Merge remote-tracking branches 'spi/topic/cadence', 'spi/topic/dt', 'spi/topic/ep93xx...
[muen/linux.git] / drivers / spi / spi.c
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/property.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <uapi/linux/sched/types.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/ioport.h>
41 #include <linux/acpi.h>
42 #include <linux/highmem.h>
43 #include <linux/idr.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/spi.h>
47 #define SPI_DYN_FIRST_BUS_NUM 0
48
49 static DEFINE_IDR(spi_master_idr);
50
51 static void spidev_release(struct device *dev)
52 {
53         struct spi_device       *spi = to_spi_device(dev);
54
55         /* spi controllers may cleanup for released devices */
56         if (spi->controller->cleanup)
57                 spi->controller->cleanup(spi);
58
59         spi_controller_put(spi->controller);
60         kfree(spi);
61 }
62
63 static ssize_t
64 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
65 {
66         const struct spi_device *spi = to_spi_device(dev);
67         int len;
68
69         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
70         if (len != -ENODEV)
71                 return len;
72
73         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
74 }
75 static DEVICE_ATTR_RO(modalias);
76
77 #define SPI_STATISTICS_ATTRS(field, file)                               \
78 static ssize_t spi_controller_##field##_show(struct device *dev,        \
79                                              struct device_attribute *attr, \
80                                              char *buf)                 \
81 {                                                                       \
82         struct spi_controller *ctlr = container_of(dev,                 \
83                                          struct spi_controller, dev);   \
84         return spi_statistics_##field##_show(&ctlr->statistics, buf);   \
85 }                                                                       \
86 static struct device_attribute dev_attr_spi_controller_##field = {      \
87         .attr = { .name = file, .mode = 0444 },                         \
88         .show = spi_controller_##field##_show,                          \
89 };                                                                      \
90 static ssize_t spi_device_##field##_show(struct device *dev,            \
91                                          struct device_attribute *attr, \
92                                         char *buf)                      \
93 {                                                                       \
94         struct spi_device *spi = to_spi_device(dev);                    \
95         return spi_statistics_##field##_show(&spi->statistics, buf);    \
96 }                                                                       \
97 static struct device_attribute dev_attr_spi_device_##field = {          \
98         .attr = { .name = file, .mode = 0444 },                         \
99         .show = spi_device_##field##_show,                              \
100 }
101
102 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
103 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
104                                             char *buf)                  \
105 {                                                                       \
106         unsigned long flags;                                            \
107         ssize_t len;                                                    \
108         spin_lock_irqsave(&stat->lock, flags);                          \
109         len = sprintf(buf, format_string, stat->field);                 \
110         spin_unlock_irqrestore(&stat->lock, flags);                     \
111         return len;                                                     \
112 }                                                                       \
113 SPI_STATISTICS_ATTRS(name, file)
114
115 #define SPI_STATISTICS_SHOW(field, format_string)                       \
116         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
117                                  field, format_string)
118
119 SPI_STATISTICS_SHOW(messages, "%lu");
120 SPI_STATISTICS_SHOW(transfers, "%lu");
121 SPI_STATISTICS_SHOW(errors, "%lu");
122 SPI_STATISTICS_SHOW(timedout, "%lu");
123
124 SPI_STATISTICS_SHOW(spi_sync, "%lu");
125 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
126 SPI_STATISTICS_SHOW(spi_async, "%lu");
127
128 SPI_STATISTICS_SHOW(bytes, "%llu");
129 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
130 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
131
132 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
133         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
134                                  "transfer_bytes_histo_" number,        \
135                                  transfer_bytes_histo[index],  "%lu")
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
153
154 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
155
156 static struct attribute *spi_dev_attrs[] = {
157         &dev_attr_modalias.attr,
158         NULL,
159 };
160
161 static const struct attribute_group spi_dev_group = {
162         .attrs  = spi_dev_attrs,
163 };
164
165 static struct attribute *spi_device_statistics_attrs[] = {
166         &dev_attr_spi_device_messages.attr,
167         &dev_attr_spi_device_transfers.attr,
168         &dev_attr_spi_device_errors.attr,
169         &dev_attr_spi_device_timedout.attr,
170         &dev_attr_spi_device_spi_sync.attr,
171         &dev_attr_spi_device_spi_sync_immediate.attr,
172         &dev_attr_spi_device_spi_async.attr,
173         &dev_attr_spi_device_bytes.attr,
174         &dev_attr_spi_device_bytes_rx.attr,
175         &dev_attr_spi_device_bytes_tx.attr,
176         &dev_attr_spi_device_transfer_bytes_histo0.attr,
177         &dev_attr_spi_device_transfer_bytes_histo1.attr,
178         &dev_attr_spi_device_transfer_bytes_histo2.attr,
179         &dev_attr_spi_device_transfer_bytes_histo3.attr,
180         &dev_attr_spi_device_transfer_bytes_histo4.attr,
181         &dev_attr_spi_device_transfer_bytes_histo5.attr,
182         &dev_attr_spi_device_transfer_bytes_histo6.attr,
183         &dev_attr_spi_device_transfer_bytes_histo7.attr,
184         &dev_attr_spi_device_transfer_bytes_histo8.attr,
185         &dev_attr_spi_device_transfer_bytes_histo9.attr,
186         &dev_attr_spi_device_transfer_bytes_histo10.attr,
187         &dev_attr_spi_device_transfer_bytes_histo11.attr,
188         &dev_attr_spi_device_transfer_bytes_histo12.attr,
189         &dev_attr_spi_device_transfer_bytes_histo13.attr,
190         &dev_attr_spi_device_transfer_bytes_histo14.attr,
191         &dev_attr_spi_device_transfer_bytes_histo15.attr,
192         &dev_attr_spi_device_transfer_bytes_histo16.attr,
193         &dev_attr_spi_device_transfers_split_maxsize.attr,
194         NULL,
195 };
196
197 static const struct attribute_group spi_device_statistics_group = {
198         .name  = "statistics",
199         .attrs  = spi_device_statistics_attrs,
200 };
201
202 static const struct attribute_group *spi_dev_groups[] = {
203         &spi_dev_group,
204         &spi_device_statistics_group,
205         NULL,
206 };
207
208 static struct attribute *spi_controller_statistics_attrs[] = {
209         &dev_attr_spi_controller_messages.attr,
210         &dev_attr_spi_controller_transfers.attr,
211         &dev_attr_spi_controller_errors.attr,
212         &dev_attr_spi_controller_timedout.attr,
213         &dev_attr_spi_controller_spi_sync.attr,
214         &dev_attr_spi_controller_spi_sync_immediate.attr,
215         &dev_attr_spi_controller_spi_async.attr,
216         &dev_attr_spi_controller_bytes.attr,
217         &dev_attr_spi_controller_bytes_rx.attr,
218         &dev_attr_spi_controller_bytes_tx.attr,
219         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
220         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
221         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
222         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
223         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
224         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
225         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
226         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
227         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
228         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
229         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
230         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
231         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
232         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
233         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
234         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
235         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
236         &dev_attr_spi_controller_transfers_split_maxsize.attr,
237         NULL,
238 };
239
240 static const struct attribute_group spi_controller_statistics_group = {
241         .name  = "statistics",
242         .attrs  = spi_controller_statistics_attrs,
243 };
244
245 static const struct attribute_group *spi_master_groups[] = {
246         &spi_controller_statistics_group,
247         NULL,
248 };
249
250 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
251                                        struct spi_transfer *xfer,
252                                        struct spi_controller *ctlr)
253 {
254         unsigned long flags;
255         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
256
257         if (l2len < 0)
258                 l2len = 0;
259
260         spin_lock_irqsave(&stats->lock, flags);
261
262         stats->transfers++;
263         stats->transfer_bytes_histo[l2len]++;
264
265         stats->bytes += xfer->len;
266         if ((xfer->tx_buf) &&
267             (xfer->tx_buf != ctlr->dummy_tx))
268                 stats->bytes_tx += xfer->len;
269         if ((xfer->rx_buf) &&
270             (xfer->rx_buf != ctlr->dummy_rx))
271                 stats->bytes_rx += xfer->len;
272
273         spin_unlock_irqrestore(&stats->lock, flags);
274 }
275 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
276
277 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
278  * and the sysfs version makes coldplug work too.
279  */
280
281 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
282                                                 const struct spi_device *sdev)
283 {
284         while (id->name[0]) {
285                 if (!strcmp(sdev->modalias, id->name))
286                         return id;
287                 id++;
288         }
289         return NULL;
290 }
291
292 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
293 {
294         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
295
296         return spi_match_id(sdrv->id_table, sdev);
297 }
298 EXPORT_SYMBOL_GPL(spi_get_device_id);
299
300 static int spi_match_device(struct device *dev, struct device_driver *drv)
301 {
302         const struct spi_device *spi = to_spi_device(dev);
303         const struct spi_driver *sdrv = to_spi_driver(drv);
304
305         /* Attempt an OF style match */
306         if (of_driver_match_device(dev, drv))
307                 return 1;
308
309         /* Then try ACPI */
310         if (acpi_driver_match_device(dev, drv))
311                 return 1;
312
313         if (sdrv->id_table)
314                 return !!spi_match_id(sdrv->id_table, spi);
315
316         return strcmp(spi->modalias, drv->name) == 0;
317 }
318
319 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
320 {
321         const struct spi_device         *spi = to_spi_device(dev);
322         int rc;
323
324         rc = acpi_device_uevent_modalias(dev, env);
325         if (rc != -ENODEV)
326                 return rc;
327
328         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
329 }
330
331 struct bus_type spi_bus_type = {
332         .name           = "spi",
333         .dev_groups     = spi_dev_groups,
334         .match          = spi_match_device,
335         .uevent         = spi_uevent,
336 };
337 EXPORT_SYMBOL_GPL(spi_bus_type);
338
339
340 static int spi_drv_probe(struct device *dev)
341 {
342         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
343         struct spi_device               *spi = to_spi_device(dev);
344         int ret;
345
346         ret = of_clk_set_defaults(dev->of_node, false);
347         if (ret)
348                 return ret;
349
350         if (dev->of_node) {
351                 spi->irq = of_irq_get(dev->of_node, 0);
352                 if (spi->irq == -EPROBE_DEFER)
353                         return -EPROBE_DEFER;
354                 if (spi->irq < 0)
355                         spi->irq = 0;
356         }
357
358         ret = dev_pm_domain_attach(dev, true);
359         if (ret != -EPROBE_DEFER) {
360                 ret = sdrv->probe(spi);
361                 if (ret)
362                         dev_pm_domain_detach(dev, true);
363         }
364
365         return ret;
366 }
367
368 static int spi_drv_remove(struct device *dev)
369 {
370         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
371         int ret;
372
373         ret = sdrv->remove(to_spi_device(dev));
374         dev_pm_domain_detach(dev, true);
375
376         return ret;
377 }
378
379 static void spi_drv_shutdown(struct device *dev)
380 {
381         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
382
383         sdrv->shutdown(to_spi_device(dev));
384 }
385
386 /**
387  * __spi_register_driver - register a SPI driver
388  * @owner: owner module of the driver to register
389  * @sdrv: the driver to register
390  * Context: can sleep
391  *
392  * Return: zero on success, else a negative error code.
393  */
394 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
395 {
396         sdrv->driver.owner = owner;
397         sdrv->driver.bus = &spi_bus_type;
398         if (sdrv->probe)
399                 sdrv->driver.probe = spi_drv_probe;
400         if (sdrv->remove)
401                 sdrv->driver.remove = spi_drv_remove;
402         if (sdrv->shutdown)
403                 sdrv->driver.shutdown = spi_drv_shutdown;
404         return driver_register(&sdrv->driver);
405 }
406 EXPORT_SYMBOL_GPL(__spi_register_driver);
407
408 /*-------------------------------------------------------------------------*/
409
410 /* SPI devices should normally not be created by SPI device drivers; that
411  * would make them board-specific.  Similarly with SPI controller drivers.
412  * Device registration normally goes into like arch/.../mach.../board-YYY.c
413  * with other readonly (flashable) information about mainboard devices.
414  */
415
416 struct boardinfo {
417         struct list_head        list;
418         struct spi_board_info   board_info;
419 };
420
421 static LIST_HEAD(board_list);
422 static LIST_HEAD(spi_controller_list);
423
424 /*
425  * Used to protect add/del opertion for board_info list and
426  * spi_controller list, and their matching process
427  * also used to protect object of type struct idr
428  */
429 static DEFINE_MUTEX(board_lock);
430
431 /**
432  * spi_alloc_device - Allocate a new SPI device
433  * @ctlr: Controller to which device is connected
434  * Context: can sleep
435  *
436  * Allows a driver to allocate and initialize a spi_device without
437  * registering it immediately.  This allows a driver to directly
438  * fill the spi_device with device parameters before calling
439  * spi_add_device() on it.
440  *
441  * Caller is responsible to call spi_add_device() on the returned
442  * spi_device structure to add it to the SPI controller.  If the caller
443  * needs to discard the spi_device without adding it, then it should
444  * call spi_dev_put() on it.
445  *
446  * Return: a pointer to the new device, or NULL.
447  */
448 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
449 {
450         struct spi_device       *spi;
451
452         if (!spi_controller_get(ctlr))
453                 return NULL;
454
455         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
456         if (!spi) {
457                 spi_controller_put(ctlr);
458                 return NULL;
459         }
460
461         spi->master = spi->controller = ctlr;
462         spi->dev.parent = &ctlr->dev;
463         spi->dev.bus = &spi_bus_type;
464         spi->dev.release = spidev_release;
465         spi->cs_gpio = -ENOENT;
466
467         spin_lock_init(&spi->statistics.lock);
468
469         device_initialize(&spi->dev);
470         return spi;
471 }
472 EXPORT_SYMBOL_GPL(spi_alloc_device);
473
474 static void spi_dev_set_name(struct spi_device *spi)
475 {
476         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
477
478         if (adev) {
479                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
480                 return;
481         }
482
483         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
484                      spi->chip_select);
485 }
486
487 static int spi_dev_check(struct device *dev, void *data)
488 {
489         struct spi_device *spi = to_spi_device(dev);
490         struct spi_device *new_spi = data;
491
492         if (spi->controller == new_spi->controller &&
493             spi->chip_select == new_spi->chip_select)
494                 return -EBUSY;
495         return 0;
496 }
497
498 /**
499  * spi_add_device - Add spi_device allocated with spi_alloc_device
500  * @spi: spi_device to register
501  *
502  * Companion function to spi_alloc_device.  Devices allocated with
503  * spi_alloc_device can be added onto the spi bus with this function.
504  *
505  * Return: 0 on success; negative errno on failure
506  */
507 int spi_add_device(struct spi_device *spi)
508 {
509         static DEFINE_MUTEX(spi_add_lock);
510         struct spi_controller *ctlr = spi->controller;
511         struct device *dev = ctlr->dev.parent;
512         int status;
513
514         /* Chipselects are numbered 0..max; validate. */
515         if (spi->chip_select >= ctlr->num_chipselect) {
516                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
517                         ctlr->num_chipselect);
518                 return -EINVAL;
519         }
520
521         /* Set the bus ID string */
522         spi_dev_set_name(spi);
523
524         /* We need to make sure there's no other device with this
525          * chipselect **BEFORE** we call setup(), else we'll trash
526          * its configuration.  Lock against concurrent add() calls.
527          */
528         mutex_lock(&spi_add_lock);
529
530         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
531         if (status) {
532                 dev_err(dev, "chipselect %d already in use\n",
533                                 spi->chip_select);
534                 goto done;
535         }
536
537         if (ctlr->cs_gpios)
538                 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
539
540         /* Drivers may modify this initial i/o setup, but will
541          * normally rely on the device being setup.  Devices
542          * using SPI_CS_HIGH can't coexist well otherwise...
543          */
544         status = spi_setup(spi);
545         if (status < 0) {
546                 dev_err(dev, "can't setup %s, status %d\n",
547                                 dev_name(&spi->dev), status);
548                 goto done;
549         }
550
551         /* Device may be bound to an active driver when this returns */
552         status = device_add(&spi->dev);
553         if (status < 0)
554                 dev_err(dev, "can't add %s, status %d\n",
555                                 dev_name(&spi->dev), status);
556         else
557                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
558
559 done:
560         mutex_unlock(&spi_add_lock);
561         return status;
562 }
563 EXPORT_SYMBOL_GPL(spi_add_device);
564
565 /**
566  * spi_new_device - instantiate one new SPI device
567  * @ctlr: Controller to which device is connected
568  * @chip: Describes the SPI device
569  * Context: can sleep
570  *
571  * On typical mainboards, this is purely internal; and it's not needed
572  * after board init creates the hard-wired devices.  Some development
573  * platforms may not be able to use spi_register_board_info though, and
574  * this is exported so that for example a USB or parport based adapter
575  * driver could add devices (which it would learn about out-of-band).
576  *
577  * Return: the new device, or NULL.
578  */
579 struct spi_device *spi_new_device(struct spi_controller *ctlr,
580                                   struct spi_board_info *chip)
581 {
582         struct spi_device       *proxy;
583         int                     status;
584
585         /* NOTE:  caller did any chip->bus_num checks necessary.
586          *
587          * Also, unless we change the return value convention to use
588          * error-or-pointer (not NULL-or-pointer), troubleshootability
589          * suggests syslogged diagnostics are best here (ugh).
590          */
591
592         proxy = spi_alloc_device(ctlr);
593         if (!proxy)
594                 return NULL;
595
596         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
597
598         proxy->chip_select = chip->chip_select;
599         proxy->max_speed_hz = chip->max_speed_hz;
600         proxy->mode = chip->mode;
601         proxy->irq = chip->irq;
602         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
603         proxy->dev.platform_data = (void *) chip->platform_data;
604         proxy->controller_data = chip->controller_data;
605         proxy->controller_state = NULL;
606
607         if (chip->properties) {
608                 status = device_add_properties(&proxy->dev, chip->properties);
609                 if (status) {
610                         dev_err(&ctlr->dev,
611                                 "failed to add properties to '%s': %d\n",
612                                 chip->modalias, status);
613                         goto err_dev_put;
614                 }
615         }
616
617         status = spi_add_device(proxy);
618         if (status < 0)
619                 goto err_remove_props;
620
621         return proxy;
622
623 err_remove_props:
624         if (chip->properties)
625                 device_remove_properties(&proxy->dev);
626 err_dev_put:
627         spi_dev_put(proxy);
628         return NULL;
629 }
630 EXPORT_SYMBOL_GPL(spi_new_device);
631
632 /**
633  * spi_unregister_device - unregister a single SPI device
634  * @spi: spi_device to unregister
635  *
636  * Start making the passed SPI device vanish. Normally this would be handled
637  * by spi_unregister_controller().
638  */
639 void spi_unregister_device(struct spi_device *spi)
640 {
641         if (!spi)
642                 return;
643
644         if (spi->dev.of_node) {
645                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
646                 of_node_put(spi->dev.of_node);
647         }
648         if (ACPI_COMPANION(&spi->dev))
649                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
650         device_unregister(&spi->dev);
651 }
652 EXPORT_SYMBOL_GPL(spi_unregister_device);
653
654 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
655                                               struct spi_board_info *bi)
656 {
657         struct spi_device *dev;
658
659         if (ctlr->bus_num != bi->bus_num)
660                 return;
661
662         dev = spi_new_device(ctlr, bi);
663         if (!dev)
664                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
665                         bi->modalias);
666 }
667
668 /**
669  * spi_register_board_info - register SPI devices for a given board
670  * @info: array of chip descriptors
671  * @n: how many descriptors are provided
672  * Context: can sleep
673  *
674  * Board-specific early init code calls this (probably during arch_initcall)
675  * with segments of the SPI device table.  Any device nodes are created later,
676  * after the relevant parent SPI controller (bus_num) is defined.  We keep
677  * this table of devices forever, so that reloading a controller driver will
678  * not make Linux forget about these hard-wired devices.
679  *
680  * Other code can also call this, e.g. a particular add-on board might provide
681  * SPI devices through its expansion connector, so code initializing that board
682  * would naturally declare its SPI devices.
683  *
684  * The board info passed can safely be __initdata ... but be careful of
685  * any embedded pointers (platform_data, etc), they're copied as-is.
686  * Device properties are deep-copied though.
687  *
688  * Return: zero on success, else a negative error code.
689  */
690 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
691 {
692         struct boardinfo *bi;
693         int i;
694
695         if (!n)
696                 return 0;
697
698         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
699         if (!bi)
700                 return -ENOMEM;
701
702         for (i = 0; i < n; i++, bi++, info++) {
703                 struct spi_controller *ctlr;
704
705                 memcpy(&bi->board_info, info, sizeof(*info));
706                 if (info->properties) {
707                         bi->board_info.properties =
708                                         property_entries_dup(info->properties);
709                         if (IS_ERR(bi->board_info.properties))
710                                 return PTR_ERR(bi->board_info.properties);
711                 }
712
713                 mutex_lock(&board_lock);
714                 list_add_tail(&bi->list, &board_list);
715                 list_for_each_entry(ctlr, &spi_controller_list, list)
716                         spi_match_controller_to_boardinfo(ctlr,
717                                                           &bi->board_info);
718                 mutex_unlock(&board_lock);
719         }
720
721         return 0;
722 }
723
724 /*-------------------------------------------------------------------------*/
725
726 static void spi_set_cs(struct spi_device *spi, bool enable)
727 {
728         if (spi->mode & SPI_CS_HIGH)
729                 enable = !enable;
730
731         if (gpio_is_valid(spi->cs_gpio)) {
732                 gpio_set_value(spi->cs_gpio, !enable);
733                 /* Some SPI masters need both GPIO CS & slave_select */
734                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
735                     spi->controller->set_cs)
736                         spi->controller->set_cs(spi, !enable);
737         } else if (spi->controller->set_cs) {
738                 spi->controller->set_cs(spi, !enable);
739         }
740 }
741
742 #ifdef CONFIG_HAS_DMA
743 static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
744                        struct sg_table *sgt, void *buf, size_t len,
745                        enum dma_data_direction dir)
746 {
747         const bool vmalloced_buf = is_vmalloc_addr(buf);
748         unsigned int max_seg_size = dma_get_max_seg_size(dev);
749 #ifdef CONFIG_HIGHMEM
750         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
751                                 (unsigned long)buf < (PKMAP_BASE +
752                                         (LAST_PKMAP * PAGE_SIZE)));
753 #else
754         const bool kmap_buf = false;
755 #endif
756         int desc_len;
757         int sgs;
758         struct page *vm_page;
759         struct scatterlist *sg;
760         void *sg_buf;
761         size_t min;
762         int i, ret;
763
764         if (vmalloced_buf || kmap_buf) {
765                 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
766                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
767         } else if (virt_addr_valid(buf)) {
768                 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
769                 sgs = DIV_ROUND_UP(len, desc_len);
770         } else {
771                 return -EINVAL;
772         }
773
774         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
775         if (ret != 0)
776                 return ret;
777
778         sg = &sgt->sgl[0];
779         for (i = 0; i < sgs; i++) {
780
781                 if (vmalloced_buf || kmap_buf) {
782                         min = min_t(size_t,
783                                     len, desc_len - offset_in_page(buf));
784                         if (vmalloced_buf)
785                                 vm_page = vmalloc_to_page(buf);
786                         else
787                                 vm_page = kmap_to_page(buf);
788                         if (!vm_page) {
789                                 sg_free_table(sgt);
790                                 return -ENOMEM;
791                         }
792                         sg_set_page(sg, vm_page,
793                                     min, offset_in_page(buf));
794                 } else {
795                         min = min_t(size_t, len, desc_len);
796                         sg_buf = buf;
797                         sg_set_buf(sg, sg_buf, min);
798                 }
799
800                 buf += min;
801                 len -= min;
802                 sg = sg_next(sg);
803         }
804
805         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
806         if (!ret)
807                 ret = -ENOMEM;
808         if (ret < 0) {
809                 sg_free_table(sgt);
810                 return ret;
811         }
812
813         sgt->nents = ret;
814
815         return 0;
816 }
817
818 static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
819                           struct sg_table *sgt, enum dma_data_direction dir)
820 {
821         if (sgt->orig_nents) {
822                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
823                 sg_free_table(sgt);
824         }
825 }
826
827 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
828 {
829         struct device *tx_dev, *rx_dev;
830         struct spi_transfer *xfer;
831         int ret;
832
833         if (!ctlr->can_dma)
834                 return 0;
835
836         if (ctlr->dma_tx)
837                 tx_dev = ctlr->dma_tx->device->dev;
838         else
839                 tx_dev = ctlr->dev.parent;
840
841         if (ctlr->dma_rx)
842                 rx_dev = ctlr->dma_rx->device->dev;
843         else
844                 rx_dev = ctlr->dev.parent;
845
846         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
847                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
848                         continue;
849
850                 if (xfer->tx_buf != NULL) {
851                         ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
852                                           (void *)xfer->tx_buf, xfer->len,
853                                           DMA_TO_DEVICE);
854                         if (ret != 0)
855                                 return ret;
856                 }
857
858                 if (xfer->rx_buf != NULL) {
859                         ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
860                                           xfer->rx_buf, xfer->len,
861                                           DMA_FROM_DEVICE);
862                         if (ret != 0) {
863                                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
864                                               DMA_TO_DEVICE);
865                                 return ret;
866                         }
867                 }
868         }
869
870         ctlr->cur_msg_mapped = true;
871
872         return 0;
873 }
874
875 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
876 {
877         struct spi_transfer *xfer;
878         struct device *tx_dev, *rx_dev;
879
880         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
881                 return 0;
882
883         if (ctlr->dma_tx)
884                 tx_dev = ctlr->dma_tx->device->dev;
885         else
886                 tx_dev = ctlr->dev.parent;
887
888         if (ctlr->dma_rx)
889                 rx_dev = ctlr->dma_rx->device->dev;
890         else
891                 rx_dev = ctlr->dev.parent;
892
893         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
894                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
895                         continue;
896
897                 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
898                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
899         }
900
901         return 0;
902 }
903 #else /* !CONFIG_HAS_DMA */
904 static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
905                               struct sg_table *sgt, void *buf, size_t len,
906                               enum dma_data_direction dir)
907 {
908         return -EINVAL;
909 }
910
911 static inline void spi_unmap_buf(struct spi_controller *ctlr,
912                                  struct device *dev, struct sg_table *sgt,
913                                  enum dma_data_direction dir)
914 {
915 }
916
917 static inline int __spi_map_msg(struct spi_controller *ctlr,
918                                 struct spi_message *msg)
919 {
920         return 0;
921 }
922
923 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
924                                   struct spi_message *msg)
925 {
926         return 0;
927 }
928 #endif /* !CONFIG_HAS_DMA */
929
930 static inline int spi_unmap_msg(struct spi_controller *ctlr,
931                                 struct spi_message *msg)
932 {
933         struct spi_transfer *xfer;
934
935         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
936                 /*
937                  * Restore the original value of tx_buf or rx_buf if they are
938                  * NULL.
939                  */
940                 if (xfer->tx_buf == ctlr->dummy_tx)
941                         xfer->tx_buf = NULL;
942                 if (xfer->rx_buf == ctlr->dummy_rx)
943                         xfer->rx_buf = NULL;
944         }
945
946         return __spi_unmap_msg(ctlr, msg);
947 }
948
949 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
950 {
951         struct spi_transfer *xfer;
952         void *tmp;
953         unsigned int max_tx, max_rx;
954
955         if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
956                 max_tx = 0;
957                 max_rx = 0;
958
959                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
960                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
961                             !xfer->tx_buf)
962                                 max_tx = max(xfer->len, max_tx);
963                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
964                             !xfer->rx_buf)
965                                 max_rx = max(xfer->len, max_rx);
966                 }
967
968                 if (max_tx) {
969                         tmp = krealloc(ctlr->dummy_tx, max_tx,
970                                        GFP_KERNEL | GFP_DMA);
971                         if (!tmp)
972                                 return -ENOMEM;
973                         ctlr->dummy_tx = tmp;
974                         memset(tmp, 0, max_tx);
975                 }
976
977                 if (max_rx) {
978                         tmp = krealloc(ctlr->dummy_rx, max_rx,
979                                        GFP_KERNEL | GFP_DMA);
980                         if (!tmp)
981                                 return -ENOMEM;
982                         ctlr->dummy_rx = tmp;
983                 }
984
985                 if (max_tx || max_rx) {
986                         list_for_each_entry(xfer, &msg->transfers,
987                                             transfer_list) {
988                                 if (!xfer->tx_buf)
989                                         xfer->tx_buf = ctlr->dummy_tx;
990                                 if (!xfer->rx_buf)
991                                         xfer->rx_buf = ctlr->dummy_rx;
992                         }
993                 }
994         }
995
996         return __spi_map_msg(ctlr, msg);
997 }
998
999 /*
1000  * spi_transfer_one_message - Default implementation of transfer_one_message()
1001  *
1002  * This is a standard implementation of transfer_one_message() for
1003  * drivers which implement a transfer_one() operation.  It provides
1004  * standard handling of delays and chip select management.
1005  */
1006 static int spi_transfer_one_message(struct spi_controller *ctlr,
1007                                     struct spi_message *msg)
1008 {
1009         struct spi_transfer *xfer;
1010         bool keep_cs = false;
1011         int ret = 0;
1012         unsigned long long ms = 1;
1013         struct spi_statistics *statm = &ctlr->statistics;
1014         struct spi_statistics *stats = &msg->spi->statistics;
1015
1016         spi_set_cs(msg->spi, true);
1017
1018         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1019         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1020
1021         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1022                 trace_spi_transfer_start(msg, xfer);
1023
1024                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1025                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1026
1027                 if (xfer->tx_buf || xfer->rx_buf) {
1028                         reinit_completion(&ctlr->xfer_completion);
1029
1030                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1031                         if (ret < 0) {
1032                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1033                                                                errors);
1034                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1035                                                                errors);
1036                                 dev_err(&msg->spi->dev,
1037                                         "SPI transfer failed: %d\n", ret);
1038                                 goto out;
1039                         }
1040
1041                         if (ret > 0) {
1042                                 ret = 0;
1043                                 ms = 8LL * 1000LL * xfer->len;
1044                                 do_div(ms, xfer->speed_hz);
1045                                 ms += ms + 200; /* some tolerance */
1046
1047                                 if (ms > UINT_MAX)
1048                                         ms = UINT_MAX;
1049
1050                                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1051                                                                  msecs_to_jiffies(ms));
1052                         }
1053
1054                         if (ms == 0) {
1055                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1056                                                                timedout);
1057                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1058                                                                timedout);
1059                                 dev_err(&msg->spi->dev,
1060                                         "SPI transfer timed out\n");
1061                                 msg->status = -ETIMEDOUT;
1062                         }
1063                 } else {
1064                         if (xfer->len)
1065                                 dev_err(&msg->spi->dev,
1066                                         "Bufferless transfer has length %u\n",
1067                                         xfer->len);
1068                 }
1069
1070                 trace_spi_transfer_stop(msg, xfer);
1071
1072                 if (msg->status != -EINPROGRESS)
1073                         goto out;
1074
1075                 if (xfer->delay_usecs) {
1076                         u16 us = xfer->delay_usecs;
1077
1078                         if (us <= 10)
1079                                 udelay(us);
1080                         else
1081                                 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1082                 }
1083
1084                 if (xfer->cs_change) {
1085                         if (list_is_last(&xfer->transfer_list,
1086                                          &msg->transfers)) {
1087                                 keep_cs = true;
1088                         } else {
1089                                 spi_set_cs(msg->spi, false);
1090                                 udelay(10);
1091                                 spi_set_cs(msg->spi, true);
1092                         }
1093                 }
1094
1095                 msg->actual_length += xfer->len;
1096         }
1097
1098 out:
1099         if (ret != 0 || !keep_cs)
1100                 spi_set_cs(msg->spi, false);
1101
1102         if (msg->status == -EINPROGRESS)
1103                 msg->status = ret;
1104
1105         if (msg->status && ctlr->handle_err)
1106                 ctlr->handle_err(ctlr, msg);
1107
1108         spi_res_release(ctlr, msg);
1109
1110         spi_finalize_current_message(ctlr);
1111
1112         return ret;
1113 }
1114
1115 /**
1116  * spi_finalize_current_transfer - report completion of a transfer
1117  * @ctlr: the controller reporting completion
1118  *
1119  * Called by SPI drivers using the core transfer_one_message()
1120  * implementation to notify it that the current interrupt driven
1121  * transfer has finished and the next one may be scheduled.
1122  */
1123 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1124 {
1125         complete(&ctlr->xfer_completion);
1126 }
1127 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1128
1129 /**
1130  * __spi_pump_messages - function which processes spi message queue
1131  * @ctlr: controller to process queue for
1132  * @in_kthread: true if we are in the context of the message pump thread
1133  *
1134  * This function checks if there is any spi message in the queue that
1135  * needs processing and if so call out to the driver to initialize hardware
1136  * and transfer each message.
1137  *
1138  * Note that it is called both from the kthread itself and also from
1139  * inside spi_sync(); the queue extraction handling at the top of the
1140  * function should deal with this safely.
1141  */
1142 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1143 {
1144         unsigned long flags;
1145         bool was_busy = false;
1146         int ret;
1147
1148         /* Lock queue */
1149         spin_lock_irqsave(&ctlr->queue_lock, flags);
1150
1151         /* Make sure we are not already running a message */
1152         if (ctlr->cur_msg) {
1153                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1154                 return;
1155         }
1156
1157         /* If another context is idling the device then defer */
1158         if (ctlr->idling) {
1159                 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1160                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1161                 return;
1162         }
1163
1164         /* Check if the queue is idle */
1165         if (list_empty(&ctlr->queue) || !ctlr->running) {
1166                 if (!ctlr->busy) {
1167                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1168                         return;
1169                 }
1170
1171                 /* Only do teardown in the thread */
1172                 if (!in_kthread) {
1173                         kthread_queue_work(&ctlr->kworker,
1174                                            &ctlr->pump_messages);
1175                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1176                         return;
1177                 }
1178
1179                 ctlr->busy = false;
1180                 ctlr->idling = true;
1181                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1182
1183                 kfree(ctlr->dummy_rx);
1184                 ctlr->dummy_rx = NULL;
1185                 kfree(ctlr->dummy_tx);
1186                 ctlr->dummy_tx = NULL;
1187                 if (ctlr->unprepare_transfer_hardware &&
1188                     ctlr->unprepare_transfer_hardware(ctlr))
1189                         dev_err(&ctlr->dev,
1190                                 "failed to unprepare transfer hardware\n");
1191                 if (ctlr->auto_runtime_pm) {
1192                         pm_runtime_mark_last_busy(ctlr->dev.parent);
1193                         pm_runtime_put_autosuspend(ctlr->dev.parent);
1194                 }
1195                 trace_spi_controller_idle(ctlr);
1196
1197                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1198                 ctlr->idling = false;
1199                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1200                 return;
1201         }
1202
1203         /* Extract head of queue */
1204         ctlr->cur_msg =
1205                 list_first_entry(&ctlr->queue, struct spi_message, queue);
1206
1207         list_del_init(&ctlr->cur_msg->queue);
1208         if (ctlr->busy)
1209                 was_busy = true;
1210         else
1211                 ctlr->busy = true;
1212         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1213
1214         mutex_lock(&ctlr->io_mutex);
1215
1216         if (!was_busy && ctlr->auto_runtime_pm) {
1217                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1218                 if (ret < 0) {
1219                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1220                                 ret);
1221                         mutex_unlock(&ctlr->io_mutex);
1222                         return;
1223                 }
1224         }
1225
1226         if (!was_busy)
1227                 trace_spi_controller_busy(ctlr);
1228
1229         if (!was_busy && ctlr->prepare_transfer_hardware) {
1230                 ret = ctlr->prepare_transfer_hardware(ctlr);
1231                 if (ret) {
1232                         dev_err(&ctlr->dev,
1233                                 "failed to prepare transfer hardware\n");
1234
1235                         if (ctlr->auto_runtime_pm)
1236                                 pm_runtime_put(ctlr->dev.parent);
1237                         mutex_unlock(&ctlr->io_mutex);
1238                         return;
1239                 }
1240         }
1241
1242         trace_spi_message_start(ctlr->cur_msg);
1243
1244         if (ctlr->prepare_message) {
1245                 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1246                 if (ret) {
1247                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1248                                 ret);
1249                         ctlr->cur_msg->status = ret;
1250                         spi_finalize_current_message(ctlr);
1251                         goto out;
1252                 }
1253                 ctlr->cur_msg_prepared = true;
1254         }
1255
1256         ret = spi_map_msg(ctlr, ctlr->cur_msg);
1257         if (ret) {
1258                 ctlr->cur_msg->status = ret;
1259                 spi_finalize_current_message(ctlr);
1260                 goto out;
1261         }
1262
1263         ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1264         if (ret) {
1265                 dev_err(&ctlr->dev,
1266                         "failed to transfer one message from queue\n");
1267                 goto out;
1268         }
1269
1270 out:
1271         mutex_unlock(&ctlr->io_mutex);
1272
1273         /* Prod the scheduler in case transfer_one() was busy waiting */
1274         if (!ret)
1275                 cond_resched();
1276 }
1277
1278 /**
1279  * spi_pump_messages - kthread work function which processes spi message queue
1280  * @work: pointer to kthread work struct contained in the controller struct
1281  */
1282 static void spi_pump_messages(struct kthread_work *work)
1283 {
1284         struct spi_controller *ctlr =
1285                 container_of(work, struct spi_controller, pump_messages);
1286
1287         __spi_pump_messages(ctlr, true);
1288 }
1289
1290 static int spi_init_queue(struct spi_controller *ctlr)
1291 {
1292         struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1293
1294         ctlr->running = false;
1295         ctlr->busy = false;
1296
1297         kthread_init_worker(&ctlr->kworker);
1298         ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1299                                          "%s", dev_name(&ctlr->dev));
1300         if (IS_ERR(ctlr->kworker_task)) {
1301                 dev_err(&ctlr->dev, "failed to create message pump task\n");
1302                 return PTR_ERR(ctlr->kworker_task);
1303         }
1304         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1305
1306         /*
1307          * Controller config will indicate if this controller should run the
1308          * message pump with high (realtime) priority to reduce the transfer
1309          * latency on the bus by minimising the delay between a transfer
1310          * request and the scheduling of the message pump thread. Without this
1311          * setting the message pump thread will remain at default priority.
1312          */
1313         if (ctlr->rt) {
1314                 dev_info(&ctlr->dev,
1315                         "will run message pump with realtime priority\n");
1316                 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1317         }
1318
1319         return 0;
1320 }
1321
1322 /**
1323  * spi_get_next_queued_message() - called by driver to check for queued
1324  * messages
1325  * @ctlr: the controller to check for queued messages
1326  *
1327  * If there are more messages in the queue, the next message is returned from
1328  * this call.
1329  *
1330  * Return: the next message in the queue, else NULL if the queue is empty.
1331  */
1332 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1333 {
1334         struct spi_message *next;
1335         unsigned long flags;
1336
1337         /* get a pointer to the next message, if any */
1338         spin_lock_irqsave(&ctlr->queue_lock, flags);
1339         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1340                                         queue);
1341         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1342
1343         return next;
1344 }
1345 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1346
1347 /**
1348  * spi_finalize_current_message() - the current message is complete
1349  * @ctlr: the controller to return the message to
1350  *
1351  * Called by the driver to notify the core that the message in the front of the
1352  * queue is complete and can be removed from the queue.
1353  */
1354 void spi_finalize_current_message(struct spi_controller *ctlr)
1355 {
1356         struct spi_message *mesg;
1357         unsigned long flags;
1358         int ret;
1359
1360         spin_lock_irqsave(&ctlr->queue_lock, flags);
1361         mesg = ctlr->cur_msg;
1362         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1363
1364         spi_unmap_msg(ctlr, mesg);
1365
1366         if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1367                 ret = ctlr->unprepare_message(ctlr, mesg);
1368                 if (ret) {
1369                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1370                                 ret);
1371                 }
1372         }
1373
1374         spin_lock_irqsave(&ctlr->queue_lock, flags);
1375         ctlr->cur_msg = NULL;
1376         ctlr->cur_msg_prepared = false;
1377         kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1378         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1379
1380         trace_spi_message_done(mesg);
1381
1382         mesg->state = NULL;
1383         if (mesg->complete)
1384                 mesg->complete(mesg->context);
1385 }
1386 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1387
1388 static int spi_start_queue(struct spi_controller *ctlr)
1389 {
1390         unsigned long flags;
1391
1392         spin_lock_irqsave(&ctlr->queue_lock, flags);
1393
1394         if (ctlr->running || ctlr->busy) {
1395                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1396                 return -EBUSY;
1397         }
1398
1399         ctlr->running = true;
1400         ctlr->cur_msg = NULL;
1401         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1402
1403         kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1404
1405         return 0;
1406 }
1407
1408 static int spi_stop_queue(struct spi_controller *ctlr)
1409 {
1410         unsigned long flags;
1411         unsigned limit = 500;
1412         int ret = 0;
1413
1414         spin_lock_irqsave(&ctlr->queue_lock, flags);
1415
1416         /*
1417          * This is a bit lame, but is optimized for the common execution path.
1418          * A wait_queue on the ctlr->busy could be used, but then the common
1419          * execution path (pump_messages) would be required to call wake_up or
1420          * friends on every SPI message. Do this instead.
1421          */
1422         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1423                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1424                 usleep_range(10000, 11000);
1425                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1426         }
1427
1428         if (!list_empty(&ctlr->queue) || ctlr->busy)
1429                 ret = -EBUSY;
1430         else
1431                 ctlr->running = false;
1432
1433         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1434
1435         if (ret) {
1436                 dev_warn(&ctlr->dev, "could not stop message queue\n");
1437                 return ret;
1438         }
1439         return ret;
1440 }
1441
1442 static int spi_destroy_queue(struct spi_controller *ctlr)
1443 {
1444         int ret;
1445
1446         ret = spi_stop_queue(ctlr);
1447
1448         /*
1449          * kthread_flush_worker will block until all work is done.
1450          * If the reason that stop_queue timed out is that the work will never
1451          * finish, then it does no good to call flush/stop thread, so
1452          * return anyway.
1453          */
1454         if (ret) {
1455                 dev_err(&ctlr->dev, "problem destroying queue\n");
1456                 return ret;
1457         }
1458
1459         kthread_flush_worker(&ctlr->kworker);
1460         kthread_stop(ctlr->kworker_task);
1461
1462         return 0;
1463 }
1464
1465 static int __spi_queued_transfer(struct spi_device *spi,
1466                                  struct spi_message *msg,
1467                                  bool need_pump)
1468 {
1469         struct spi_controller *ctlr = spi->controller;
1470         unsigned long flags;
1471
1472         spin_lock_irqsave(&ctlr->queue_lock, flags);
1473
1474         if (!ctlr->running) {
1475                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1476                 return -ESHUTDOWN;
1477         }
1478         msg->actual_length = 0;
1479         msg->status = -EINPROGRESS;
1480
1481         list_add_tail(&msg->queue, &ctlr->queue);
1482         if (!ctlr->busy && need_pump)
1483                 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1484
1485         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1486         return 0;
1487 }
1488
1489 /**
1490  * spi_queued_transfer - transfer function for queued transfers
1491  * @spi: spi device which is requesting transfer
1492  * @msg: spi message which is to handled is queued to driver queue
1493  *
1494  * Return: zero on success, else a negative error code.
1495  */
1496 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1497 {
1498         return __spi_queued_transfer(spi, msg, true);
1499 }
1500
1501 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1502 {
1503         int ret;
1504
1505         ctlr->transfer = spi_queued_transfer;
1506         if (!ctlr->transfer_one_message)
1507                 ctlr->transfer_one_message = spi_transfer_one_message;
1508
1509         /* Initialize and start queue */
1510         ret = spi_init_queue(ctlr);
1511         if (ret) {
1512                 dev_err(&ctlr->dev, "problem initializing queue\n");
1513                 goto err_init_queue;
1514         }
1515         ctlr->queued = true;
1516         ret = spi_start_queue(ctlr);
1517         if (ret) {
1518                 dev_err(&ctlr->dev, "problem starting queue\n");
1519                 goto err_start_queue;
1520         }
1521
1522         return 0;
1523
1524 err_start_queue:
1525         spi_destroy_queue(ctlr);
1526 err_init_queue:
1527         return ret;
1528 }
1529
1530 /*-------------------------------------------------------------------------*/
1531
1532 #if defined(CONFIG_OF)
1533 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1534                            struct device_node *nc)
1535 {
1536         u32 value;
1537         int rc;
1538
1539         /* Mode (clock phase/polarity/etc.) */
1540         if (of_property_read_bool(nc, "spi-cpha"))
1541                 spi->mode |= SPI_CPHA;
1542         if (of_property_read_bool(nc, "spi-cpol"))
1543                 spi->mode |= SPI_CPOL;
1544         if (of_property_read_bool(nc, "spi-cs-high"))
1545                 spi->mode |= SPI_CS_HIGH;
1546         if (of_property_read_bool(nc, "spi-3wire"))
1547                 spi->mode |= SPI_3WIRE;
1548         if (of_property_read_bool(nc, "spi-lsb-first"))
1549                 spi->mode |= SPI_LSB_FIRST;
1550
1551         /* Device DUAL/QUAD mode */
1552         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1553                 switch (value) {
1554                 case 1:
1555                         break;
1556                 case 2:
1557                         spi->mode |= SPI_TX_DUAL;
1558                         break;
1559                 case 4:
1560                         spi->mode |= SPI_TX_QUAD;
1561                         break;
1562                 default:
1563                         dev_warn(&ctlr->dev,
1564                                 "spi-tx-bus-width %d not supported\n",
1565                                 value);
1566                         break;
1567                 }
1568         }
1569
1570         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1571                 switch (value) {
1572                 case 1:
1573                         break;
1574                 case 2:
1575                         spi->mode |= SPI_RX_DUAL;
1576                         break;
1577                 case 4:
1578                         spi->mode |= SPI_RX_QUAD;
1579                         break;
1580                 default:
1581                         dev_warn(&ctlr->dev,
1582                                 "spi-rx-bus-width %d not supported\n",
1583                                 value);
1584                         break;
1585                 }
1586         }
1587
1588         if (spi_controller_is_slave(ctlr)) {
1589                 if (strcmp(nc->name, "slave")) {
1590                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1591                                 nc);
1592                         return -EINVAL;
1593                 }
1594                 return 0;
1595         }
1596
1597         /* Device address */
1598         rc = of_property_read_u32(nc, "reg", &value);
1599         if (rc) {
1600                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1601                         nc, rc);
1602                 return rc;
1603         }
1604         spi->chip_select = value;
1605
1606         /* Device speed */
1607         rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1608         if (rc) {
1609                 dev_err(&ctlr->dev,
1610                         "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1611                 return rc;
1612         }
1613         spi->max_speed_hz = value;
1614
1615         return 0;
1616 }
1617
1618 static struct spi_device *
1619 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1620 {
1621         struct spi_device *spi;
1622         int rc;
1623
1624         /* Alloc an spi_device */
1625         spi = spi_alloc_device(ctlr);
1626         if (!spi) {
1627                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1628                 rc = -ENOMEM;
1629                 goto err_out;
1630         }
1631
1632         /* Select device driver */
1633         rc = of_modalias_node(nc, spi->modalias,
1634                                 sizeof(spi->modalias));
1635         if (rc < 0) {
1636                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1637                 goto err_out;
1638         }
1639
1640         rc = of_spi_parse_dt(ctlr, spi, nc);
1641         if (rc)
1642                 goto err_out;
1643
1644         /* Store a pointer to the node in the device structure */
1645         of_node_get(nc);
1646         spi->dev.of_node = nc;
1647
1648         /* Register the new device */
1649         rc = spi_add_device(spi);
1650         if (rc) {
1651                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1652                 goto err_of_node_put;
1653         }
1654
1655         return spi;
1656
1657 err_of_node_put:
1658         of_node_put(nc);
1659 err_out:
1660         spi_dev_put(spi);
1661         return ERR_PTR(rc);
1662 }
1663
1664 /**
1665  * of_register_spi_devices() - Register child devices onto the SPI bus
1666  * @ctlr:       Pointer to spi_controller device
1667  *
1668  * Registers an spi_device for each child node of controller node which
1669  * represents a valid SPI slave.
1670  */
1671 static void of_register_spi_devices(struct spi_controller *ctlr)
1672 {
1673         struct spi_device *spi;
1674         struct device_node *nc;
1675
1676         if (!ctlr->dev.of_node)
1677                 return;
1678
1679         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1680                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1681                         continue;
1682                 spi = of_register_spi_device(ctlr, nc);
1683                 if (IS_ERR(spi)) {
1684                         dev_warn(&ctlr->dev,
1685                                  "Failed to create SPI device for %pOF\n", nc);
1686                         of_node_clear_flag(nc, OF_POPULATED);
1687                 }
1688         }
1689 }
1690 #else
1691 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1692 #endif
1693
1694 #ifdef CONFIG_ACPI
1695 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1696 {
1697         struct spi_device *spi = data;
1698         struct spi_controller *ctlr = spi->controller;
1699
1700         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1701                 struct acpi_resource_spi_serialbus *sb;
1702
1703                 sb = &ares->data.spi_serial_bus;
1704                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1705                         /*
1706                          * ACPI DeviceSelection numbering is handled by the
1707                          * host controller driver in Windows and can vary
1708                          * from driver to driver. In Linux we always expect
1709                          * 0 .. max - 1 so we need to ask the driver to
1710                          * translate between the two schemes.
1711                          */
1712                         if (ctlr->fw_translate_cs) {
1713                                 int cs = ctlr->fw_translate_cs(ctlr,
1714                                                 sb->device_selection);
1715                                 if (cs < 0)
1716                                         return cs;
1717                                 spi->chip_select = cs;
1718                         } else {
1719                                 spi->chip_select = sb->device_selection;
1720                         }
1721
1722                         spi->max_speed_hz = sb->connection_speed;
1723
1724                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1725                                 spi->mode |= SPI_CPHA;
1726                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1727                                 spi->mode |= SPI_CPOL;
1728                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1729                                 spi->mode |= SPI_CS_HIGH;
1730                 }
1731         } else if (spi->irq < 0) {
1732                 struct resource r;
1733
1734                 if (acpi_dev_resource_interrupt(ares, 0, &r))
1735                         spi->irq = r.start;
1736         }
1737
1738         /* Always tell the ACPI core to skip this resource */
1739         return 1;
1740 }
1741
1742 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1743                                             struct acpi_device *adev)
1744 {
1745         struct list_head resource_list;
1746         struct spi_device *spi;
1747         int ret;
1748
1749         if (acpi_bus_get_status(adev) || !adev->status.present ||
1750             acpi_device_enumerated(adev))
1751                 return AE_OK;
1752
1753         spi = spi_alloc_device(ctlr);
1754         if (!spi) {
1755                 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1756                         dev_name(&adev->dev));
1757                 return AE_NO_MEMORY;
1758         }
1759
1760         ACPI_COMPANION_SET(&spi->dev, adev);
1761         spi->irq = -1;
1762
1763         INIT_LIST_HEAD(&resource_list);
1764         ret = acpi_dev_get_resources(adev, &resource_list,
1765                                      acpi_spi_add_resource, spi);
1766         acpi_dev_free_resource_list(&resource_list);
1767
1768         if (ret < 0 || !spi->max_speed_hz) {
1769                 spi_dev_put(spi);
1770                 return AE_OK;
1771         }
1772
1773         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1774                           sizeof(spi->modalias));
1775
1776         if (spi->irq < 0)
1777                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1778
1779         acpi_device_set_enumerated(adev);
1780
1781         adev->power.flags.ignore_parent = true;
1782         if (spi_add_device(spi)) {
1783                 adev->power.flags.ignore_parent = false;
1784                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1785                         dev_name(&adev->dev));
1786                 spi_dev_put(spi);
1787         }
1788
1789         return AE_OK;
1790 }
1791
1792 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1793                                        void *data, void **return_value)
1794 {
1795         struct spi_controller *ctlr = data;
1796         struct acpi_device *adev;
1797
1798         if (acpi_bus_get_device(handle, &adev))
1799                 return AE_OK;
1800
1801         return acpi_register_spi_device(ctlr, adev);
1802 }
1803
1804 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1805 {
1806         acpi_status status;
1807         acpi_handle handle;
1808
1809         handle = ACPI_HANDLE(ctlr->dev.parent);
1810         if (!handle)
1811                 return;
1812
1813         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1814                                      acpi_spi_add_device, NULL, ctlr, NULL);
1815         if (ACPI_FAILURE(status))
1816                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1817 }
1818 #else
1819 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1820 #endif /* CONFIG_ACPI */
1821
1822 static void spi_controller_release(struct device *dev)
1823 {
1824         struct spi_controller *ctlr;
1825
1826         ctlr = container_of(dev, struct spi_controller, dev);
1827         kfree(ctlr);
1828 }
1829
1830 static struct class spi_master_class = {
1831         .name           = "spi_master",
1832         .owner          = THIS_MODULE,
1833         .dev_release    = spi_controller_release,
1834         .dev_groups     = spi_master_groups,
1835 };
1836
1837 #ifdef CONFIG_SPI_SLAVE
1838 /**
1839  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1840  *                   controller
1841  * @spi: device used for the current transfer
1842  */
1843 int spi_slave_abort(struct spi_device *spi)
1844 {
1845         struct spi_controller *ctlr = spi->controller;
1846
1847         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1848                 return ctlr->slave_abort(ctlr);
1849
1850         return -ENOTSUPP;
1851 }
1852 EXPORT_SYMBOL_GPL(spi_slave_abort);
1853
1854 static int match_true(struct device *dev, void *data)
1855 {
1856         return 1;
1857 }
1858
1859 static ssize_t spi_slave_show(struct device *dev,
1860                               struct device_attribute *attr, char *buf)
1861 {
1862         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1863                                                    dev);
1864         struct device *child;
1865
1866         child = device_find_child(&ctlr->dev, NULL, match_true);
1867         return sprintf(buf, "%s\n",
1868                        child ? to_spi_device(child)->modalias : NULL);
1869 }
1870
1871 static ssize_t spi_slave_store(struct device *dev,
1872                                struct device_attribute *attr, const char *buf,
1873                                size_t count)
1874 {
1875         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1876                                                    dev);
1877         struct spi_device *spi;
1878         struct device *child;
1879         char name[32];
1880         int rc;
1881
1882         rc = sscanf(buf, "%31s", name);
1883         if (rc != 1 || !name[0])
1884                 return -EINVAL;
1885
1886         child = device_find_child(&ctlr->dev, NULL, match_true);
1887         if (child) {
1888                 /* Remove registered slave */
1889                 device_unregister(child);
1890                 put_device(child);
1891         }
1892
1893         if (strcmp(name, "(null)")) {
1894                 /* Register new slave */
1895                 spi = spi_alloc_device(ctlr);
1896                 if (!spi)
1897                         return -ENOMEM;
1898
1899                 strlcpy(spi->modalias, name, sizeof(spi->modalias));
1900
1901                 rc = spi_add_device(spi);
1902                 if (rc) {
1903                         spi_dev_put(spi);
1904                         return rc;
1905                 }
1906         }
1907
1908         return count;
1909 }
1910
1911 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1912
1913 static struct attribute *spi_slave_attrs[] = {
1914         &dev_attr_slave.attr,
1915         NULL,
1916 };
1917
1918 static const struct attribute_group spi_slave_group = {
1919         .attrs = spi_slave_attrs,
1920 };
1921
1922 static const struct attribute_group *spi_slave_groups[] = {
1923         &spi_controller_statistics_group,
1924         &spi_slave_group,
1925         NULL,
1926 };
1927
1928 static struct class spi_slave_class = {
1929         .name           = "spi_slave",
1930         .owner          = THIS_MODULE,
1931         .dev_release    = spi_controller_release,
1932         .dev_groups     = spi_slave_groups,
1933 };
1934 #else
1935 extern struct class spi_slave_class;    /* dummy */
1936 #endif
1937
1938 /**
1939  * __spi_alloc_controller - allocate an SPI master or slave controller
1940  * @dev: the controller, possibly using the platform_bus
1941  * @size: how much zeroed driver-private data to allocate; the pointer to this
1942  *      memory is in the driver_data field of the returned device,
1943  *      accessible with spi_controller_get_devdata().
1944  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1945  *      slave (true) controller
1946  * Context: can sleep
1947  *
1948  * This call is used only by SPI controller drivers, which are the
1949  * only ones directly touching chip registers.  It's how they allocate
1950  * an spi_controller structure, prior to calling spi_register_controller().
1951  *
1952  * This must be called from context that can sleep.
1953  *
1954  * The caller is responsible for assigning the bus number and initializing the
1955  * controller's methods before calling spi_register_controller(); and (after
1956  * errors adding the device) calling spi_controller_put() to prevent a memory
1957  * leak.
1958  *
1959  * Return: the SPI controller structure on success, else NULL.
1960  */
1961 struct spi_controller *__spi_alloc_controller(struct device *dev,
1962                                               unsigned int size, bool slave)
1963 {
1964         struct spi_controller   *ctlr;
1965
1966         if (!dev)
1967                 return NULL;
1968
1969         ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
1970         if (!ctlr)
1971                 return NULL;
1972
1973         device_initialize(&ctlr->dev);
1974         ctlr->bus_num = -1;
1975         ctlr->num_chipselect = 1;
1976         ctlr->slave = slave;
1977         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
1978                 ctlr->dev.class = &spi_slave_class;
1979         else
1980                 ctlr->dev.class = &spi_master_class;
1981         ctlr->dev.parent = dev;
1982         pm_suspend_ignore_children(&ctlr->dev, true);
1983         spi_controller_set_devdata(ctlr, &ctlr[1]);
1984
1985         return ctlr;
1986 }
1987 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
1988
1989 #ifdef CONFIG_OF
1990 static int of_spi_register_master(struct spi_controller *ctlr)
1991 {
1992         int nb, i, *cs;
1993         struct device_node *np = ctlr->dev.of_node;
1994
1995         if (!np)
1996                 return 0;
1997
1998         nb = of_gpio_named_count(np, "cs-gpios");
1999         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2000
2001         /* Return error only for an incorrectly formed cs-gpios property */
2002         if (nb == 0 || nb == -ENOENT)
2003                 return 0;
2004         else if (nb < 0)
2005                 return nb;
2006
2007         cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
2008                           GFP_KERNEL);
2009         ctlr->cs_gpios = cs;
2010
2011         if (!ctlr->cs_gpios)
2012                 return -ENOMEM;
2013
2014         for (i = 0; i < ctlr->num_chipselect; i++)
2015                 cs[i] = -ENOENT;
2016
2017         for (i = 0; i < nb; i++)
2018                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2019
2020         return 0;
2021 }
2022 #else
2023 static int of_spi_register_master(struct spi_controller *ctlr)
2024 {
2025         return 0;
2026 }
2027 #endif
2028
2029 /**
2030  * spi_register_controller - register SPI master or slave controller
2031  * @ctlr: initialized master, originally from spi_alloc_master() or
2032  *      spi_alloc_slave()
2033  * Context: can sleep
2034  *
2035  * SPI controllers connect to their drivers using some non-SPI bus,
2036  * such as the platform bus.  The final stage of probe() in that code
2037  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2038  *
2039  * SPI controllers use board specific (often SOC specific) bus numbers,
2040  * and board-specific addressing for SPI devices combines those numbers
2041  * with chip select numbers.  Since SPI does not directly support dynamic
2042  * device identification, boards need configuration tables telling which
2043  * chip is at which address.
2044  *
2045  * This must be called from context that can sleep.  It returns zero on
2046  * success, else a negative error code (dropping the controller's refcount).
2047  * After a successful return, the caller is responsible for calling
2048  * spi_unregister_controller().
2049  *
2050  * Return: zero on success, else a negative error code.
2051  */
2052 int spi_register_controller(struct spi_controller *ctlr)
2053 {
2054         struct device           *dev = ctlr->dev.parent;
2055         struct boardinfo        *bi;
2056         int                     status = -ENODEV;
2057         int                     id;
2058
2059         if (!dev)
2060                 return -ENODEV;
2061
2062         if (!spi_controller_is_slave(ctlr)) {
2063                 status = of_spi_register_master(ctlr);
2064                 if (status)
2065                         return status;
2066         }
2067
2068         /* even if it's just one always-selected device, there must
2069          * be at least one chipselect
2070          */
2071         if (ctlr->num_chipselect == 0)
2072                 return -EINVAL;
2073         /* allocate dynamic bus number using Linux idr */
2074         if ((ctlr->bus_num < 0) && ctlr->dev.of_node) {
2075                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2076                 if (id >= 0) {
2077                         ctlr->bus_num = id;
2078                         mutex_lock(&board_lock);
2079                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2080                                        ctlr->bus_num + 1, GFP_KERNEL);
2081                         mutex_unlock(&board_lock);
2082                         if (WARN(id < 0, "couldn't get idr"))
2083                                 return id == -ENOSPC ? -EBUSY : id;
2084                 }
2085         }
2086         if (ctlr->bus_num < 0) {
2087                 mutex_lock(&board_lock);
2088                 id = idr_alloc(&spi_master_idr, ctlr, SPI_DYN_FIRST_BUS_NUM, 0,
2089                                GFP_KERNEL);
2090                 mutex_unlock(&board_lock);
2091                 if (WARN(id < 0, "couldn't get idr"))
2092                         return id;
2093                 ctlr->bus_num = id;
2094         }
2095         INIT_LIST_HEAD(&ctlr->queue);
2096         spin_lock_init(&ctlr->queue_lock);
2097         spin_lock_init(&ctlr->bus_lock_spinlock);
2098         mutex_init(&ctlr->bus_lock_mutex);
2099         mutex_init(&ctlr->io_mutex);
2100         ctlr->bus_lock_flag = 0;
2101         init_completion(&ctlr->xfer_completion);
2102         if (!ctlr->max_dma_len)
2103                 ctlr->max_dma_len = INT_MAX;
2104
2105         /* register the device, then userspace will see it.
2106          * registration fails if the bus ID is in use.
2107          */
2108         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2109         status = device_add(&ctlr->dev);
2110         if (status < 0) {
2111                 /* free bus id */
2112                 mutex_lock(&board_lock);
2113                 idr_remove(&spi_master_idr, ctlr->bus_num);
2114                 mutex_unlock(&board_lock);
2115                 goto done;
2116         }
2117         dev_dbg(dev, "registered %s %s\n",
2118                         spi_controller_is_slave(ctlr) ? "slave" : "master",
2119                         dev_name(&ctlr->dev));
2120
2121         /* If we're using a queued driver, start the queue */
2122         if (ctlr->transfer)
2123                 dev_info(dev, "controller is unqueued, this is deprecated\n");
2124         else {
2125                 status = spi_controller_initialize_queue(ctlr);
2126                 if (status) {
2127                         device_del(&ctlr->dev);
2128                         /* free bus id */
2129                         mutex_lock(&board_lock);
2130                         idr_remove(&spi_master_idr, ctlr->bus_num);
2131                         mutex_unlock(&board_lock);
2132                         goto done;
2133                 }
2134         }
2135         /* add statistics */
2136         spin_lock_init(&ctlr->statistics.lock);
2137
2138         mutex_lock(&board_lock);
2139         list_add_tail(&ctlr->list, &spi_controller_list);
2140         list_for_each_entry(bi, &board_list, list)
2141                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2142         mutex_unlock(&board_lock);
2143
2144         /* Register devices from the device tree and ACPI */
2145         of_register_spi_devices(ctlr);
2146         acpi_register_spi_devices(ctlr);
2147 done:
2148         return status;
2149 }
2150 EXPORT_SYMBOL_GPL(spi_register_controller);
2151
2152 static void devm_spi_unregister(struct device *dev, void *res)
2153 {
2154         spi_unregister_controller(*(struct spi_controller **)res);
2155 }
2156
2157 /**
2158  * devm_spi_register_controller - register managed SPI master or slave
2159  *      controller
2160  * @dev:    device managing SPI controller
2161  * @ctlr: initialized controller, originally from spi_alloc_master() or
2162  *      spi_alloc_slave()
2163  * Context: can sleep
2164  *
2165  * Register a SPI device as with spi_register_controller() which will
2166  * automatically be unregister
2167  *
2168  * Return: zero on success, else a negative error code.
2169  */
2170 int devm_spi_register_controller(struct device *dev,
2171                                  struct spi_controller *ctlr)
2172 {
2173         struct spi_controller **ptr;
2174         int ret;
2175
2176         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2177         if (!ptr)
2178                 return -ENOMEM;
2179
2180         ret = spi_register_controller(ctlr);
2181         if (!ret) {
2182                 *ptr = ctlr;
2183                 devres_add(dev, ptr);
2184         } else {
2185                 devres_free(ptr);
2186         }
2187
2188         return ret;
2189 }
2190 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2191
2192 static int __unregister(struct device *dev, void *null)
2193 {
2194         spi_unregister_device(to_spi_device(dev));
2195         return 0;
2196 }
2197
2198 /**
2199  * spi_unregister_controller - unregister SPI master or slave controller
2200  * @ctlr: the controller being unregistered
2201  * Context: can sleep
2202  *
2203  * This call is used only by SPI controller drivers, which are the
2204  * only ones directly touching chip registers.
2205  *
2206  * This must be called from context that can sleep.
2207  */
2208 void spi_unregister_controller(struct spi_controller *ctlr)
2209 {
2210         struct spi_controller *found;
2211         int dummy;
2212
2213         /* First make sure that this controller was ever added */
2214         mutex_lock(&board_lock);
2215         found = idr_find(&spi_master_idr, ctlr->bus_num);
2216         mutex_unlock(&board_lock);
2217         if (found != ctlr) {
2218                 dev_dbg(&ctlr->dev,
2219                         "attempting to delete unregistered controller [%s]\n",
2220                         dev_name(&ctlr->dev));
2221                 return;
2222         }
2223         if (ctlr->queued) {
2224                 if (spi_destroy_queue(ctlr))
2225                         dev_err(&ctlr->dev, "queue remove failed\n");
2226         }
2227         mutex_lock(&board_lock);
2228         list_del(&ctlr->list);
2229         mutex_unlock(&board_lock);
2230
2231         dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2232         device_unregister(&ctlr->dev);
2233         /* free bus id */
2234         mutex_lock(&board_lock);
2235         idr_remove(&spi_master_idr, ctlr->bus_num);
2236         mutex_unlock(&board_lock);
2237 }
2238 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2239
2240 int spi_controller_suspend(struct spi_controller *ctlr)
2241 {
2242         int ret;
2243
2244         /* Basically no-ops for non-queued controllers */
2245         if (!ctlr->queued)
2246                 return 0;
2247
2248         ret = spi_stop_queue(ctlr);
2249         if (ret)
2250                 dev_err(&ctlr->dev, "queue stop failed\n");
2251
2252         return ret;
2253 }
2254 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2255
2256 int spi_controller_resume(struct spi_controller *ctlr)
2257 {
2258         int ret;
2259
2260         if (!ctlr->queued)
2261                 return 0;
2262
2263         ret = spi_start_queue(ctlr);
2264         if (ret)
2265                 dev_err(&ctlr->dev, "queue restart failed\n");
2266
2267         return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(spi_controller_resume);
2270
2271 static int __spi_controller_match(struct device *dev, const void *data)
2272 {
2273         struct spi_controller *ctlr;
2274         const u16 *bus_num = data;
2275
2276         ctlr = container_of(dev, struct spi_controller, dev);
2277         return ctlr->bus_num == *bus_num;
2278 }
2279
2280 /**
2281  * spi_busnum_to_master - look up master associated with bus_num
2282  * @bus_num: the master's bus number
2283  * Context: can sleep
2284  *
2285  * This call may be used with devices that are registered after
2286  * arch init time.  It returns a refcounted pointer to the relevant
2287  * spi_controller (which the caller must release), or NULL if there is
2288  * no such master registered.
2289  *
2290  * Return: the SPI master structure on success, else NULL.
2291  */
2292 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2293 {
2294         struct device           *dev;
2295         struct spi_controller   *ctlr = NULL;
2296
2297         dev = class_find_device(&spi_master_class, NULL, &bus_num,
2298                                 __spi_controller_match);
2299         if (dev)
2300                 ctlr = container_of(dev, struct spi_controller, dev);
2301         /* reference got in class_find_device */
2302         return ctlr;
2303 }
2304 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2305
2306 /*-------------------------------------------------------------------------*/
2307
2308 /* Core methods for SPI resource management */
2309
2310 /**
2311  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2312  *                 during the processing of a spi_message while using
2313  *                 spi_transfer_one
2314  * @spi:     the spi device for which we allocate memory
2315  * @release: the release code to execute for this resource
2316  * @size:    size to alloc and return
2317  * @gfp:     GFP allocation flags
2318  *
2319  * Return: the pointer to the allocated data
2320  *
2321  * This may get enhanced in the future to allocate from a memory pool
2322  * of the @spi_device or @spi_controller to avoid repeated allocations.
2323  */
2324 void *spi_res_alloc(struct spi_device *spi,
2325                     spi_res_release_t release,
2326                     size_t size, gfp_t gfp)
2327 {
2328         struct spi_res *sres;
2329
2330         sres = kzalloc(sizeof(*sres) + size, gfp);
2331         if (!sres)
2332                 return NULL;
2333
2334         INIT_LIST_HEAD(&sres->entry);
2335         sres->release = release;
2336
2337         return sres->data;
2338 }
2339 EXPORT_SYMBOL_GPL(spi_res_alloc);
2340
2341 /**
2342  * spi_res_free - free an spi resource
2343  * @res: pointer to the custom data of a resource
2344  *
2345  */
2346 void spi_res_free(void *res)
2347 {
2348         struct spi_res *sres = container_of(res, struct spi_res, data);
2349
2350         if (!res)
2351                 return;
2352
2353         WARN_ON(!list_empty(&sres->entry));
2354         kfree(sres);
2355 }
2356 EXPORT_SYMBOL_GPL(spi_res_free);
2357
2358 /**
2359  * spi_res_add - add a spi_res to the spi_message
2360  * @message: the spi message
2361  * @res:     the spi_resource
2362  */
2363 void spi_res_add(struct spi_message *message, void *res)
2364 {
2365         struct spi_res *sres = container_of(res, struct spi_res, data);
2366
2367         WARN_ON(!list_empty(&sres->entry));
2368         list_add_tail(&sres->entry, &message->resources);
2369 }
2370 EXPORT_SYMBOL_GPL(spi_res_add);
2371
2372 /**
2373  * spi_res_release - release all spi resources for this message
2374  * @ctlr:  the @spi_controller
2375  * @message: the @spi_message
2376  */
2377 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2378 {
2379         struct spi_res *res;
2380
2381         while (!list_empty(&message->resources)) {
2382                 res = list_last_entry(&message->resources,
2383                                       struct spi_res, entry);
2384
2385                 if (res->release)
2386                         res->release(ctlr, message, res->data);
2387
2388                 list_del(&res->entry);
2389
2390                 kfree(res);
2391         }
2392 }
2393 EXPORT_SYMBOL_GPL(spi_res_release);
2394
2395 /*-------------------------------------------------------------------------*/
2396
2397 /* Core methods for spi_message alterations */
2398
2399 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2400                                             struct spi_message *msg,
2401                                             void *res)
2402 {
2403         struct spi_replaced_transfers *rxfer = res;
2404         size_t i;
2405
2406         /* call extra callback if requested */
2407         if (rxfer->release)
2408                 rxfer->release(ctlr, msg, res);
2409
2410         /* insert replaced transfers back into the message */
2411         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2412
2413         /* remove the formerly inserted entries */
2414         for (i = 0; i < rxfer->inserted; i++)
2415                 list_del(&rxfer->inserted_transfers[i].transfer_list);
2416 }
2417
2418 /**
2419  * spi_replace_transfers - replace transfers with several transfers
2420  *                         and register change with spi_message.resources
2421  * @msg:           the spi_message we work upon
2422  * @xfer_first:    the first spi_transfer we want to replace
2423  * @remove:        number of transfers to remove
2424  * @insert:        the number of transfers we want to insert instead
2425  * @release:       extra release code necessary in some circumstances
2426  * @extradatasize: extra data to allocate (with alignment guarantees
2427  *                 of struct @spi_transfer)
2428  * @gfp:           gfp flags
2429  *
2430  * Returns: pointer to @spi_replaced_transfers,
2431  *          PTR_ERR(...) in case of errors.
2432  */
2433 struct spi_replaced_transfers *spi_replace_transfers(
2434         struct spi_message *msg,
2435         struct spi_transfer *xfer_first,
2436         size_t remove,
2437         size_t insert,
2438         spi_replaced_release_t release,
2439         size_t extradatasize,
2440         gfp_t gfp)
2441 {
2442         struct spi_replaced_transfers *rxfer;
2443         struct spi_transfer *xfer;
2444         size_t i;
2445
2446         /* allocate the structure using spi_res */
2447         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2448                               insert * sizeof(struct spi_transfer)
2449                               + sizeof(struct spi_replaced_transfers)
2450                               + extradatasize,
2451                               gfp);
2452         if (!rxfer)
2453                 return ERR_PTR(-ENOMEM);
2454
2455         /* the release code to invoke before running the generic release */
2456         rxfer->release = release;
2457
2458         /* assign extradata */
2459         if (extradatasize)
2460                 rxfer->extradata =
2461                         &rxfer->inserted_transfers[insert];
2462
2463         /* init the replaced_transfers list */
2464         INIT_LIST_HEAD(&rxfer->replaced_transfers);
2465
2466         /* assign the list_entry after which we should reinsert
2467          * the @replaced_transfers - it may be spi_message.messages!
2468          */
2469         rxfer->replaced_after = xfer_first->transfer_list.prev;
2470
2471         /* remove the requested number of transfers */
2472         for (i = 0; i < remove; i++) {
2473                 /* if the entry after replaced_after it is msg->transfers
2474                  * then we have been requested to remove more transfers
2475                  * than are in the list
2476                  */
2477                 if (rxfer->replaced_after->next == &msg->transfers) {
2478                         dev_err(&msg->spi->dev,
2479                                 "requested to remove more spi_transfers than are available\n");
2480                         /* insert replaced transfers back into the message */
2481                         list_splice(&rxfer->replaced_transfers,
2482                                     rxfer->replaced_after);
2483
2484                         /* free the spi_replace_transfer structure */
2485                         spi_res_free(rxfer);
2486
2487                         /* and return with an error */
2488                         return ERR_PTR(-EINVAL);
2489                 }
2490
2491                 /* remove the entry after replaced_after from list of
2492                  * transfers and add it to list of replaced_transfers
2493                  */
2494                 list_move_tail(rxfer->replaced_after->next,
2495                                &rxfer->replaced_transfers);
2496         }
2497
2498         /* create copy of the given xfer with identical settings
2499          * based on the first transfer to get removed
2500          */
2501         for (i = 0; i < insert; i++) {
2502                 /* we need to run in reverse order */
2503                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2504
2505                 /* copy all spi_transfer data */
2506                 memcpy(xfer, xfer_first, sizeof(*xfer));
2507
2508                 /* add to list */
2509                 list_add(&xfer->transfer_list, rxfer->replaced_after);
2510
2511                 /* clear cs_change and delay_usecs for all but the last */
2512                 if (i) {
2513                         xfer->cs_change = false;
2514                         xfer->delay_usecs = 0;
2515                 }
2516         }
2517
2518         /* set up inserted */
2519         rxfer->inserted = insert;
2520
2521         /* and register it with spi_res/spi_message */
2522         spi_res_add(msg, rxfer);
2523
2524         return rxfer;
2525 }
2526 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2527
2528 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2529                                         struct spi_message *msg,
2530                                         struct spi_transfer **xferp,
2531                                         size_t maxsize,
2532                                         gfp_t gfp)
2533 {
2534         struct spi_transfer *xfer = *xferp, *xfers;
2535         struct spi_replaced_transfers *srt;
2536         size_t offset;
2537         size_t count, i;
2538
2539         /* warn once about this fact that we are splitting a transfer */
2540         dev_warn_once(&msg->spi->dev,
2541                       "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2542                       xfer->len, maxsize);
2543
2544         /* calculate how many we have to replace */
2545         count = DIV_ROUND_UP(xfer->len, maxsize);
2546
2547         /* create replacement */
2548         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2549         if (IS_ERR(srt))
2550                 return PTR_ERR(srt);
2551         xfers = srt->inserted_transfers;
2552
2553         /* now handle each of those newly inserted spi_transfers
2554          * note that the replacements spi_transfers all are preset
2555          * to the same values as *xferp, so tx_buf, rx_buf and len
2556          * are all identical (as well as most others)
2557          * so we just have to fix up len and the pointers.
2558          *
2559          * this also includes support for the depreciated
2560          * spi_message.is_dma_mapped interface
2561          */
2562
2563         /* the first transfer just needs the length modified, so we
2564          * run it outside the loop
2565          */
2566         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2567
2568         /* all the others need rx_buf/tx_buf also set */
2569         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2570                 /* update rx_buf, tx_buf and dma */
2571                 if (xfers[i].rx_buf)
2572                         xfers[i].rx_buf += offset;
2573                 if (xfers[i].rx_dma)
2574                         xfers[i].rx_dma += offset;
2575                 if (xfers[i].tx_buf)
2576                         xfers[i].tx_buf += offset;
2577                 if (xfers[i].tx_dma)
2578                         xfers[i].tx_dma += offset;
2579
2580                 /* update length */
2581                 xfers[i].len = min(maxsize, xfers[i].len - offset);
2582         }
2583
2584         /* we set up xferp to the last entry we have inserted,
2585          * so that we skip those already split transfers
2586          */
2587         *xferp = &xfers[count - 1];
2588
2589         /* increment statistics counters */
2590         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2591                                        transfers_split_maxsize);
2592         SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2593                                        transfers_split_maxsize);
2594
2595         return 0;
2596 }
2597
2598 /**
2599  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2600  *                              when an individual transfer exceeds a
2601  *                              certain size
2602  * @ctlr:    the @spi_controller for this transfer
2603  * @msg:   the @spi_message to transform
2604  * @maxsize:  the maximum when to apply this
2605  * @gfp: GFP allocation flags
2606  *
2607  * Return: status of transformation
2608  */
2609 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2610                                 struct spi_message *msg,
2611                                 size_t maxsize,
2612                                 gfp_t gfp)
2613 {
2614         struct spi_transfer *xfer;
2615         int ret;
2616
2617         /* iterate over the transfer_list,
2618          * but note that xfer is advanced to the last transfer inserted
2619          * to avoid checking sizes again unnecessarily (also xfer does
2620          * potentiall belong to a different list by the time the
2621          * replacement has happened
2622          */
2623         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2624                 if (xfer->len > maxsize) {
2625                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2626                                                            maxsize, gfp);
2627                         if (ret)
2628                                 return ret;
2629                 }
2630         }
2631
2632         return 0;
2633 }
2634 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2635
2636 /*-------------------------------------------------------------------------*/
2637
2638 /* Core methods for SPI controller protocol drivers.  Some of the
2639  * other core methods are currently defined as inline functions.
2640  */
2641
2642 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2643                                         u8 bits_per_word)
2644 {
2645         if (ctlr->bits_per_word_mask) {
2646                 /* Only 32 bits fit in the mask */
2647                 if (bits_per_word > 32)
2648                         return -EINVAL;
2649                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2650                         return -EINVAL;
2651         }
2652
2653         return 0;
2654 }
2655
2656 /**
2657  * spi_setup - setup SPI mode and clock rate
2658  * @spi: the device whose settings are being modified
2659  * Context: can sleep, and no requests are queued to the device
2660  *
2661  * SPI protocol drivers may need to update the transfer mode if the
2662  * device doesn't work with its default.  They may likewise need
2663  * to update clock rates or word sizes from initial values.  This function
2664  * changes those settings, and must be called from a context that can sleep.
2665  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2666  * effect the next time the device is selected and data is transferred to
2667  * or from it.  When this function returns, the spi device is deselected.
2668  *
2669  * Note that this call will fail if the protocol driver specifies an option
2670  * that the underlying controller or its driver does not support.  For
2671  * example, not all hardware supports wire transfers using nine bit words,
2672  * LSB-first wire encoding, or active-high chipselects.
2673  *
2674  * Return: zero on success, else a negative error code.
2675  */
2676 int spi_setup(struct spi_device *spi)
2677 {
2678         unsigned        bad_bits, ugly_bits;
2679         int             status;
2680
2681         /* check mode to prevent that DUAL and QUAD set at the same time
2682          */
2683         if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2684                 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2685                 dev_err(&spi->dev,
2686                 "setup: can not select dual and quad at the same time\n");
2687                 return -EINVAL;
2688         }
2689         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2690          */
2691         if ((spi->mode & SPI_3WIRE) && (spi->mode &
2692                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2693                 return -EINVAL;
2694         /* help drivers fail *cleanly* when they need options
2695          * that aren't supported with their current controller
2696          */
2697         bad_bits = spi->mode & ~spi->controller->mode_bits;
2698         ugly_bits = bad_bits &
2699                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2700         if (ugly_bits) {
2701                 dev_warn(&spi->dev,
2702                          "setup: ignoring unsupported mode bits %x\n",
2703                          ugly_bits);
2704                 spi->mode &= ~ugly_bits;
2705                 bad_bits &= ~ugly_bits;
2706         }
2707         if (bad_bits) {
2708                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2709                         bad_bits);
2710                 return -EINVAL;
2711         }
2712
2713         if (!spi->bits_per_word)
2714                 spi->bits_per_word = 8;
2715
2716         status = __spi_validate_bits_per_word(spi->controller,
2717                                               spi->bits_per_word);
2718         if (status)
2719                 return status;
2720
2721         if (!spi->max_speed_hz)
2722                 spi->max_speed_hz = spi->controller->max_speed_hz;
2723
2724         if (spi->controller->setup)
2725                 status = spi->controller->setup(spi);
2726
2727         spi_set_cs(spi, false);
2728
2729         dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2730                         (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2731                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2732                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2733                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2734                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
2735                         spi->bits_per_word, spi->max_speed_hz,
2736                         status);
2737
2738         return status;
2739 }
2740 EXPORT_SYMBOL_GPL(spi_setup);
2741
2742 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2743 {
2744         struct spi_controller *ctlr = spi->controller;
2745         struct spi_transfer *xfer;
2746         int w_size;
2747
2748         if (list_empty(&message->transfers))
2749                 return -EINVAL;
2750
2751         /* Half-duplex links include original MicroWire, and ones with
2752          * only one data pin like SPI_3WIRE (switches direction) or where
2753          * either MOSI or MISO is missing.  They can also be caused by
2754          * software limitations.
2755          */
2756         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2757             (spi->mode & SPI_3WIRE)) {
2758                 unsigned flags = ctlr->flags;
2759
2760                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2761                         if (xfer->rx_buf && xfer->tx_buf)
2762                                 return -EINVAL;
2763                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2764                                 return -EINVAL;
2765                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2766                                 return -EINVAL;
2767                 }
2768         }
2769
2770         /**
2771          * Set transfer bits_per_word and max speed as spi device default if
2772          * it is not set for this transfer.
2773          * Set transfer tx_nbits and rx_nbits as single transfer default
2774          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2775          */
2776         message->frame_length = 0;
2777         list_for_each_entry(xfer, &message->transfers, transfer_list) {
2778                 message->frame_length += xfer->len;
2779                 if (!xfer->bits_per_word)
2780                         xfer->bits_per_word = spi->bits_per_word;
2781
2782                 if (!xfer->speed_hz)
2783                         xfer->speed_hz = spi->max_speed_hz;
2784                 if (!xfer->speed_hz)
2785                         xfer->speed_hz = ctlr->max_speed_hz;
2786
2787                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2788                         xfer->speed_hz = ctlr->max_speed_hz;
2789
2790                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2791                         return -EINVAL;
2792
2793                 /*
2794                  * SPI transfer length should be multiple of SPI word size
2795                  * where SPI word size should be power-of-two multiple
2796                  */
2797                 if (xfer->bits_per_word <= 8)
2798                         w_size = 1;
2799                 else if (xfer->bits_per_word <= 16)
2800                         w_size = 2;
2801                 else
2802                         w_size = 4;
2803
2804                 /* No partial transfers accepted */
2805                 if (xfer->len % w_size)
2806                         return -EINVAL;
2807
2808                 if (xfer->speed_hz && ctlr->min_speed_hz &&
2809                     xfer->speed_hz < ctlr->min_speed_hz)
2810                         return -EINVAL;
2811
2812                 if (xfer->tx_buf && !xfer->tx_nbits)
2813                         xfer->tx_nbits = SPI_NBITS_SINGLE;
2814                 if (xfer->rx_buf && !xfer->rx_nbits)
2815                         xfer->rx_nbits = SPI_NBITS_SINGLE;
2816                 /* check transfer tx/rx_nbits:
2817                  * 1. check the value matches one of single, dual and quad
2818                  * 2. check tx/rx_nbits match the mode in spi_device
2819                  */
2820                 if (xfer->tx_buf) {
2821                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2822                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
2823                                 xfer->tx_nbits != SPI_NBITS_QUAD)
2824                                 return -EINVAL;
2825                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2826                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2827                                 return -EINVAL;
2828                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2829                                 !(spi->mode & SPI_TX_QUAD))
2830                                 return -EINVAL;
2831                 }
2832                 /* check transfer rx_nbits */
2833                 if (xfer->rx_buf) {
2834                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2835                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
2836                                 xfer->rx_nbits != SPI_NBITS_QUAD)
2837                                 return -EINVAL;
2838                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2839                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2840                                 return -EINVAL;
2841                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2842                                 !(spi->mode & SPI_RX_QUAD))
2843                                 return -EINVAL;
2844                 }
2845         }
2846
2847         message->status = -EINPROGRESS;
2848
2849         return 0;
2850 }
2851
2852 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2853 {
2854         struct spi_controller *ctlr = spi->controller;
2855
2856         message->spi = spi;
2857
2858         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2859         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2860
2861         trace_spi_message_submit(message);
2862
2863         return ctlr->transfer(spi, message);
2864 }
2865
2866 /**
2867  * spi_async - asynchronous SPI transfer
2868  * @spi: device with which data will be exchanged
2869  * @message: describes the data transfers, including completion callback
2870  * Context: any (irqs may be blocked, etc)
2871  *
2872  * This call may be used in_irq and other contexts which can't sleep,
2873  * as well as from task contexts which can sleep.
2874  *
2875  * The completion callback is invoked in a context which can't sleep.
2876  * Before that invocation, the value of message->status is undefined.
2877  * When the callback is issued, message->status holds either zero (to
2878  * indicate complete success) or a negative error code.  After that
2879  * callback returns, the driver which issued the transfer request may
2880  * deallocate the associated memory; it's no longer in use by any SPI
2881  * core or controller driver code.
2882  *
2883  * Note that although all messages to a spi_device are handled in
2884  * FIFO order, messages may go to different devices in other orders.
2885  * Some device might be higher priority, or have various "hard" access
2886  * time requirements, for example.
2887  *
2888  * On detection of any fault during the transfer, processing of
2889  * the entire message is aborted, and the device is deselected.
2890  * Until returning from the associated message completion callback,
2891  * no other spi_message queued to that device will be processed.
2892  * (This rule applies equally to all the synchronous transfer calls,
2893  * which are wrappers around this core asynchronous primitive.)
2894  *
2895  * Return: zero on success, else a negative error code.
2896  */
2897 int spi_async(struct spi_device *spi, struct spi_message *message)
2898 {
2899         struct spi_controller *ctlr = spi->controller;
2900         int ret;
2901         unsigned long flags;
2902
2903         ret = __spi_validate(spi, message);
2904         if (ret != 0)
2905                 return ret;
2906
2907         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2908
2909         if (ctlr->bus_lock_flag)
2910                 ret = -EBUSY;
2911         else
2912                 ret = __spi_async(spi, message);
2913
2914         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2915
2916         return ret;
2917 }
2918 EXPORT_SYMBOL_GPL(spi_async);
2919
2920 /**
2921  * spi_async_locked - version of spi_async with exclusive bus usage
2922  * @spi: device with which data will be exchanged
2923  * @message: describes the data transfers, including completion callback
2924  * Context: any (irqs may be blocked, etc)
2925  *
2926  * This call may be used in_irq and other contexts which can't sleep,
2927  * as well as from task contexts which can sleep.
2928  *
2929  * The completion callback is invoked in a context which can't sleep.
2930  * Before that invocation, the value of message->status is undefined.
2931  * When the callback is issued, message->status holds either zero (to
2932  * indicate complete success) or a negative error code.  After that
2933  * callback returns, the driver which issued the transfer request may
2934  * deallocate the associated memory; it's no longer in use by any SPI
2935  * core or controller driver code.
2936  *
2937  * Note that although all messages to a spi_device are handled in
2938  * FIFO order, messages may go to different devices in other orders.
2939  * Some device might be higher priority, or have various "hard" access
2940  * time requirements, for example.
2941  *
2942  * On detection of any fault during the transfer, processing of
2943  * the entire message is aborted, and the device is deselected.
2944  * Until returning from the associated message completion callback,
2945  * no other spi_message queued to that device will be processed.
2946  * (This rule applies equally to all the synchronous transfer calls,
2947  * which are wrappers around this core asynchronous primitive.)
2948  *
2949  * Return: zero on success, else a negative error code.
2950  */
2951 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2952 {
2953         struct spi_controller *ctlr = spi->controller;
2954         int ret;
2955         unsigned long flags;
2956
2957         ret = __spi_validate(spi, message);
2958         if (ret != 0)
2959                 return ret;
2960
2961         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2962
2963         ret = __spi_async(spi, message);
2964
2965         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2966
2967         return ret;
2968
2969 }
2970 EXPORT_SYMBOL_GPL(spi_async_locked);
2971
2972
2973 int spi_flash_read(struct spi_device *spi,
2974                    struct spi_flash_read_message *msg)
2975
2976 {
2977         struct spi_controller *master = spi->controller;
2978         struct device *rx_dev = NULL;
2979         int ret;
2980
2981         if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2982              msg->addr_nbits == SPI_NBITS_DUAL) &&
2983             !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2984                 return -EINVAL;
2985         if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2986              msg->addr_nbits == SPI_NBITS_QUAD) &&
2987             !(spi->mode & SPI_TX_QUAD))
2988                 return -EINVAL;
2989         if (msg->data_nbits == SPI_NBITS_DUAL &&
2990             !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2991                 return -EINVAL;
2992         if (msg->data_nbits == SPI_NBITS_QUAD &&
2993             !(spi->mode &  SPI_RX_QUAD))
2994                 return -EINVAL;
2995
2996         if (master->auto_runtime_pm) {
2997                 ret = pm_runtime_get_sync(master->dev.parent);
2998                 if (ret < 0) {
2999                         dev_err(&master->dev, "Failed to power device: %d\n",
3000                                 ret);
3001                         return ret;
3002                 }
3003         }
3004
3005         mutex_lock(&master->bus_lock_mutex);
3006         mutex_lock(&master->io_mutex);
3007         if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
3008                 rx_dev = master->dma_rx->device->dev;
3009                 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
3010                                   msg->buf, msg->len,
3011                                   DMA_FROM_DEVICE);
3012                 if (!ret)
3013                         msg->cur_msg_mapped = true;
3014         }
3015         ret = master->spi_flash_read(spi, msg);
3016         if (msg->cur_msg_mapped)
3017                 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
3018                               DMA_FROM_DEVICE);
3019         mutex_unlock(&master->io_mutex);
3020         mutex_unlock(&master->bus_lock_mutex);
3021
3022         if (master->auto_runtime_pm)
3023                 pm_runtime_put(master->dev.parent);
3024
3025         return ret;
3026 }
3027 EXPORT_SYMBOL_GPL(spi_flash_read);
3028
3029 /*-------------------------------------------------------------------------*/
3030
3031 /* Utility methods for SPI protocol drivers, layered on
3032  * top of the core.  Some other utility methods are defined as
3033  * inline functions.
3034  */
3035
3036 static void spi_complete(void *arg)
3037 {
3038         complete(arg);
3039 }
3040
3041 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3042 {
3043         DECLARE_COMPLETION_ONSTACK(done);
3044         int status;
3045         struct spi_controller *ctlr = spi->controller;
3046         unsigned long flags;
3047
3048         status = __spi_validate(spi, message);
3049         if (status != 0)
3050                 return status;
3051
3052         message->complete = spi_complete;
3053         message->context = &done;
3054         message->spi = spi;
3055
3056         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3057         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3058
3059         /* If we're not using the legacy transfer method then we will
3060          * try to transfer in the calling context so special case.
3061          * This code would be less tricky if we could remove the
3062          * support for driver implemented message queues.
3063          */
3064         if (ctlr->transfer == spi_queued_transfer) {
3065                 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3066
3067                 trace_spi_message_submit(message);
3068
3069                 status = __spi_queued_transfer(spi, message, false);
3070
3071                 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3072         } else {
3073                 status = spi_async_locked(spi, message);
3074         }
3075
3076         if (status == 0) {
3077                 /* Push out the messages in the calling context if we
3078                  * can.
3079                  */
3080                 if (ctlr->transfer == spi_queued_transfer) {
3081                         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3082                                                        spi_sync_immediate);
3083                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3084                                                        spi_sync_immediate);
3085                         __spi_pump_messages(ctlr, false);
3086                 }
3087
3088                 wait_for_completion(&done);
3089                 status = message->status;
3090         }
3091         message->context = NULL;
3092         return status;
3093 }
3094
3095 /**
3096  * spi_sync - blocking/synchronous SPI data transfers
3097  * @spi: device with which data will be exchanged
3098  * @message: describes the data transfers
3099  * Context: can sleep
3100  *
3101  * This call may only be used from a context that may sleep.  The sleep
3102  * is non-interruptible, and has no timeout.  Low-overhead controller
3103  * drivers may DMA directly into and out of the message buffers.
3104  *
3105  * Note that the SPI device's chip select is active during the message,
3106  * and then is normally disabled between messages.  Drivers for some
3107  * frequently-used devices may want to minimize costs of selecting a chip,
3108  * by leaving it selected in anticipation that the next message will go
3109  * to the same chip.  (That may increase power usage.)
3110  *
3111  * Also, the caller is guaranteeing that the memory associated with the
3112  * message will not be freed before this call returns.
3113  *
3114  * Return: zero on success, else a negative error code.
3115  */
3116 int spi_sync(struct spi_device *spi, struct spi_message *message)
3117 {
3118         int ret;
3119
3120         mutex_lock(&spi->controller->bus_lock_mutex);
3121         ret = __spi_sync(spi, message);
3122         mutex_unlock(&spi->controller->bus_lock_mutex);
3123
3124         return ret;
3125 }
3126 EXPORT_SYMBOL_GPL(spi_sync);
3127
3128 /**
3129  * spi_sync_locked - version of spi_sync with exclusive bus usage
3130  * @spi: device with which data will be exchanged
3131  * @message: describes the data transfers
3132  * Context: can sleep
3133  *
3134  * This call may only be used from a context that may sleep.  The sleep
3135  * is non-interruptible, and has no timeout.  Low-overhead controller
3136  * drivers may DMA directly into and out of the message buffers.
3137  *
3138  * This call should be used by drivers that require exclusive access to the
3139  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3140  * be released by a spi_bus_unlock call when the exclusive access is over.
3141  *
3142  * Return: zero on success, else a negative error code.
3143  */
3144 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3145 {
3146         return __spi_sync(spi, message);
3147 }
3148 EXPORT_SYMBOL_GPL(spi_sync_locked);
3149
3150 /**
3151  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3152  * @ctlr: SPI bus master that should be locked for exclusive bus access
3153  * Context: can sleep
3154  *
3155  * This call may only be used from a context that may sleep.  The sleep
3156  * is non-interruptible, and has no timeout.
3157  *
3158  * This call should be used by drivers that require exclusive access to the
3159  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3160  * exclusive access is over. Data transfer must be done by spi_sync_locked
3161  * and spi_async_locked calls when the SPI bus lock is held.
3162  *
3163  * Return: always zero.
3164  */
3165 int spi_bus_lock(struct spi_controller *ctlr)
3166 {
3167         unsigned long flags;
3168
3169         mutex_lock(&ctlr->bus_lock_mutex);
3170
3171         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3172         ctlr->bus_lock_flag = 1;
3173         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3174
3175         /* mutex remains locked until spi_bus_unlock is called */
3176
3177         return 0;
3178 }
3179 EXPORT_SYMBOL_GPL(spi_bus_lock);
3180
3181 /**
3182  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3183  * @ctlr: SPI bus master that was locked for exclusive bus access
3184  * Context: can sleep
3185  *
3186  * This call may only be used from a context that may sleep.  The sleep
3187  * is non-interruptible, and has no timeout.
3188  *
3189  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3190  * call.
3191  *
3192  * Return: always zero.
3193  */
3194 int spi_bus_unlock(struct spi_controller *ctlr)
3195 {
3196         ctlr->bus_lock_flag = 0;
3197
3198         mutex_unlock(&ctlr->bus_lock_mutex);
3199
3200         return 0;
3201 }
3202 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3203
3204 /* portable code must never pass more than 32 bytes */
3205 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
3206
3207 static u8       *buf;
3208
3209 /**
3210  * spi_write_then_read - SPI synchronous write followed by read
3211  * @spi: device with which data will be exchanged
3212  * @txbuf: data to be written (need not be dma-safe)
3213  * @n_tx: size of txbuf, in bytes
3214  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3215  * @n_rx: size of rxbuf, in bytes
3216  * Context: can sleep
3217  *
3218  * This performs a half duplex MicroWire style transaction with the
3219  * device, sending txbuf and then reading rxbuf.  The return value
3220  * is zero for success, else a negative errno status code.
3221  * This call may only be used from a context that may sleep.
3222  *
3223  * Parameters to this routine are always copied using a small buffer;
3224  * portable code should never use this for more than 32 bytes.
3225  * Performance-sensitive or bulk transfer code should instead use
3226  * spi_{async,sync}() calls with dma-safe buffers.
3227  *
3228  * Return: zero on success, else a negative error code.
3229  */
3230 int spi_write_then_read(struct spi_device *spi,
3231                 const void *txbuf, unsigned n_tx,
3232                 void *rxbuf, unsigned n_rx)
3233 {
3234         static DEFINE_MUTEX(lock);
3235
3236         int                     status;
3237         struct spi_message      message;
3238         struct spi_transfer     x[2];
3239         u8                      *local_buf;
3240
3241         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
3242          * copying here, (as a pure convenience thing), but we can
3243          * keep heap costs out of the hot path unless someone else is
3244          * using the pre-allocated buffer or the transfer is too large.
3245          */
3246         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3247                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3248                                     GFP_KERNEL | GFP_DMA);
3249                 if (!local_buf)
3250                         return -ENOMEM;
3251         } else {
3252                 local_buf = buf;
3253         }
3254
3255         spi_message_init(&message);
3256         memset(x, 0, sizeof(x));
3257         if (n_tx) {
3258                 x[0].len = n_tx;
3259                 spi_message_add_tail(&x[0], &message);
3260         }
3261         if (n_rx) {
3262                 x[1].len = n_rx;
3263                 spi_message_add_tail(&x[1], &message);
3264         }
3265
3266         memcpy(local_buf, txbuf, n_tx);
3267         x[0].tx_buf = local_buf;
3268         x[1].rx_buf = local_buf + n_tx;
3269
3270         /* do the i/o */
3271         status = spi_sync(spi, &message);
3272         if (status == 0)
3273                 memcpy(rxbuf, x[1].rx_buf, n_rx);
3274
3275         if (x[0].tx_buf == buf)
3276                 mutex_unlock(&lock);
3277         else
3278                 kfree(local_buf);
3279
3280         return status;
3281 }
3282 EXPORT_SYMBOL_GPL(spi_write_then_read);
3283
3284 /*-------------------------------------------------------------------------*/
3285
3286 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3287 static int __spi_of_device_match(struct device *dev, void *data)
3288 {
3289         return dev->of_node == data;
3290 }
3291
3292 /* must call put_device() when done with returned spi_device device */
3293 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3294 {
3295         struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3296                                                 __spi_of_device_match);
3297         return dev ? to_spi_device(dev) : NULL;
3298 }
3299
3300 static int __spi_of_controller_match(struct device *dev, const void *data)
3301 {
3302         return dev->of_node == data;
3303 }
3304
3305 /* the spi controllers are not using spi_bus, so we find it with another way */
3306 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3307 {
3308         struct device *dev;
3309
3310         dev = class_find_device(&spi_master_class, NULL, node,
3311                                 __spi_of_controller_match);
3312         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3313                 dev = class_find_device(&spi_slave_class, NULL, node,
3314                                         __spi_of_controller_match);
3315         if (!dev)
3316                 return NULL;
3317
3318         /* reference got in class_find_device */
3319         return container_of(dev, struct spi_controller, dev);
3320 }
3321
3322 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3323                          void *arg)
3324 {
3325         struct of_reconfig_data *rd = arg;
3326         struct spi_controller *ctlr;
3327         struct spi_device *spi;
3328
3329         switch (of_reconfig_get_state_change(action, arg)) {
3330         case OF_RECONFIG_CHANGE_ADD:
3331                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3332                 if (ctlr == NULL)
3333                         return NOTIFY_OK;       /* not for us */
3334
3335                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3336                         put_device(&ctlr->dev);
3337                         return NOTIFY_OK;
3338                 }
3339
3340                 spi = of_register_spi_device(ctlr, rd->dn);
3341                 put_device(&ctlr->dev);
3342
3343                 if (IS_ERR(spi)) {
3344                         pr_err("%s: failed to create for '%pOF'\n",
3345                                         __func__, rd->dn);
3346                         of_node_clear_flag(rd->dn, OF_POPULATED);
3347                         return notifier_from_errno(PTR_ERR(spi));
3348                 }
3349                 break;
3350
3351         case OF_RECONFIG_CHANGE_REMOVE:
3352                 /* already depopulated? */
3353                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3354                         return NOTIFY_OK;
3355
3356                 /* find our device by node */
3357                 spi = of_find_spi_device_by_node(rd->dn);
3358                 if (spi == NULL)
3359                         return NOTIFY_OK;       /* no? not meant for us */
3360
3361                 /* unregister takes one ref away */
3362                 spi_unregister_device(spi);
3363
3364                 /* and put the reference of the find */
3365                 put_device(&spi->dev);
3366                 break;
3367         }
3368
3369         return NOTIFY_OK;
3370 }
3371
3372 static struct notifier_block spi_of_notifier = {
3373         .notifier_call = of_spi_notify,
3374 };
3375 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3376 extern struct notifier_block spi_of_notifier;
3377 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3378
3379 #if IS_ENABLED(CONFIG_ACPI)
3380 static int spi_acpi_controller_match(struct device *dev, const void *data)
3381 {
3382         return ACPI_COMPANION(dev->parent) == data;
3383 }
3384
3385 static int spi_acpi_device_match(struct device *dev, void *data)
3386 {
3387         return ACPI_COMPANION(dev) == data;
3388 }
3389
3390 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3391 {
3392         struct device *dev;
3393
3394         dev = class_find_device(&spi_master_class, NULL, adev,
3395                                 spi_acpi_controller_match);
3396         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3397                 dev = class_find_device(&spi_slave_class, NULL, adev,
3398                                         spi_acpi_controller_match);
3399         if (!dev)
3400                 return NULL;
3401
3402         return container_of(dev, struct spi_controller, dev);
3403 }
3404
3405 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3406 {
3407         struct device *dev;
3408
3409         dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3410
3411         return dev ? to_spi_device(dev) : NULL;
3412 }
3413
3414 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3415                            void *arg)
3416 {
3417         struct acpi_device *adev = arg;
3418         struct spi_controller *ctlr;
3419         struct spi_device *spi;
3420
3421         switch (value) {
3422         case ACPI_RECONFIG_DEVICE_ADD:
3423                 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3424                 if (!ctlr)
3425                         break;
3426
3427                 acpi_register_spi_device(ctlr, adev);
3428                 put_device(&ctlr->dev);
3429                 break;
3430         case ACPI_RECONFIG_DEVICE_REMOVE:
3431                 if (!acpi_device_enumerated(adev))
3432                         break;
3433
3434                 spi = acpi_spi_find_device_by_adev(adev);
3435                 if (!spi)
3436                         break;
3437
3438                 spi_unregister_device(spi);
3439                 put_device(&spi->dev);
3440                 break;
3441         }
3442
3443         return NOTIFY_OK;
3444 }
3445
3446 static struct notifier_block spi_acpi_notifier = {
3447         .notifier_call = acpi_spi_notify,
3448 };
3449 #else
3450 extern struct notifier_block spi_acpi_notifier;
3451 #endif
3452
3453 static int __init spi_init(void)
3454 {
3455         int     status;
3456
3457         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3458         if (!buf) {
3459                 status = -ENOMEM;
3460                 goto err0;
3461         }
3462
3463         status = bus_register(&spi_bus_type);
3464         if (status < 0)
3465                 goto err1;
3466
3467         status = class_register(&spi_master_class);
3468         if (status < 0)
3469                 goto err2;
3470
3471         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3472                 status = class_register(&spi_slave_class);
3473                 if (status < 0)
3474                         goto err3;
3475         }
3476
3477         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3478                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3479         if (IS_ENABLED(CONFIG_ACPI))
3480                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3481
3482         return 0;
3483
3484 err3:
3485         class_unregister(&spi_master_class);
3486 err2:
3487         bus_unregister(&spi_bus_type);
3488 err1:
3489         kfree(buf);
3490         buf = NULL;
3491 err0:
3492         return status;
3493 }
3494
3495 /* board_info is normally registered in arch_initcall(),
3496  * but even essential drivers wait till later
3497  *
3498  * REVISIT only boardinfo really needs static linking. the rest (device and
3499  * driver registration) _could_ be dynamically linked (modular) ... costs
3500  * include needing to have boardinfo data structures be much more public.
3501  */
3502 postcore_initcall(spi_init);
3503