regulator: core: factor out delay function from _regulator_do_enable
[muen/linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68         struct list_head list;
69         const char *dev_name;   /* The dev_name() for the consumer */
70         const char *supply;
71         struct regulator_dev *regulator;
72 };
73
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80         struct list_head list;
81         struct gpio_desc *gpiod;
82         u32 enable_count;       /* a number of enabled shared GPIO */
83         u32 request_count;      /* a number of requested shared GPIO */
84         unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93         struct list_head list;
94         struct device *src_dev;
95         const char *src_supply;
96         struct device *alias_dev;
97         const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static void _notifier_call_chain(struct regulator_dev *rdev,
106                                   unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108                                      int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110                                           struct device *dev,
111                                           const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115         if (rdev->constraints && rdev->constraints->name)
116                 return rdev->constraints->name;
117         else if (rdev->desc->name)
118                 return rdev->desc->name;
119         else
120                 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125         return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129  * of_get_regulator - get a regulator device node based on supply name
130  * @dev: Device pointer for the consumer (of regulator) device
131  * @supply: regulator supply name
132  *
133  * Extract the regulator device node corresponding to the supply name.
134  * returns the device node corresponding to the regulator if found, else
135  * returns NULL.
136  */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139         struct device_node *regnode = NULL;
140         char prop_name[32]; /* 32 is max size of property name */
141
142         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144         snprintf(prop_name, 32, "%s-supply", supply);
145         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147         if (!regnode) {
148                 dev_dbg(dev, "Looking up %s property in node %s failed",
149                                 prop_name, dev->of_node->full_name);
150                 return NULL;
151         }
152         return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157         if (!rdev->constraints)
158                 return 0;
159
160         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161                 return 1;
162         else
163                 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168                                    int *min_uV, int *max_uV)
169 {
170         BUG_ON(*min_uV > *max_uV);
171
172         if (!rdev->constraints) {
173                 rdev_err(rdev, "no constraints\n");
174                 return -ENODEV;
175         }
176         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177                 rdev_err(rdev, "operation not allowed\n");
178                 return -EPERM;
179         }
180
181         if (*max_uV > rdev->constraints->max_uV)
182                 *max_uV = rdev->constraints->max_uV;
183         if (*min_uV < rdev->constraints->min_uV)
184                 *min_uV = rdev->constraints->min_uV;
185
186         if (*min_uV > *max_uV) {
187                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188                          *min_uV, *max_uV);
189                 return -EINVAL;
190         }
191
192         return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196  * regulator consumers
197  */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199                                      int *min_uV, int *max_uV)
200 {
201         struct regulator *regulator;
202
203         list_for_each_entry(regulator, &rdev->consumer_list, list) {
204                 /*
205                  * Assume consumers that didn't say anything are OK
206                  * with anything in the constraint range.
207                  */
208                 if (!regulator->min_uV && !regulator->max_uV)
209                         continue;
210
211                 if (*max_uV > regulator->max_uV)
212                         *max_uV = regulator->max_uV;
213                 if (*min_uV < regulator->min_uV)
214                         *min_uV = regulator->min_uV;
215         }
216
217         if (*min_uV > *max_uV) {
218                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219                         *min_uV, *max_uV);
220                 return -EINVAL;
221         }
222
223         return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228                                         int *min_uA, int *max_uA)
229 {
230         BUG_ON(*min_uA > *max_uA);
231
232         if (!rdev->constraints) {
233                 rdev_err(rdev, "no constraints\n");
234                 return -ENODEV;
235         }
236         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237                 rdev_err(rdev, "operation not allowed\n");
238                 return -EPERM;
239         }
240
241         if (*max_uA > rdev->constraints->max_uA)
242                 *max_uA = rdev->constraints->max_uA;
243         if (*min_uA < rdev->constraints->min_uA)
244                 *min_uA = rdev->constraints->min_uA;
245
246         if (*min_uA > *max_uA) {
247                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248                          *min_uA, *max_uA);
249                 return -EINVAL;
250         }
251
252         return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258         switch (*mode) {
259         case REGULATOR_MODE_FAST:
260         case REGULATOR_MODE_NORMAL:
261         case REGULATOR_MODE_IDLE:
262         case REGULATOR_MODE_STANDBY:
263                 break;
264         default:
265                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266                 return -EINVAL;
267         }
268
269         if (!rdev->constraints) {
270                 rdev_err(rdev, "no constraints\n");
271                 return -ENODEV;
272         }
273         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274                 rdev_err(rdev, "operation not allowed\n");
275                 return -EPERM;
276         }
277
278         /* The modes are bitmasks, the most power hungry modes having
279          * the lowest values. If the requested mode isn't supported
280          * try higher modes. */
281         while (*mode) {
282                 if (rdev->constraints->valid_modes_mask & *mode)
283                         return 0;
284                 *mode /= 2;
285         }
286
287         return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293         if (!rdev->constraints) {
294                 rdev_err(rdev, "no constraints\n");
295                 return -ENODEV;
296         }
297         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298                 rdev_err(rdev, "operation not allowed\n");
299                 return -EPERM;
300         }
301         return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305                                 struct device_attribute *attr, char *buf)
306 {
307         struct regulator_dev *rdev = dev_get_drvdata(dev);
308         ssize_t ret;
309
310         mutex_lock(&rdev->mutex);
311         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312         mutex_unlock(&rdev->mutex);
313
314         return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319                                 struct device_attribute *attr, char *buf)
320 {
321         struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328                          char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332         return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338         switch (mode) {
339         case REGULATOR_MODE_FAST:
340                 return sprintf(buf, "fast\n");
341         case REGULATOR_MODE_NORMAL:
342                 return sprintf(buf, "normal\n");
343         case REGULATOR_MODE_IDLE:
344                 return sprintf(buf, "idle\n");
345         case REGULATOR_MODE_STANDBY:
346                 return sprintf(buf, "standby\n");
347         }
348         return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352                                     struct device_attribute *attr, char *buf)
353 {
354         struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362         if (state > 0)
363                 return sprintf(buf, "enabled\n");
364         else if (state == 0)
365                 return sprintf(buf, "disabled\n");
366         else
367                 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371                                    struct device_attribute *attr, char *buf)
372 {
373         struct regulator_dev *rdev = dev_get_drvdata(dev);
374         ssize_t ret;
375
376         mutex_lock(&rdev->mutex);
377         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378         mutex_unlock(&rdev->mutex);
379
380         return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385                                    struct device_attribute *attr, char *buf)
386 {
387         struct regulator_dev *rdev = dev_get_drvdata(dev);
388         int status;
389         char *label;
390
391         status = rdev->desc->ops->get_status(rdev);
392         if (status < 0)
393                 return status;
394
395         switch (status) {
396         case REGULATOR_STATUS_OFF:
397                 label = "off";
398                 break;
399         case REGULATOR_STATUS_ON:
400                 label = "on";
401                 break;
402         case REGULATOR_STATUS_ERROR:
403                 label = "error";
404                 break;
405         case REGULATOR_STATUS_FAST:
406                 label = "fast";
407                 break;
408         case REGULATOR_STATUS_NORMAL:
409                 label = "normal";
410                 break;
411         case REGULATOR_STATUS_IDLE:
412                 label = "idle";
413                 break;
414         case REGULATOR_STATUS_STANDBY:
415                 label = "standby";
416                 break;
417         case REGULATOR_STATUS_BYPASS:
418                 label = "bypass";
419                 break;
420         case REGULATOR_STATUS_UNDEFINED:
421                 label = "undefined";
422                 break;
423         default:
424                 return -ERANGE;
425         }
426
427         return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432                                     struct device_attribute *attr, char *buf)
433 {
434         struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436         if (!rdev->constraints)
437                 return sprintf(buf, "constraint not defined\n");
438
439         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444                                     struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         if (!rdev->constraints)
449                 return sprintf(buf, "constraint not defined\n");
450
451         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456                                     struct device_attribute *attr, char *buf)
457 {
458         struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460         if (!rdev->constraints)
461                 return sprintf(buf, "constraint not defined\n");
462
463         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468                                     struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         if (!rdev->constraints)
473                 return sprintf(buf, "constraint not defined\n");
474
475         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480                                       struct device_attribute *attr, char *buf)
481 {
482         struct regulator_dev *rdev = dev_get_drvdata(dev);
483         struct regulator *regulator;
484         int uA = 0;
485
486         mutex_lock(&rdev->mutex);
487         list_for_each_entry(regulator, &rdev->consumer_list, list)
488                 uA += regulator->uA_load;
489         mutex_unlock(&rdev->mutex);
490         return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495                               char *buf)
496 {
497         struct regulator_dev *rdev = dev_get_drvdata(dev);
498         return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503                          char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507         switch (rdev->desc->type) {
508         case REGULATOR_VOLTAGE:
509                 return sprintf(buf, "voltage\n");
510         case REGULATOR_CURRENT:
511                 return sprintf(buf, "current\n");
512         }
513         return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518                                 struct device_attribute *attr, char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525                 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528                                 struct device_attribute *attr, char *buf)
529 {
530         struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535                 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538                                 struct device_attribute *attr, char *buf)
539 {
540         struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545                 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548                                 struct device_attribute *attr, char *buf)
549 {
550         struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552         return regulator_print_opmode(buf,
553                 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556                 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559                                 struct device_attribute *attr, char *buf)
560 {
561         struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563         return regulator_print_opmode(buf,
564                 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567                 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570                                 struct device_attribute *attr, char *buf)
571 {
572         struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574         return regulator_print_opmode(buf,
575                 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578                 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581                                    struct device_attribute *attr, char *buf)
582 {
583         struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585         return regulator_print_state(buf,
586                         rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589                 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592                                    struct device_attribute *attr, char *buf)
593 {
594         struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596         return regulator_print_state(buf,
597                         rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600                 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603                                    struct device_attribute *attr, char *buf)
604 {
605         struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607         return regulator_print_state(buf,
608                         rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611                 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614                                      struct device_attribute *attr, char *buf)
615 {
616         struct regulator_dev *rdev = dev_get_drvdata(dev);
617         const char *report;
618         bool bypass;
619         int ret;
620
621         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623         if (ret != 0)
624                 report = "unknown";
625         else if (bypass)
626                 report = "enabled";
627         else
628                 report = "disabled";
629
630         return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633                    regulator_bypass_show, NULL);
634
635 /*
636  * These are the only attributes are present for all regulators.
637  * Other attributes are a function of regulator functionality.
638  */
639 static struct attribute *regulator_dev_attrs[] = {
640         &dev_attr_name.attr,
641         &dev_attr_num_users.attr,
642         &dev_attr_type.attr,
643         NULL,
644 };
645 ATTRIBUTE_GROUPS(regulator_dev);
646
647 static void regulator_dev_release(struct device *dev)
648 {
649         struct regulator_dev *rdev = dev_get_drvdata(dev);
650         kfree(rdev);
651 }
652
653 static struct class regulator_class = {
654         .name = "regulator",
655         .dev_release = regulator_dev_release,
656         .dev_groups = regulator_dev_groups,
657 };
658
659 /* Calculate the new optimum regulator operating mode based on the new total
660  * consumer load. All locks held by caller */
661 static void drms_uA_update(struct regulator_dev *rdev)
662 {
663         struct regulator *sibling;
664         int current_uA = 0, output_uV, input_uV, err;
665         unsigned int mode;
666
667         err = regulator_check_drms(rdev);
668         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
669             (!rdev->desc->ops->get_voltage &&
670              !rdev->desc->ops->get_voltage_sel) ||
671             !rdev->desc->ops->set_mode)
672                 return;
673
674         /* get output voltage */
675         output_uV = _regulator_get_voltage(rdev);
676         if (output_uV <= 0)
677                 return;
678
679         /* get input voltage */
680         input_uV = 0;
681         if (rdev->supply)
682                 input_uV = regulator_get_voltage(rdev->supply);
683         if (input_uV <= 0)
684                 input_uV = rdev->constraints->input_uV;
685         if (input_uV <= 0)
686                 return;
687
688         /* calc total requested load */
689         list_for_each_entry(sibling, &rdev->consumer_list, list)
690                 current_uA += sibling->uA_load;
691
692         /* now get the optimum mode for our new total regulator load */
693         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
694                                                   output_uV, current_uA);
695
696         /* check the new mode is allowed */
697         err = regulator_mode_constrain(rdev, &mode);
698         if (err == 0)
699                 rdev->desc->ops->set_mode(rdev, mode);
700 }
701
702 static int suspend_set_state(struct regulator_dev *rdev,
703         struct regulator_state *rstate)
704 {
705         int ret = 0;
706
707         /* If we have no suspend mode configration don't set anything;
708          * only warn if the driver implements set_suspend_voltage or
709          * set_suspend_mode callback.
710          */
711         if (!rstate->enabled && !rstate->disabled) {
712                 if (rdev->desc->ops->set_suspend_voltage ||
713                     rdev->desc->ops->set_suspend_mode)
714                         rdev_warn(rdev, "No configuration\n");
715                 return 0;
716         }
717
718         if (rstate->enabled && rstate->disabled) {
719                 rdev_err(rdev, "invalid configuration\n");
720                 return -EINVAL;
721         }
722
723         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
724                 ret = rdev->desc->ops->set_suspend_enable(rdev);
725         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
726                 ret = rdev->desc->ops->set_suspend_disable(rdev);
727         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
728                 ret = 0;
729
730         if (ret < 0) {
731                 rdev_err(rdev, "failed to enabled/disable\n");
732                 return ret;
733         }
734
735         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
736                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
737                 if (ret < 0) {
738                         rdev_err(rdev, "failed to set voltage\n");
739                         return ret;
740                 }
741         }
742
743         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
744                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
745                 if (ret < 0) {
746                         rdev_err(rdev, "failed to set mode\n");
747                         return ret;
748                 }
749         }
750         return ret;
751 }
752
753 /* locks held by caller */
754 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
755 {
756         if (!rdev->constraints)
757                 return -EINVAL;
758
759         switch (state) {
760         case PM_SUSPEND_STANDBY:
761                 return suspend_set_state(rdev,
762                         &rdev->constraints->state_standby);
763         case PM_SUSPEND_MEM:
764                 return suspend_set_state(rdev,
765                         &rdev->constraints->state_mem);
766         case PM_SUSPEND_MAX:
767                 return suspend_set_state(rdev,
768                         &rdev->constraints->state_disk);
769         default:
770                 return -EINVAL;
771         }
772 }
773
774 static void print_constraints(struct regulator_dev *rdev)
775 {
776         struct regulation_constraints *constraints = rdev->constraints;
777         char buf[80] = "";
778         int count = 0;
779         int ret;
780
781         if (constraints->min_uV && constraints->max_uV) {
782                 if (constraints->min_uV == constraints->max_uV)
783                         count += sprintf(buf + count, "%d mV ",
784                                          constraints->min_uV / 1000);
785                 else
786                         count += sprintf(buf + count, "%d <--> %d mV ",
787                                          constraints->min_uV / 1000,
788                                          constraints->max_uV / 1000);
789         }
790
791         if (!constraints->min_uV ||
792             constraints->min_uV != constraints->max_uV) {
793                 ret = _regulator_get_voltage(rdev);
794                 if (ret > 0)
795                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
796         }
797
798         if (constraints->uV_offset)
799                 count += sprintf(buf, "%dmV offset ",
800                                  constraints->uV_offset / 1000);
801
802         if (constraints->min_uA && constraints->max_uA) {
803                 if (constraints->min_uA == constraints->max_uA)
804                         count += sprintf(buf + count, "%d mA ",
805                                          constraints->min_uA / 1000);
806                 else
807                         count += sprintf(buf + count, "%d <--> %d mA ",
808                                          constraints->min_uA / 1000,
809                                          constraints->max_uA / 1000);
810         }
811
812         if (!constraints->min_uA ||
813             constraints->min_uA != constraints->max_uA) {
814                 ret = _regulator_get_current_limit(rdev);
815                 if (ret > 0)
816                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
817         }
818
819         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
820                 count += sprintf(buf + count, "fast ");
821         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
822                 count += sprintf(buf + count, "normal ");
823         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
824                 count += sprintf(buf + count, "idle ");
825         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
826                 count += sprintf(buf + count, "standby");
827
828         if (!count)
829                 sprintf(buf, "no parameters");
830
831         rdev_info(rdev, "%s\n", buf);
832
833         if ((constraints->min_uV != constraints->max_uV) &&
834             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
835                 rdev_warn(rdev,
836                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
837 }
838
839 static int machine_constraints_voltage(struct regulator_dev *rdev,
840         struct regulation_constraints *constraints)
841 {
842         const struct regulator_ops *ops = rdev->desc->ops;
843         int ret;
844
845         /* do we need to apply the constraint voltage */
846         if (rdev->constraints->apply_uV &&
847             rdev->constraints->min_uV == rdev->constraints->max_uV) {
848                 int current_uV = _regulator_get_voltage(rdev);
849                 if (current_uV < 0) {
850                         rdev_err(rdev,
851                                  "failed to get the current voltage(%d)\n",
852                                  current_uV);
853                         return current_uV;
854                 }
855                 if (current_uV < rdev->constraints->min_uV ||
856                     current_uV > rdev->constraints->max_uV) {
857                         ret = _regulator_do_set_voltage(
858                                 rdev, rdev->constraints->min_uV,
859                                 rdev->constraints->max_uV);
860                         if (ret < 0) {
861                                 rdev_err(rdev,
862                                         "failed to apply %duV constraint(%d)\n",
863                                         rdev->constraints->min_uV, ret);
864                                 return ret;
865                         }
866                 }
867         }
868
869         /* constrain machine-level voltage specs to fit
870          * the actual range supported by this regulator.
871          */
872         if (ops->list_voltage && rdev->desc->n_voltages) {
873                 int     count = rdev->desc->n_voltages;
874                 int     i;
875                 int     min_uV = INT_MAX;
876                 int     max_uV = INT_MIN;
877                 int     cmin = constraints->min_uV;
878                 int     cmax = constraints->max_uV;
879
880                 /* it's safe to autoconfigure fixed-voltage supplies
881                    and the constraints are used by list_voltage. */
882                 if (count == 1 && !cmin) {
883                         cmin = 1;
884                         cmax = INT_MAX;
885                         constraints->min_uV = cmin;
886                         constraints->max_uV = cmax;
887                 }
888
889                 /* voltage constraints are optional */
890                 if ((cmin == 0) && (cmax == 0))
891                         return 0;
892
893                 /* else require explicit machine-level constraints */
894                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
895                         rdev_err(rdev, "invalid voltage constraints\n");
896                         return -EINVAL;
897                 }
898
899                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
900                 for (i = 0; i < count; i++) {
901                         int     value;
902
903                         value = ops->list_voltage(rdev, i);
904                         if (value <= 0)
905                                 continue;
906
907                         /* maybe adjust [min_uV..max_uV] */
908                         if (value >= cmin && value < min_uV)
909                                 min_uV = value;
910                         if (value <= cmax && value > max_uV)
911                                 max_uV = value;
912                 }
913
914                 /* final: [min_uV..max_uV] valid iff constraints valid */
915                 if (max_uV < min_uV) {
916                         rdev_err(rdev,
917                                  "unsupportable voltage constraints %u-%uuV\n",
918                                  min_uV, max_uV);
919                         return -EINVAL;
920                 }
921
922                 /* use regulator's subset of machine constraints */
923                 if (constraints->min_uV < min_uV) {
924                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
925                                  constraints->min_uV, min_uV);
926                         constraints->min_uV = min_uV;
927                 }
928                 if (constraints->max_uV > max_uV) {
929                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
930                                  constraints->max_uV, max_uV);
931                         constraints->max_uV = max_uV;
932                 }
933         }
934
935         return 0;
936 }
937
938 static int machine_constraints_current(struct regulator_dev *rdev,
939         struct regulation_constraints *constraints)
940 {
941         const struct regulator_ops *ops = rdev->desc->ops;
942         int ret;
943
944         if (!constraints->min_uA && !constraints->max_uA)
945                 return 0;
946
947         if (constraints->min_uA > constraints->max_uA) {
948                 rdev_err(rdev, "Invalid current constraints\n");
949                 return -EINVAL;
950         }
951
952         if (!ops->set_current_limit || !ops->get_current_limit) {
953                 rdev_warn(rdev, "Operation of current configuration missing\n");
954                 return 0;
955         }
956
957         /* Set regulator current in constraints range */
958         ret = ops->set_current_limit(rdev, constraints->min_uA,
959                         constraints->max_uA);
960         if (ret < 0) {
961                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
962                 return ret;
963         }
964
965         return 0;
966 }
967
968 static int _regulator_do_enable(struct regulator_dev *rdev);
969
970 /**
971  * set_machine_constraints - sets regulator constraints
972  * @rdev: regulator source
973  * @constraints: constraints to apply
974  *
975  * Allows platform initialisation code to define and constrain
976  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
977  * Constraints *must* be set by platform code in order for some
978  * regulator operations to proceed i.e. set_voltage, set_current_limit,
979  * set_mode.
980  */
981 static int set_machine_constraints(struct regulator_dev *rdev,
982         const struct regulation_constraints *constraints)
983 {
984         int ret = 0;
985         const struct regulator_ops *ops = rdev->desc->ops;
986
987         if (constraints)
988                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
989                                             GFP_KERNEL);
990         else
991                 rdev->constraints = kzalloc(sizeof(*constraints),
992                                             GFP_KERNEL);
993         if (!rdev->constraints)
994                 return -ENOMEM;
995
996         ret = machine_constraints_voltage(rdev, rdev->constraints);
997         if (ret != 0)
998                 goto out;
999
1000         ret = machine_constraints_current(rdev, rdev->constraints);
1001         if (ret != 0)
1002                 goto out;
1003
1004         /* do we need to setup our suspend state */
1005         if (rdev->constraints->initial_state) {
1006                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1007                 if (ret < 0) {
1008                         rdev_err(rdev, "failed to set suspend state\n");
1009                         goto out;
1010                 }
1011         }
1012
1013         if (rdev->constraints->initial_mode) {
1014                 if (!ops->set_mode) {
1015                         rdev_err(rdev, "no set_mode operation\n");
1016                         ret = -EINVAL;
1017                         goto out;
1018                 }
1019
1020                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1021                 if (ret < 0) {
1022                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1023                         goto out;
1024                 }
1025         }
1026
1027         /* If the constraints say the regulator should be on at this point
1028          * and we have control then make sure it is enabled.
1029          */
1030         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1031                 ret = _regulator_do_enable(rdev);
1032                 if (ret < 0 && ret != -EINVAL) {
1033                         rdev_err(rdev, "failed to enable\n");
1034                         goto out;
1035                 }
1036         }
1037
1038         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1039                 && ops->set_ramp_delay) {
1040                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1041                 if (ret < 0) {
1042                         rdev_err(rdev, "failed to set ramp_delay\n");
1043                         goto out;
1044                 }
1045         }
1046
1047         print_constraints(rdev);
1048         return 0;
1049 out:
1050         kfree(rdev->constraints);
1051         rdev->constraints = NULL;
1052         return ret;
1053 }
1054
1055 /**
1056  * set_supply - set regulator supply regulator
1057  * @rdev: regulator name
1058  * @supply_rdev: supply regulator name
1059  *
1060  * Called by platform initialisation code to set the supply regulator for this
1061  * regulator. This ensures that a regulators supply will also be enabled by the
1062  * core if it's child is enabled.
1063  */
1064 static int set_supply(struct regulator_dev *rdev,
1065                       struct regulator_dev *supply_rdev)
1066 {
1067         int err;
1068
1069         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1070
1071         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1072         if (rdev->supply == NULL) {
1073                 err = -ENOMEM;
1074                 return err;
1075         }
1076         supply_rdev->open_count++;
1077
1078         return 0;
1079 }
1080
1081 /**
1082  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1083  * @rdev:         regulator source
1084  * @consumer_dev_name: dev_name() string for device supply applies to
1085  * @supply:       symbolic name for supply
1086  *
1087  * Allows platform initialisation code to map physical regulator
1088  * sources to symbolic names for supplies for use by devices.  Devices
1089  * should use these symbolic names to request regulators, avoiding the
1090  * need to provide board-specific regulator names as platform data.
1091  */
1092 static int set_consumer_device_supply(struct regulator_dev *rdev,
1093                                       const char *consumer_dev_name,
1094                                       const char *supply)
1095 {
1096         struct regulator_map *node;
1097         int has_dev;
1098
1099         if (supply == NULL)
1100                 return -EINVAL;
1101
1102         if (consumer_dev_name != NULL)
1103                 has_dev = 1;
1104         else
1105                 has_dev = 0;
1106
1107         list_for_each_entry(node, &regulator_map_list, list) {
1108                 if (node->dev_name && consumer_dev_name) {
1109                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1110                                 continue;
1111                 } else if (node->dev_name || consumer_dev_name) {
1112                         continue;
1113                 }
1114
1115                 if (strcmp(node->supply, supply) != 0)
1116                         continue;
1117
1118                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1119                          consumer_dev_name,
1120                          dev_name(&node->regulator->dev),
1121                          node->regulator->desc->name,
1122                          supply,
1123                          dev_name(&rdev->dev), rdev_get_name(rdev));
1124                 return -EBUSY;
1125         }
1126
1127         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1128         if (node == NULL)
1129                 return -ENOMEM;
1130
1131         node->regulator = rdev;
1132         node->supply = supply;
1133
1134         if (has_dev) {
1135                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1136                 if (node->dev_name == NULL) {
1137                         kfree(node);
1138                         return -ENOMEM;
1139                 }
1140         }
1141
1142         list_add(&node->list, &regulator_map_list);
1143         return 0;
1144 }
1145
1146 static void unset_regulator_supplies(struct regulator_dev *rdev)
1147 {
1148         struct regulator_map *node, *n;
1149
1150         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1151                 if (rdev == node->regulator) {
1152                         list_del(&node->list);
1153                         kfree(node->dev_name);
1154                         kfree(node);
1155                 }
1156         }
1157 }
1158
1159 #define REG_STR_SIZE    64
1160
1161 static struct regulator *create_regulator(struct regulator_dev *rdev,
1162                                           struct device *dev,
1163                                           const char *supply_name)
1164 {
1165         struct regulator *regulator;
1166         char buf[REG_STR_SIZE];
1167         int err, size;
1168
1169         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1170         if (regulator == NULL)
1171                 return NULL;
1172
1173         mutex_lock(&rdev->mutex);
1174         regulator->rdev = rdev;
1175         list_add(&regulator->list, &rdev->consumer_list);
1176
1177         if (dev) {
1178                 regulator->dev = dev;
1179
1180                 /* Add a link to the device sysfs entry */
1181                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1182                                  dev->kobj.name, supply_name);
1183                 if (size >= REG_STR_SIZE)
1184                         goto overflow_err;
1185
1186                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1187                 if (regulator->supply_name == NULL)
1188                         goto overflow_err;
1189
1190                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1191                                         buf);
1192                 if (err) {
1193                         rdev_warn(rdev, "could not add device link %s err %d\n",
1194                                   dev->kobj.name, err);
1195                         /* non-fatal */
1196                 }
1197         } else {
1198                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1199                 if (regulator->supply_name == NULL)
1200                         goto overflow_err;
1201         }
1202
1203         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1204                                                 rdev->debugfs);
1205         if (!regulator->debugfs) {
1206                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1207         } else {
1208                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1209                                    &regulator->uA_load);
1210                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1211                                    &regulator->min_uV);
1212                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1213                                    &regulator->max_uV);
1214         }
1215
1216         /*
1217          * Check now if the regulator is an always on regulator - if
1218          * it is then we don't need to do nearly so much work for
1219          * enable/disable calls.
1220          */
1221         if (!_regulator_can_change_status(rdev) &&
1222             _regulator_is_enabled(rdev))
1223                 regulator->always_on = true;
1224
1225         mutex_unlock(&rdev->mutex);
1226         return regulator;
1227 overflow_err:
1228         list_del(&regulator->list);
1229         kfree(regulator);
1230         mutex_unlock(&rdev->mutex);
1231         return NULL;
1232 }
1233
1234 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1235 {
1236         if (rdev->constraints && rdev->constraints->enable_time)
1237                 return rdev->constraints->enable_time;
1238         if (!rdev->desc->ops->enable_time)
1239                 return rdev->desc->enable_time;
1240         return rdev->desc->ops->enable_time(rdev);
1241 }
1242
1243 static struct regulator_supply_alias *regulator_find_supply_alias(
1244                 struct device *dev, const char *supply)
1245 {
1246         struct regulator_supply_alias *map;
1247
1248         list_for_each_entry(map, &regulator_supply_alias_list, list)
1249                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1250                         return map;
1251
1252         return NULL;
1253 }
1254
1255 static void regulator_supply_alias(struct device **dev, const char **supply)
1256 {
1257         struct regulator_supply_alias *map;
1258
1259         map = regulator_find_supply_alias(*dev, *supply);
1260         if (map) {
1261                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1262                                 *supply, map->alias_supply,
1263                                 dev_name(map->alias_dev));
1264                 *dev = map->alias_dev;
1265                 *supply = map->alias_supply;
1266         }
1267 }
1268
1269 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1270                                                   const char *supply,
1271                                                   int *ret)
1272 {
1273         struct regulator_dev *r;
1274         struct device_node *node;
1275         struct regulator_map *map;
1276         const char *devname = NULL;
1277
1278         regulator_supply_alias(&dev, &supply);
1279
1280         /* first do a dt based lookup */
1281         if (dev && dev->of_node) {
1282                 node = of_get_regulator(dev, supply);
1283                 if (node) {
1284                         list_for_each_entry(r, &regulator_list, list)
1285                                 if (r->dev.parent &&
1286                                         node == r->dev.of_node)
1287                                         return r;
1288                         *ret = -EPROBE_DEFER;
1289                         return NULL;
1290                 } else {
1291                         /*
1292                          * If we couldn't even get the node then it's
1293                          * not just that the device didn't register
1294                          * yet, there's no node and we'll never
1295                          * succeed.
1296                          */
1297                         *ret = -ENODEV;
1298                 }
1299         }
1300
1301         /* if not found, try doing it non-dt way */
1302         if (dev)
1303                 devname = dev_name(dev);
1304
1305         list_for_each_entry(r, &regulator_list, list)
1306                 if (strcmp(rdev_get_name(r), supply) == 0)
1307                         return r;
1308
1309         list_for_each_entry(map, &regulator_map_list, list) {
1310                 /* If the mapping has a device set up it must match */
1311                 if (map->dev_name &&
1312                     (!devname || strcmp(map->dev_name, devname)))
1313                         continue;
1314
1315                 if (strcmp(map->supply, supply) == 0)
1316                         return map->regulator;
1317         }
1318
1319
1320         return NULL;
1321 }
1322
1323 /* Internal regulator request function */
1324 static struct regulator *_regulator_get(struct device *dev, const char *id,
1325                                         bool exclusive, bool allow_dummy)
1326 {
1327         struct regulator_dev *rdev;
1328         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1329         const char *devname = NULL;
1330         int ret;
1331
1332         if (id == NULL) {
1333                 pr_err("get() with no identifier\n");
1334                 return ERR_PTR(-EINVAL);
1335         }
1336
1337         if (dev)
1338                 devname = dev_name(dev);
1339
1340         if (have_full_constraints())
1341                 ret = -ENODEV;
1342         else
1343                 ret = -EPROBE_DEFER;
1344
1345         mutex_lock(&regulator_list_mutex);
1346
1347         rdev = regulator_dev_lookup(dev, id, &ret);
1348         if (rdev)
1349                 goto found;
1350
1351         regulator = ERR_PTR(ret);
1352
1353         /*
1354          * If we have return value from dev_lookup fail, we do not expect to
1355          * succeed, so, quit with appropriate error value
1356          */
1357         if (ret && ret != -ENODEV)
1358                 goto out;
1359
1360         if (!devname)
1361                 devname = "deviceless";
1362
1363         /*
1364          * Assume that a regulator is physically present and enabled
1365          * even if it isn't hooked up and just provide a dummy.
1366          */
1367         if (have_full_constraints() && allow_dummy) {
1368                 pr_warn("%s supply %s not found, using dummy regulator\n",
1369                         devname, id);
1370
1371                 rdev = dummy_regulator_rdev;
1372                 goto found;
1373         /* Don't log an error when called from regulator_get_optional() */
1374         } else if (!have_full_constraints() || exclusive) {
1375                 dev_warn(dev, "dummy supplies not allowed\n");
1376         }
1377
1378         mutex_unlock(&regulator_list_mutex);
1379         return regulator;
1380
1381 found:
1382         if (rdev->exclusive) {
1383                 regulator = ERR_PTR(-EPERM);
1384                 goto out;
1385         }
1386
1387         if (exclusive && rdev->open_count) {
1388                 regulator = ERR_PTR(-EBUSY);
1389                 goto out;
1390         }
1391
1392         if (!try_module_get(rdev->owner))
1393                 goto out;
1394
1395         regulator = create_regulator(rdev, dev, id);
1396         if (regulator == NULL) {
1397                 regulator = ERR_PTR(-ENOMEM);
1398                 module_put(rdev->owner);
1399                 goto out;
1400         }
1401
1402         rdev->open_count++;
1403         if (exclusive) {
1404                 rdev->exclusive = 1;
1405
1406                 ret = _regulator_is_enabled(rdev);
1407                 if (ret > 0)
1408                         rdev->use_count = 1;
1409                 else
1410                         rdev->use_count = 0;
1411         }
1412
1413 out:
1414         mutex_unlock(&regulator_list_mutex);
1415
1416         return regulator;
1417 }
1418
1419 /**
1420  * regulator_get - lookup and obtain a reference to a regulator.
1421  * @dev: device for regulator "consumer"
1422  * @id: Supply name or regulator ID.
1423  *
1424  * Returns a struct regulator corresponding to the regulator producer,
1425  * or IS_ERR() condition containing errno.
1426  *
1427  * Use of supply names configured via regulator_set_device_supply() is
1428  * strongly encouraged.  It is recommended that the supply name used
1429  * should match the name used for the supply and/or the relevant
1430  * device pins in the datasheet.
1431  */
1432 struct regulator *regulator_get(struct device *dev, const char *id)
1433 {
1434         return _regulator_get(dev, id, false, true);
1435 }
1436 EXPORT_SYMBOL_GPL(regulator_get);
1437
1438 /**
1439  * regulator_get_exclusive - obtain exclusive access to a regulator.
1440  * @dev: device for regulator "consumer"
1441  * @id: Supply name or regulator ID.
1442  *
1443  * Returns a struct regulator corresponding to the regulator producer,
1444  * or IS_ERR() condition containing errno.  Other consumers will be
1445  * unable to obtain this regulator while this reference is held and the
1446  * use count for the regulator will be initialised to reflect the current
1447  * state of the regulator.
1448  *
1449  * This is intended for use by consumers which cannot tolerate shared
1450  * use of the regulator such as those which need to force the
1451  * regulator off for correct operation of the hardware they are
1452  * controlling.
1453  *
1454  * Use of supply names configured via regulator_set_device_supply() is
1455  * strongly encouraged.  It is recommended that the supply name used
1456  * should match the name used for the supply and/or the relevant
1457  * device pins in the datasheet.
1458  */
1459 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1460 {
1461         return _regulator_get(dev, id, true, false);
1462 }
1463 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1464
1465 /**
1466  * regulator_get_optional - obtain optional access to a regulator.
1467  * @dev: device for regulator "consumer"
1468  * @id: Supply name or regulator ID.
1469  *
1470  * Returns a struct regulator corresponding to the regulator producer,
1471  * or IS_ERR() condition containing errno.
1472  *
1473  * This is intended for use by consumers for devices which can have
1474  * some supplies unconnected in normal use, such as some MMC devices.
1475  * It can allow the regulator core to provide stub supplies for other
1476  * supplies requested using normal regulator_get() calls without
1477  * disrupting the operation of drivers that can handle absent
1478  * supplies.
1479  *
1480  * Use of supply names configured via regulator_set_device_supply() is
1481  * strongly encouraged.  It is recommended that the supply name used
1482  * should match the name used for the supply and/or the relevant
1483  * device pins in the datasheet.
1484  */
1485 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1486 {
1487         return _regulator_get(dev, id, false, false);
1488 }
1489 EXPORT_SYMBOL_GPL(regulator_get_optional);
1490
1491 /* Locks held by regulator_put() */
1492 static void _regulator_put(struct regulator *regulator)
1493 {
1494         struct regulator_dev *rdev;
1495
1496         if (regulator == NULL || IS_ERR(regulator))
1497                 return;
1498
1499         rdev = regulator->rdev;
1500
1501         debugfs_remove_recursive(regulator->debugfs);
1502
1503         /* remove any sysfs entries */
1504         if (regulator->dev)
1505                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1506         kfree(regulator->supply_name);
1507         list_del(&regulator->list);
1508         kfree(regulator);
1509
1510         rdev->open_count--;
1511         rdev->exclusive = 0;
1512
1513         module_put(rdev->owner);
1514 }
1515
1516 /**
1517  * regulator_put - "free" the regulator source
1518  * @regulator: regulator source
1519  *
1520  * Note: drivers must ensure that all regulator_enable calls made on this
1521  * regulator source are balanced by regulator_disable calls prior to calling
1522  * this function.
1523  */
1524 void regulator_put(struct regulator *regulator)
1525 {
1526         mutex_lock(&regulator_list_mutex);
1527         _regulator_put(regulator);
1528         mutex_unlock(&regulator_list_mutex);
1529 }
1530 EXPORT_SYMBOL_GPL(regulator_put);
1531
1532 /**
1533  * regulator_register_supply_alias - Provide device alias for supply lookup
1534  *
1535  * @dev: device that will be given as the regulator "consumer"
1536  * @id: Supply name or regulator ID
1537  * @alias_dev: device that should be used to lookup the supply
1538  * @alias_id: Supply name or regulator ID that should be used to lookup the
1539  * supply
1540  *
1541  * All lookups for id on dev will instead be conducted for alias_id on
1542  * alias_dev.
1543  */
1544 int regulator_register_supply_alias(struct device *dev, const char *id,
1545                                     struct device *alias_dev,
1546                                     const char *alias_id)
1547 {
1548         struct regulator_supply_alias *map;
1549
1550         map = regulator_find_supply_alias(dev, id);
1551         if (map)
1552                 return -EEXIST;
1553
1554         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1555         if (!map)
1556                 return -ENOMEM;
1557
1558         map->src_dev = dev;
1559         map->src_supply = id;
1560         map->alias_dev = alias_dev;
1561         map->alias_supply = alias_id;
1562
1563         list_add(&map->list, &regulator_supply_alias_list);
1564
1565         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1566                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1567
1568         return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1571
1572 /**
1573  * regulator_unregister_supply_alias - Remove device alias
1574  *
1575  * @dev: device that will be given as the regulator "consumer"
1576  * @id: Supply name or regulator ID
1577  *
1578  * Remove a lookup alias if one exists for id on dev.
1579  */
1580 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1581 {
1582         struct regulator_supply_alias *map;
1583
1584         map = regulator_find_supply_alias(dev, id);
1585         if (map) {
1586                 list_del(&map->list);
1587                 kfree(map);
1588         }
1589 }
1590 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1591
1592 /**
1593  * regulator_bulk_register_supply_alias - register multiple aliases
1594  *
1595  * @dev: device that will be given as the regulator "consumer"
1596  * @id: List of supply names or regulator IDs
1597  * @alias_dev: device that should be used to lookup the supply
1598  * @alias_id: List of supply names or regulator IDs that should be used to
1599  * lookup the supply
1600  * @num_id: Number of aliases to register
1601  *
1602  * @return 0 on success, an errno on failure.
1603  *
1604  * This helper function allows drivers to register several supply
1605  * aliases in one operation.  If any of the aliases cannot be
1606  * registered any aliases that were registered will be removed
1607  * before returning to the caller.
1608  */
1609 int regulator_bulk_register_supply_alias(struct device *dev,
1610                                          const char *const *id,
1611                                          struct device *alias_dev,
1612                                          const char *const *alias_id,
1613                                          int num_id)
1614 {
1615         int i;
1616         int ret;
1617
1618         for (i = 0; i < num_id; ++i) {
1619                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1620                                                       alias_id[i]);
1621                 if (ret < 0)
1622                         goto err;
1623         }
1624
1625         return 0;
1626
1627 err:
1628         dev_err(dev,
1629                 "Failed to create supply alias %s,%s -> %s,%s\n",
1630                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1631
1632         while (--i >= 0)
1633                 regulator_unregister_supply_alias(dev, id[i]);
1634
1635         return ret;
1636 }
1637 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1638
1639 /**
1640  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1641  *
1642  * @dev: device that will be given as the regulator "consumer"
1643  * @id: List of supply names or regulator IDs
1644  * @num_id: Number of aliases to unregister
1645  *
1646  * This helper function allows drivers to unregister several supply
1647  * aliases in one operation.
1648  */
1649 void regulator_bulk_unregister_supply_alias(struct device *dev,
1650                                             const char *const *id,
1651                                             int num_id)
1652 {
1653         int i;
1654
1655         for (i = 0; i < num_id; ++i)
1656                 regulator_unregister_supply_alias(dev, id[i]);
1657 }
1658 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1659
1660
1661 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1662 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1663                                 const struct regulator_config *config)
1664 {
1665         struct regulator_enable_gpio *pin;
1666         struct gpio_desc *gpiod;
1667         int ret;
1668
1669         gpiod = gpio_to_desc(config->ena_gpio);
1670
1671         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1672                 if (pin->gpiod == gpiod) {
1673                         rdev_dbg(rdev, "GPIO %d is already used\n",
1674                                 config->ena_gpio);
1675                         goto update_ena_gpio_to_rdev;
1676                 }
1677         }
1678
1679         ret = gpio_request_one(config->ena_gpio,
1680                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1681                                 rdev_get_name(rdev));
1682         if (ret)
1683                 return ret;
1684
1685         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1686         if (pin == NULL) {
1687                 gpio_free(config->ena_gpio);
1688                 return -ENOMEM;
1689         }
1690
1691         pin->gpiod = gpiod;
1692         pin->ena_gpio_invert = config->ena_gpio_invert;
1693         list_add(&pin->list, &regulator_ena_gpio_list);
1694
1695 update_ena_gpio_to_rdev:
1696         pin->request_count++;
1697         rdev->ena_pin = pin;
1698         return 0;
1699 }
1700
1701 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1702 {
1703         struct regulator_enable_gpio *pin, *n;
1704
1705         if (!rdev->ena_pin)
1706                 return;
1707
1708         /* Free the GPIO only in case of no use */
1709         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1710                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1711                         if (pin->request_count <= 1) {
1712                                 pin->request_count = 0;
1713                                 gpiod_put(pin->gpiod);
1714                                 list_del(&pin->list);
1715                                 kfree(pin);
1716                         } else {
1717                                 pin->request_count--;
1718                         }
1719                 }
1720         }
1721 }
1722
1723 /**
1724  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1725  * @rdev: regulator_dev structure
1726  * @enable: enable GPIO at initial use?
1727  *
1728  * GPIO is enabled in case of initial use. (enable_count is 0)
1729  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1730  */
1731 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1732 {
1733         struct regulator_enable_gpio *pin = rdev->ena_pin;
1734
1735         if (!pin)
1736                 return -EINVAL;
1737
1738         if (enable) {
1739                 /* Enable GPIO at initial use */
1740                 if (pin->enable_count == 0)
1741                         gpiod_set_value_cansleep(pin->gpiod,
1742                                                  !pin->ena_gpio_invert);
1743
1744                 pin->enable_count++;
1745         } else {
1746                 if (pin->enable_count > 1) {
1747                         pin->enable_count--;
1748                         return 0;
1749                 }
1750
1751                 /* Disable GPIO if not used */
1752                 if (pin->enable_count <= 1) {
1753                         gpiod_set_value_cansleep(pin->gpiod,
1754                                                  pin->ena_gpio_invert);
1755                         pin->enable_count = 0;
1756                 }
1757         }
1758
1759         return 0;
1760 }
1761
1762 /**
1763  * _regulator_enable_delay - a delay helper function
1764  * @delay: time to delay in microseconds
1765  *
1766  * Delay for the requested amount of time as per the guidelines in:
1767  *
1768  *     Documentation/timers/timers-howto.txt
1769  *
1770  * The assumption here is that regulators will never be enabled in
1771  * atomic context and therefore sleeping functions can be used.
1772  */
1773 static void _regulator_enable_delay(unsigned int delay)
1774 {
1775         unsigned int ms = delay / 1000;
1776         unsigned int us = delay % 1000;
1777
1778         if (ms > 0) {
1779                 /*
1780                  * For small enough values, handle super-millisecond
1781                  * delays in the usleep_range() call below.
1782                  */
1783                 if (ms < 20)
1784                         us += ms * 1000;
1785                 else
1786                         msleep(ms);
1787         }
1788
1789         /*
1790          * Give the scheduler some room to coalesce with any other
1791          * wakeup sources. For delays shorter than 10 us, don't even
1792          * bother setting up high-resolution timers and just busy-
1793          * loop.
1794          */
1795         if (us >= 10)
1796                 usleep_range(us, us + 100);
1797         else
1798                 udelay(us);
1799 }
1800
1801 static int _regulator_do_enable(struct regulator_dev *rdev)
1802 {
1803         int ret, delay;
1804
1805         /* Query before enabling in case configuration dependent.  */
1806         ret = _regulator_get_enable_time(rdev);
1807         if (ret >= 0) {
1808                 delay = ret;
1809         } else {
1810                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1811                 delay = 0;
1812         }
1813
1814         trace_regulator_enable(rdev_get_name(rdev));
1815
1816         if (rdev->ena_pin) {
1817                 ret = regulator_ena_gpio_ctrl(rdev, true);
1818                 if (ret < 0)
1819                         return ret;
1820                 rdev->ena_gpio_state = 1;
1821         } else if (rdev->desc->ops->enable) {
1822                 ret = rdev->desc->ops->enable(rdev);
1823                 if (ret < 0)
1824                         return ret;
1825         } else {
1826                 return -EINVAL;
1827         }
1828
1829         /* Allow the regulator to ramp; it would be useful to extend
1830          * this for bulk operations so that the regulators can ramp
1831          * together.  */
1832         trace_regulator_enable_delay(rdev_get_name(rdev));
1833
1834         _regulator_enable_delay(delay);
1835
1836         trace_regulator_enable_complete(rdev_get_name(rdev));
1837
1838         return 0;
1839 }
1840
1841 /* locks held by regulator_enable() */
1842 static int _regulator_enable(struct regulator_dev *rdev)
1843 {
1844         int ret;
1845
1846         /* check voltage and requested load before enabling */
1847         if (rdev->constraints &&
1848             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1849                 drms_uA_update(rdev);
1850
1851         if (rdev->use_count == 0) {
1852                 /* The regulator may on if it's not switchable or left on */
1853                 ret = _regulator_is_enabled(rdev);
1854                 if (ret == -EINVAL || ret == 0) {
1855                         if (!_regulator_can_change_status(rdev))
1856                                 return -EPERM;
1857
1858                         ret = _regulator_do_enable(rdev);
1859                         if (ret < 0)
1860                                 return ret;
1861
1862                 } else if (ret < 0) {
1863                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1864                         return ret;
1865                 }
1866                 /* Fallthrough on positive return values - already enabled */
1867         }
1868
1869         rdev->use_count++;
1870
1871         return 0;
1872 }
1873
1874 /**
1875  * regulator_enable - enable regulator output
1876  * @regulator: regulator source
1877  *
1878  * Request that the regulator be enabled with the regulator output at
1879  * the predefined voltage or current value.  Calls to regulator_enable()
1880  * must be balanced with calls to regulator_disable().
1881  *
1882  * NOTE: the output value can be set by other drivers, boot loader or may be
1883  * hardwired in the regulator.
1884  */
1885 int regulator_enable(struct regulator *regulator)
1886 {
1887         struct regulator_dev *rdev = regulator->rdev;
1888         int ret = 0;
1889
1890         if (regulator->always_on)
1891                 return 0;
1892
1893         if (rdev->supply) {
1894                 ret = regulator_enable(rdev->supply);
1895                 if (ret != 0)
1896                         return ret;
1897         }
1898
1899         mutex_lock(&rdev->mutex);
1900         ret = _regulator_enable(rdev);
1901         mutex_unlock(&rdev->mutex);
1902
1903         if (ret != 0 && rdev->supply)
1904                 regulator_disable(rdev->supply);
1905
1906         return ret;
1907 }
1908 EXPORT_SYMBOL_GPL(regulator_enable);
1909
1910 static int _regulator_do_disable(struct regulator_dev *rdev)
1911 {
1912         int ret;
1913
1914         trace_regulator_disable(rdev_get_name(rdev));
1915
1916         if (rdev->ena_pin) {
1917                 ret = regulator_ena_gpio_ctrl(rdev, false);
1918                 if (ret < 0)
1919                         return ret;
1920                 rdev->ena_gpio_state = 0;
1921
1922         } else if (rdev->desc->ops->disable) {
1923                 ret = rdev->desc->ops->disable(rdev);
1924                 if (ret != 0)
1925                         return ret;
1926         }
1927
1928         trace_regulator_disable_complete(rdev_get_name(rdev));
1929
1930         return 0;
1931 }
1932
1933 /* locks held by regulator_disable() */
1934 static int _regulator_disable(struct regulator_dev *rdev)
1935 {
1936         int ret = 0;
1937
1938         if (WARN(rdev->use_count <= 0,
1939                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1940                 return -EIO;
1941
1942         /* are we the last user and permitted to disable ? */
1943         if (rdev->use_count == 1 &&
1944             (rdev->constraints && !rdev->constraints->always_on)) {
1945
1946                 /* we are last user */
1947                 if (_regulator_can_change_status(rdev)) {
1948                         ret = _regulator_do_disable(rdev);
1949                         if (ret < 0) {
1950                                 rdev_err(rdev, "failed to disable\n");
1951                                 return ret;
1952                         }
1953                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1954                                         NULL);
1955                 }
1956
1957                 rdev->use_count = 0;
1958         } else if (rdev->use_count > 1) {
1959
1960                 if (rdev->constraints &&
1961                         (rdev->constraints->valid_ops_mask &
1962                         REGULATOR_CHANGE_DRMS))
1963                         drms_uA_update(rdev);
1964
1965                 rdev->use_count--;
1966         }
1967
1968         return ret;
1969 }
1970
1971 /**
1972  * regulator_disable - disable regulator output
1973  * @regulator: regulator source
1974  *
1975  * Disable the regulator output voltage or current.  Calls to
1976  * regulator_enable() must be balanced with calls to
1977  * regulator_disable().
1978  *
1979  * NOTE: this will only disable the regulator output if no other consumer
1980  * devices have it enabled, the regulator device supports disabling and
1981  * machine constraints permit this operation.
1982  */
1983 int regulator_disable(struct regulator *regulator)
1984 {
1985         struct regulator_dev *rdev = regulator->rdev;
1986         int ret = 0;
1987
1988         if (regulator->always_on)
1989                 return 0;
1990
1991         mutex_lock(&rdev->mutex);
1992         ret = _regulator_disable(rdev);
1993         mutex_unlock(&rdev->mutex);
1994
1995         if (ret == 0 && rdev->supply)
1996                 regulator_disable(rdev->supply);
1997
1998         return ret;
1999 }
2000 EXPORT_SYMBOL_GPL(regulator_disable);
2001
2002 /* locks held by regulator_force_disable() */
2003 static int _regulator_force_disable(struct regulator_dev *rdev)
2004 {
2005         int ret = 0;
2006
2007         ret = _regulator_do_disable(rdev);
2008         if (ret < 0) {
2009                 rdev_err(rdev, "failed to force disable\n");
2010                 return ret;
2011         }
2012
2013         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2014                         REGULATOR_EVENT_DISABLE, NULL);
2015
2016         return 0;
2017 }
2018
2019 /**
2020  * regulator_force_disable - force disable regulator output
2021  * @regulator: regulator source
2022  *
2023  * Forcibly disable the regulator output voltage or current.
2024  * NOTE: this *will* disable the regulator output even if other consumer
2025  * devices have it enabled. This should be used for situations when device
2026  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2027  */
2028 int regulator_force_disable(struct regulator *regulator)
2029 {
2030         struct regulator_dev *rdev = regulator->rdev;
2031         int ret;
2032
2033         mutex_lock(&rdev->mutex);
2034         regulator->uA_load = 0;
2035         ret = _regulator_force_disable(regulator->rdev);
2036         mutex_unlock(&rdev->mutex);
2037
2038         if (rdev->supply)
2039                 while (rdev->open_count--)
2040                         regulator_disable(rdev->supply);
2041
2042         return ret;
2043 }
2044 EXPORT_SYMBOL_GPL(regulator_force_disable);
2045
2046 static void regulator_disable_work(struct work_struct *work)
2047 {
2048         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2049                                                   disable_work.work);
2050         int count, i, ret;
2051
2052         mutex_lock(&rdev->mutex);
2053
2054         BUG_ON(!rdev->deferred_disables);
2055
2056         count = rdev->deferred_disables;
2057         rdev->deferred_disables = 0;
2058
2059         for (i = 0; i < count; i++) {
2060                 ret = _regulator_disable(rdev);
2061                 if (ret != 0)
2062                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2063         }
2064
2065         mutex_unlock(&rdev->mutex);
2066
2067         if (rdev->supply) {
2068                 for (i = 0; i < count; i++) {
2069                         ret = regulator_disable(rdev->supply);
2070                         if (ret != 0) {
2071                                 rdev_err(rdev,
2072                                          "Supply disable failed: %d\n", ret);
2073                         }
2074                 }
2075         }
2076 }
2077
2078 /**
2079  * regulator_disable_deferred - disable regulator output with delay
2080  * @regulator: regulator source
2081  * @ms: miliseconds until the regulator is disabled
2082  *
2083  * Execute regulator_disable() on the regulator after a delay.  This
2084  * is intended for use with devices that require some time to quiesce.
2085  *
2086  * NOTE: this will only disable the regulator output if no other consumer
2087  * devices have it enabled, the regulator device supports disabling and
2088  * machine constraints permit this operation.
2089  */
2090 int regulator_disable_deferred(struct regulator *regulator, int ms)
2091 {
2092         struct regulator_dev *rdev = regulator->rdev;
2093         int ret;
2094
2095         if (regulator->always_on)
2096                 return 0;
2097
2098         if (!ms)
2099                 return regulator_disable(regulator);
2100
2101         mutex_lock(&rdev->mutex);
2102         rdev->deferred_disables++;
2103         mutex_unlock(&rdev->mutex);
2104
2105         ret = queue_delayed_work(system_power_efficient_wq,
2106                                  &rdev->disable_work,
2107                                  msecs_to_jiffies(ms));
2108         if (ret < 0)
2109                 return ret;
2110         else
2111                 return 0;
2112 }
2113 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2114
2115 static int _regulator_is_enabled(struct regulator_dev *rdev)
2116 {
2117         /* A GPIO control always takes precedence */
2118         if (rdev->ena_pin)
2119                 return rdev->ena_gpio_state;
2120
2121         /* If we don't know then assume that the regulator is always on */
2122         if (!rdev->desc->ops->is_enabled)
2123                 return 1;
2124
2125         return rdev->desc->ops->is_enabled(rdev);
2126 }
2127
2128 /**
2129  * regulator_is_enabled - is the regulator output enabled
2130  * @regulator: regulator source
2131  *
2132  * Returns positive if the regulator driver backing the source/client
2133  * has requested that the device be enabled, zero if it hasn't, else a
2134  * negative errno code.
2135  *
2136  * Note that the device backing this regulator handle can have multiple
2137  * users, so it might be enabled even if regulator_enable() was never
2138  * called for this particular source.
2139  */
2140 int regulator_is_enabled(struct regulator *regulator)
2141 {
2142         int ret;
2143
2144         if (regulator->always_on)
2145                 return 1;
2146
2147         mutex_lock(&regulator->rdev->mutex);
2148         ret = _regulator_is_enabled(regulator->rdev);
2149         mutex_unlock(&regulator->rdev->mutex);
2150
2151         return ret;
2152 }
2153 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2154
2155 /**
2156  * regulator_can_change_voltage - check if regulator can change voltage
2157  * @regulator: regulator source
2158  *
2159  * Returns positive if the regulator driver backing the source/client
2160  * can change its voltage, false otherwise. Useful for detecting fixed
2161  * or dummy regulators and disabling voltage change logic in the client
2162  * driver.
2163  */
2164 int regulator_can_change_voltage(struct regulator *regulator)
2165 {
2166         struct regulator_dev    *rdev = regulator->rdev;
2167
2168         if (rdev->constraints &&
2169             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2170                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2171                         return 1;
2172
2173                 if (rdev->desc->continuous_voltage_range &&
2174                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2175                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2176                         return 1;
2177         }
2178
2179         return 0;
2180 }
2181 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2182
2183 /**
2184  * regulator_count_voltages - count regulator_list_voltage() selectors
2185  * @regulator: regulator source
2186  *
2187  * Returns number of selectors, or negative errno.  Selectors are
2188  * numbered starting at zero, and typically correspond to bitfields
2189  * in hardware registers.
2190  */
2191 int regulator_count_voltages(struct regulator *regulator)
2192 {
2193         struct regulator_dev    *rdev = regulator->rdev;
2194
2195         if (rdev->desc->n_voltages)
2196                 return rdev->desc->n_voltages;
2197
2198         if (!rdev->supply)
2199                 return -EINVAL;
2200
2201         return regulator_count_voltages(rdev->supply);
2202 }
2203 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2204
2205 /**
2206  * regulator_list_voltage - enumerate supported voltages
2207  * @regulator: regulator source
2208  * @selector: identify voltage to list
2209  * Context: can sleep
2210  *
2211  * Returns a voltage that can be passed to @regulator_set_voltage(),
2212  * zero if this selector code can't be used on this system, or a
2213  * negative errno.
2214  */
2215 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2216 {
2217         struct regulator_dev *rdev = regulator->rdev;
2218         const struct regulator_ops *ops = rdev->desc->ops;
2219         int ret;
2220
2221         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2222                 return rdev->desc->fixed_uV;
2223
2224         if (ops->list_voltage) {
2225                 if (selector >= rdev->desc->n_voltages)
2226                         return -EINVAL;
2227                 mutex_lock(&rdev->mutex);
2228                 ret = ops->list_voltage(rdev, selector);
2229                 mutex_unlock(&rdev->mutex);
2230         } else if (rdev->supply) {
2231                 ret = regulator_list_voltage(rdev->supply, selector);
2232         } else {
2233                 return -EINVAL;
2234         }
2235
2236         if (ret > 0) {
2237                 if (ret < rdev->constraints->min_uV)
2238                         ret = 0;
2239                 else if (ret > rdev->constraints->max_uV)
2240                         ret = 0;
2241         }
2242
2243         return ret;
2244 }
2245 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2246
2247 /**
2248  * regulator_get_regmap - get the regulator's register map
2249  * @regulator: regulator source
2250  *
2251  * Returns the register map for the given regulator, or an ERR_PTR value
2252  * if the regulator doesn't use regmap.
2253  */
2254 struct regmap *regulator_get_regmap(struct regulator *regulator)
2255 {
2256         struct regmap *map = regulator->rdev->regmap;
2257
2258         return map ? map : ERR_PTR(-EOPNOTSUPP);
2259 }
2260
2261 /**
2262  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2263  * @regulator: regulator source
2264  * @vsel_reg: voltage selector register, output parameter
2265  * @vsel_mask: mask for voltage selector bitfield, output parameter
2266  *
2267  * Returns the hardware register offset and bitmask used for setting the
2268  * regulator voltage. This might be useful when configuring voltage-scaling
2269  * hardware or firmware that can make I2C requests behind the kernel's back,
2270  * for example.
2271  *
2272  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2273  * and 0 is returned, otherwise a negative errno is returned.
2274  */
2275 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2276                                          unsigned *vsel_reg,
2277                                          unsigned *vsel_mask)
2278 {
2279         struct regulator_dev    *rdev = regulator->rdev;
2280         struct regulator_ops    *ops = rdev->desc->ops;
2281
2282         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2283                 return -EOPNOTSUPP;
2284
2285          *vsel_reg = rdev->desc->vsel_reg;
2286          *vsel_mask = rdev->desc->vsel_mask;
2287
2288          return 0;
2289 }
2290 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2291
2292 /**
2293  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2294  * @regulator: regulator source
2295  * @selector: identify voltage to list
2296  *
2297  * Converts the selector to a hardware-specific voltage selector that can be
2298  * directly written to the regulator registers. The address of the voltage
2299  * register can be determined by calling @regulator_get_hardware_vsel_register.
2300  *
2301  * On error a negative errno is returned.
2302  */
2303 int regulator_list_hardware_vsel(struct regulator *regulator,
2304                                  unsigned selector)
2305 {
2306         struct regulator_dev    *rdev = regulator->rdev;
2307         struct regulator_ops    *ops = rdev->desc->ops;
2308
2309         if (selector >= rdev->desc->n_voltages)
2310                 return -EINVAL;
2311         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2312                 return -EOPNOTSUPP;
2313
2314         return selector;
2315 }
2316 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2317
2318 /**
2319  * regulator_get_linear_step - return the voltage step size between VSEL values
2320  * @regulator: regulator source
2321  *
2322  * Returns the voltage step size between VSEL values for linear
2323  * regulators, or return 0 if the regulator isn't a linear regulator.
2324  */
2325 unsigned int regulator_get_linear_step(struct regulator *regulator)
2326 {
2327         struct regulator_dev *rdev = regulator->rdev;
2328
2329         return rdev->desc->uV_step;
2330 }
2331 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2332
2333 /**
2334  * regulator_is_supported_voltage - check if a voltage range can be supported
2335  *
2336  * @regulator: Regulator to check.
2337  * @min_uV: Minimum required voltage in uV.
2338  * @max_uV: Maximum required voltage in uV.
2339  *
2340  * Returns a boolean or a negative error code.
2341  */
2342 int regulator_is_supported_voltage(struct regulator *regulator,
2343                                    int min_uV, int max_uV)
2344 {
2345         struct regulator_dev *rdev = regulator->rdev;
2346         int i, voltages, ret;
2347
2348         /* If we can't change voltage check the current voltage */
2349         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2350                 ret = regulator_get_voltage(regulator);
2351                 if (ret >= 0)
2352                         return min_uV <= ret && ret <= max_uV;
2353                 else
2354                         return ret;
2355         }
2356
2357         /* Any voltage within constrains range is fine? */
2358         if (rdev->desc->continuous_voltage_range)
2359                 return min_uV >= rdev->constraints->min_uV &&
2360                                 max_uV <= rdev->constraints->max_uV;
2361
2362         ret = regulator_count_voltages(regulator);
2363         if (ret < 0)
2364                 return ret;
2365         voltages = ret;
2366
2367         for (i = 0; i < voltages; i++) {
2368                 ret = regulator_list_voltage(regulator, i);
2369
2370                 if (ret >= min_uV && ret <= max_uV)
2371                         return 1;
2372         }
2373
2374         return 0;
2375 }
2376 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2377
2378 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2379                                      int min_uV, int max_uV)
2380 {
2381         int ret;
2382         int delay = 0;
2383         int best_val = 0;
2384         unsigned int selector;
2385         int old_selector = -1;
2386
2387         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2388
2389         min_uV += rdev->constraints->uV_offset;
2390         max_uV += rdev->constraints->uV_offset;
2391
2392         /*
2393          * If we can't obtain the old selector there is not enough
2394          * info to call set_voltage_time_sel().
2395          */
2396         if (_regulator_is_enabled(rdev) &&
2397             rdev->desc->ops->set_voltage_time_sel &&
2398             rdev->desc->ops->get_voltage_sel) {
2399                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2400                 if (old_selector < 0)
2401                         return old_selector;
2402         }
2403
2404         if (rdev->desc->ops->set_voltage) {
2405                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2406                                                    &selector);
2407
2408                 if (ret >= 0) {
2409                         if (rdev->desc->ops->list_voltage)
2410                                 best_val = rdev->desc->ops->list_voltage(rdev,
2411                                                                          selector);
2412                         else
2413                                 best_val = _regulator_get_voltage(rdev);
2414                 }
2415
2416         } else if (rdev->desc->ops->set_voltage_sel) {
2417                 if (rdev->desc->ops->map_voltage) {
2418                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2419                                                            max_uV);
2420                 } else {
2421                         if (rdev->desc->ops->list_voltage ==
2422                             regulator_list_voltage_linear)
2423                                 ret = regulator_map_voltage_linear(rdev,
2424                                                                 min_uV, max_uV);
2425                         else if (rdev->desc->ops->list_voltage ==
2426                                  regulator_list_voltage_linear_range)
2427                                 ret = regulator_map_voltage_linear_range(rdev,
2428                                                                 min_uV, max_uV);
2429                         else
2430                                 ret = regulator_map_voltage_iterate(rdev,
2431                                                                 min_uV, max_uV);
2432                 }
2433
2434                 if (ret >= 0) {
2435                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2436                         if (min_uV <= best_val && max_uV >= best_val) {
2437                                 selector = ret;
2438                                 if (old_selector == selector)
2439                                         ret = 0;
2440                                 else
2441                                         ret = rdev->desc->ops->set_voltage_sel(
2442                                                                 rdev, ret);
2443                         } else {
2444                                 ret = -EINVAL;
2445                         }
2446                 }
2447         } else {
2448                 ret = -EINVAL;
2449         }
2450
2451         /* Call set_voltage_time_sel if successfully obtained old_selector */
2452         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2453                 && old_selector != selector) {
2454
2455                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2456                                                 old_selector, selector);
2457                 if (delay < 0) {
2458                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2459                                   delay);
2460                         delay = 0;
2461                 }
2462
2463                 /* Insert any necessary delays */
2464                 if (delay >= 1000) {
2465                         mdelay(delay / 1000);
2466                         udelay(delay % 1000);
2467                 } else if (delay) {
2468                         udelay(delay);
2469                 }
2470         }
2471
2472         if (ret == 0 && best_val >= 0) {
2473                 unsigned long data = best_val;
2474
2475                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2476                                      (void *)data);
2477         }
2478
2479         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2480
2481         return ret;
2482 }
2483
2484 /**
2485  * regulator_set_voltage - set regulator output voltage
2486  * @regulator: regulator source
2487  * @min_uV: Minimum required voltage in uV
2488  * @max_uV: Maximum acceptable voltage in uV
2489  *
2490  * Sets a voltage regulator to the desired output voltage. This can be set
2491  * during any regulator state. IOW, regulator can be disabled or enabled.
2492  *
2493  * If the regulator is enabled then the voltage will change to the new value
2494  * immediately otherwise if the regulator is disabled the regulator will
2495  * output at the new voltage when enabled.
2496  *
2497  * NOTE: If the regulator is shared between several devices then the lowest
2498  * request voltage that meets the system constraints will be used.
2499  * Regulator system constraints must be set for this regulator before
2500  * calling this function otherwise this call will fail.
2501  */
2502 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2503 {
2504         struct regulator_dev *rdev = regulator->rdev;
2505         int ret = 0;
2506         int old_min_uV, old_max_uV;
2507         int current_uV;
2508
2509         mutex_lock(&rdev->mutex);
2510
2511         /* If we're setting the same range as last time the change
2512          * should be a noop (some cpufreq implementations use the same
2513          * voltage for multiple frequencies, for example).
2514          */
2515         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2516                 goto out;
2517
2518         /* If we're trying to set a range that overlaps the current voltage,
2519          * return succesfully even though the regulator does not support
2520          * changing the voltage.
2521          */
2522         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2523                 current_uV = _regulator_get_voltage(rdev);
2524                 if (min_uV <= current_uV && current_uV <= max_uV) {
2525                         regulator->min_uV = min_uV;
2526                         regulator->max_uV = max_uV;
2527                         goto out;
2528                 }
2529         }
2530
2531         /* sanity check */
2532         if (!rdev->desc->ops->set_voltage &&
2533             !rdev->desc->ops->set_voltage_sel) {
2534                 ret = -EINVAL;
2535                 goto out;
2536         }
2537
2538         /* constraints check */
2539         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2540         if (ret < 0)
2541                 goto out;
2542
2543         /* restore original values in case of error */
2544         old_min_uV = regulator->min_uV;
2545         old_max_uV = regulator->max_uV;
2546         regulator->min_uV = min_uV;
2547         regulator->max_uV = max_uV;
2548
2549         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2550         if (ret < 0)
2551                 goto out2;
2552
2553         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2554         if (ret < 0)
2555                 goto out2;
2556
2557 out:
2558         mutex_unlock(&rdev->mutex);
2559         return ret;
2560 out2:
2561         regulator->min_uV = old_min_uV;
2562         regulator->max_uV = old_max_uV;
2563         mutex_unlock(&rdev->mutex);
2564         return ret;
2565 }
2566 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2567
2568 /**
2569  * regulator_set_voltage_time - get raise/fall time
2570  * @regulator: regulator source
2571  * @old_uV: starting voltage in microvolts
2572  * @new_uV: target voltage in microvolts
2573  *
2574  * Provided with the starting and ending voltage, this function attempts to
2575  * calculate the time in microseconds required to rise or fall to this new
2576  * voltage.
2577  */
2578 int regulator_set_voltage_time(struct regulator *regulator,
2579                                int old_uV, int new_uV)
2580 {
2581         struct regulator_dev *rdev = regulator->rdev;
2582         const struct regulator_ops *ops = rdev->desc->ops;
2583         int old_sel = -1;
2584         int new_sel = -1;
2585         int voltage;
2586         int i;
2587
2588         /* Currently requires operations to do this */
2589         if (!ops->list_voltage || !ops->set_voltage_time_sel
2590             || !rdev->desc->n_voltages)
2591                 return -EINVAL;
2592
2593         for (i = 0; i < rdev->desc->n_voltages; i++) {
2594                 /* We only look for exact voltage matches here */
2595                 voltage = regulator_list_voltage(regulator, i);
2596                 if (voltage < 0)
2597                         return -EINVAL;
2598                 if (voltage == 0)
2599                         continue;
2600                 if (voltage == old_uV)
2601                         old_sel = i;
2602                 if (voltage == new_uV)
2603                         new_sel = i;
2604         }
2605
2606         if (old_sel < 0 || new_sel < 0)
2607                 return -EINVAL;
2608
2609         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2610 }
2611 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2612
2613 /**
2614  * regulator_set_voltage_time_sel - get raise/fall time
2615  * @rdev: regulator source device
2616  * @old_selector: selector for starting voltage
2617  * @new_selector: selector for target voltage
2618  *
2619  * Provided with the starting and target voltage selectors, this function
2620  * returns time in microseconds required to rise or fall to this new voltage
2621  *
2622  * Drivers providing ramp_delay in regulation_constraints can use this as their
2623  * set_voltage_time_sel() operation.
2624  */
2625 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2626                                    unsigned int old_selector,
2627                                    unsigned int new_selector)
2628 {
2629         unsigned int ramp_delay = 0;
2630         int old_volt, new_volt;
2631
2632         if (rdev->constraints->ramp_delay)
2633                 ramp_delay = rdev->constraints->ramp_delay;
2634         else if (rdev->desc->ramp_delay)
2635                 ramp_delay = rdev->desc->ramp_delay;
2636
2637         if (ramp_delay == 0) {
2638                 rdev_warn(rdev, "ramp_delay not set\n");
2639                 return 0;
2640         }
2641
2642         /* sanity check */
2643         if (!rdev->desc->ops->list_voltage)
2644                 return -EINVAL;
2645
2646         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2647         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2648
2649         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2650 }
2651 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2652
2653 /**
2654  * regulator_sync_voltage - re-apply last regulator output voltage
2655  * @regulator: regulator source
2656  *
2657  * Re-apply the last configured voltage.  This is intended to be used
2658  * where some external control source the consumer is cooperating with
2659  * has caused the configured voltage to change.
2660  */
2661 int regulator_sync_voltage(struct regulator *regulator)
2662 {
2663         struct regulator_dev *rdev = regulator->rdev;
2664         int ret, min_uV, max_uV;
2665
2666         mutex_lock(&rdev->mutex);
2667
2668         if (!rdev->desc->ops->set_voltage &&
2669             !rdev->desc->ops->set_voltage_sel) {
2670                 ret = -EINVAL;
2671                 goto out;
2672         }
2673
2674         /* This is only going to work if we've had a voltage configured. */
2675         if (!regulator->min_uV && !regulator->max_uV) {
2676                 ret = -EINVAL;
2677                 goto out;
2678         }
2679
2680         min_uV = regulator->min_uV;
2681         max_uV = regulator->max_uV;
2682
2683         /* This should be a paranoia check... */
2684         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2685         if (ret < 0)
2686                 goto out;
2687
2688         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2689         if (ret < 0)
2690                 goto out;
2691
2692         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2693
2694 out:
2695         mutex_unlock(&rdev->mutex);
2696         return ret;
2697 }
2698 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2699
2700 static int _regulator_get_voltage(struct regulator_dev *rdev)
2701 {
2702         int sel, ret;
2703
2704         if (rdev->desc->ops->get_voltage_sel) {
2705                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2706                 if (sel < 0)
2707                         return sel;
2708                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2709         } else if (rdev->desc->ops->get_voltage) {
2710                 ret = rdev->desc->ops->get_voltage(rdev);
2711         } else if (rdev->desc->ops->list_voltage) {
2712                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2713         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2714                 ret = rdev->desc->fixed_uV;
2715         } else if (rdev->supply) {
2716                 ret = regulator_get_voltage(rdev->supply);
2717         } else {
2718                 return -EINVAL;
2719         }
2720
2721         if (ret < 0)
2722                 return ret;
2723         return ret - rdev->constraints->uV_offset;
2724 }
2725
2726 /**
2727  * regulator_get_voltage - get regulator output voltage
2728  * @regulator: regulator source
2729  *
2730  * This returns the current regulator voltage in uV.
2731  *
2732  * NOTE: If the regulator is disabled it will return the voltage value. This
2733  * function should not be used to determine regulator state.
2734  */
2735 int regulator_get_voltage(struct regulator *regulator)
2736 {
2737         int ret;
2738
2739         mutex_lock(&regulator->rdev->mutex);
2740
2741         ret = _regulator_get_voltage(regulator->rdev);
2742
2743         mutex_unlock(&regulator->rdev->mutex);
2744
2745         return ret;
2746 }
2747 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2748
2749 /**
2750  * regulator_set_current_limit - set regulator output current limit
2751  * @regulator: regulator source
2752  * @min_uA: Minimum supported current in uA
2753  * @max_uA: Maximum supported current in uA
2754  *
2755  * Sets current sink to the desired output current. This can be set during
2756  * any regulator state. IOW, regulator can be disabled or enabled.
2757  *
2758  * If the regulator is enabled then the current will change to the new value
2759  * immediately otherwise if the regulator is disabled the regulator will
2760  * output at the new current when enabled.
2761  *
2762  * NOTE: Regulator system constraints must be set for this regulator before
2763  * calling this function otherwise this call will fail.
2764  */
2765 int regulator_set_current_limit(struct regulator *regulator,
2766                                int min_uA, int max_uA)
2767 {
2768         struct regulator_dev *rdev = regulator->rdev;
2769         int ret;
2770
2771         mutex_lock(&rdev->mutex);
2772
2773         /* sanity check */
2774         if (!rdev->desc->ops->set_current_limit) {
2775                 ret = -EINVAL;
2776                 goto out;
2777         }
2778
2779         /* constraints check */
2780         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2781         if (ret < 0)
2782                 goto out;
2783
2784         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2785 out:
2786         mutex_unlock(&rdev->mutex);
2787         return ret;
2788 }
2789 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2790
2791 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2792 {
2793         int ret;
2794
2795         mutex_lock(&rdev->mutex);
2796
2797         /* sanity check */
2798         if (!rdev->desc->ops->get_current_limit) {
2799                 ret = -EINVAL;
2800                 goto out;
2801         }
2802
2803         ret = rdev->desc->ops->get_current_limit(rdev);
2804 out:
2805         mutex_unlock(&rdev->mutex);
2806         return ret;
2807 }
2808
2809 /**
2810  * regulator_get_current_limit - get regulator output current
2811  * @regulator: regulator source
2812  *
2813  * This returns the current supplied by the specified current sink in uA.
2814  *
2815  * NOTE: If the regulator is disabled it will return the current value. This
2816  * function should not be used to determine regulator state.
2817  */
2818 int regulator_get_current_limit(struct regulator *regulator)
2819 {
2820         return _regulator_get_current_limit(regulator->rdev);
2821 }
2822 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2823
2824 /**
2825  * regulator_set_mode - set regulator operating mode
2826  * @regulator: regulator source
2827  * @mode: operating mode - one of the REGULATOR_MODE constants
2828  *
2829  * Set regulator operating mode to increase regulator efficiency or improve
2830  * regulation performance.
2831  *
2832  * NOTE: Regulator system constraints must be set for this regulator before
2833  * calling this function otherwise this call will fail.
2834  */
2835 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2836 {
2837         struct regulator_dev *rdev = regulator->rdev;
2838         int ret;
2839         int regulator_curr_mode;
2840
2841         mutex_lock(&rdev->mutex);
2842
2843         /* sanity check */
2844         if (!rdev->desc->ops->set_mode) {
2845                 ret = -EINVAL;
2846                 goto out;
2847         }
2848
2849         /* return if the same mode is requested */
2850         if (rdev->desc->ops->get_mode) {
2851                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2852                 if (regulator_curr_mode == mode) {
2853                         ret = 0;
2854                         goto out;
2855                 }
2856         }
2857
2858         /* constraints check */
2859         ret = regulator_mode_constrain(rdev, &mode);
2860         if (ret < 0)
2861                 goto out;
2862
2863         ret = rdev->desc->ops->set_mode(rdev, mode);
2864 out:
2865         mutex_unlock(&rdev->mutex);
2866         return ret;
2867 }
2868 EXPORT_SYMBOL_GPL(regulator_set_mode);
2869
2870 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2871 {
2872         int ret;
2873
2874         mutex_lock(&rdev->mutex);
2875
2876         /* sanity check */
2877         if (!rdev->desc->ops->get_mode) {
2878                 ret = -EINVAL;
2879                 goto out;
2880         }
2881
2882         ret = rdev->desc->ops->get_mode(rdev);
2883 out:
2884         mutex_unlock(&rdev->mutex);
2885         return ret;
2886 }
2887
2888 /**
2889  * regulator_get_mode - get regulator operating mode
2890  * @regulator: regulator source
2891  *
2892  * Get the current regulator operating mode.
2893  */
2894 unsigned int regulator_get_mode(struct regulator *regulator)
2895 {
2896         return _regulator_get_mode(regulator->rdev);
2897 }
2898 EXPORT_SYMBOL_GPL(regulator_get_mode);
2899
2900 /**
2901  * regulator_set_optimum_mode - set regulator optimum operating mode
2902  * @regulator: regulator source
2903  * @uA_load: load current
2904  *
2905  * Notifies the regulator core of a new device load. This is then used by
2906  * DRMS (if enabled by constraints) to set the most efficient regulator
2907  * operating mode for the new regulator loading.
2908  *
2909  * Consumer devices notify their supply regulator of the maximum power
2910  * they will require (can be taken from device datasheet in the power
2911  * consumption tables) when they change operational status and hence power
2912  * state. Examples of operational state changes that can affect power
2913  * consumption are :-
2914  *
2915  *    o Device is opened / closed.
2916  *    o Device I/O is about to begin or has just finished.
2917  *    o Device is idling in between work.
2918  *
2919  * This information is also exported via sysfs to userspace.
2920  *
2921  * DRMS will sum the total requested load on the regulator and change
2922  * to the most efficient operating mode if platform constraints allow.
2923  *
2924  * Returns the new regulator mode or error.
2925  */
2926 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2927 {
2928         struct regulator_dev *rdev = regulator->rdev;
2929         struct regulator *consumer;
2930         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2931         unsigned int mode;
2932
2933         if (rdev->supply)
2934                 input_uV = regulator_get_voltage(rdev->supply);
2935
2936         mutex_lock(&rdev->mutex);
2937
2938         /*
2939          * first check to see if we can set modes at all, otherwise just
2940          * tell the consumer everything is OK.
2941          */
2942         regulator->uA_load = uA_load;
2943         ret = regulator_check_drms(rdev);
2944         if (ret < 0) {
2945                 ret = 0;
2946                 goto out;
2947         }
2948
2949         if (!rdev->desc->ops->get_optimum_mode)
2950                 goto out;
2951
2952         /*
2953          * we can actually do this so any errors are indicators of
2954          * potential real failure.
2955          */
2956         ret = -EINVAL;
2957
2958         if (!rdev->desc->ops->set_mode)
2959                 goto out;
2960
2961         /* get output voltage */
2962         output_uV = _regulator_get_voltage(rdev);
2963         if (output_uV <= 0) {
2964                 rdev_err(rdev, "invalid output voltage found\n");
2965                 goto out;
2966         }
2967
2968         /* No supply? Use constraint voltage */
2969         if (input_uV <= 0)
2970                 input_uV = rdev->constraints->input_uV;
2971         if (input_uV <= 0) {
2972                 rdev_err(rdev, "invalid input voltage found\n");
2973                 goto out;
2974         }
2975
2976         /* calc total requested load for this regulator */
2977         list_for_each_entry(consumer, &rdev->consumer_list, list)
2978                 total_uA_load += consumer->uA_load;
2979
2980         mode = rdev->desc->ops->get_optimum_mode(rdev,
2981                                                  input_uV, output_uV,
2982                                                  total_uA_load);
2983         ret = regulator_mode_constrain(rdev, &mode);
2984         if (ret < 0) {
2985                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2986                          total_uA_load, input_uV, output_uV);
2987                 goto out;
2988         }
2989
2990         ret = rdev->desc->ops->set_mode(rdev, mode);
2991         if (ret < 0) {
2992                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2993                 goto out;
2994         }
2995         ret = mode;
2996 out:
2997         mutex_unlock(&rdev->mutex);
2998         return ret;
2999 }
3000 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
3001
3002 /**
3003  * regulator_allow_bypass - allow the regulator to go into bypass mode
3004  *
3005  * @regulator: Regulator to configure
3006  * @enable: enable or disable bypass mode
3007  *
3008  * Allow the regulator to go into bypass mode if all other consumers
3009  * for the regulator also enable bypass mode and the machine
3010  * constraints allow this.  Bypass mode means that the regulator is
3011  * simply passing the input directly to the output with no regulation.
3012  */
3013 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3014 {
3015         struct regulator_dev *rdev = regulator->rdev;
3016         int ret = 0;
3017
3018         if (!rdev->desc->ops->set_bypass)
3019                 return 0;
3020
3021         if (rdev->constraints &&
3022             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3023                 return 0;
3024
3025         mutex_lock(&rdev->mutex);
3026
3027         if (enable && !regulator->bypass) {
3028                 rdev->bypass_count++;
3029
3030                 if (rdev->bypass_count == rdev->open_count) {
3031                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3032                         if (ret != 0)
3033                                 rdev->bypass_count--;
3034                 }
3035
3036         } else if (!enable && regulator->bypass) {
3037                 rdev->bypass_count--;
3038
3039                 if (rdev->bypass_count != rdev->open_count) {
3040                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3041                         if (ret != 0)
3042                                 rdev->bypass_count++;
3043                 }
3044         }
3045
3046         if (ret == 0)
3047                 regulator->bypass = enable;
3048
3049         mutex_unlock(&rdev->mutex);
3050
3051         return ret;
3052 }
3053 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3054
3055 /**
3056  * regulator_register_notifier - register regulator event notifier
3057  * @regulator: regulator source
3058  * @nb: notifier block
3059  *
3060  * Register notifier block to receive regulator events.
3061  */
3062 int regulator_register_notifier(struct regulator *regulator,
3063                               struct notifier_block *nb)
3064 {
3065         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3066                                                 nb);
3067 }
3068 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3069
3070 /**
3071  * regulator_unregister_notifier - unregister regulator event notifier
3072  * @regulator: regulator source
3073  * @nb: notifier block
3074  *
3075  * Unregister regulator event notifier block.
3076  */
3077 int regulator_unregister_notifier(struct regulator *regulator,
3078                                 struct notifier_block *nb)
3079 {
3080         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3081                                                   nb);
3082 }
3083 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3084
3085 /* notify regulator consumers and downstream regulator consumers.
3086  * Note mutex must be held by caller.
3087  */
3088 static void _notifier_call_chain(struct regulator_dev *rdev,
3089                                   unsigned long event, void *data)
3090 {
3091         /* call rdev chain first */
3092         blocking_notifier_call_chain(&rdev->notifier, event, data);
3093 }
3094
3095 /**
3096  * regulator_bulk_get - get multiple regulator consumers
3097  *
3098  * @dev:           Device to supply
3099  * @num_consumers: Number of consumers to register
3100  * @consumers:     Configuration of consumers; clients are stored here.
3101  *
3102  * @return 0 on success, an errno on failure.
3103  *
3104  * This helper function allows drivers to get several regulator
3105  * consumers in one operation.  If any of the regulators cannot be
3106  * acquired then any regulators that were allocated will be freed
3107  * before returning to the caller.
3108  */
3109 int regulator_bulk_get(struct device *dev, int num_consumers,
3110                        struct regulator_bulk_data *consumers)
3111 {
3112         int i;
3113         int ret;
3114
3115         for (i = 0; i < num_consumers; i++)
3116                 consumers[i].consumer = NULL;
3117
3118         for (i = 0; i < num_consumers; i++) {
3119                 consumers[i].consumer = regulator_get(dev,
3120                                                       consumers[i].supply);
3121                 if (IS_ERR(consumers[i].consumer)) {
3122                         ret = PTR_ERR(consumers[i].consumer);
3123                         dev_err(dev, "Failed to get supply '%s': %d\n",
3124                                 consumers[i].supply, ret);
3125                         consumers[i].consumer = NULL;
3126                         goto err;
3127                 }
3128         }
3129
3130         return 0;
3131
3132 err:
3133         while (--i >= 0)
3134                 regulator_put(consumers[i].consumer);
3135
3136         return ret;
3137 }
3138 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3139
3140 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3141 {
3142         struct regulator_bulk_data *bulk = data;
3143
3144         bulk->ret = regulator_enable(bulk->consumer);
3145 }
3146
3147 /**
3148  * regulator_bulk_enable - enable multiple regulator consumers
3149  *
3150  * @num_consumers: Number of consumers
3151  * @consumers:     Consumer data; clients are stored here.
3152  * @return         0 on success, an errno on failure
3153  *
3154  * This convenience API allows consumers to enable multiple regulator
3155  * clients in a single API call.  If any consumers cannot be enabled
3156  * then any others that were enabled will be disabled again prior to
3157  * return.
3158  */
3159 int regulator_bulk_enable(int num_consumers,
3160                           struct regulator_bulk_data *consumers)
3161 {
3162         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3163         int i;
3164         int ret = 0;
3165
3166         for (i = 0; i < num_consumers; i++) {
3167                 if (consumers[i].consumer->always_on)
3168                         consumers[i].ret = 0;
3169                 else
3170                         async_schedule_domain(regulator_bulk_enable_async,
3171                                               &consumers[i], &async_domain);
3172         }
3173
3174         async_synchronize_full_domain(&async_domain);
3175
3176         /* If any consumer failed we need to unwind any that succeeded */
3177         for (i = 0; i < num_consumers; i++) {
3178                 if (consumers[i].ret != 0) {
3179                         ret = consumers[i].ret;
3180                         goto err;
3181                 }
3182         }
3183
3184         return 0;
3185
3186 err:
3187         for (i = 0; i < num_consumers; i++) {
3188                 if (consumers[i].ret < 0)
3189                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3190                                consumers[i].ret);
3191                 else
3192                         regulator_disable(consumers[i].consumer);
3193         }
3194
3195         return ret;
3196 }
3197 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3198
3199 /**
3200  * regulator_bulk_disable - disable multiple regulator consumers
3201  *
3202  * @num_consumers: Number of consumers
3203  * @consumers:     Consumer data; clients are stored here.
3204  * @return         0 on success, an errno on failure
3205  *
3206  * This convenience API allows consumers to disable multiple regulator
3207  * clients in a single API call.  If any consumers cannot be disabled
3208  * then any others that were disabled will be enabled again prior to
3209  * return.
3210  */
3211 int regulator_bulk_disable(int num_consumers,
3212                            struct regulator_bulk_data *consumers)
3213 {
3214         int i;
3215         int ret, r;
3216
3217         for (i = num_consumers - 1; i >= 0; --i) {
3218                 ret = regulator_disable(consumers[i].consumer);
3219                 if (ret != 0)
3220                         goto err;
3221         }
3222
3223         return 0;
3224
3225 err:
3226         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3227         for (++i; i < num_consumers; ++i) {
3228                 r = regulator_enable(consumers[i].consumer);
3229                 if (r != 0)
3230                         pr_err("Failed to reename %s: %d\n",
3231                                consumers[i].supply, r);
3232         }
3233
3234         return ret;
3235 }
3236 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3237
3238 /**
3239  * regulator_bulk_force_disable - force disable multiple regulator consumers
3240  *
3241  * @num_consumers: Number of consumers
3242  * @consumers:     Consumer data; clients are stored here.
3243  * @return         0 on success, an errno on failure
3244  *
3245  * This convenience API allows consumers to forcibly disable multiple regulator
3246  * clients in a single API call.
3247  * NOTE: This should be used for situations when device damage will
3248  * likely occur if the regulators are not disabled (e.g. over temp).
3249  * Although regulator_force_disable function call for some consumers can
3250  * return error numbers, the function is called for all consumers.
3251  */
3252 int regulator_bulk_force_disable(int num_consumers,
3253                            struct regulator_bulk_data *consumers)
3254 {
3255         int i;
3256         int ret;
3257
3258         for (i = 0; i < num_consumers; i++)
3259                 consumers[i].ret =
3260                             regulator_force_disable(consumers[i].consumer);
3261
3262         for (i = 0; i < num_consumers; i++) {
3263                 if (consumers[i].ret != 0) {
3264                         ret = consumers[i].ret;
3265                         goto out;
3266                 }
3267         }
3268
3269         return 0;
3270 out:
3271         return ret;
3272 }
3273 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3274
3275 /**
3276  * regulator_bulk_free - free multiple regulator consumers
3277  *
3278  * @num_consumers: Number of consumers
3279  * @consumers:     Consumer data; clients are stored here.
3280  *
3281  * This convenience API allows consumers to free multiple regulator
3282  * clients in a single API call.
3283  */
3284 void regulator_bulk_free(int num_consumers,
3285                          struct regulator_bulk_data *consumers)
3286 {
3287         int i;
3288
3289         for (i = 0; i < num_consumers; i++) {
3290                 regulator_put(consumers[i].consumer);
3291                 consumers[i].consumer = NULL;
3292         }
3293 }
3294 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3295
3296 /**
3297  * regulator_notifier_call_chain - call regulator event notifier
3298  * @rdev: regulator source
3299  * @event: notifier block
3300  * @data: callback-specific data.
3301  *
3302  * Called by regulator drivers to notify clients a regulator event has
3303  * occurred. We also notify regulator clients downstream.
3304  * Note lock must be held by caller.
3305  */
3306 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3307                                   unsigned long event, void *data)
3308 {
3309         _notifier_call_chain(rdev, event, data);
3310         return NOTIFY_DONE;
3311
3312 }
3313 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3314
3315 /**
3316  * regulator_mode_to_status - convert a regulator mode into a status
3317  *
3318  * @mode: Mode to convert
3319  *
3320  * Convert a regulator mode into a status.
3321  */
3322 int regulator_mode_to_status(unsigned int mode)
3323 {
3324         switch (mode) {
3325         case REGULATOR_MODE_FAST:
3326                 return REGULATOR_STATUS_FAST;
3327         case REGULATOR_MODE_NORMAL:
3328                 return REGULATOR_STATUS_NORMAL;
3329         case REGULATOR_MODE_IDLE:
3330                 return REGULATOR_STATUS_IDLE;
3331         case REGULATOR_MODE_STANDBY:
3332                 return REGULATOR_STATUS_STANDBY;
3333         default:
3334                 return REGULATOR_STATUS_UNDEFINED;
3335         }
3336 }
3337 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3338
3339 /*
3340  * To avoid cluttering sysfs (and memory) with useless state, only
3341  * create attributes that can be meaningfully displayed.
3342  */
3343 static int add_regulator_attributes(struct regulator_dev *rdev)
3344 {
3345         struct device *dev = &rdev->dev;
3346         const struct regulator_ops *ops = rdev->desc->ops;
3347         int status = 0;
3348
3349         /* some attributes need specific methods to be displayed */
3350         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3351             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3352             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3353                 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3354                 status = device_create_file(dev, &dev_attr_microvolts);
3355                 if (status < 0)
3356                         return status;
3357         }
3358         if (ops->get_current_limit) {
3359                 status = device_create_file(dev, &dev_attr_microamps);
3360                 if (status < 0)
3361                         return status;
3362         }
3363         if (ops->get_mode) {
3364                 status = device_create_file(dev, &dev_attr_opmode);
3365                 if (status < 0)
3366                         return status;
3367         }
3368         if (rdev->ena_pin || ops->is_enabled) {
3369                 status = device_create_file(dev, &dev_attr_state);
3370                 if (status < 0)
3371                         return status;
3372         }
3373         if (ops->get_status) {
3374                 status = device_create_file(dev, &dev_attr_status);
3375                 if (status < 0)
3376                         return status;
3377         }
3378         if (ops->get_bypass) {
3379                 status = device_create_file(dev, &dev_attr_bypass);
3380                 if (status < 0)
3381                         return status;
3382         }
3383
3384         /* some attributes are type-specific */
3385         if (rdev->desc->type == REGULATOR_CURRENT) {
3386                 status = device_create_file(dev, &dev_attr_requested_microamps);
3387                 if (status < 0)
3388                         return status;
3389         }
3390
3391         /* all the other attributes exist to support constraints;
3392          * don't show them if there are no constraints, or if the
3393          * relevant supporting methods are missing.
3394          */
3395         if (!rdev->constraints)
3396                 return status;
3397
3398         /* constraints need specific supporting methods */
3399         if (ops->set_voltage || ops->set_voltage_sel) {
3400                 status = device_create_file(dev, &dev_attr_min_microvolts);
3401                 if (status < 0)
3402                         return status;
3403                 status = device_create_file(dev, &dev_attr_max_microvolts);
3404                 if (status < 0)
3405                         return status;
3406         }
3407         if (ops->set_current_limit) {
3408                 status = device_create_file(dev, &dev_attr_min_microamps);
3409                 if (status < 0)
3410                         return status;
3411                 status = device_create_file(dev, &dev_attr_max_microamps);
3412                 if (status < 0)
3413                         return status;
3414         }
3415
3416         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3417         if (status < 0)
3418                 return status;
3419         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3420         if (status < 0)
3421                 return status;
3422         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3423         if (status < 0)
3424                 return status;
3425
3426         if (ops->set_suspend_voltage) {
3427                 status = device_create_file(dev,
3428                                 &dev_attr_suspend_standby_microvolts);
3429                 if (status < 0)
3430                         return status;
3431                 status = device_create_file(dev,
3432                                 &dev_attr_suspend_mem_microvolts);
3433                 if (status < 0)
3434                         return status;
3435                 status = device_create_file(dev,
3436                                 &dev_attr_suspend_disk_microvolts);
3437                 if (status < 0)
3438                         return status;
3439         }
3440
3441         if (ops->set_suspend_mode) {
3442                 status = device_create_file(dev,
3443                                 &dev_attr_suspend_standby_mode);
3444                 if (status < 0)
3445                         return status;
3446                 status = device_create_file(dev,
3447                                 &dev_attr_suspend_mem_mode);
3448                 if (status < 0)
3449                         return status;
3450                 status = device_create_file(dev,
3451                                 &dev_attr_suspend_disk_mode);
3452                 if (status < 0)
3453                         return status;
3454         }
3455
3456         return status;
3457 }
3458
3459 static void rdev_init_debugfs(struct regulator_dev *rdev)
3460 {
3461         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3462         if (!rdev->debugfs) {
3463                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3464                 return;
3465         }