_d3cold) {
2405 dev->no_d3cold = true;
2406 pci_bridge_d3_update(dev);
2409 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2412 * pci_pm_init - Initialize PM functions of given PCI device
2413 * @dev: PCI device to handle.
2415 void pci_pm_init(struct pci_dev *dev)
2420 pm_runtime_forbid(&dev->dev);
2421 pm_runtime_set_active(&dev->dev);
2422 pm_runtime_enable(&dev->dev);
2423 device_enable_async_suspend(&dev->dev);
2424 dev->wakeup_prepared = false;
2427 dev->pme_support = 0;
2429 /* find PCI PM capability in list */
2430 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2433 /* Check device's ability to generate PME# */
2434 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2436 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2437 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2438 pmc & PCI_PM_CAP_VER_MASK);
2443 dev->d3_delay = PCI_PM_D3_WAIT;
2444 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2445 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2446 dev->d3cold_allowed = true;
2448 dev->d1_support = false;
2449 dev->d2_support = false;
2450 if (!pci_no_d1d2(dev)) {
2451 if (pmc & PCI_PM_CAP_D1)
2452 dev->d1_support = true;
2453 if (pmc & PCI_PM_CAP_D2)
2454 dev->d2_support = true;
2456 if (dev->d1_support || dev->d2_support)
2457 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2458 dev->d1_support ? " D1" : "",
2459 dev->d2_support ? " D2" : "");
2462 pmc &= PCI_PM_CAP_PME_MASK;
2464 dev_printk(KERN_DEBUG, &dev->dev,
2465 "PME# supported from%s%s%s%s%s\n",
2466 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2467 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2468 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2469 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2470 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2471 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2472 dev->pme_poll = true;
2474 * Make device's PM flags reflect the wake-up capability, but
2475 * let the user space enable it to wake up the system as needed.
2477 device_set_wakeup_capable(&dev->dev, true);
2478 /* Disable the PME# generation functionality */
2479 pci_pme_active(dev, false);
2483 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2485 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2489 case PCI_EA_P_VF_MEM:
2490 flags |= IORESOURCE_MEM;
2492 case PCI_EA_P_MEM_PREFETCH:
2493 case PCI_EA_P_VF_MEM_PREFETCH:
2494 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2497 flags |= IORESOURCE_IO;
2506 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2509 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2510 return &dev->resource[bei];
2511 #ifdef CONFIG_PCI_IOV
2512 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2513 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2514 return &dev->resource[PCI_IOV_RESOURCES +
2515 bei - PCI_EA_BEI_VF_BAR0];
2517 else if (bei == PCI_EA_BEI_ROM)
2518 return &dev->resource[PCI_ROM_RESOURCE];
2523 /* Read an Enhanced Allocation (EA) entry */
2524 static int pci_ea_read(struct pci_dev *dev, int offset)
2526 struct resource *res;
2527 int ent_size, ent_offset = offset;
2528 resource_size_t start, end;
2529 unsigned long flags;
2530 u32 dw0, bei, base, max_offset;
2532 bool support_64 = (sizeof(resource_size_t) >= 8);
2534 pci_read_config_dword(dev, ent_offset, &dw0);
2537 /* Entry size field indicates DWORDs after 1st */
2538 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2540 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2543 bei = (dw0 & PCI_EA_BEI) >> 4;
2544 prop = (dw0 & PCI_EA_PP) >> 8;
2547 * If the Property is in the reserved range, try the Secondary
2550 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2551 prop = (dw0 & PCI_EA_SP) >> 16;
2552 if (prop > PCI_EA_P_BRIDGE_IO)
2555 res = pci_ea_get_resource(dev, bei, prop);
2557 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2561 flags = pci_ea_flags(dev, prop);
2563 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2568 pci_read_config_dword(dev, ent_offset, &base);
2569 start = (base & PCI_EA_FIELD_MASK);
2572 /* Read MaxOffset */
2573 pci_read_config_dword(dev, ent_offset, &max_offset);
2576 /* Read Base MSBs (if 64-bit entry) */
2577 if (base & PCI_EA_IS_64) {
2580 pci_read_config_dword(dev, ent_offset, &base_upper);
2583 flags |= IORESOURCE_MEM_64;
2585 /* entry starts above 32-bit boundary, can't use */
2586 if (!support_64 && base_upper)
2590 start |= ((u64)base_upper << 32);
2593 end = start + (max_offset | 0x03);
2595 /* Read MaxOffset MSBs (if 64-bit entry) */
2596 if (max_offset & PCI_EA_IS_64) {
2597 u32 max_offset_upper;
2599 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2602 flags |= IORESOURCE_MEM_64;
2604 /* entry too big, can't use */
2605 if (!support_64 && max_offset_upper)
2609 end += ((u64)max_offset_upper << 32);
2613 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2617 if (ent_size != ent_offset - offset) {
2619 "EA Entry Size (%d) does not match length read (%d)\n",
2620 ent_size, ent_offset - offset);
2624 res->name = pci_name(dev);
2629 if (bei <= PCI_EA_BEI_BAR5)
2630 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2632 else if (bei == PCI_EA_BEI_ROM)
2633 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2635 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2636 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2637 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2639 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2643 return offset + ent_size;
2646 /* Enhanced Allocation Initialization */
2647 void pci_ea_init(struct pci_dev *dev)
2654 /* find PCI EA capability in list */
2655 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2659 /* determine the number of entries */
2660 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2662 num_ent &= PCI_EA_NUM_ENT_MASK;
2664 offset = ea + PCI_EA_FIRST_ENT;
2666 /* Skip DWORD 2 for type 1 functions */
2667 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2670 /* parse each EA entry */
2671 for (i = 0; i < num_ent; ++i)
2672 offset = pci_ea_read(dev, offset);
2675 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2676 struct pci_cap_saved_state *new_cap)
2678 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2682 * _pci_add_cap_save_buffer - allocate buffer for saving given
2683 * capability registers
2684 * @dev: the PCI device
2685 * @cap: the capability to allocate the buffer for
2686 * @extended: Standard or Extended capability ID
2687 * @size: requested size of the buffer
2689 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2690 bool extended, unsigned int size)
2693 struct pci_cap_saved_state *save_state;
2696 pos = pci_find_ext_capability(dev, cap);
2698 pos = pci_find_capability(dev, cap);
2703 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2707 save_state->cap.cap_nr = cap;
2708 save_state->cap.cap_extended = extended;
2709 save_state->cap.size = size;
2710 pci_add_saved_cap(dev, save_state);
2715 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2717 return _pci_add_cap_save_buffer(dev, cap, false, size);
2720 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2722 return _pci_add_cap_save_buffer(dev, cap, true, size);
2726 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2727 * @dev: the PCI device
2729 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2733 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2734 PCI_EXP_SAVE_REGS * sizeof(u16));
2737 "unable to preallocate PCI Express save buffer\n");
2739 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2742 "unable to preallocate PCI-X save buffer\n");
2744 pci_allocate_vc_save_buffers(dev);
2747 void pci_free_cap_save_buffers(struct pci_dev *dev)
2749 struct pci_cap_saved_state *tmp;
2750 struct hlist_node *n;
2752 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2757 * pci_configure_ari - enable or disable ARI forwarding
2758 * @dev: the PCI device
2760 * If @dev and its upstream bridge both support ARI, enable ARI in the
2761 * bridge. Otherwise, disable ARI in the bridge.
2763 void pci_configure_ari(struct pci_dev *dev)
2766 struct pci_dev *bridge;
2768 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2771 bridge = dev->bus->self;
2775 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2776 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2779 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2780 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2781 PCI_EXP_DEVCTL2_ARI);
2782 bridge->ari_enabled = 1;
2784 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2785 PCI_EXP_DEVCTL2_ARI);
2786 bridge->ari_enabled = 0;
2790 static int pci_acs_enable;
2793 * pci_request_acs - ask for ACS to be enabled if supported
2795 void pci_request_acs(void)
2801 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2802 * @dev: the PCI device
2804 static void pci_std_enable_acs(struct pci_dev *dev)
2810 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2814 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2815 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2817 /* Source Validation */
2818 ctrl |= (cap & PCI_ACS_SV);
2820 /* P2P Request Redirect */
2821 ctrl |= (cap & PCI_ACS_RR);
2823 /* P2P Completion Redirect */
2824 ctrl |= (cap & PCI_ACS_CR);
2826 /* Upstream Forwarding */
2827 ctrl |= (cap & PCI_ACS_UF);
2829 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2833 * pci_enable_acs - enable ACS if hardware support it
2834 * @dev: the PCI device
2836 void pci_enable_acs(struct pci_dev *dev)
2838 if (!pci_acs_enable)
2841 if (!pci_dev_specific_enable_acs(dev))
2844 pci_std_enable_acs(dev);
2847 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2852 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2857 * Except for egress control, capabilities are either required
2858 * or only required if controllable. Features missing from the
2859 * capability field can therefore be assumed as hard-wired enabled.
2861 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2862 acs_flags &= (cap | PCI_ACS_EC);
2864 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2865 return (ctrl & acs_flags) == acs_flags;
2869 * pci_acs_enabled - test ACS against required flags for a given device
2870 * @pdev: device to test
2871 * @acs_flags: required PCI ACS flags
2873 * Return true if the device supports the provided flags. Automatically
2874 * filters out flags that are not implemented on multifunction devices.
2876 * Note that this interface checks the effective ACS capabilities of the
2877 * device rather than the actual capabilities. For instance, most single
2878 * function endpoints are not required to support ACS because they have no
2879 * opportunity for peer-to-peer access. We therefore return 'true'
2880 * regardless of whether the device exposes an ACS capability. This makes
2881 * it much easier for callers of this function to ignore the actual type
2882 * or topology of the device when testing ACS support.
2884 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2888 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2893 * Conventional PCI and PCI-X devices never support ACS, either
2894 * effectively or actually. The shared bus topology implies that
2895 * any device on the bus can receive or snoop DMA.
2897 if (!pci_is_pcie(pdev))
2900 switch (pci_pcie_type(pdev)) {
2902 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2903 * but since their primary interface is PCI/X, we conservatively
2904 * handle them as we would a non-PCIe device.
2906 case PCI_EXP_TYPE_PCIE_BRIDGE:
2908 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2909 * applicable... must never implement an ACS Extended Capability...".
2910 * This seems arbitrary, but we take a conservative interpretation
2911 * of this statement.
2913 case PCI_EXP_TYPE_PCI_BRIDGE:
2914 case PCI_EXP_TYPE_RC_EC:
2917 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2918 * implement ACS in order to indicate their peer-to-peer capabilities,
2919 * regardless of whether they are single- or multi-function devices.
2921 case PCI_EXP_TYPE_DOWNSTREAM:
2922 case PCI_EXP_TYPE_ROOT_PORT:
2923 return pci_acs_flags_enabled(pdev, acs_flags);
2925 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2926 * implemented by the remaining PCIe types to indicate peer-to-peer
2927 * capabilities, but only when they are part of a multifunction
2928 * device. The footnote for section 6.12 indicates the specific
2929 * PCIe types included here.
2931 case PCI_EXP_TYPE_ENDPOINT:
2932 case PCI_EXP_TYPE_UPSTREAM:
2933 case PCI_EXP_TYPE_LEG_END:
2934 case PCI_EXP_TYPE_RC_END:
2935 if (!pdev->multifunction)
2938 return pci_acs_flags_enabled(pdev, acs_flags);
2942 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2943 * to single function devices with the exception of downstream ports.
2949 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2950 * @start: starting downstream device
2951 * @end: ending upstream device or NULL to search to the root bus
2952 * @acs_flags: required flags
2954 * Walk up a device tree from start to end testing PCI ACS support. If
2955 * any step along the way does not support the required flags, return false.
2957 bool pci_acs_path_enabled(struct pci_dev *start,
2958 struct pci_dev *end, u16 acs_flags)
2960 struct pci_dev *pdev, *parent = start;
2965 if (!pci_acs_enabled(pdev, acs_flags))
2968 if (pci_is_root_bus(pdev->bus))
2969 return (end == NULL);
2971 parent = pdev->bus->self;
2972 } while (pdev != end);
2978 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2979 * @dev: the PCI device
2980 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2982 * Perform INTx swizzling for a device behind one level of bridge. This is
2983 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2984 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2985 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2986 * the PCI Express Base Specification, Revision 2.1)
2988 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2992 if (pci_ari_enabled(dev->bus))
2995 slot = PCI_SLOT(dev->devfn);
2997 return (((pin - 1) + slot) % 4) + 1;
3000 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3008 while (!pci_is_root_bus(dev->bus)) {
3009 pin = pci_swizzle_interrupt_pin(dev, pin);
3010 dev = dev->bus->self;
3017 * pci_common_swizzle - swizzle INTx all the way to root bridge
3018 * @dev: the PCI device
3019 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3021 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3022 * bridges all the way up to a PCI root bus.
3024 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3028 while (!pci_is_root_bus(dev->bus)) {
3029 pin = pci_swizzle_interrupt_pin(dev, pin);
3030 dev = dev->bus->self;
3033 return PCI_SLOT(dev->devfn);
3035 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3038 * pci_release_region - Release a PCI bar
3039 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3040 * @bar: BAR to release
3042 * Releases the PCI I/O and memory resources previously reserved by a
3043 * successful call to pci_request_region. Call this function only
3044 * after all use of the PCI regions has ceased.
3046 void pci_release_region(struct pci_dev *pdev, int bar)
3048 struct pci_devres *dr;
3050 if (pci_resource_len(pdev, bar) == 0)
3052 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3053 release_region(pci_resource_start(pdev, bar),
3054 pci_resource_len(pdev, bar));
3055 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3056 release_mem_region(pci_resource_start(pdev, bar),
3057 pci_resource_len(pdev, bar));
3059 dr = find_pci_dr(pdev);
3061 dr->region_mask &= ~(1 << bar);
3063 EXPORT_SYMBOL(pci_release_region);
3066 * __pci_request_region - Reserved PCI I/O and memory resource
3067 * @pdev: PCI device whose resources are to be reserved
3068 * @bar: BAR to be reserved
3069 * @res_name: Name to be associated with resource.
3070 * @exclusive: whether the region access is exclusive or not
3072 * Mark the PCI region associated with PCI device @pdev BR @bar as
3073 * being reserved by owner @res_name. Do not access any
3074 * address inside the PCI regions unless this call returns
3077 * If @exclusive is set, then the region is marked so that userspace
3078 * is explicitly not allowed to map the resource via /dev/mem or
3079 * sysfs MMIO access.
3081 * Returns 0 on success, or %EBUSY on error. A warning
3082 * message is also printed on failure.
3084 static int __pci_request_region(struct pci_dev *pdev, int bar,
3085 const char *res_name, int exclusive)
3087 struct pci_devres *dr;
3089 if (pci_resource_len(pdev, bar) == 0)
3092 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3093 if (!request_region(pci_resource_start(pdev, bar),
3094 pci_resource_len(pdev, bar), res_name))
3096 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3097 if (!__request_mem_region(pci_resource_start(pdev, bar),
3098 pci_resource_len(pdev, bar), res_name,
3103 dr = find_pci_dr(pdev);
3105 dr->region_mask |= 1 << bar;
3110 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3111 &pdev->resource[bar]);
3116 * pci_request_region - Reserve PCI I/O and memory resource
3117 * @pdev: PCI device whose resources are to be reserved
3118 * @bar: BAR to be reserved
3119 * @res_name: Name to be associated with resource
3121 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3122 * being reserved by owner @res_name. Do not access any
3123 * address inside the PCI regions unless this call returns
3126 * Returns 0 on success, or %EBUSY on error. A warning
3127 * message is also printed on failure.
3129 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3131 return __pci_request_region(pdev, bar, res_name, 0);
3133 EXPORT_SYMBOL(pci_request_region);
3136 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3137 * @pdev: PCI device whose resources are to be reserved
3138 * @bar: BAR to be reserved
3139 * @res_name: Name to be associated with resource.
3141 * Mark the PCI region associated with PCI device @pdev BR @bar as
3142 * being reserved by owner @res_name. Do not access any
3143 * address inside the PCI regions unless this call returns
3146 * Returns 0 on success, or %EBUSY on error. A warning
3147 * message is also printed on failure.
3149 * The key difference that _exclusive makes it that userspace is
3150 * explicitly not allowed to map the resource via /dev/mem or
3153 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3154 const char *res_name)
3156 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3158 EXPORT_SYMBOL(pci_request_region_exclusive);
3161 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3162 * @pdev: PCI device whose resources were previously reserved
3163 * @bars: Bitmask of BARs to be released
3165 * Release selected PCI I/O and memory resources previously reserved.
3166 * Call this function only after all use of the PCI regions has ceased.
3168 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3172 for (i = 0; i < 6; i++)
3173 if (bars & (1 << i))
3174 pci_release_region(pdev, i);
3176 EXPORT_SYMBOL(pci_release_selected_regions);
3178 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3179 const char *res_name, int excl)
3183 for (i = 0; i < 6; i++)
3184 if (bars & (1 << i))
3185 if (__pci_request_region(pdev, i, res_name, excl))
3191 if (bars & (1 << i))
3192 pci_release_region(pdev, i);
3199 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3200 * @pdev: PCI device whose resources are to be reserved
3201 * @bars: Bitmask of BARs to be requested
3202 * @res_name: Name to be associated with resource
3204 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3205 const char *res_name)
3207 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3209 EXPORT_SYMBOL(pci_request_selected_regions);
3211 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3212 const char *res_name)
3214 return __pci_request_selected_regions(pdev, bars, res_name,
3215 IORESOURCE_EXCLUSIVE);
3217 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3220 * pci_release_regions - Release reserved PCI I/O and memory resources
3221 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3223 * Releases all PCI I/O and memory resources previously reserved by a
3224 * successful call to pci_request_regions. Call this function only
3225 * after all use of the PCI regions has ceased.
3228 void pci_release_regions(struct pci_dev *pdev)
3230 pci_release_selected_regions(pdev, (1 << 6) - 1);
3232 EXPORT_SYMBOL(pci_release_regions);
3235 * pci_request_regions - Reserved PCI I/O and memory resources
3236 * @pdev: PCI device whose resources are to be reserved
3237 * @res_name: Name to be associated with resource.
3239 * Mark all PCI regions associated with PCI device @pdev as
3240 * being reserved by owner @res_name. Do not access any
3241 * address inside the PCI regions unless this call returns
3244 * Returns 0 on success, or %EBUSY on error. A warning
3245 * message is also printed on failure.
3247 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3249 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3251 EXPORT_SYMBOL(pci_request_regions);
3254 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3255 * @pdev: PCI device whose resources are to be reserved
3256 * @res_name: Name to be associated with resource.
3258 * Mark all PCI regions associated with PCI device @pdev as
3259 * being reserved by owner @res_name. Do not access any
3260 * address inside the PCI regions unless this call returns
3263 * pci_request_regions_exclusive() will mark the region so that
3264 * /dev/mem and the sysfs MMIO access will not be allowed.
3266 * Returns 0 on success, or %EBUSY on error. A warning
3267 * message is also printed on failure.
3269 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3271 return pci_request_selected_regions_exclusive(pdev,
3272 ((1 << 6) - 1), res_name);
3274 EXPORT_SYMBOL(pci_request_regions_exclusive);
3278 struct list_head list;
3280 resource_size_t size;
3283 static LIST_HEAD(io_range_list);
3284 static DEFINE_SPINLOCK(io_range_lock);
3288 * Record the PCI IO range (expressed as CPU physical address + size).
3289 * Return a negative value if an error has occured, zero otherwise
3291 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3296 struct io_range *range;
3297 resource_size_t allocated_size = 0;
3299 /* check if the range hasn't been previously recorded */
3300 spin_lock(&io_range_lock);
3301 list_for_each_entry(range, &io_range_list, list) {
3302 if (addr >= range->start && addr + size <= range->start + size) {
3303 /* range already registered, bail out */
3306 allocated_size += range->size;
3309 /* range not registed yet, check for available space */
3310 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3311 /* if it's too big check if 64K space can be reserved */
3312 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3318 pr_warn("Requested IO range too big, new size set to 64K\n");
3321 /* add the range to the list */
3322 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3328 range->start = addr;
3331 list_add_tail(&range->list, &io_range_list);
3334 spin_unlock(&io_range_lock);
3340 phys_addr_t pci_pio_to_address(unsigned long pio)
3342 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3345 struct io_range *range;
3346 resource_size_t allocated_size = 0;
3348 if (pio > IO_SPACE_LIMIT)
3351 spin_lock(&io_range_lock);
3352 list_for_each_entry(range, &io_range_list, list) {
3353 if (pio >= allocated_size && pio < allocated_size + range->size) {
3354 address = range->start + pio - allocated_size;
3357 allocated_size += range->size;
3359 spin_unlock(&io_range_lock);
3365 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3368 struct io_range *res;
3369 resource_size_t offset = 0;
3370 unsigned long addr = -1;
3372 spin_lock(&io_range_lock);
3373 list_for_each_entry(res, &io_range_list, list) {
3374 if (address >= res->start && address < res->start + res->size) {
3375 addr = address - res->start + offset;
3378 offset += res->size;
3380 spin_unlock(&io_range_lock);
3384 if (address > IO_SPACE_LIMIT)
3385 return (unsigned long)-1;
3387 return (unsigned long) address;
3392 * pci_remap_iospace - Remap the memory mapped I/O space
3393 * @res: Resource describing the I/O space
3394 * @phys_addr: physical address of range to be mapped
3396 * Remap the memory mapped I/O space described by the @res
3397 * and the CPU physical address @phys_addr into virtual address space.
3398 * Only architectures that have memory mapped IO functions defined
3399 * (and the PCI_IOBASE value defined) should call this function.
3401 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3403 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3404 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3406 if (!(res->flags & IORESOURCE_IO))
3409 if (res->end > IO_SPACE_LIMIT)
3412 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3413 pgprot_device(PAGE_KERNEL));
3415 /* this architecture does not have memory mapped I/O space,
3416 so this function should never be called */
3417 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3421 EXPORT_SYMBOL(pci_remap_iospace);
3424 * pci_unmap_iospace - Unmap the memory mapped I/O space
3425 * @res: resource to be unmapped
3427 * Unmap the CPU virtual address @res from virtual address space.
3428 * Only architectures that have memory mapped IO functions defined
3429 * (and the PCI_IOBASE value defined) should call this function.
3431 void pci_unmap_iospace(struct resource *res)
3433 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3434 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3436 unmap_kernel_range(vaddr, resource_size(res));
3439 EXPORT_SYMBOL(pci_unmap_iospace);
3442 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3443 * @dev: Generic device to remap IO address for
3444 * @offset: Resource address to map
3445 * @size: Size of map
3447 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3450 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3451 resource_size_t offset,
3452 resource_size_t size)
3454 void __iomem **ptr, *addr;
3456 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3460 addr = pci_remap_cfgspace(offset, size);
3463 devres_add(dev, ptr);
3469 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3472 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3473 * @dev: generic device to handle the resource for
3474 * @res: configuration space resource to be handled
3476 * Checks that a resource is a valid memory region, requests the memory
3477 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3478 * proper PCI configuration space memory attributes are guaranteed.
3480 * All operations are managed and will be undone on driver detach.
3482 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3483 * on failure. Usage example:
3485 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3486 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3488 * return PTR_ERR(base);
3490 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3491 struct resource *res)
3493 resource_size_t size;
3495 void __iomem *dest_ptr;
3499 if (!res || resource_type(res) != IORESOURCE_MEM) {
3500 dev_err(dev, "invalid resource\n");
3501 return IOMEM_ERR_PTR(-EINVAL);
3504 size = resource_size(res);
3505 name = res->name ?: dev_name(dev);
3507 if (!devm_request_mem_region(dev, res->start, size, name)) {
3508 dev_err(dev, "can't request region for resource %pR\n", res);
3509 return IOMEM_ERR_PTR(-EBUSY);
3512 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3514 dev_err(dev, "ioremap failed for resource %pR\n", res);
3515 devm_release_mem_region(dev, res->start, size);
3516 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3521 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3523 static void __pci_set_master(struct pci_dev *dev, bool enable)
3527 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3529 cmd = old_cmd | PCI_COMMAND_MASTER;
3531 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3532 if (cmd != old_cmd) {
3533 dev_dbg(&dev->dev, "%s bus mastering\n",
3534 enable ? "enabling" : "disabling");
3535 pci_write_config_word(dev, PCI_COMMAND, cmd);
3537 dev->is_busmaster = enable;
3541 * pcibios_setup - process "pci=" kernel boot arguments
3542 * @str: string used to pass in "pci=" kernel boot arguments
3544 * Process kernel boot arguments. This is the default implementation.
3545 * Architecture specific implementations can override this as necessary.
3547 char * __weak __init pcibios_setup(char *str)
3553 * pcibios_set_master - enable PCI bus-mastering for device dev
3554 * @dev: the PCI device to enable
3556 * Enables PCI bus-mastering for the device. This is the default
3557 * implementation. Architecture specific implementations can override
3558 * this if necessary.
3560 void __weak pcibios_set_master(struct pci_dev *dev)
3564 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3565 if (pci_is_pcie(dev))
3568 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3570 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3571 else if (lat > pcibios_max_latency)
3572 lat = pcibios_max_latency;
3576 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3580 * pci_set_master - enables bus-mastering for device dev
3581 * @dev: the PCI device to enable
3583 * Enables bus-mastering on the device and calls pcibios_set_master()
3584 * to do the needed arch specific settings.
3586 void pci_set_master(struct pci_dev *dev)
3588 __pci_set_master(dev, true);
3589 pcibios_set_master(dev);
3591 EXPORT_SYMBOL(pci_set_master);
3594 * pci_clear_master - disables bus-mastering for device dev
3595 * @dev: the PCI device to disable
3597 void pci_clear_master(struct pci_dev *dev)
3599 __pci_set_master(dev, false);
3601 EXPORT_SYMBOL(pci_clear_master);
3604 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3605 * @dev: the PCI device for which MWI is to be enabled
3607 * Helper function for pci_set_mwi.
3608 * Originally copied from drivers/net/acenic.c.
3609 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3611 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3613 int pci_set_cacheline_size(struct pci_dev *dev)
3617 if (!pci_cache_line_size)
3620 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3621 equal to or multiple of the right value. */
3622 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3623 if (cacheline_size >= pci_cache_line_size &&
3624 (cacheline_size % pci_cache_line_size) == 0)
3627 /* Write the correct value. */
3628 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3630 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3631 if (cacheline_size == pci_cache_line_size)
3634 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3635 pci_cache_line_size << 2);
3639 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3642 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3643 * @dev: the PCI device for which MWI is enabled
3645 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3647 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3649 int pci_set_mwi(struct pci_dev *dev)
3651 #ifdef PCI_DISABLE_MWI
3657 rc = pci_set_cacheline_size(dev);
3661 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3662 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3663 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3664 cmd |= PCI_COMMAND_INVALIDATE;
3665 pci_write_config_word(dev, PCI_COMMAND, cmd);
3670 EXPORT_SYMBOL(pci_set_mwi);
3673 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3674 * @dev: the PCI device for which MWI is enabled
3676 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3677 * Callers are not required to check the return value.
3679 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3681 int pci_try_set_mwi(struct pci_dev *dev)
3683 #ifdef PCI_DISABLE_MWI
3686 return pci_set_mwi(dev);
3689 EXPORT_SYMBOL(pci_try_set_mwi);
3692 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3693 * @dev: the PCI device to disable
3695 * Disables PCI Memory-Write-Invalidate transaction on the device
3697 void pci_clear_mwi(struct pci_dev *dev)
3699 #ifndef PCI_DISABLE_MWI
3702 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3703 if (cmd & PCI_COMMAND_INVALIDATE) {
3704 cmd &= ~PCI_COMMAND_INVALIDATE;
3705 pci_write_config_word(dev, PCI_COMMAND, cmd);
3709 EXPORT_SYMBOL(pci_clear_mwi);
3712 * pci_intx - enables/disables PCI INTx for device dev
3713 * @pdev: the PCI device to operate on
3714 * @enable: boolean: whether to enable or disable PCI INTx
3716 * Enables/disables PCI INTx for device dev
3718 void pci_intx(struct pci_dev *pdev, int enable)
3720 u16 pci_command, new;
3722 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3725 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3727 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3729 if (new != pci_command) {
3730 struct pci_devres *dr;
3732 pci_write_config_word(pdev, PCI_COMMAND, new);
3734 dr = find_pci_dr(pdev);
3735 if (dr && !dr->restore_intx) {
3736 dr->restore_intx = 1;
3737 dr->orig_intx = !enable;
3741 EXPORT_SYMBOL_GPL(pci_intx);
3743 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3745 struct pci_bus *bus = dev->bus;
3746 bool mask_updated = true;
3747 u32 cmd_status_dword;
3748 u16 origcmd, newcmd;
3749 unsigned long flags;
3753 * We do a single dword read to retrieve both command and status.
3754 * Document assumptions that make this possible.
3756 BUILD_BUG_ON(PCI_COMMAND % 4);
3757 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3759 raw_spin_lock_irqsave(&pci_lock, flags);
3761 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3763 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3766 * Check interrupt status register to see whether our device
3767 * triggered the interrupt (when masking) or the next IRQ is
3768 * already pending (when unmasking).
3770 if (mask != irq_pending) {
3771 mask_updated = false;
3775 origcmd = cmd_status_dword;
3776 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3778 newcmd |= PCI_COMMAND_INTX_DISABLE;
3779 if (newcmd != origcmd)
3780 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3783 raw_spin_unlock_irqrestore(&pci_lock, flags);
3785 return mask_updated;
3789 * pci_check_and_mask_intx - mask INTx on pending interrupt
3790 * @dev: the PCI device to operate on
3792 * Check if the device dev has its INTx line asserted, mask it and
3793 * return true in that case. False is returned if no interrupt was
3796 bool pci_check_and_mask_intx(struct pci_dev *dev)
3798 return pci_check_and_set_intx_mask(dev, true);
3800 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3803 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3804 * @dev: the PCI device to operate on
3806 * Check if the device dev has its INTx line asserted, unmask it if not
3807 * and return true. False is returned and the mask remains active if
3808 * there was still an interrupt pending.
3810 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3812 return pci_check_and_set_intx_mask(dev, false);
3814 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3817 * pci_wait_for_pending_transaction - waits for pending transaction
3818 * @dev: the PCI device to operate on
3820 * Return 0 if transaction is pending 1 otherwise.
3822 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3824 if (!pci_is_pcie(dev))
3827 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3828 PCI_EXP_DEVSTA_TRPND);
3830 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3832 static void pci_flr_wait(struct pci_dev *dev)
3834 int delay = 1, timeout = 60000;
3838 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within
3839 * 100ms, but may silently discard requests while the FLR is in
3840 * progress. Wait 100ms before trying to access the device.
3845 * After 100ms, the device should not silently discard config
3846 * requests, but it may still indicate that it needs more time by
3847 * responding to them with CRS completions. The Root Port will
3848 * generally synthesize ~0 data to complete the read (except when
3849 * CRS SV is enabled and the read was for the Vendor ID; in that
3850 * case it synthesizes 0x0001 data).
3852 * Wait for the device to return a non-CRS completion. Read the
3853 * Command register instead of Vendor ID so we don't have to
3854 * contend with the CRS SV value.
3856 pci_read_config_dword(dev, PCI_COMMAND, &id);
3858 if (delay > timeout) {
3859 dev_warn(&dev->dev, "not ready %dms after FLR; giving up\n",
3865 dev_info(&dev->dev, "not ready %dms after FLR; waiting\n",
3870 pci_read_config_dword(dev, PCI_COMMAND, &id);
3874 dev_info(&dev->dev, "ready %dms after FLR\n", 100 + delay - 1);
3878 * pcie_has_flr - check if a device supports function level resets
3879 * @dev: device to check
3881 * Returns true if the device advertises support for PCIe function level
3884 static bool pcie_has_flr(struct pci_dev *dev)
3888 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3891 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3892 return cap & PCI_EXP_DEVCAP_FLR;
3896 * pcie_flr - initiate a PCIe function level reset
3897 * @dev: device to reset
3899 * Initiate a function level reset on @dev. The caller should ensure the
3900 * device supports FLR before calling this function, e.g. by using the
3901 * pcie_has_flr() helper.
3903 void pcie_flr(struct pci_dev *dev)
3905 if (!pci_wait_for_pending_transaction(dev))
3906 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3908 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3911 EXPORT_SYMBOL_GPL(pcie_flr);
3913 static int pci_af_flr(struct pci_dev *dev, int probe)
3918 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3922 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3925 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3926 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3933 * Wait for Transaction Pending bit to clear. A word-aligned test
3934 * is used, so we use the conrol offset rather than status and shift
3935 * the test bit to match.
3937 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3938 PCI_AF_STATUS_TP << 8))
3939 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3941 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3947 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3948 * @dev: Device to reset.
3949 * @probe: If set, only check if the device can be reset this way.
3951 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3952 * unset, it will be reinitialized internally when going from PCI_D3hot to
3953 * PCI_D0. If that's the case and the device is not in a low-power state
3954 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3956 * NOTE: This causes the caller to sleep for twice the device power transition
3957 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3958 * by default (i.e. unless the @dev's d3_delay field has a different value).
3959 * Moreover, only devices in D0 can be reset by this function.
3961 static int pci_pm_reset(struct pci_dev *dev, int probe)
3965 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3968 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3969 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3975 if (dev->current_state != PCI_D0)
3978 csr &= ~PCI_PM_CTRL_STATE_MASK;
3980 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3981 pci_dev_d3_sleep(dev);
3983 csr &= ~PCI_PM_CTRL_STATE_MASK;
3985 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3986 pci_dev_d3_sleep(dev);
3991 void pci_reset_secondary_bus(struct pci_dev *dev)
3995 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3996 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3997 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3999 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4000 * this to 2ms to ensure that we meet the minimum requirement.
4004 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4005 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4008 * Trhfa for conventional PCI is 2^25 clock cycles.
4009 * Assuming a minimum 33MHz clock this results in a 1s
4010 * delay before we can consider subordinate devices to
4011 * be re-initialized. PCIe has some ways to shorten this,
4012 * but we don't make use of them yet.
4017 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4019 pci_reset_secondary_bus(dev);
4023 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4024 * @dev: Bridge device
4026 * Use the bridge control register to assert reset on the secondary bus.
4027 * Devices on the secondary bus are left in power-on state.
4029 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4031 pcibios_reset_secondary_bus(dev);
4033 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4035 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4037 struct pci_dev *pdev;
4039 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4040 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4043 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4050 pci_reset_bridge_secondary_bus(dev->bus->self);
4055 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4059 if (!hotplug || !try_module_get(hotplug->ops->owner))
4062 if (hotplug->ops->reset_slot)
4063 rc = hotplug->ops->reset_slot(hotplug, probe);
4065 module_put(hotplug->ops->owner);
4070 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4072 struct pci_dev *pdev;
4074 if (dev->subordinate || !dev->slot ||
4075 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4078 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4079 if (pdev != dev && pdev->slot == dev->slot)
4082 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4085 static void pci_dev_lock(struct pci_dev *dev)
4087 pci_cfg_access_lock(dev);
4088 /* block PM suspend, driver probe, etc. */
4089 device_lock(&dev->dev);
4092 /* Return 1 on successful lock, 0 on contention */
4093 static int pci_dev_trylock(struct pci_dev *dev)
4095 if (pci_cfg_access_trylock(dev)) {
4096 if (device_trylock(&dev->dev))
4098 pci_cfg_access_unlock(dev);
4104 static void pci_dev_unlock(struct pci_dev *dev)
4106 device_unlock(&dev->dev);
4107 pci_cfg_access_unlock(dev);
4110 static void pci_dev_save_and_disable(struct pci_dev *dev)
4112 const struct pci_error_handlers *err_handler =
4113 dev->driver ? dev->driver->err_handler : NULL;
4116 * dev->driver->err_handler->reset_prepare() is protected against
4117 * races with ->remove() by the device lock, which must be held by
4120 if (err_handler && err_handler->reset_prepare)
4121 err_handler->reset_prepare(dev);
4124 * Wake-up device prior to save. PM registers default to D0 after
4125 * reset and a simple register restore doesn't reliably return
4126 * to a non-D0 state anyway.
4128 pci_set_power_state(dev, PCI_D0);
4130 pci_save_state(dev);
4132 * Disable the device by clearing the Command register, except for
4133 * INTx-disable which is set. This not only disables MMIO and I/O port
4134 * BARs, but also prevents the device from being Bus Master, preventing
4135 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4136 * compliant devices, INTx-disable prevents legacy interrupts.
4138 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4141 static void pci_dev_restore(struct pci_dev *dev)
4143 const struct pci_error_handlers *err_handler =
4144 dev->driver ? dev->driver->err_handler : NULL;
4146 pci_restore_state(dev);
4149 * dev->driver->err_handler->reset_done() is protected against
4150 * races with ->remove() by the device lock, which must be held by
4153 if (err_handler && err_handler->reset_done)
4154 err_handler->reset_done(dev);
4158 * __pci_reset_function - reset a PCI device function
4159 * @dev: PCI device to reset
4161 * Some devices allow an individual function to be reset without affecting
4162 * other functions in the same device. The PCI device must be responsive
4163 * to PCI config space in order to use this function.
4165 * The device function is presumed to be unused when this function is called.
4166 * Resetting the device will make the contents of PCI configuration space
4167 * random, so any caller of this must be prepared to reinitialise the
4168 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4171 * Returns 0 if the device function was successfully reset or negative if the
4172 * device doesn't support resetting a single function.
4174 int __pci_reset_function(struct pci_dev *dev)
4179 ret = __pci_reset_function_locked(dev);
4180 pci_dev_unlock(dev);
4184 EXPORT_SYMBOL_GPL(__pci_reset_function);
4187 * __pci_reset_function_locked - reset a PCI device function while holding
4188 * the @dev mutex lock.
4189 * @dev: PCI device to reset
4191 * Some devices allow an individual function to be reset without affecting
4192 * other functions in the same device. The PCI device must be responsive
4193 * to PCI config space in order to use this function.
4195 * The device function is presumed to be unused and the caller is holding
4196 * the device mutex lock when this function is called.
4197 * Resetting the device will make the contents of PCI configuration space
4198 * random, so any caller of this must be prepared to reinitialise the
4199 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4202 * Returns 0 if the device function was successfully reset or negative if the
4203 * device doesn't support resetting a single function.
4205 int __pci_reset_function_locked(struct pci_dev *dev)
4211 rc = pci_dev_specific_reset(dev, 0);
4214 if (pcie_has_flr(dev)) {
4218 rc = pci_af_flr(dev, 0);
4221 rc = pci_pm_reset(dev, 0);
4224 rc = pci_dev_reset_slot_function(dev, 0);
4227 return pci_parent_bus_reset(dev, 0);
4229 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4232 * pci_probe_reset_function - check whether the device can be safely reset
4233 * @dev: PCI device to reset
4235 * Some devices allow an individual function to be reset without affecting
4236 * other functions in the same device. The PCI device must be responsive
4237 * to PCI config space in order to use this function.
4239 * Returns 0 if the device function can be reset or negative if the
4240 * device doesn't support resetting a single function.
4242 int pci_probe_reset_function(struct pci_dev *dev)
4248 rc = pci_dev_specific_reset(dev, 1);
4251 if (pcie_has_flr(dev))
4253 rc = pci_af_flr(dev, 1);
4256 rc = pci_pm_reset(dev, 1);
4259 rc = pci_dev_reset_slot_function(dev, 1);
4263 return pci_parent_bus_reset(dev, 1);
4267 * pci_reset_function - quiesce and reset a PCI device function
4268 * @dev: PCI device to reset
4270 * Some devices allow an individual function to be reset without affecting
4271 * other functions in the same device. The PCI device must be responsive
4272 * to PCI config space in order to use this function.
4274 * This function does not just reset the PCI portion of a device, but
4275 * clears all the state associated with the device. This function differs
4276 * from __pci_reset_function in that it saves and restores device state
4279 * Returns 0 if the device function was successfully reset or negative if the
4280 * device doesn't support resetting a single function.
4282 int pci_reset_function(struct pci_dev *dev)
4286 rc = pci_probe_reset_function(dev);
4291 pci_dev_save_and_disable(dev);
4293 rc = __pci_reset_function_locked(dev);
4295 pci_dev_restore(dev);
4296 pci_dev_unlock(dev);
4300 EXPORT_SYMBOL_GPL(pci_reset_function);
4303 * pci_reset_function_locked - quiesce and reset a PCI device function
4304 * @dev: PCI device to reset
4306 * Some devices allow an individual function to be reset without affecting
4307 * other functions in the same device. The PCI device must be responsive
4308 * to PCI config space in order to use this function.
4310 * This function does not just reset the PCI portion of a device, but
4311 * clears all the state associated with the device. This function differs
4312 * from __pci_reset_function() in that it saves and restores device state
4313 * over the reset. It also differs from pci_reset_function() in that it
4314 * requires the PCI device lock to be held.
4316 * Returns 0 if the device function was successfully reset or negative if the
4317 * device doesn't support resetting a single function.
4319 int pci_reset_function_locked(struct pci_dev *dev)
4323 rc = pci_probe_reset_function(dev);
4327 pci_dev_save_and_disable(dev);
4329 rc = __pci_reset_function_locked(dev);
4331 pci_dev_restore(dev);
4335 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4338 * pci_try_reset_function - quiesce and reset a PCI device function
4339 * @dev: PCI device to reset
4341 * Same as above, except return -EAGAIN if unable to lock device.
4343 int pci_try_reset_function(struct pci_dev *dev)
4347 rc = pci_probe_reset_function(dev);
4351 if (!pci_dev_trylock(dev))
4354 pci_dev_save_and_disable(dev);
4355 rc = __pci_reset_function_locked(dev);
4356 pci_dev_unlock(dev);
4358 pci_dev_restore(dev);
4361 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4363 /* Do any devices on or below this bus prevent a bus reset? */