2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
31 #include "print-tree.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
41 #undef SCRAMBLE_DELAYED_REFS
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 CHUNK_ALLOC_NO_FORCE = 0,
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
63 static int update_block_group(struct btrfs_trans_handle *trans,
64 struct btrfs_root *root, u64 bytenr,
65 u64 num_bytes, int alloc);
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 struct btrfs_root *root,
68 struct btrfs_delayed_ref_node *node, u64 parent,
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
71 struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
84 int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 struct btrfs_root *extent_root, u64 flags,
88 static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91 struct btrfs_space_info *info, u64 bytes,
92 int dump_block_groups);
93 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
94 u64 ram_bytes, u64 num_bytes, int delalloc);
95 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
96 u64 num_bytes, int delalloc);
97 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 int btrfs_pin_extent(struct btrfs_root *root,
100 u64 bytenr, u64 num_bytes, int reserved);
101 static int __reserve_metadata_bytes(struct btrfs_root *root,
102 struct btrfs_space_info *space_info,
104 enum btrfs_reserve_flush_enum flush);
105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106 struct btrfs_space_info *space_info,
108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109 struct btrfs_space_info *space_info,
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
122 return (cache->flags & bits) == bits;
125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
127 atomic_inc(&cache->count);
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
135 kfree(cache->free_space_ctl);
141 * this adds the block group to the fs_info rb tree for the block group
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 struct btrfs_block_group_cache *block_group)
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
158 if (block_group->key.objectid < cache->key.objectid) {
160 } else if (block_group->key.objectid > cache->key.objectid) {
163 spin_unlock(&info->block_group_cache_lock);
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
175 spin_unlock(&info->block_group_cache_lock);
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
188 struct btrfs_block_group_cache *cache, *ret = NULL;
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
196 cache = rb_entry(n, struct btrfs_block_group_cache,
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
217 btrfs_get_block_group(ret);
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
221 spin_unlock(&info->block_group_cache_lock);
226 static int add_excluded_extent(struct btrfs_root *root,
227 u64 start, u64 num_bytes)
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&root->fs_info->freed_extents[0],
231 start, end, EXTENT_UPTODATE);
232 set_extent_bits(&root->fs_info->freed_extents[1],
233 start, end, EXTENT_UPTODATE);
237 static void free_excluded_extents(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
245 clear_extent_bits(&root->fs_info->freed_extents[0],
246 start, end, EXTENT_UPTODATE);
247 clear_extent_bits(&root->fs_info->freed_extents[1],
248 start, end, EXTENT_UPTODATE);
251 static int exclude_super_stripes(struct btrfs_root *root,
252 struct btrfs_block_group_cache *cache)
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, cache->key.objectid,
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
270 ret = btrfs_rmap_block(root->fs_info, cache->key.objectid,
271 bytenr, 0, &logical, &nr, &stripe_len);
278 if (logical[nr] > cache->key.objectid +
282 if (logical[nr] + stripe_len <= cache->key.objectid)
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
295 cache->bytes_super += len;
296 ret = add_excluded_extent(root, start, len);
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
311 struct btrfs_caching_control *ctl;
313 spin_lock(&cache->lock);
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
319 ctl = cache->caching_ctl;
320 atomic_inc(&ctl->count);
321 spin_unlock(&cache->lock);
325 static void put_caching_control(struct btrfs_caching_control *ctl)
327 if (atomic_dec_and_test(&ctl->count))
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_root *root,
333 struct btrfs_block_group_cache *block_group)
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 root->nodesize : root->sectorsize;
339 u64 step = chunk << 1;
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
360 u64 extent_start, extent_end, size, total_added = 0;
363 while (start < end) {
364 ret = find_first_extent_bit(info->pinned_extents, start,
365 &extent_start, &extent_end,
366 EXTENT_DIRTY | EXTENT_UPTODATE,
371 if (extent_start <= start) {
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
376 ret = btrfs_add_free_space(block_group, start,
378 BUG_ON(ret); /* -ENOMEM or logic error */
379 start = extent_end + 1;
388 ret = btrfs_add_free_space(block_group, start, size);
389 BUG_ON(ret); /* -ENOMEM or logic error */
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
397 struct btrfs_block_group_cache *block_group;
398 struct btrfs_fs_info *fs_info;
399 struct btrfs_root *extent_root;
400 struct btrfs_path *path;
401 struct extent_buffer *leaf;
402 struct btrfs_key key;
409 block_group = caching_ctl->block_group;
410 fs_info = block_group->fs_info;
411 extent_root = fs_info->extent_root;
413 path = btrfs_alloc_path();
417 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
419 #ifdef CONFIG_BTRFS_DEBUG
421 * If we're fragmenting we don't want to make anybody think we can
422 * allocate from this block group until we've had a chance to fragment
425 if (btrfs_should_fragment_free_space(extent_root, block_group))
429 * We don't want to deadlock with somebody trying to allocate a new
430 * extent for the extent root while also trying to search the extent
431 * root to add free space. So we skip locking and search the commit
432 * root, since its read-only
434 path->skip_locking = 1;
435 path->search_commit_root = 1;
436 path->reada = READA_FORWARD;
440 key.type = BTRFS_EXTENT_ITEM_KEY;
443 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
447 leaf = path->nodes[0];
448 nritems = btrfs_header_nritems(leaf);
451 if (btrfs_fs_closing(fs_info) > 1) {
456 if (path->slots[0] < nritems) {
457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
459 ret = find_next_key(path, 0, &key);
463 if (need_resched() ||
464 rwsem_is_contended(&fs_info->commit_root_sem)) {
466 caching_ctl->progress = last;
467 btrfs_release_path(path);
468 up_read(&fs_info->commit_root_sem);
469 mutex_unlock(&caching_ctl->mutex);
471 mutex_lock(&caching_ctl->mutex);
472 down_read(&fs_info->commit_root_sem);
476 ret = btrfs_next_leaf(extent_root, path);
481 leaf = path->nodes[0];
482 nritems = btrfs_header_nritems(leaf);
486 if (key.objectid < last) {
489 key.type = BTRFS_EXTENT_ITEM_KEY;
492 caching_ctl->progress = last;
493 btrfs_release_path(path);
497 if (key.objectid < block_group->key.objectid) {
502 if (key.objectid >= block_group->key.objectid +
503 block_group->key.offset)
506 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
507 key.type == BTRFS_METADATA_ITEM_KEY) {
508 total_found += add_new_free_space(block_group,
511 if (key.type == BTRFS_METADATA_ITEM_KEY)
512 last = key.objectid +
513 fs_info->tree_root->nodesize;
515 last = key.objectid + key.offset;
517 if (total_found > CACHING_CTL_WAKE_UP) {
520 wake_up(&caching_ctl->wait);
527 total_found += add_new_free_space(block_group, fs_info, last,
528 block_group->key.objectid +
529 block_group->key.offset);
530 caching_ctl->progress = (u64)-1;
533 btrfs_free_path(path);
537 static noinline void caching_thread(struct btrfs_work *work)
539 struct btrfs_block_group_cache *block_group;
540 struct btrfs_fs_info *fs_info;
541 struct btrfs_caching_control *caching_ctl;
542 struct btrfs_root *extent_root;
545 caching_ctl = container_of(work, struct btrfs_caching_control, work);
546 block_group = caching_ctl->block_group;
547 fs_info = block_group->fs_info;
548 extent_root = fs_info->extent_root;
550 mutex_lock(&caching_ctl->mutex);
551 down_read(&fs_info->commit_root_sem);
553 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
554 ret = load_free_space_tree(caching_ctl);
556 ret = load_extent_tree_free(caching_ctl);
558 spin_lock(&block_group->lock);
559 block_group->caching_ctl = NULL;
560 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
561 spin_unlock(&block_group->lock);
563 #ifdef CONFIG_BTRFS_DEBUG
564 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
567 spin_lock(&block_group->space_info->lock);
568 spin_lock(&block_group->lock);
569 bytes_used = block_group->key.offset -
570 btrfs_block_group_used(&block_group->item);
571 block_group->space_info->bytes_used += bytes_used >> 1;
572 spin_unlock(&block_group->lock);
573 spin_unlock(&block_group->space_info->lock);
574 fragment_free_space(extent_root, block_group);
578 caching_ctl->progress = (u64)-1;
580 up_read(&fs_info->commit_root_sem);
581 free_excluded_extents(fs_info->extent_root, block_group);
582 mutex_unlock(&caching_ctl->mutex);
584 wake_up(&caching_ctl->wait);
586 put_caching_control(caching_ctl);
587 btrfs_put_block_group(block_group);
590 static int cache_block_group(struct btrfs_block_group_cache *cache,
594 struct btrfs_fs_info *fs_info = cache->fs_info;
595 struct btrfs_caching_control *caching_ctl;
598 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
602 INIT_LIST_HEAD(&caching_ctl->list);
603 mutex_init(&caching_ctl->mutex);
604 init_waitqueue_head(&caching_ctl->wait);
605 caching_ctl->block_group = cache;
606 caching_ctl->progress = cache->key.objectid;
607 atomic_set(&caching_ctl->count, 1);
608 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
609 caching_thread, NULL, NULL);
611 spin_lock(&cache->lock);
613 * This should be a rare occasion, but this could happen I think in the
614 * case where one thread starts to load the space cache info, and then
615 * some other thread starts a transaction commit which tries to do an
616 * allocation while the other thread is still loading the space cache
617 * info. The previous loop should have kept us from choosing this block
618 * group, but if we've moved to the state where we will wait on caching
619 * block groups we need to first check if we're doing a fast load here,
620 * so we can wait for it to finish, otherwise we could end up allocating
621 * from a block group who's cache gets evicted for one reason or
624 while (cache->cached == BTRFS_CACHE_FAST) {
625 struct btrfs_caching_control *ctl;
627 ctl = cache->caching_ctl;
628 atomic_inc(&ctl->count);
629 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
630 spin_unlock(&cache->lock);
634 finish_wait(&ctl->wait, &wait);
635 put_caching_control(ctl);
636 spin_lock(&cache->lock);
639 if (cache->cached != BTRFS_CACHE_NO) {
640 spin_unlock(&cache->lock);
644 WARN_ON(cache->caching_ctl);
645 cache->caching_ctl = caching_ctl;
646 cache->cached = BTRFS_CACHE_FAST;
647 spin_unlock(&cache->lock);
649 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
650 mutex_lock(&caching_ctl->mutex);
651 ret = load_free_space_cache(fs_info, cache);
653 spin_lock(&cache->lock);
655 cache->caching_ctl = NULL;
656 cache->cached = BTRFS_CACHE_FINISHED;
657 cache->last_byte_to_unpin = (u64)-1;
658 caching_ctl->progress = (u64)-1;
660 if (load_cache_only) {
661 cache->caching_ctl = NULL;
662 cache->cached = BTRFS_CACHE_NO;
664 cache->cached = BTRFS_CACHE_STARTED;
665 cache->has_caching_ctl = 1;
668 spin_unlock(&cache->lock);
669 #ifdef CONFIG_BTRFS_DEBUG
671 btrfs_should_fragment_free_space(fs_info->extent_root,
675 spin_lock(&cache->space_info->lock);
676 spin_lock(&cache->lock);
677 bytes_used = cache->key.offset -
678 btrfs_block_group_used(&cache->item);
679 cache->space_info->bytes_used += bytes_used >> 1;
680 spin_unlock(&cache->lock);
681 spin_unlock(&cache->space_info->lock);
682 fragment_free_space(fs_info->extent_root, cache);
685 mutex_unlock(&caching_ctl->mutex);
687 wake_up(&caching_ctl->wait);
689 put_caching_control(caching_ctl);
690 free_excluded_extents(fs_info->extent_root, cache);
695 * We're either using the free space tree or no caching at all.
696 * Set cached to the appropriate value and wakeup any waiters.
698 spin_lock(&cache->lock);
699 if (load_cache_only) {
700 cache->caching_ctl = NULL;
701 cache->cached = BTRFS_CACHE_NO;
703 cache->cached = BTRFS_CACHE_STARTED;
704 cache->has_caching_ctl = 1;
706 spin_unlock(&cache->lock);
707 wake_up(&caching_ctl->wait);
710 if (load_cache_only) {
711 put_caching_control(caching_ctl);
715 down_write(&fs_info->commit_root_sem);
716 atomic_inc(&caching_ctl->count);
717 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
718 up_write(&fs_info->commit_root_sem);
720 btrfs_get_block_group(cache);
722 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
728 * return the block group that starts at or after bytenr
730 static struct btrfs_block_group_cache *
731 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
733 return block_group_cache_tree_search(info, bytenr, 0);
737 * return the block group that contains the given bytenr
739 struct btrfs_block_group_cache *btrfs_lookup_block_group(
740 struct btrfs_fs_info *info,
743 return block_group_cache_tree_search(info, bytenr, 1);
746 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
749 struct list_head *head = &info->space_info;
750 struct btrfs_space_info *found;
752 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
755 list_for_each_entry_rcu(found, head, list) {
756 if (found->flags & flags) {
766 * after adding space to the filesystem, we need to clear the full flags
767 * on all the space infos.
769 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
771 struct list_head *head = &info->space_info;
772 struct btrfs_space_info *found;
775 list_for_each_entry_rcu(found, head, list)
780 /* simple helper to search for an existing data extent at a given offset */
781 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
784 struct btrfs_key key;
785 struct btrfs_path *path;
787 path = btrfs_alloc_path();
791 key.objectid = start;
793 key.type = BTRFS_EXTENT_ITEM_KEY;
794 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
796 btrfs_free_path(path);
801 * helper function to lookup reference count and flags of a tree block.
803 * the head node for delayed ref is used to store the sum of all the
804 * reference count modifications queued up in the rbtree. the head
805 * node may also store the extent flags to set. This way you can check
806 * to see what the reference count and extent flags would be if all of
807 * the delayed refs are not processed.
809 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
810 struct btrfs_root *root, u64 bytenr,
811 u64 offset, int metadata, u64 *refs, u64 *flags)
813 struct btrfs_delayed_ref_head *head;
814 struct btrfs_delayed_ref_root *delayed_refs;
815 struct btrfs_path *path;
816 struct btrfs_extent_item *ei;
817 struct extent_buffer *leaf;
818 struct btrfs_key key;
825 * If we don't have skinny metadata, don't bother doing anything
828 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
829 offset = root->nodesize;
833 path = btrfs_alloc_path();
838 path->skip_locking = 1;
839 path->search_commit_root = 1;
843 key.objectid = bytenr;
846 key.type = BTRFS_METADATA_ITEM_KEY;
848 key.type = BTRFS_EXTENT_ITEM_KEY;
850 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
855 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
856 if (path->slots[0]) {
858 btrfs_item_key_to_cpu(path->nodes[0], &key,
860 if (key.objectid == bytenr &&
861 key.type == BTRFS_EXTENT_ITEM_KEY &&
862 key.offset == root->nodesize)
868 leaf = path->nodes[0];
869 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
870 if (item_size >= sizeof(*ei)) {
871 ei = btrfs_item_ptr(leaf, path->slots[0],
872 struct btrfs_extent_item);
873 num_refs = btrfs_extent_refs(leaf, ei);
874 extent_flags = btrfs_extent_flags(leaf, ei);
876 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
877 struct btrfs_extent_item_v0 *ei0;
878 BUG_ON(item_size != sizeof(*ei0));
879 ei0 = btrfs_item_ptr(leaf, path->slots[0],
880 struct btrfs_extent_item_v0);
881 num_refs = btrfs_extent_refs_v0(leaf, ei0);
882 /* FIXME: this isn't correct for data */
883 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
888 BUG_ON(num_refs == 0);
898 delayed_refs = &trans->transaction->delayed_refs;
899 spin_lock(&delayed_refs->lock);
900 head = btrfs_find_delayed_ref_head(trans, bytenr);
902 if (!mutex_trylock(&head->mutex)) {
903 atomic_inc(&head->node.refs);
904 spin_unlock(&delayed_refs->lock);
906 btrfs_release_path(path);
909 * Mutex was contended, block until it's released and try
912 mutex_lock(&head->mutex);
913 mutex_unlock(&head->mutex);
914 btrfs_put_delayed_ref(&head->node);
917 spin_lock(&head->lock);
918 if (head->extent_op && head->extent_op->update_flags)
919 extent_flags |= head->extent_op->flags_to_set;
921 BUG_ON(num_refs == 0);
923 num_refs += head->node.ref_mod;
924 spin_unlock(&head->lock);
925 mutex_unlock(&head->mutex);
927 spin_unlock(&delayed_refs->lock);
929 WARN_ON(num_refs == 0);
933 *flags = extent_flags;
935 btrfs_free_path(path);
940 * Back reference rules. Back refs have three main goals:
942 * 1) differentiate between all holders of references to an extent so that
943 * when a reference is dropped we can make sure it was a valid reference
944 * before freeing the extent.
946 * 2) Provide enough information to quickly find the holders of an extent
947 * if we notice a given block is corrupted or bad.
949 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
950 * maintenance. This is actually the same as #2, but with a slightly
951 * different use case.
953 * There are two kinds of back refs. The implicit back refs is optimized
954 * for pointers in non-shared tree blocks. For a given pointer in a block,
955 * back refs of this kind provide information about the block's owner tree
956 * and the pointer's key. These information allow us to find the block by
957 * b-tree searching. The full back refs is for pointers in tree blocks not
958 * referenced by their owner trees. The location of tree block is recorded
959 * in the back refs. Actually the full back refs is generic, and can be
960 * used in all cases the implicit back refs is used. The major shortcoming
961 * of the full back refs is its overhead. Every time a tree block gets
962 * COWed, we have to update back refs entry for all pointers in it.
964 * For a newly allocated tree block, we use implicit back refs for
965 * pointers in it. This means most tree related operations only involve
966 * implicit back refs. For a tree block created in old transaction, the
967 * only way to drop a reference to it is COW it. So we can detect the
968 * event that tree block loses its owner tree's reference and do the
969 * back refs conversion.
971 * When a tree block is COWed through a tree, there are four cases:
973 * The reference count of the block is one and the tree is the block's
974 * owner tree. Nothing to do in this case.
976 * The reference count of the block is one and the tree is not the
977 * block's owner tree. In this case, full back refs is used for pointers
978 * in the block. Remove these full back refs, add implicit back refs for
979 * every pointers in the new block.
981 * The reference count of the block is greater than one and the tree is
982 * the block's owner tree. In this case, implicit back refs is used for
983 * pointers in the block. Add full back refs for every pointers in the
984 * block, increase lower level extents' reference counts. The original
985 * implicit back refs are entailed to the new block.
987 * The reference count of the block is greater than one and the tree is
988 * not the block's owner tree. Add implicit back refs for every pointer in
989 * the new block, increase lower level extents' reference count.
991 * Back Reference Key composing:
993 * The key objectid corresponds to the first byte in the extent,
994 * The key type is used to differentiate between types of back refs.
995 * There are different meanings of the key offset for different types
998 * File extents can be referenced by:
1000 * - multiple snapshots, subvolumes, or different generations in one subvol
1001 * - different files inside a single subvolume
1002 * - different offsets inside a file (bookend extents in file.c)
1004 * The extent ref structure for the implicit back refs has fields for:
1006 * - Objectid of the subvolume root
1007 * - objectid of the file holding the reference
1008 * - original offset in the file
1009 * - how many bookend extents
1011 * The key offset for the implicit back refs is hash of the first
1014 * The extent ref structure for the full back refs has field for:
1016 * - number of pointers in the tree leaf
1018 * The key offset for the implicit back refs is the first byte of
1021 * When a file extent is allocated, The implicit back refs is used.
1022 * the fields are filled in:
1024 * (root_key.objectid, inode objectid, offset in file, 1)
1026 * When a file extent is removed file truncation, we find the
1027 * corresponding implicit back refs and check the following fields:
1029 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1031 * Btree extents can be referenced by:
1033 * - Different subvolumes
1035 * Both the implicit back refs and the full back refs for tree blocks
1036 * only consist of key. The key offset for the implicit back refs is
1037 * objectid of block's owner tree. The key offset for the full back refs
1038 * is the first byte of parent block.
1040 * When implicit back refs is used, information about the lowest key and
1041 * level of the tree block are required. These information are stored in
1042 * tree block info structure.
1045 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1046 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1047 struct btrfs_root *root,
1048 struct btrfs_path *path,
1049 u64 owner, u32 extra_size)
1051 struct btrfs_extent_item *item;
1052 struct btrfs_extent_item_v0 *ei0;
1053 struct btrfs_extent_ref_v0 *ref0;
1054 struct btrfs_tree_block_info *bi;
1055 struct extent_buffer *leaf;
1056 struct btrfs_key key;
1057 struct btrfs_key found_key;
1058 u32 new_size = sizeof(*item);
1062 leaf = path->nodes[0];
1063 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1066 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1067 struct btrfs_extent_item_v0);
1068 refs = btrfs_extent_refs_v0(leaf, ei0);
1070 if (owner == (u64)-1) {
1072 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073 ret = btrfs_next_leaf(root, path);
1076 BUG_ON(ret > 0); /* Corruption */
1077 leaf = path->nodes[0];
1079 btrfs_item_key_to_cpu(leaf, &found_key,
1081 BUG_ON(key.objectid != found_key.objectid);
1082 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1086 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1087 struct btrfs_extent_ref_v0);
1088 owner = btrfs_ref_objectid_v0(leaf, ref0);
1092 btrfs_release_path(path);
1094 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1095 new_size += sizeof(*bi);
1097 new_size -= sizeof(*ei0);
1098 ret = btrfs_search_slot(trans, root, &key, path,
1099 new_size + extra_size, 1);
1102 BUG_ON(ret); /* Corruption */
1104 btrfs_extend_item(root, path, new_size);
1106 leaf = path->nodes[0];
1107 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1108 btrfs_set_extent_refs(leaf, item, refs);
1109 /* FIXME: get real generation */
1110 btrfs_set_extent_generation(leaf, item, 0);
1111 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1112 btrfs_set_extent_flags(leaf, item,
1113 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1114 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1115 bi = (struct btrfs_tree_block_info *)(item + 1);
1116 /* FIXME: get first key of the block */
1117 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1118 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1120 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1122 btrfs_mark_buffer_dirty(leaf);
1127 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1129 u32 high_crc = ~(u32)0;
1130 u32 low_crc = ~(u32)0;
1133 lenum = cpu_to_le64(root_objectid);
1134 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1135 lenum = cpu_to_le64(owner);
1136 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1137 lenum = cpu_to_le64(offset);
1138 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1140 return ((u64)high_crc << 31) ^ (u64)low_crc;
1143 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1144 struct btrfs_extent_data_ref *ref)
1146 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1147 btrfs_extent_data_ref_objectid(leaf, ref),
1148 btrfs_extent_data_ref_offset(leaf, ref));
1151 static int match_extent_data_ref(struct extent_buffer *leaf,
1152 struct btrfs_extent_data_ref *ref,
1153 u64 root_objectid, u64 owner, u64 offset)
1155 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1156 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1157 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1162 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1163 struct btrfs_root *root,
1164 struct btrfs_path *path,
1165 u64 bytenr, u64 parent,
1167 u64 owner, u64 offset)
1169 struct btrfs_key key;
1170 struct btrfs_extent_data_ref *ref;
1171 struct extent_buffer *leaf;
1177 key.objectid = bytenr;
1179 key.type = BTRFS_SHARED_DATA_REF_KEY;
1180 key.offset = parent;
1182 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1183 key.offset = hash_extent_data_ref(root_objectid,
1188 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1197 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1198 key.type = BTRFS_EXTENT_REF_V0_KEY;
1199 btrfs_release_path(path);
1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1211 leaf = path->nodes[0];
1212 nritems = btrfs_header_nritems(leaf);
1214 if (path->slots[0] >= nritems) {
1215 ret = btrfs_next_leaf(root, path);
1221 leaf = path->nodes[0];
1222 nritems = btrfs_header_nritems(leaf);
1226 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1227 if (key.objectid != bytenr ||
1228 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1231 ref = btrfs_item_ptr(leaf, path->slots[0],
1232 struct btrfs_extent_data_ref);
1234 if (match_extent_data_ref(leaf, ref, root_objectid,
1237 btrfs_release_path(path);
1249 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1250 struct btrfs_root *root,
1251 struct btrfs_path *path,
1252 u64 bytenr, u64 parent,
1253 u64 root_objectid, u64 owner,
1254 u64 offset, int refs_to_add)
1256 struct btrfs_key key;
1257 struct extent_buffer *leaf;
1262 key.objectid = bytenr;
1264 key.type = BTRFS_SHARED_DATA_REF_KEY;
1265 key.offset = parent;
1266 size = sizeof(struct btrfs_shared_data_ref);
1268 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1269 key.offset = hash_extent_data_ref(root_objectid,
1271 size = sizeof(struct btrfs_extent_data_ref);
1274 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1275 if (ret && ret != -EEXIST)
1278 leaf = path->nodes[0];
1280 struct btrfs_shared_data_ref *ref;
1281 ref = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1284 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1286 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1287 num_refs += refs_to_add;
1288 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1291 struct btrfs_extent_data_ref *ref;
1292 while (ret == -EEXIST) {
1293 ref = btrfs_item_ptr(leaf, path->slots[0],
1294 struct btrfs_extent_data_ref);
1295 if (match_extent_data_ref(leaf, ref, root_objectid,
1298 btrfs_release_path(path);
1300 ret = btrfs_insert_empty_item(trans, root, path, &key,
1302 if (ret && ret != -EEXIST)
1305 leaf = path->nodes[0];
1307 ref = btrfs_item_ptr(leaf, path->slots[0],
1308 struct btrfs_extent_data_ref);
1310 btrfs_set_extent_data_ref_root(leaf, ref,
1312 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1313 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1314 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1316 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1317 num_refs += refs_to_add;
1318 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1321 btrfs_mark_buffer_dirty(leaf);
1324 btrfs_release_path(path);
1328 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1329 struct btrfs_root *root,
1330 struct btrfs_path *path,
1331 int refs_to_drop, int *last_ref)
1333 struct btrfs_key key;
1334 struct btrfs_extent_data_ref *ref1 = NULL;
1335 struct btrfs_shared_data_ref *ref2 = NULL;
1336 struct extent_buffer *leaf;
1340 leaf = path->nodes[0];
1341 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1343 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1344 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_extent_data_ref);
1346 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1347 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1348 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1349 struct btrfs_shared_data_ref);
1350 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1351 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1352 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1353 struct btrfs_extent_ref_v0 *ref0;
1354 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1355 struct btrfs_extent_ref_v0);
1356 num_refs = btrfs_ref_count_v0(leaf, ref0);
1362 BUG_ON(num_refs < refs_to_drop);
1363 num_refs -= refs_to_drop;
1365 if (num_refs == 0) {
1366 ret = btrfs_del_item(trans, root, path);
1369 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1370 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1371 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1372 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1373 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1375 struct btrfs_extent_ref_v0 *ref0;
1376 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1377 struct btrfs_extent_ref_v0);
1378 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1381 btrfs_mark_buffer_dirty(leaf);
1386 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1387 struct btrfs_extent_inline_ref *iref)
1389 struct btrfs_key key;
1390 struct extent_buffer *leaf;
1391 struct btrfs_extent_data_ref *ref1;
1392 struct btrfs_shared_data_ref *ref2;
1395 leaf = path->nodes[0];
1396 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1398 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1399 BTRFS_EXTENT_DATA_REF_KEY) {
1400 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1401 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1403 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1404 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1406 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1407 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1408 struct btrfs_extent_data_ref);
1409 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1410 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1411 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1412 struct btrfs_shared_data_ref);
1413 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1414 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1415 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1416 struct btrfs_extent_ref_v0 *ref0;
1417 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1418 struct btrfs_extent_ref_v0);
1419 num_refs = btrfs_ref_count_v0(leaf, ref0);
1427 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1428 struct btrfs_root *root,
1429 struct btrfs_path *path,
1430 u64 bytenr, u64 parent,
1433 struct btrfs_key key;
1436 key.objectid = bytenr;
1438 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1439 key.offset = parent;
1441 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1442 key.offset = root_objectid;
1445 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1448 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1449 if (ret == -ENOENT && parent) {
1450 btrfs_release_path(path);
1451 key.type = BTRFS_EXTENT_REF_V0_KEY;
1452 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1460 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1461 struct btrfs_root *root,
1462 struct btrfs_path *path,
1463 u64 bytenr, u64 parent,
1466 struct btrfs_key key;
1469 key.objectid = bytenr;
1471 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1472 key.offset = parent;
1474 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1475 key.offset = root_objectid;
1478 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1479 btrfs_release_path(path);
1483 static inline int extent_ref_type(u64 parent, u64 owner)
1486 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1488 type = BTRFS_SHARED_BLOCK_REF_KEY;
1490 type = BTRFS_TREE_BLOCK_REF_KEY;
1493 type = BTRFS_SHARED_DATA_REF_KEY;
1495 type = BTRFS_EXTENT_DATA_REF_KEY;
1500 static int find_next_key(struct btrfs_path *path, int level,
1501 struct btrfs_key *key)
1504 for (; level < BTRFS_MAX_LEVEL; level++) {
1505 if (!path->nodes[level])
1507 if (path->slots[level] + 1 >=
1508 btrfs_header_nritems(path->nodes[level]))
1511 btrfs_item_key_to_cpu(path->nodes[level], key,
1512 path->slots[level] + 1);
1514 btrfs_node_key_to_cpu(path->nodes[level], key,
1515 path->slots[level] + 1);
1522 * look for inline back ref. if back ref is found, *ref_ret is set
1523 * to the address of inline back ref, and 0 is returned.
1525 * if back ref isn't found, *ref_ret is set to the address where it
1526 * should be inserted, and -ENOENT is returned.
1528 * if insert is true and there are too many inline back refs, the path
1529 * points to the extent item, and -EAGAIN is returned.
1531 * NOTE: inline back refs are ordered in the same way that back ref
1532 * items in the tree are ordered.
1534 static noinline_for_stack
1535 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1536 struct btrfs_root *root,
1537 struct btrfs_path *path,
1538 struct btrfs_extent_inline_ref **ref_ret,
1539 u64 bytenr, u64 num_bytes,
1540 u64 parent, u64 root_objectid,
1541 u64 owner, u64 offset, int insert)
1543 struct btrfs_key key;
1544 struct extent_buffer *leaf;
1545 struct btrfs_extent_item *ei;
1546 struct btrfs_extent_inline_ref *iref;
1556 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1559 key.objectid = bytenr;
1560 key.type = BTRFS_EXTENT_ITEM_KEY;
1561 key.offset = num_bytes;
1563 want = extent_ref_type(parent, owner);
1565 extra_size = btrfs_extent_inline_ref_size(want);
1566 path->keep_locks = 1;
1571 * Owner is our parent level, so we can just add one to get the level
1572 * for the block we are interested in.
1574 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1575 key.type = BTRFS_METADATA_ITEM_KEY;
1580 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1587 * We may be a newly converted file system which still has the old fat
1588 * extent entries for metadata, so try and see if we have one of those.
1590 if (ret > 0 && skinny_metadata) {
1591 skinny_metadata = false;
1592 if (path->slots[0]) {
1594 btrfs_item_key_to_cpu(path->nodes[0], &key,
1596 if (key.objectid == bytenr &&
1597 key.type == BTRFS_EXTENT_ITEM_KEY &&
1598 key.offset == num_bytes)
1602 key.objectid = bytenr;
1603 key.type = BTRFS_EXTENT_ITEM_KEY;
1604 key.offset = num_bytes;
1605 btrfs_release_path(path);
1610 if (ret && !insert) {
1613 } else if (WARN_ON(ret)) {
1618 leaf = path->nodes[0];
1619 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1620 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1621 if (item_size < sizeof(*ei)) {
1626 ret = convert_extent_item_v0(trans, root, path, owner,
1632 leaf = path->nodes[0];
1633 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1636 BUG_ON(item_size < sizeof(*ei));
1638 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1639 flags = btrfs_extent_flags(leaf, ei);
1641 ptr = (unsigned long)(ei + 1);
1642 end = (unsigned long)ei + item_size;
1644 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1645 ptr += sizeof(struct btrfs_tree_block_info);
1655 iref = (struct btrfs_extent_inline_ref *)ptr;
1656 type = btrfs_extent_inline_ref_type(leaf, iref);
1660 ptr += btrfs_extent_inline_ref_size(type);
1664 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1665 struct btrfs_extent_data_ref *dref;
1666 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1667 if (match_extent_data_ref(leaf, dref, root_objectid,
1672 if (hash_extent_data_ref_item(leaf, dref) <
1673 hash_extent_data_ref(root_objectid, owner, offset))
1677 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1679 if (parent == ref_offset) {
1683 if (ref_offset < parent)
1686 if (root_objectid == ref_offset) {
1690 if (ref_offset < root_objectid)
1694 ptr += btrfs_extent_inline_ref_size(type);
1696 if (err == -ENOENT && insert) {
1697 if (item_size + extra_size >=
1698 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1703 * To add new inline back ref, we have to make sure
1704 * there is no corresponding back ref item.
1705 * For simplicity, we just do not add new inline back
1706 * ref if there is any kind of item for this block
1708 if (find_next_key(path, 0, &key) == 0 &&
1709 key.objectid == bytenr &&
1710 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1715 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1718 path->keep_locks = 0;
1719 btrfs_unlock_up_safe(path, 1);
1725 * helper to add new inline back ref
1727 static noinline_for_stack
1728 void setup_inline_extent_backref(struct btrfs_root *root,
1729 struct btrfs_path *path,
1730 struct btrfs_extent_inline_ref *iref,
1731 u64 parent, u64 root_objectid,
1732 u64 owner, u64 offset, int refs_to_add,
1733 struct btrfs_delayed_extent_op *extent_op)
1735 struct extent_buffer *leaf;
1736 struct btrfs_extent_item *ei;
1739 unsigned long item_offset;
1744 leaf = path->nodes[0];
1745 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1746 item_offset = (unsigned long)iref - (unsigned long)ei;
1748 type = extent_ref_type(parent, owner);
1749 size = btrfs_extent_inline_ref_size(type);
1751 btrfs_extend_item(root, path, size);
1753 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1754 refs = btrfs_extent_refs(leaf, ei);
1755 refs += refs_to_add;
1756 btrfs_set_extent_refs(leaf, ei, refs);
1758 __run_delayed_extent_op(extent_op, leaf, ei);
1760 ptr = (unsigned long)ei + item_offset;
1761 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1762 if (ptr < end - size)
1763 memmove_extent_buffer(leaf, ptr + size, ptr,
1766 iref = (struct btrfs_extent_inline_ref *)ptr;
1767 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1768 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1769 struct btrfs_extent_data_ref *dref;
1770 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1771 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1772 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1773 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1774 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1775 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1776 struct btrfs_shared_data_ref *sref;
1777 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1778 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1779 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1780 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1781 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1783 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1785 btrfs_mark_buffer_dirty(leaf);
1788 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1789 struct btrfs_root *root,
1790 struct btrfs_path *path,
1791 struct btrfs_extent_inline_ref **ref_ret,
1792 u64 bytenr, u64 num_bytes, u64 parent,
1793 u64 root_objectid, u64 owner, u64 offset)
1797 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1798 bytenr, num_bytes, parent,
1799 root_objectid, owner, offset, 0);
1803 btrfs_release_path(path);
1806 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1807 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1810 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1811 root_objectid, owner, offset);
1817 * helper to update/remove inline back ref
1819 static noinline_for_stack
1820 void update_inline_extent_backref(struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 struct btrfs_extent_inline_ref *iref,
1824 struct btrfs_delayed_extent_op *extent_op,
1827 struct extent_buffer *leaf;
1828 struct btrfs_extent_item *ei;
1829 struct btrfs_extent_data_ref *dref = NULL;
1830 struct btrfs_shared_data_ref *sref = NULL;
1838 leaf = path->nodes[0];
1839 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1840 refs = btrfs_extent_refs(leaf, ei);
1841 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1842 refs += refs_to_mod;
1843 btrfs_set_extent_refs(leaf, ei, refs);
1845 __run_delayed_extent_op(extent_op, leaf, ei);
1847 type = btrfs_extent_inline_ref_type(leaf, iref);
1849 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1850 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1851 refs = btrfs_extent_data_ref_count(leaf, dref);
1852 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1853 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1854 refs = btrfs_shared_data_ref_count(leaf, sref);
1857 BUG_ON(refs_to_mod != -1);
1860 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1861 refs += refs_to_mod;
1864 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1865 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1867 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1870 size = btrfs_extent_inline_ref_size(type);
1871 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1872 ptr = (unsigned long)iref;
1873 end = (unsigned long)ei + item_size;
1874 if (ptr + size < end)
1875 memmove_extent_buffer(leaf, ptr, ptr + size,
1878 btrfs_truncate_item(root, path, item_size, 1);
1880 btrfs_mark_buffer_dirty(leaf);
1883 static noinline_for_stack
1884 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1885 struct btrfs_root *root,
1886 struct btrfs_path *path,
1887 u64 bytenr, u64 num_bytes, u64 parent,
1888 u64 root_objectid, u64 owner,
1889 u64 offset, int refs_to_add,
1890 struct btrfs_delayed_extent_op *extent_op)
1892 struct btrfs_extent_inline_ref *iref;
1895 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1896 bytenr, num_bytes, parent,
1897 root_objectid, owner, offset, 1);
1899 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1900 update_inline_extent_backref(root, path, iref,
1901 refs_to_add, extent_op, NULL);
1902 } else if (ret == -ENOENT) {
1903 setup_inline_extent_backref(root, path, iref, parent,
1904 root_objectid, owner, offset,
1905 refs_to_add, extent_op);
1911 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1912 struct btrfs_root *root,
1913 struct btrfs_path *path,
1914 u64 bytenr, u64 parent, u64 root_objectid,
1915 u64 owner, u64 offset, int refs_to_add)
1918 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1919 BUG_ON(refs_to_add != 1);
1920 ret = insert_tree_block_ref(trans, root, path, bytenr,
1921 parent, root_objectid);
1923 ret = insert_extent_data_ref(trans, root, path, bytenr,
1924 parent, root_objectid,
1925 owner, offset, refs_to_add);
1930 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1931 struct btrfs_root *root,
1932 struct btrfs_path *path,
1933 struct btrfs_extent_inline_ref *iref,
1934 int refs_to_drop, int is_data, int *last_ref)
1938 BUG_ON(!is_data && refs_to_drop != 1);
1940 update_inline_extent_backref(root, path, iref,
1941 -refs_to_drop, NULL, last_ref);
1942 } else if (is_data) {
1943 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1947 ret = btrfs_del_item(trans, root, path);
1952 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1953 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1954 u64 *discarded_bytes)
1957 u64 bytes_left, end;
1958 u64 aligned_start = ALIGN(start, 1 << 9);
1960 if (WARN_ON(start != aligned_start)) {
1961 len -= aligned_start - start;
1962 len = round_down(len, 1 << 9);
1963 start = aligned_start;
1966 *discarded_bytes = 0;
1974 /* Skip any superblocks on this device. */
1975 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1976 u64 sb_start = btrfs_sb_offset(j);
1977 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1978 u64 size = sb_start - start;
1980 if (!in_range(sb_start, start, bytes_left) &&
1981 !in_range(sb_end, start, bytes_left) &&
1982 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1986 * Superblock spans beginning of range. Adjust start and
1989 if (sb_start <= start) {
1990 start += sb_end - start;
1995 bytes_left = end - start;
2000 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2003 *discarded_bytes += size;
2004 else if (ret != -EOPNOTSUPP)
2013 bytes_left = end - start;
2017 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2020 *discarded_bytes += bytes_left;
2025 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2026 u64 num_bytes, u64 *actual_bytes)
2029 u64 discarded_bytes = 0;
2030 struct btrfs_bio *bbio = NULL;
2034 * Avoid races with device replace and make sure our bbio has devices
2035 * associated to its stripes that don't go away while we are discarding.
2037 btrfs_bio_counter_inc_blocked(root->fs_info);
2038 /* Tell the block device(s) that the sectors can be discarded */
2039 ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD,
2040 bytenr, &num_bytes, &bbio, 0);
2041 /* Error condition is -ENOMEM */
2043 struct btrfs_bio_stripe *stripe = bbio->stripes;
2047 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2049 if (!stripe->dev->can_discard)
2052 ret = btrfs_issue_discard(stripe->dev->bdev,
2057 discarded_bytes += bytes;
2058 else if (ret != -EOPNOTSUPP)
2059 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2062 * Just in case we get back EOPNOTSUPP for some reason,
2063 * just ignore the return value so we don't screw up
2064 * people calling discard_extent.
2068 btrfs_put_bbio(bbio);
2070 btrfs_bio_counter_dec(root->fs_info);
2073 *actual_bytes = discarded_bytes;
2076 if (ret == -EOPNOTSUPP)
2081 /* Can return -ENOMEM */
2082 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2083 struct btrfs_root *root,
2084 u64 bytenr, u64 num_bytes, u64 parent,
2085 u64 root_objectid, u64 owner, u64 offset)
2088 struct btrfs_fs_info *fs_info = root->fs_info;
2090 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2091 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2093 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2094 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2096 parent, root_objectid, (int)owner,
2097 BTRFS_ADD_DELAYED_REF, NULL);
2099 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2100 num_bytes, parent, root_objectid,
2102 BTRFS_ADD_DELAYED_REF, NULL);
2107 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2108 struct btrfs_root *root,
2109 struct btrfs_delayed_ref_node *node,
2110 u64 parent, u64 root_objectid,
2111 u64 owner, u64 offset, int refs_to_add,
2112 struct btrfs_delayed_extent_op *extent_op)
2114 struct btrfs_fs_info *fs_info = root->fs_info;
2115 struct btrfs_path *path;
2116 struct extent_buffer *leaf;
2117 struct btrfs_extent_item *item;
2118 struct btrfs_key key;
2119 u64 bytenr = node->bytenr;
2120 u64 num_bytes = node->num_bytes;
2124 path = btrfs_alloc_path();
2128 path->reada = READA_FORWARD;
2129 path->leave_spinning = 1;
2130 /* this will setup the path even if it fails to insert the back ref */
2131 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2132 bytenr, num_bytes, parent,
2133 root_objectid, owner, offset,
2134 refs_to_add, extent_op);
2135 if ((ret < 0 && ret != -EAGAIN) || !ret)
2139 * Ok we had -EAGAIN which means we didn't have space to insert and
2140 * inline extent ref, so just update the reference count and add a
2143 leaf = path->nodes[0];
2144 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2145 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2146 refs = btrfs_extent_refs(leaf, item);
2147 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2149 __run_delayed_extent_op(extent_op, leaf, item);
2151 btrfs_mark_buffer_dirty(leaf);
2152 btrfs_release_path(path);
2154 path->reada = READA_FORWARD;
2155 path->leave_spinning = 1;
2156 /* now insert the actual backref */
2157 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2158 path, bytenr, parent, root_objectid,
2159 owner, offset, refs_to_add);
2161 btrfs_abort_transaction(trans, ret);
2163 btrfs_free_path(path);
2167 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2168 struct btrfs_root *root,
2169 struct btrfs_delayed_ref_node *node,
2170 struct btrfs_delayed_extent_op *extent_op,
2171 int insert_reserved)
2174 struct btrfs_delayed_data_ref *ref;
2175 struct btrfs_key ins;
2180 ins.objectid = node->bytenr;
2181 ins.offset = node->num_bytes;
2182 ins.type = BTRFS_EXTENT_ITEM_KEY;
2184 ref = btrfs_delayed_node_to_data_ref(node);
2185 trace_run_delayed_data_ref(root->fs_info, node, ref, node->action);
2187 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2188 parent = ref->parent;
2189 ref_root = ref->root;
2191 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2193 flags |= extent_op->flags_to_set;
2194 ret = alloc_reserved_file_extent(trans, root,
2195 parent, ref_root, flags,
2196 ref->objectid, ref->offset,
2197 &ins, node->ref_mod);
2198 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2199 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2200 ref_root, ref->objectid,
2201 ref->offset, node->ref_mod,
2203 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2204 ret = __btrfs_free_extent(trans, root, node, parent,
2205 ref_root, ref->objectid,
2206 ref->offset, node->ref_mod,
2214 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2215 struct extent_buffer *leaf,
2216 struct btrfs_extent_item *ei)
2218 u64 flags = btrfs_extent_flags(leaf, ei);
2219 if (extent_op->update_flags) {
2220 flags |= extent_op->flags_to_set;
2221 btrfs_set_extent_flags(leaf, ei, flags);
2224 if (extent_op->update_key) {
2225 struct btrfs_tree_block_info *bi;
2226 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2227 bi = (struct btrfs_tree_block_info *)(ei + 1);
2228 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2232 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2233 struct btrfs_root *root,
2234 struct btrfs_delayed_ref_node *node,
2235 struct btrfs_delayed_extent_op *extent_op)
2237 struct btrfs_key key;
2238 struct btrfs_path *path;
2239 struct btrfs_extent_item *ei;
2240 struct extent_buffer *leaf;
2244 int metadata = !extent_op->is_data;
2249 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2252 path = btrfs_alloc_path();
2256 key.objectid = node->bytenr;
2259 key.type = BTRFS_METADATA_ITEM_KEY;
2260 key.offset = extent_op->level;
2262 key.type = BTRFS_EXTENT_ITEM_KEY;
2263 key.offset = node->num_bytes;
2267 path->reada = READA_FORWARD;
2268 path->leave_spinning = 1;
2269 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2277 if (path->slots[0] > 0) {
2279 btrfs_item_key_to_cpu(path->nodes[0], &key,
2281 if (key.objectid == node->bytenr &&
2282 key.type == BTRFS_EXTENT_ITEM_KEY &&
2283 key.offset == node->num_bytes)
2287 btrfs_release_path(path);
2290 key.objectid = node->bytenr;
2291 key.offset = node->num_bytes;
2292 key.type = BTRFS_EXTENT_ITEM_KEY;
2301 leaf = path->nodes[0];
2302 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2303 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2304 if (item_size < sizeof(*ei)) {
2305 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2311 leaf = path->nodes[0];
2312 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2315 BUG_ON(item_size < sizeof(*ei));
2316 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2317 __run_delayed_extent_op(extent_op, leaf, ei);
2319 btrfs_mark_buffer_dirty(leaf);
2321 btrfs_free_path(path);
2325 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2326 struct btrfs_root *root,
2327 struct btrfs_delayed_ref_node *node,
2328 struct btrfs_delayed_extent_op *extent_op,
2329 int insert_reserved)
2332 struct btrfs_delayed_tree_ref *ref;
2333 struct btrfs_key ins;
2336 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2339 ref = btrfs_delayed_node_to_tree_ref(node);
2340 trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action);
2342 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2343 parent = ref->parent;
2344 ref_root = ref->root;
2346 ins.objectid = node->bytenr;
2347 if (skinny_metadata) {
2348 ins.offset = ref->level;
2349 ins.type = BTRFS_METADATA_ITEM_KEY;
2351 ins.offset = node->num_bytes;
2352 ins.type = BTRFS_EXTENT_ITEM_KEY;
2355 if (node->ref_mod != 1) {
2356 btrfs_err(root->fs_info,
2357 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2358 node->bytenr, node->ref_mod, node->action, ref_root,
2362 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2363 BUG_ON(!extent_op || !extent_op->update_flags);
2364 ret = alloc_reserved_tree_block(trans, root,
2366 extent_op->flags_to_set,
2369 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2370 ret = __btrfs_inc_extent_ref(trans, root, node,
2374 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2375 ret = __btrfs_free_extent(trans, root, node,
2377 ref->level, 0, 1, extent_op);
2384 /* helper function to actually process a single delayed ref entry */
2385 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2386 struct btrfs_root *root,
2387 struct btrfs_delayed_ref_node *node,
2388 struct btrfs_delayed_extent_op *extent_op,
2389 int insert_reserved)
2393 if (trans->aborted) {
2394 if (insert_reserved)
2395 btrfs_pin_extent(root, node->bytenr,
2396 node->num_bytes, 1);
2400 if (btrfs_delayed_ref_is_head(node)) {
2401 struct btrfs_delayed_ref_head *head;
2403 * we've hit the end of the chain and we were supposed
2404 * to insert this extent into the tree. But, it got
2405 * deleted before we ever needed to insert it, so all
2406 * we have to do is clean up the accounting
2409 head = btrfs_delayed_node_to_head(node);
2410 trace_run_delayed_ref_head(root->fs_info, node, head,
2413 if (insert_reserved) {
2414 btrfs_pin_extent(root, node->bytenr,
2415 node->num_bytes, 1);
2416 if (head->is_data) {
2417 ret = btrfs_del_csums(trans, root,
2423 /* Also free its reserved qgroup space */
2424 btrfs_qgroup_free_delayed_ref(root->fs_info,
2425 head->qgroup_ref_root,
2426 head->qgroup_reserved);
2430 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2431 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2432 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2434 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2435 node->type == BTRFS_SHARED_DATA_REF_KEY)
2436 ret = run_delayed_data_ref(trans, root, node, extent_op,
2443 static inline struct btrfs_delayed_ref_node *
2444 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2446 struct btrfs_delayed_ref_node *ref;
2448 if (list_empty(&head->ref_list))
2452 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2453 * This is to prevent a ref count from going down to zero, which deletes
2454 * the extent item from the extent tree, when there still are references
2455 * to add, which would fail because they would not find the extent item.
2457 list_for_each_entry(ref, &head->ref_list, list) {
2458 if (ref->action == BTRFS_ADD_DELAYED_REF)
2462 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2467 * Returns 0 on success or if called with an already aborted transaction.
2468 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2470 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2471 struct btrfs_root *root,
2474 struct btrfs_delayed_ref_root *delayed_refs;
2475 struct btrfs_delayed_ref_node *ref;
2476 struct btrfs_delayed_ref_head *locked_ref = NULL;
2477 struct btrfs_delayed_extent_op *extent_op;
2478 struct btrfs_fs_info *fs_info = root->fs_info;
2479 ktime_t start = ktime_get();
2481 unsigned long count = 0;
2482 unsigned long actual_count = 0;
2483 int must_insert_reserved = 0;
2485 delayed_refs = &trans->transaction->delayed_refs;
2491 spin_lock(&delayed_refs->lock);
2492 locked_ref = btrfs_select_ref_head(trans);
2494 spin_unlock(&delayed_refs->lock);
2498 /* grab the lock that says we are going to process
2499 * all the refs for this head */
2500 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2501 spin_unlock(&delayed_refs->lock);
2503 * we may have dropped the spin lock to get the head
2504 * mutex lock, and that might have given someone else
2505 * time to free the head. If that's true, it has been
2506 * removed from our list and we can move on.
2508 if (ret == -EAGAIN) {
2516 * We need to try and merge add/drops of the same ref since we
2517 * can run into issues with relocate dropping the implicit ref
2518 * and then it being added back again before the drop can
2519 * finish. If we merged anything we need to re-loop so we can
2521 * Or we can get node references of the same type that weren't
2522 * merged when created due to bumps in the tree mod seq, and
2523 * we need to merge them to prevent adding an inline extent
2524 * backref before dropping it (triggering a BUG_ON at
2525 * insert_inline_extent_backref()).
2527 spin_lock(&locked_ref->lock);
2528 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2532 * locked_ref is the head node, so we have to go one
2533 * node back for any delayed ref updates
2535 ref = select_delayed_ref(locked_ref);
2537 if (ref && ref->seq &&
2538 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2539 spin_unlock(&locked_ref->lock);
2540 btrfs_delayed_ref_unlock(locked_ref);
2541 spin_lock(&delayed_refs->lock);
2542 locked_ref->processing = 0;
2543 delayed_refs->num_heads_ready++;
2544 spin_unlock(&delayed_refs->lock);
2552 * record the must insert reserved flag before we
2553 * drop the spin lock.
2555 must_insert_reserved = locked_ref->must_insert_reserved;
2556 locked_ref->must_insert_reserved = 0;
2558 extent_op = locked_ref->extent_op;
2559 locked_ref->extent_op = NULL;
2564 /* All delayed refs have been processed, Go ahead
2565 * and send the head node to run_one_delayed_ref,
2566 * so that any accounting fixes can happen
2568 ref = &locked_ref->node;
2570 if (extent_op && must_insert_reserved) {
2571 btrfs_free_delayed_extent_op(extent_op);
2576 spin_unlock(&locked_ref->lock);
2577 ret = run_delayed_extent_op(trans, root,
2579 btrfs_free_delayed_extent_op(extent_op);
2583 * Need to reset must_insert_reserved if
2584 * there was an error so the abort stuff
2585 * can cleanup the reserved space
2588 if (must_insert_reserved)
2589 locked_ref->must_insert_reserved = 1;
2590 locked_ref->processing = 0;
2591 btrfs_debug(fs_info,
2592 "run_delayed_extent_op returned %d",
2594 btrfs_delayed_ref_unlock(locked_ref);
2601 * Need to drop our head ref lock and re-acquire the
2602 * delayed ref lock and then re-check to make sure
2605 spin_unlock(&locked_ref->lock);
2606 spin_lock(&delayed_refs->lock);
2607 spin_lock(&locked_ref->lock);
2608 if (!list_empty(&locked_ref->ref_list) ||
2609 locked_ref->extent_op) {
2610 spin_unlock(&locked_ref->lock);
2611 spin_unlock(&delayed_refs->lock);
2615 delayed_refs->num_heads--;
2616 rb_erase(&locked_ref->href_node,
2617 &delayed_refs->href_root);
2618 spin_unlock(&delayed_refs->lock);
2622 list_del(&ref->list);
2624 atomic_dec(&delayed_refs->num_entries);
2626 if (!btrfs_delayed_ref_is_head(ref)) {
2628 * when we play the delayed ref, also correct the
2631 switch (ref->action) {
2632 case BTRFS_ADD_DELAYED_REF:
2633 case BTRFS_ADD_DELAYED_EXTENT:
2634 locked_ref->node.ref_mod -= ref->ref_mod;
2636 case BTRFS_DROP_DELAYED_REF:
2637 locked_ref->node.ref_mod += ref->ref_mod;
2643 spin_unlock(&locked_ref->lock);
2645 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2646 must_insert_reserved);
2648 btrfs_free_delayed_extent_op(extent_op);
2650 spin_lock(&delayed_refs->lock);
2651 locked_ref->processing = 0;
2652 delayed_refs->num_heads_ready++;
2653 spin_unlock(&delayed_refs->lock);
2654 btrfs_delayed_ref_unlock(locked_ref);
2655 btrfs_put_delayed_ref(ref);
2656 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2662 * If this node is a head, that means all the refs in this head
2663 * have been dealt with, and we will pick the next head to deal
2664 * with, so we must unlock the head and drop it from the cluster
2665 * list before we release it.
2667 if (btrfs_delayed_ref_is_head(ref)) {
2668 if (locked_ref->is_data &&
2669 locked_ref->total_ref_mod < 0) {
2670 spin_lock(&delayed_refs->lock);
2671 delayed_refs->pending_csums -= ref->num_bytes;
2672 spin_unlock(&delayed_refs->lock);
2674 btrfs_delayed_ref_unlock(locked_ref);
2677 btrfs_put_delayed_ref(ref);
2683 * We don't want to include ref heads since we can have empty ref heads
2684 * and those will drastically skew our runtime down since we just do
2685 * accounting, no actual extent tree updates.
2687 if (actual_count > 0) {
2688 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2692 * We weigh the current average higher than our current runtime
2693 * to avoid large swings in the average.
2695 spin_lock(&delayed_refs->lock);
2696 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2697 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2698 spin_unlock(&delayed_refs->lock);
2703 #ifdef SCRAMBLE_DELAYED_REFS
2705 * Normally delayed refs get processed in ascending bytenr order. This
2706 * correlates in most cases to the order added. To expose dependencies on this
2707 * order, we start to process the tree in the middle instead of the beginning
2709 static u64 find_middle(struct rb_root *root)
2711 struct rb_node *n = root->rb_node;
2712 struct btrfs_delayed_ref_node *entry;
2715 u64 first = 0, last = 0;
2719 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2720 first = entry->bytenr;
2724 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2725 last = entry->bytenr;
2730 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2731 WARN_ON(!entry->in_tree);
2733 middle = entry->bytenr;
2746 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2750 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2751 sizeof(struct btrfs_extent_inline_ref));
2752 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2753 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2756 * We don't ever fill up leaves all the way so multiply by 2 just to be
2757 * closer to what we're really going to want to use.
2759 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2763 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2764 * would require to store the csums for that many bytes.
2766 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2769 u64 num_csums_per_leaf;
2772 csum_size = BTRFS_MAX_ITEM_SIZE(root);
2773 num_csums_per_leaf = div64_u64(csum_size,
2774 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2775 num_csums = div64_u64(csum_bytes, root->sectorsize);
2776 num_csums += num_csums_per_leaf - 1;
2777 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2781 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2782 struct btrfs_root *root)
2784 struct btrfs_block_rsv *global_rsv;
2785 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2786 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2787 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2788 u64 num_bytes, num_dirty_bgs_bytes;
2791 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2792 num_heads = heads_to_leaves(root, num_heads);
2794 num_bytes += (num_heads - 1) * root->nodesize;
2796 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2797 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2799 global_rsv = &root->fs_info->global_block_rsv;
2802 * If we can't allocate any more chunks lets make sure we have _lots_ of
2803 * wiggle room since running delayed refs can create more delayed refs.
2805 if (global_rsv->space_info->full) {
2806 num_dirty_bgs_bytes <<= 1;
2810 spin_lock(&global_rsv->lock);
2811 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2813 spin_unlock(&global_rsv->lock);
2817 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2818 struct btrfs_root *root)
2820 struct btrfs_fs_info *fs_info = root->fs_info;
2822 atomic_read(&trans->transaction->delayed_refs.num_entries);
2827 avg_runtime = fs_info->avg_delayed_ref_runtime;
2828 val = num_entries * avg_runtime;
2829 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2831 if (val >= NSEC_PER_SEC / 2)
2834 return btrfs_check_space_for_delayed_refs(trans, root);
2837 struct async_delayed_refs {
2838 struct btrfs_root *root;
2843 struct completion wait;
2844 struct btrfs_work work;
2847 static void delayed_ref_async_start(struct btrfs_work *work)
2849 struct async_delayed_refs *async;
2850 struct btrfs_trans_handle *trans;
2853 async = container_of(work, struct async_delayed_refs, work);
2855 /* if the commit is already started, we don't need to wait here */
2856 if (btrfs_transaction_blocked(async->root->fs_info))
2859 trans = btrfs_join_transaction(async->root);
2860 if (IS_ERR(trans)) {
2861 async->error = PTR_ERR(trans);
2866 * trans->sync means that when we call end_transaction, we won't
2867 * wait on delayed refs
2871 /* Don't bother flushing if we got into a different transaction */
2872 if (trans->transid > async->transid)
2875 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2879 ret = btrfs_end_transaction(trans, async->root);
2880 if (ret && !async->error)
2884 complete(&async->wait);
2889 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2890 unsigned long count, u64 transid, int wait)
2892 struct async_delayed_refs *async;
2895 async = kmalloc(sizeof(*async), GFP_NOFS);
2899 async->root = root->fs_info->tree_root;
2900 async->count = count;
2902 async->transid = transid;
2907 init_completion(&async->wait);
2909 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2910 delayed_ref_async_start, NULL, NULL);
2912 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2915 wait_for_completion(&async->wait);
2924 * this starts processing the delayed reference count updates and
2925 * extent insertions we have queued up so far. count can be
2926 * 0, which means to process everything in the tree at the start
2927 * of the run (but not newly added entries), or it can be some target
2928 * number you'd like to process.
2930 * Returns 0 on success or if called with an aborted transaction
2931 * Returns <0 on error and aborts the transaction
2933 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2934 struct btrfs_root *root, unsigned long count)
2936 struct rb_node *node;
2937 struct btrfs_delayed_ref_root *delayed_refs;
2938 struct btrfs_delayed_ref_head *head;
2940 int run_all = count == (unsigned long)-1;
2941 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2943 /* We'll clean this up in btrfs_cleanup_transaction */
2947 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &root->fs_info->flags))
2950 if (root == root->fs_info->extent_root)
2951 root = root->fs_info->tree_root;
2953 delayed_refs = &trans->transaction->delayed_refs;
2955 count = atomic_read(&delayed_refs->num_entries) * 2;
2958 #ifdef SCRAMBLE_DELAYED_REFS
2959 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2961 trans->can_flush_pending_bgs = false;
2962 ret = __btrfs_run_delayed_refs(trans, root, count);
2964 btrfs_abort_transaction(trans, ret);
2969 if (!list_empty(&trans->new_bgs))
2970 btrfs_create_pending_block_groups(trans, root);
2972 spin_lock(&delayed_refs->lock);
2973 node = rb_first(&delayed_refs->href_root);
2975 spin_unlock(&delayed_refs->lock);
2980 head = rb_entry(node, struct btrfs_delayed_ref_head,
2982 if (btrfs_delayed_ref_is_head(&head->node)) {
2983 struct btrfs_delayed_ref_node *ref;
2986 atomic_inc(&ref->refs);
2988 spin_unlock(&delayed_refs->lock);
2990 * Mutex was contended, block until it's
2991 * released and try again
2993 mutex_lock(&head->mutex);
2994 mutex_unlock(&head->mutex);
2996 btrfs_put_delayed_ref(ref);
3002 node = rb_next(node);
3004 spin_unlock(&delayed_refs->lock);
3009 assert_qgroups_uptodate(trans);
3010 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3014 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3015 struct btrfs_root *root,
3016 u64 bytenr, u64 num_bytes, u64 flags,
3017 int level, int is_data)
3019 struct btrfs_delayed_extent_op *extent_op;
3022 extent_op = btrfs_alloc_delayed_extent_op();
3026 extent_op->flags_to_set = flags;
3027 extent_op->update_flags = true;
3028 extent_op->update_key = false;
3029 extent_op->is_data = is_data ? true : false;
3030 extent_op->level = level;
3032 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3033 num_bytes, extent_op);
3035 btrfs_free_delayed_extent_op(extent_op);
3039 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3040 struct btrfs_root *root,
3041 struct btrfs_path *path,
3042 u64 objectid, u64 offset, u64 bytenr)
3044 struct btrfs_delayed_ref_head *head;
3045 struct btrfs_delayed_ref_node *ref;
3046 struct btrfs_delayed_data_ref *data_ref;
3047 struct btrfs_delayed_ref_root *delayed_refs;
3050 delayed_refs = &trans->transaction->delayed_refs;
3051 spin_lock(&delayed_refs->lock);
3052 head = btrfs_find_delayed_ref_head(trans, bytenr);
3054 spin_unlock(&delayed_refs->lock);
3058 if (!mutex_trylock(&head->mutex)) {
3059 atomic_inc(&head->node.refs);
3060 spin_unlock(&delayed_refs->lock);
3062 btrfs_release_path(path);
3065 * Mutex was contended, block until it's released and let
3068 mutex_lock(&head->mutex);
3069 mutex_unlock(&head->mutex);
3070 btrfs_put_delayed_ref(&head->node);
3073 spin_unlock(&delayed_refs->lock);
3075 spin_lock(&head->lock);
3076 list_for_each_entry(ref, &head->ref_list, list) {
3077 /* If it's a shared ref we know a cross reference exists */
3078 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3083 data_ref = btrfs_delayed_node_to_data_ref(ref);
3086 * If our ref doesn't match the one we're currently looking at
3087 * then we have a cross reference.
3089 if (data_ref->root != root->root_key.objectid ||
3090 data_ref->objectid != objectid ||
3091 data_ref->offset != offset) {
3096 spin_unlock(&head->lock);
3097 mutex_unlock(&head->mutex);
3101 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3102 struct btrfs_root *root,
3103 struct btrfs_path *path,
3104 u64 objectid, u64 offset, u64 bytenr)
3106 struct btrfs_root *extent_root = root->fs_info->extent_root;
3107 struct extent_buffer *leaf;
3108 struct btrfs_extent_data_ref *ref;
3109 struct btrfs_extent_inline_ref *iref;
3110 struct btrfs_extent_item *ei;
3111 struct btrfs_key key;
3115 key.objectid = bytenr;
3116 key.offset = (u64)-1;
3117 key.type = BTRFS_EXTENT_ITEM_KEY;
3119 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3122 BUG_ON(ret == 0); /* Corruption */
3125 if (path->slots[0] == 0)
3129 leaf = path->nodes[0];
3130 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3132 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3136 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3137 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3138 if (item_size < sizeof(*ei)) {
3139 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3143 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3145 if (item_size != sizeof(*ei) +
3146 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3149 if (btrfs_extent_generation(leaf, ei) <=
3150 btrfs_root_last_snapshot(&root->root_item))
3153 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3154 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3155 BTRFS_EXTENT_DATA_REF_KEY)
3158 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3159 if (btrfs_extent_refs(leaf, ei) !=
3160 btrfs_extent_data_ref_count(leaf, ref) ||
3161 btrfs_extent_data_ref_root(leaf, ref) !=
3162 root->root_key.objectid ||
3163 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3164 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3172 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3173 struct btrfs_root *root,
3174 u64 objectid, u64 offset, u64 bytenr)
3176 struct btrfs_path *path;
3180 path = btrfs_alloc_path();
3185 ret = check_committed_ref(trans, root, path, objectid,
3187 if (ret && ret != -ENOENT)
3190 ret2 = check_delayed_ref(trans, root, path, objectid,