1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
17 #include "btrfs_inode.h"
19 #include "check-integrity.h"
21 #include "rcu-string.h"
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
28 static inline bool extent_state_in_tree(const struct extent_state *state)
30 return !RB_EMPTY_NODE(&state->rb_node);
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
37 static DEFINE_SPINLOCK(leak_lock);
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 spin_lock_irqsave(&leak_lock, flags);
46 spin_unlock_irqrestore(&leak_lock, flags);
50 void btrfs_leak_debug_del(struct list_head *entry)
54 spin_lock_irqsave(&leak_lock, flags);
56 spin_unlock_irqrestore(&leak_lock, flags);
60 void btrfs_leak_debug_check(void)
62 struct extent_state *state;
63 struct extent_buffer *eb;
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 printk_ratelimited(KERN_DEBUG
100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
101 caller, btrfs_ino(inode), isize, start, end);
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
111 #define BUFFER_LRU_MAX 64
116 struct rb_node rb_node;
119 struct extent_page_data {
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
128 unsigned int extent_locked:1;
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
134 static noinline void flush_write_bio(void *data);
135 static inline struct btrfs_fs_info *
136 tree_fs_info(struct extent_io_tree *tree)
140 return btrfs_sb(tree->mapping->host->i_sb);
143 int __init extent_io_init(void)
145 extent_state_cache = kmem_cache_create("btrfs_extent_state",
146 sizeof(struct extent_state), 0,
147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
148 if (!extent_state_cache)
151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
152 sizeof(struct extent_buffer), 0,
153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
154 if (!extent_buffer_cache)
155 goto free_state_cache;
157 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158 offsetof(struct btrfs_io_bio, bio));
160 goto free_buffer_cache;
162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
168 bioset_free(btrfs_bioset);
172 kmem_cache_destroy(extent_buffer_cache);
173 extent_buffer_cache = NULL;
176 kmem_cache_destroy(extent_state_cache);
177 extent_state_cache = NULL;
181 void extent_io_exit(void)
183 btrfs_leak_debug_check();
186 * Make sure all delayed rcu free are flushed before we
190 if (extent_state_cache)
191 kmem_cache_destroy(extent_state_cache);
192 if (extent_buffer_cache)
193 kmem_cache_destroy(extent_buffer_cache);
195 bioset_free(btrfs_bioset);
198 void extent_io_tree_init(struct extent_io_tree *tree,
199 struct address_space *mapping)
201 tree->state = RB_ROOT;
203 tree->dirty_bytes = 0;
204 spin_lock_init(&tree->lock);
205 tree->mapping = mapping;
208 static struct extent_state *alloc_extent_state(gfp_t mask)
210 struct extent_state *state;
212 state = kmem_cache_alloc(extent_state_cache, mask);
217 RB_CLEAR_NODE(&state->rb_node);
218 btrfs_leak_debug_add(&state->leak_list, &states);
219 atomic_set(&state->refs, 1);
220 init_waitqueue_head(&state->wq);
221 trace_alloc_extent_state(state, mask, _RET_IP_);
225 void free_extent_state(struct extent_state *state)
229 if (atomic_dec_and_test(&state->refs)) {
230 WARN_ON(extent_state_in_tree(state));
231 btrfs_leak_debug_del(&state->leak_list);
232 trace_free_extent_state(state, _RET_IP_);
233 kmem_cache_free(extent_state_cache, state);
237 static struct rb_node *tree_insert(struct rb_root *root,
238 struct rb_node *search_start,
240 struct rb_node *node,
241 struct rb_node ***p_in,
242 struct rb_node **parent_in)
245 struct rb_node *parent = NULL;
246 struct tree_entry *entry;
248 if (p_in && parent_in) {
254 p = search_start ? &search_start : &root->rb_node;
257 entry = rb_entry(parent, struct tree_entry, rb_node);
259 if (offset < entry->start)
261 else if (offset > entry->end)
268 rb_link_node(node, parent, p);
269 rb_insert_color(node, root);
273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
274 struct rb_node **prev_ret,
275 struct rb_node **next_ret,
276 struct rb_node ***p_ret,
277 struct rb_node **parent_ret)
279 struct rb_root *root = &tree->state;
280 struct rb_node **n = &root->rb_node;
281 struct rb_node *prev = NULL;
282 struct rb_node *orig_prev = NULL;
283 struct tree_entry *entry;
284 struct tree_entry *prev_entry = NULL;
288 entry = rb_entry(prev, struct tree_entry, rb_node);
291 if (offset < entry->start)
293 else if (offset > entry->end)
306 while (prev && offset > prev_entry->end) {
307 prev = rb_next(prev);
308 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
315 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
316 while (prev && offset < prev_entry->start) {
317 prev = rb_prev(prev);
318 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
325 static inline struct rb_node *
326 tree_search_for_insert(struct extent_io_tree *tree,
328 struct rb_node ***p_ret,
329 struct rb_node **parent_ret)
331 struct rb_node *prev = NULL;
334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
340 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
343 return tree_search_for_insert(tree, offset, NULL, NULL);
346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347 struct extent_state *other)
349 if (tree->ops && tree->ops->merge_extent_hook)
350 tree->ops->merge_extent_hook(tree->mapping->host, new,
355 * utility function to look for merge candidates inside a given range.
356 * Any extents with matching state are merged together into a single
357 * extent in the tree. Extents with EXTENT_IO in their state field
358 * are not merged because the end_io handlers need to be able to do
359 * operations on them without sleeping (or doing allocations/splits).
361 * This should be called with the tree lock held.
363 static void merge_state(struct extent_io_tree *tree,
364 struct extent_state *state)
366 struct extent_state *other;
367 struct rb_node *other_node;
369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
372 other_node = rb_prev(&state->rb_node);
374 other = rb_entry(other_node, struct extent_state, rb_node);
375 if (other->end == state->start - 1 &&
376 other->state == state->state) {
377 merge_cb(tree, state, other);
378 state->start = other->start;
379 rb_erase(&other->rb_node, &tree->state);
380 RB_CLEAR_NODE(&other->rb_node);
381 free_extent_state(other);
384 other_node = rb_next(&state->rb_node);
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->start == state->end + 1 &&
388 other->state == state->state) {
389 merge_cb(tree, state, other);
390 state->end = other->end;
391 rb_erase(&other->rb_node, &tree->state);
392 RB_CLEAR_NODE(&other->rb_node);
393 free_extent_state(other);
398 static void set_state_cb(struct extent_io_tree *tree,
399 struct extent_state *state, unsigned *bits)
401 if (tree->ops && tree->ops->set_bit_hook)
402 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
405 static void clear_state_cb(struct extent_io_tree *tree,
406 struct extent_state *state, unsigned *bits)
408 if (tree->ops && tree->ops->clear_bit_hook)
409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
412 static void set_state_bits(struct extent_io_tree *tree,
413 struct extent_state *state, unsigned *bits);
416 * insert an extent_state struct into the tree. 'bits' are set on the
417 * struct before it is inserted.
419 * This may return -EEXIST if the extent is already there, in which case the
420 * state struct is freed.
422 * The tree lock is not taken internally. This is a utility function and
423 * probably isn't what you want to call (see set/clear_extent_bit).
425 static int insert_state(struct extent_io_tree *tree,
426 struct extent_state *state, u64 start, u64 end,
428 struct rb_node **parent,
431 struct rb_node *node;
434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
436 state->start = start;
439 set_state_bits(tree, state, bits);
441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
443 struct extent_state *found;
444 found = rb_entry(node, struct extent_state, rb_node);
445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
447 found->start, found->end, start, end);
450 merge_state(tree, state);
454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
457 if (tree->ops && tree->ops->split_extent_hook)
458 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
462 * split a given extent state struct in two, inserting the preallocated
463 * struct 'prealloc' as the newly created second half. 'split' indicates an
464 * offset inside 'orig' where it should be split.
467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
468 * are two extent state structs in the tree:
469 * prealloc: [orig->start, split - 1]
470 * orig: [ split, orig->end ]
472 * The tree locks are not taken by this function. They need to be held
475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 struct extent_state *prealloc, u64 split)
478 struct rb_node *node;
480 split_cb(tree, orig, split);
482 prealloc->start = orig->start;
483 prealloc->end = split - 1;
484 prealloc->state = orig->state;
487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 &prealloc->rb_node, NULL, NULL);
490 free_extent_state(prealloc);
496 static struct extent_state *next_state(struct extent_state *state)
498 struct rb_node *next = rb_next(&state->rb_node);
500 return rb_entry(next, struct extent_state, rb_node);
506 * utility function to clear some bits in an extent state struct.
507 * it will optionally wake up any one waiting on this state (wake == 1).
509 * If no bits are set on the state struct after clearing things, the
510 * struct is freed and removed from the tree
512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 struct extent_state *state,
514 unsigned *bits, int wake)
516 struct extent_state *next;
517 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
520 u64 range = state->end - state->start + 1;
521 WARN_ON(range > tree->dirty_bytes);
522 tree->dirty_bytes -= range;
524 clear_state_cb(tree, state, bits);
525 state->state &= ~bits_to_clear;
528 if (state->state == 0) {
529 next = next_state(state);
530 if (extent_state_in_tree(state)) {
531 rb_erase(&state->rb_node, &tree->state);
532 RB_CLEAR_NODE(&state->rb_node);
533 free_extent_state(state);
538 merge_state(tree, state);
539 next = next_state(state);
544 static struct extent_state *
545 alloc_extent_state_atomic(struct extent_state *prealloc)
548 prealloc = alloc_extent_state(GFP_ATOMIC);
553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
555 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556 "Extent tree was modified by another "
557 "thread while locked.");
561 * clear some bits on a range in the tree. This may require splitting
562 * or inserting elements in the tree, so the gfp mask is used to
563 * indicate which allocations or sleeping are allowed.
565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566 * the given range from the tree regardless of state (ie for truncate).
568 * the range [start, end] is inclusive.
570 * This takes the tree lock, and returns 0 on success and < 0 on error.
572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
573 unsigned bits, int wake, int delete,
574 struct extent_state **cached_state,
577 struct extent_state *state;
578 struct extent_state *cached;
579 struct extent_state *prealloc = NULL;
580 struct rb_node *node;
585 btrfs_debug_check_extent_io_range(tree, start, end);
587 if (bits & EXTENT_DELALLOC)
588 bits |= EXTENT_NORESERVE;
591 bits |= ~EXTENT_CTLBITS;
592 bits |= EXTENT_FIRST_DELALLOC;
594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
597 if (!prealloc && (mask & __GFP_WAIT)) {
599 * Don't care for allocation failure here because we might end
600 * up not needing the pre-allocated extent state at all, which
601 * is the case if we only have in the tree extent states that
602 * cover our input range and don't cover too any other range.
603 * If we end up needing a new extent state we allocate it later.
605 prealloc = alloc_extent_state(mask);
608 spin_lock(&tree->lock);
610 cached = *cached_state;
613 *cached_state = NULL;
617 if (cached && extent_state_in_tree(cached) &&
618 cached->start <= start && cached->end > start) {
620 atomic_dec(&cached->refs);
625 free_extent_state(cached);
628 * this search will find the extents that end after
631 node = tree_search(tree, start);
634 state = rb_entry(node, struct extent_state, rb_node);
636 if (state->start > end)
638 WARN_ON(state->end < start);
639 last_end = state->end;
641 /* the state doesn't have the wanted bits, go ahead */
642 if (!(state->state & bits)) {
643 state = next_state(state);
648 * | ---- desired range ---- |
650 * | ------------- state -------------- |
652 * We need to split the extent we found, and may flip
653 * bits on second half.
655 * If the extent we found extends past our range, we
656 * just split and search again. It'll get split again
657 * the next time though.
659 * If the extent we found is inside our range, we clear
660 * the desired bit on it.
663 if (state->start < start) {
664 prealloc = alloc_extent_state_atomic(prealloc);
666 err = split_state(tree, state, prealloc, start);
668 extent_io_tree_panic(tree, err);
673 if (state->end <= end) {
674 state = clear_state_bit(tree, state, &bits, wake);
680 * | ---- desired range ---- |
682 * We need to split the extent, and clear the bit
685 if (state->start <= end && state->end > end) {
686 prealloc = alloc_extent_state_atomic(prealloc);
688 err = split_state(tree, state, prealloc, end + 1);
690 extent_io_tree_panic(tree, err);
695 clear_state_bit(tree, prealloc, &bits, wake);
701 state = clear_state_bit(tree, state, &bits, wake);
703 if (last_end == (u64)-1)
705 start = last_end + 1;
706 if (start <= end && state && !need_resched())
711 spin_unlock(&tree->lock);
713 free_extent_state(prealloc);
720 spin_unlock(&tree->lock);
721 if (mask & __GFP_WAIT)
726 static void wait_on_state(struct extent_io_tree *tree,
727 struct extent_state *state)
728 __releases(tree->lock)
729 __acquires(tree->lock)
732 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
733 spin_unlock(&tree->lock);
735 spin_lock(&tree->lock);
736 finish_wait(&state->wq, &wait);
740 * waits for one or more bits to clear on a range in the state tree.
741 * The range [start, end] is inclusive.
742 * The tree lock is taken by this function
744 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
747 struct extent_state *state;
748 struct rb_node *node;
750 btrfs_debug_check_extent_io_range(tree, start, end);
752 spin_lock(&tree->lock);
756 * this search will find all the extents that end after
759 node = tree_search(tree, start);
764 state = rb_entry(node, struct extent_state, rb_node);
766 if (state->start > end)
769 if (state->state & bits) {
770 start = state->start;
771 atomic_inc(&state->refs);
772 wait_on_state(tree, state);
773 free_extent_state(state);
776 start = state->end + 1;
781 if (!cond_resched_lock(&tree->lock)) {
782 node = rb_next(node);
787 spin_unlock(&tree->lock);
790 static void set_state_bits(struct extent_io_tree *tree,
791 struct extent_state *state,
794 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
796 set_state_cb(tree, state, bits);
797 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
798 u64 range = state->end - state->start + 1;
799 tree->dirty_bytes += range;
801 state->state |= bits_to_set;
804 static void cache_state_if_flags(struct extent_state *state,
805 struct extent_state **cached_ptr,
808 if (cached_ptr && !(*cached_ptr)) {
809 if (!flags || (state->state & flags)) {
811 atomic_inc(&state->refs);
816 static void cache_state(struct extent_state *state,
817 struct extent_state **cached_ptr)
819 return cache_state_if_flags(state, cached_ptr,
820 EXTENT_IOBITS | EXTENT_BOUNDARY);
824 * set some bits on a range in the tree. This may require allocations or
825 * sleeping, so the gfp mask is used to indicate what is allowed.
827 * If any of the exclusive bits are set, this will fail with -EEXIST if some
828 * part of the range already has the desired bits set. The start of the
829 * existing range is returned in failed_start in this case.
831 * [start, end] is inclusive This takes the tree lock.
834 static int __must_check
835 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
836 unsigned bits, unsigned exclusive_bits,
837 u64 *failed_start, struct extent_state **cached_state,
840 struct extent_state *state;
841 struct extent_state *prealloc = NULL;
842 struct rb_node *node;
844 struct rb_node *parent;
849 btrfs_debug_check_extent_io_range(tree, start, end);
851 bits |= EXTENT_FIRST_DELALLOC;
853 if (!prealloc && (mask & __GFP_WAIT)) {
854 prealloc = alloc_extent_state(mask);
858 spin_lock(&tree->lock);
859 if (cached_state && *cached_state) {
860 state = *cached_state;
861 if (state->start <= start && state->end > start &&
862 extent_state_in_tree(state)) {
863 node = &state->rb_node;
868 * this search will find all the extents that end after
871 node = tree_search_for_insert(tree, start, &p, &parent);
873 prealloc = alloc_extent_state_atomic(prealloc);
875 err = insert_state(tree, prealloc, start, end,
878 extent_io_tree_panic(tree, err);
880 cache_state(prealloc, cached_state);
884 state = rb_entry(node, struct extent_state, rb_node);
886 last_start = state->start;
887 last_end = state->end;
890 * | ---- desired range ---- |
893 * Just lock what we found and keep going
895 if (state->start == start && state->end <= end) {
896 if (state->state & exclusive_bits) {
897 *failed_start = state->start;
902 set_state_bits(tree, state, &bits);
903 cache_state(state, cached_state);
904 merge_state(tree, state);
905 if (last_end == (u64)-1)
907 start = last_end + 1;
908 state = next_state(state);
909 if (start < end && state && state->start == start &&
916 * | ---- desired range ---- |
919 * | ------------- state -------------- |
921 * We need to split the extent we found, and may flip bits on
924 * If the extent we found extends past our
925 * range, we just split and search again. It'll get split
926 * again the next time though.
928 * If the extent we found is inside our range, we set the
931 if (state->start < start) {
932 if (state->state & exclusive_bits) {
933 *failed_start = start;
938 prealloc = alloc_extent_state_atomic(prealloc);
940 err = split_state(tree, state, prealloc, start);
942 extent_io_tree_panic(tree, err);
947 if (state->end <= end) {
948 set_state_bits(tree, state, &bits);
949 cache_state(state, cached_state);
950 merge_state(tree, state);
951 if (last_end == (u64)-1)
953 start = last_end + 1;
954 state = next_state(state);
955 if (start < end && state && state->start == start &&
962 * | ---- desired range ---- |
963 * | state | or | state |
965 * There's a hole, we need to insert something in it and
966 * ignore the extent we found.
968 if (state->start > start) {
970 if (end < last_start)
973 this_end = last_start - 1;
975 prealloc = alloc_extent_state_atomic(prealloc);
979 * Avoid to free 'prealloc' if it can be merged with
982 err = insert_state(tree, prealloc, start, this_end,
985 extent_io_tree_panic(tree, err);
987 cache_state(prealloc, cached_state);
989 start = this_end + 1;
993 * | ---- desired range ---- |
995 * We need to split the extent, and set the bit
998 if (state->start <= end && state->end > end) {
999 if (state->state & exclusive_bits) {
1000 *failed_start = start;
1005 prealloc = alloc_extent_state_atomic(prealloc);
1007 err = split_state(tree, state, prealloc, end + 1);
1009 extent_io_tree_panic(tree, err);
1011 set_state_bits(tree, prealloc, &bits);
1012 cache_state(prealloc, cached_state);
1013 merge_state(tree, prealloc);
1021 spin_unlock(&tree->lock);
1023 free_extent_state(prealloc);
1030 spin_unlock(&tree->lock);
1031 if (mask & __GFP_WAIT)
1036 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1037 unsigned bits, u64 * failed_start,
1038 struct extent_state **cached_state, gfp_t mask)
1040 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1041 cached_state, mask);
1046 * convert_extent_bit - convert all bits in a given range from one bit to
1048 * @tree: the io tree to search
1049 * @start: the start offset in bytes
1050 * @end: the end offset in bytes (inclusive)
1051 * @bits: the bits to set in this range
1052 * @clear_bits: the bits to clear in this range
1053 * @cached_state: state that we're going to cache
1054 * @mask: the allocation mask
1056 * This will go through and set bits for the given range. If any states exist
1057 * already in this range they are set with the given bit and cleared of the
1058 * clear_bits. This is only meant to be used by things that are mergeable, ie
1059 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1060 * boundary bits like LOCK.
1062 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1063 unsigned bits, unsigned clear_bits,
1064 struct extent_state **cached_state, gfp_t mask)
1066 struct extent_state *state;
1067 struct extent_state *prealloc = NULL;
1068 struct rb_node *node;
1070 struct rb_node *parent;
1074 bool first_iteration = true;
1076 btrfs_debug_check_extent_io_range(tree, start, end);
1079 if (!prealloc && (mask & __GFP_WAIT)) {
1081 * Best effort, don't worry if extent state allocation fails
1082 * here for the first iteration. We might have a cached state
1083 * that matches exactly the target range, in which case no
1084 * extent state allocations are needed. We'll only know this
1085 * after locking the tree.
1087 prealloc = alloc_extent_state(mask);
1088 if (!prealloc && !first_iteration)
1092 spin_lock(&tree->lock);
1093 if (cached_state && *cached_state) {
1094 state = *cached_state;
1095 if (state->start <= start && state->end > start &&
1096 extent_state_in_tree(state)) {
1097 node = &state->rb_node;
1103 * this search will find all the extents that end after
1106 node = tree_search_for_insert(tree, start, &p, &parent);
1108 prealloc = alloc_extent_state_atomic(prealloc);
1113 err = insert_state(tree, prealloc, start, end,
1114 &p, &parent, &bits);
1116 extent_io_tree_panic(tree, err);
1117 cache_state(prealloc, cached_state);
1121 state = rb_entry(node, struct extent_state, rb_node);
1123 last_start = state->start;
1124 last_end = state->end;
1127 * | ---- desired range ---- |
1130 * Just lock what we found and keep going
1132 if (state->start == start && state->end <= end) {
1133 set_state_bits(tree, state, &bits);
1134 cache_state(state, cached_state);
1135 state = clear_state_bit(tree, state, &clear_bits, 0);
1136 if (last_end == (u64)-1)
1138 start = last_end + 1;
1139 if (start < end && state && state->start == start &&
1146 * | ---- desired range ---- |
1149 * | ------------- state -------------- |
1151 * We need to split the extent we found, and may flip bits on
1154 * If the extent we found extends past our
1155 * range, we just split and search again. It'll get split
1156 * again the next time though.
1158 * If the extent we found is inside our range, we set the
1159 * desired bit on it.
1161 if (state->start < start) {
1162 prealloc = alloc_extent_state_atomic(prealloc);
1167 err = split_state(tree, state, prealloc, start);
1169 extent_io_tree_panic(tree, err);
1173 if (state->end <= end) {
1174 set_state_bits(tree, state, &bits);
1175 cache_state(state, cached_state);
1176 state = clear_state_bit(tree, state, &clear_bits, 0);
1177 if (last_end == (u64)-1)
1179 start = last_end + 1;
1180 if (start < end && state && state->start == start &&
1187 * | ---- desired range ---- |
1188 * | state | or | state |
1190 * There's a hole, we need to insert something in it and
1191 * ignore the extent we found.
1193 if (state->start > start) {
1195 if (end < last_start)
1198 this_end = last_start - 1;
1200 prealloc = alloc_extent_state_atomic(prealloc);
1207 * Avoid to free 'prealloc' if it can be merged with
1210 err = insert_state(tree, prealloc, start, this_end,
1213 extent_io_tree_panic(tree, err);
1214 cache_state(prealloc, cached_state);
1216 start = this_end + 1;
1220 * | ---- desired range ---- |
1222 * We need to split the extent, and set the bit
1225 if (state->start <= end && state->end > end) {
1226 prealloc = alloc_extent_state_atomic(prealloc);
1232 err = split_state(tree, state, prealloc, end + 1);
1234 extent_io_tree_panic(tree, err);
1236 set_state_bits(tree, prealloc, &bits);
1237 cache_state(prealloc, cached_state);
1238 clear_state_bit(tree, prealloc, &clear_bits, 0);
1246 spin_unlock(&tree->lock);
1248 free_extent_state(prealloc);
1255 spin_unlock(&tree->lock);
1256 if (mask & __GFP_WAIT)
1258 first_iteration = false;
1262 /* wrappers around set/clear extent bit */
1263 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1266 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1270 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1271 unsigned bits, gfp_t mask)
1273 return set_extent_bit(tree, start, end, bits, NULL,
1277 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1278 unsigned bits, gfp_t mask)
1282 if (bits & EXTENT_LOCKED)
1285 return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask);
1288 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1289 struct extent_state **cached_state, gfp_t mask)
1291 return set_extent_bit(tree, start, end,
1292 EXTENT_DELALLOC | EXTENT_UPTODATE,
1293 NULL, cached_state, mask);
1296 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1297 struct extent_state **cached_state, gfp_t mask)
1299 return set_extent_bit(tree, start, end,
1300 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1301 NULL, cached_state, mask);
1304 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1307 return clear_extent_bit(tree, start, end,
1308 EXTENT_DIRTY | EXTENT_DELALLOC |
1309 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1312 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1315 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1319 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1320 struct extent_state **cached_state, gfp_t mask)
1322 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1323 cached_state, mask);
1326 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1327 struct extent_state **cached_state, gfp_t mask)
1329 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1330 cached_state, mask);
1334 * either insert or lock state struct between start and end use mask to tell
1335 * us if waiting is desired.
1337 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1338 unsigned bits, struct extent_state **cached_state)
1344 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1345 EXTENT_LOCKED, &failed_start,
1346 cached_state, GFP_NOFS);
1347 if (err == -EEXIST) {
1348 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1349 start = failed_start;
1352 WARN_ON(start > end);
1357 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1359 return lock_extent_bits(tree, start, end, 0, NULL);
1362 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1367 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1368 &failed_start, NULL, GFP_NOFS);
1369 if (err == -EEXIST) {
1370 if (failed_start > start)
1371 clear_extent_bit(tree, start, failed_start - 1,
1372 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1378 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1379 struct extent_state **cached, gfp_t mask)
1381 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1385 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1387 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1391 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1393 unsigned long index = start >> PAGE_CACHE_SHIFT;
1394 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1397 while (index <= end_index) {
1398 page = find_get_page(inode->i_mapping, index);
1399 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1400 clear_page_dirty_for_io(page);
1401 page_cache_release(page);
1407 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1409 unsigned long index = start >> PAGE_CACHE_SHIFT;
1410 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1413 while (index <= end_index) {
1414 page = find_get_page(inode->i_mapping, index);
1415 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1416 __set_page_dirty_nobuffers(page);
1417 account_page_redirty(page);
1418 page_cache_release(page);
1425 * helper function to set both pages and extents in the tree writeback
1427 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1429 unsigned long index = start >> PAGE_CACHE_SHIFT;
1430 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1433 while (index <= end_index) {
1434 page = find_get_page(tree->mapping, index);
1435 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1436 set_page_writeback(page);
1437 page_cache_release(page);
1443 /* find the first state struct with 'bits' set after 'start', and
1444 * return it. tree->lock must be held. NULL will returned if
1445 * nothing was found after 'start'
1447 static struct extent_state *
1448 find_first_extent_bit_state(struct extent_io_tree *tree,
1449 u64 start, unsigned bits)
1451 struct rb_node *node;
1452 struct extent_state *state;
1455 * this search will find all the extents that end after
1458 node = tree_search(tree, start);
1463 state = rb_entry(node, struct extent_state, rb_node);
1464 if (state->end >= start && (state->state & bits))
1467 node = rb_next(node);
1476 * find the first offset in the io tree with 'bits' set. zero is
1477 * returned if we find something, and *start_ret and *end_ret are
1478 * set to reflect the state struct that was found.
1480 * If nothing was found, 1 is returned. If found something, return 0.
1482 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1483 u64 *start_ret, u64 *end_ret, unsigned bits,
1484 struct extent_state **cached_state)
1486 struct extent_state *state;
1490 spin_lock(&tree->lock);
1491 if (cached_state && *cached_state) {
1492 state = *cached_state;
1493 if (state->end == start - 1 && extent_state_in_tree(state)) {
1494 n = rb_next(&state->rb_node);
1496 state = rb_entry(n, struct extent_state,
1498 if (state->state & bits)
1502 free_extent_state(*cached_state);
1503 *cached_state = NULL;
1506 free_extent_state(*cached_state);
1507 *cached_state = NULL;
1510 state = find_first_extent_bit_state(tree, start, bits);
1513 cache_state_if_flags(state, cached_state, 0);
1514 *start_ret = state->start;
1515 *end_ret = state->end;
1519 spin_unlock(&tree->lock);
1524 * find a contiguous range of bytes in the file marked as delalloc, not
1525 * more than 'max_bytes'. start and end are used to return the range,
1527 * 1 is returned if we find something, 0 if nothing was in the tree
1529 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1530 u64 *start, u64 *end, u64 max_bytes,
1531 struct extent_state **cached_state)
1533 struct rb_node *node;
1534 struct extent_state *state;
1535 u64 cur_start = *start;
1537 u64 total_bytes = 0;
1539 spin_lock(&tree->lock);
1542 * this search will find all the extents that end after
1545 node = tree_search(tree, cur_start);
1553 state = rb_entry(node, struct extent_state, rb_node);
1554 if (found && (state->start != cur_start ||
1555 (state->state & EXTENT_BOUNDARY))) {
1558 if (!(state->state & EXTENT_DELALLOC)) {
1564 *start = state->start;
1565 *cached_state = state;
1566 atomic_inc(&state->refs);
1570 cur_start = state->end + 1;
1571 node = rb_next(node);
1572 total_bytes += state->end - state->start + 1;
1573 if (total_bytes >= max_bytes)
1579 spin_unlock(&tree->lock);
1583 static noinline void __unlock_for_delalloc(struct inode *inode,
1584 struct page *locked_page,
1588 struct page *pages[16];
1589 unsigned long index = start >> PAGE_CACHE_SHIFT;
1590 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1591 unsigned long nr_pages = end_index - index + 1;
1594 if (index == locked_page->index && end_index == index)
1597 while (nr_pages > 0) {
1598 ret = find_get_pages_contig(inode->i_mapping, index,
1599 min_t(unsigned long, nr_pages,
1600 ARRAY_SIZE(pages)), pages);
1601 for (i = 0; i < ret; i++) {
1602 if (pages[i] != locked_page)
1603 unlock_page(pages[i]);
1604 page_cache_release(pages[i]);
1612 static noinline int lock_delalloc_pages(struct inode *inode,
1613 struct page *locked_page,
1617 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1618 unsigned long start_index = index;
1619 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1620 unsigned long pages_locked = 0;
1621 struct page *pages[16];
1622 unsigned long nrpages;
1626 /* the caller is responsible for locking the start index */
1627 if (index == locked_page->index && index == end_index)
1630 /* skip the page at the start index */
1631 nrpages = end_index - index + 1;
1632 while (nrpages > 0) {
1633 ret = find_get_pages_contig(inode->i_mapping, index,
1634 min_t(unsigned long,
1635 nrpages, ARRAY_SIZE(pages)), pages);
1640 /* now we have an array of pages, lock them all */
1641 for (i = 0; i < ret; i++) {
1643 * the caller is taking responsibility for
1646 if (pages[i] != locked_page) {
1647 lock_page(pages[i]);
1648 if (!PageDirty(pages[i]) ||
1649 pages[i]->mapping != inode->i_mapping) {
1651 unlock_page(pages[i]);
1652 page_cache_release(pages[i]);
1656 page_cache_release(pages[i]);
1665 if (ret && pages_locked) {
1666 __unlock_for_delalloc(inode, locked_page,
1668 ((u64)(start_index + pages_locked - 1)) <<
1675 * find a contiguous range of bytes in the file marked as delalloc, not
1676 * more than 'max_bytes'. start and end are used to return the range,
1678 * 1 is returned if we find something, 0 if nothing was in the tree
1680 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1681 struct extent_io_tree *tree,
1682 struct page *locked_page, u64 *start,
1683 u64 *end, u64 max_bytes)
1688 struct extent_state *cached_state = NULL;
1693 /* step one, find a bunch of delalloc bytes starting at start */
1694 delalloc_start = *start;
1696 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1697 max_bytes, &cached_state);
1698 if (!found || delalloc_end <= *start) {
1699 *start = delalloc_start;
1700 *end = delalloc_end;
1701 free_extent_state(cached_state);
1706 * start comes from the offset of locked_page. We have to lock
1707 * pages in order, so we can't process delalloc bytes before
1710 if (delalloc_start < *start)
1711 delalloc_start = *start;
1714 * make sure to limit the number of pages we try to lock down
1716 if (delalloc_end + 1 - delalloc_start > max_bytes)
1717 delalloc_end = delalloc_start + max_bytes - 1;
1719 /* step two, lock all the pages after the page that has start */
1720 ret = lock_delalloc_pages(inode, locked_page,
1721 delalloc_start, delalloc_end);
1722 if (ret == -EAGAIN) {
1723 /* some of the pages are gone, lets avoid looping by
1724 * shortening the size of the delalloc range we're searching
1726 free_extent_state(cached_state);
1727 cached_state = NULL;
1729 max_bytes = PAGE_CACHE_SIZE;
1737 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1739 /* step three, lock the state bits for the whole range */
1740 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1742 /* then test to make sure it is all still delalloc */
1743 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1744 EXTENT_DELALLOC, 1, cached_state);
1746 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1747 &cached_state, GFP_NOFS);
1748 __unlock_for_delalloc(inode, locked_page,
1749 delalloc_start, delalloc_end);
1753 free_extent_state(cached_state);
1754 *start = delalloc_start;
1755 *end = delalloc_end;
1760 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1761 struct page *locked_page,
1762 unsigned clear_bits,
1763 unsigned long page_ops)
1765 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1767 struct page *pages[16];
1768 unsigned long index = start >> PAGE_CACHE_SHIFT;
1769 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1770 unsigned long nr_pages = end_index - index + 1;
1773 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1777 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1778 mapping_set_error(inode->i_mapping, -EIO);
1780 while (nr_pages > 0) {
1781 ret = find_get_pages_contig(inode->i_mapping, index,
1782 min_t(unsigned long,
1783 nr_pages, ARRAY_SIZE(pages)), pages);
1784 for (i = 0; i < ret; i++) {
1786 if (page_ops & PAGE_SET_PRIVATE2)
1787 SetPagePrivate2(pages[i]);
1789 if (pages[i] == locked_page) {
1790 page_cache_release(pages[i]);
1793 if (page_ops & PAGE_CLEAR_DIRTY)
1794 clear_page_dirty_for_io(pages[i]);
1795 if (page_ops & PAGE_SET_WRITEBACK)
1796 set_page_writeback(pages[i]);
1797 if (page_ops & PAGE_SET_ERROR)
1798 SetPageError(pages[i]);
1799 if (page_ops & PAGE_END_WRITEBACK)
1800 end_page_writeback(pages[i]);
1801 if (page_ops & PAGE_UNLOCK)
1802 unlock_page(pages[i]);
1803 page_cache_release(pages[i]);
1813 * count the number of bytes in the tree that have a given bit(s)
1814 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1815 * cached. The total number found is returned.
1817 u64 count_range_bits(struct extent_io_tree *tree,
1818 u64 *start, u64 search_end, u64 max_bytes,
1819 unsigned bits, int contig)
1821 struct rb_node *node;
1822 struct extent_state *state;
1823 u64 cur_start = *start;
1824 u64 total_bytes = 0;
1828 if (WARN_ON(search_end <= cur_start))
1831 spin_lock(&tree->lock);
1832 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1833 total_bytes = tree->dirty_bytes;
1837 * this search will find all the extents that end after
1840 node = tree_search(tree, cur_start);
1845 state = rb_entry(node, struct extent_state, rb_node);
1846 if (state->start > search_end)
1848 if (contig && found && state->start > last + 1)
1850 if (state->end >= cur_start && (state->state & bits) == bits) {
1851 total_bytes += min(search_end, state->end) + 1 -
1852 max(cur_start, state->start);
1853 if (total_bytes >= max_bytes)
1856 *start = max(cur_start, state->start);
1860 } else if (contig && found) {
1863 node = rb_next(node);
1868 spin_unlock(&tree->lock);
1873 * set the private field for a given byte offset in the tree. If there isn't
1874 * an extent_state there already, this does nothing.
1876 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1878 struct rb_node *node;
1879 struct extent_state *state;
1882 spin_lock(&tree->lock);
1884 * this search will find all the extents that end after
1887 node = tree_search(tree, start);
1892 state = rb_entry(node, struct extent_state, rb_node);
1893 if (state->start != start) {
1897 state->private = private;
1899 spin_unlock(&tree->lock);
1903 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1905 struct rb_node *node;
1906 struct extent_state *state;
1909 spin_lock(&tree->lock);
1911 * this search will find all the extents that end after
1914 node = tree_search(tree, start);
1919 state = rb_entry(node, struct extent_state, rb_node);
1920 if (state->start != start) {
1924 *private = state->private;
1926 spin_unlock(&tree->lock);
1931 * searches a range in the state tree for a given mask.
1932 * If 'filled' == 1, this returns 1 only if every extent in the tree
1933 * has the bits set. Otherwise, 1 is returned if any bit in the
1934 * range is found set.
1936 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1937 unsigned bits, int filled, struct extent_state *cached)
1939 struct extent_state *state = NULL;
1940 struct rb_node *node;
1943 spin_lock(&tree->lock);
1944 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1945 cached->end > start)
1946 node = &cached->rb_node;
1948 node = tree_search(tree, start);
1949 while (node && start <= end) {
1950 state = rb_entry(node, struct extent_state, rb_node);
1952 if (filled && state->start > start) {
1957 if (state->start > end)
1960 if (state->state & bits) {
1964 } else if (filled) {
1969 if (state->end == (u64)-1)
1972 start = state->end + 1;
1975 node = rb_next(node);
1982 spin_unlock(&tree->lock);
1987 * helper function to set a given page up to date if all the
1988 * extents in the tree for that page are up to date
1990 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1992 u64 start = page_offset(page);
1993 u64 end = start + PAGE_CACHE_SIZE - 1;
1994 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1995 SetPageUptodate(page);
1998 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
2002 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2004 set_state_private(failure_tree, rec->start, 0);
2005 ret = clear_extent_bits(failure_tree, rec->start,
2006 rec->start + rec->len - 1,
2007 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2011 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2012 rec->start + rec->len - 1,
2013 EXTENT_DAMAGED, GFP_NOFS);
2022 * this bypasses the standard btrfs submit functions deliberately, as
2023 * the standard behavior is to write all copies in a raid setup. here we only
2024 * want to write the one bad copy. so we do the mapping for ourselves and issue
2025 * submit_bio directly.
2026 * to avoid any synchronization issues, wait for the data after writing, which
2027 * actually prevents the read that triggered the error from finishing.
2028 * currently, there can be no more than two copies of every data bit. thus,
2029 * exactly one rewrite is required.
2031 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2032 struct page *page, unsigned int pg_offset, int mirror_num)
2034 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2036 struct btrfs_device *dev;
2039 struct btrfs_bio *bbio = NULL;
2040 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2043 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2044 BUG_ON(!mirror_num);
2046 /* we can't repair anything in raid56 yet */
2047 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2050 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2053 bio->bi_iter.bi_size = 0;
2054 map_length = length;
2056 ret = btrfs_map_block(fs_info, WRITE, logical,
2057 &map_length, &bbio, mirror_num);
2062 BUG_ON(mirror_num != bbio->mirror_num);
2063 sector = bbio->stripes[mirror_num-1].physical >> 9;
2064 bio->bi_iter.bi_sector = sector;
2065 dev = bbio->stripes[mirror_num-1].dev;
2066 btrfs_put_bbio(bbio);
2067 if (!dev || !dev->bdev || !dev->writeable) {
2071 bio->bi_bdev = dev->bdev;
2072 bio_add_page(bio, page, length, pg_offset);
2074 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2075 /* try to remap that extent elsewhere? */
2077 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2081 printk_ratelimited_in_rcu(KERN_INFO
2082 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2083 btrfs_ino(inode), start,
2084 rcu_str_deref(dev->name), sector);
2089 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2092 u64 start = eb->start;
2093 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2096 if (root->fs_info->sb->s_flags & MS_RDONLY)
2099 for (i = 0; i < num_pages; i++) {
2100 struct page *p = eb->pages[i];
2102 ret = repair_io_failure(root->fs_info->btree_inode, start,
2103 PAGE_CACHE_SIZE, start, p,
2104 start - page_offset(p), mirror_num);
2107 start += PAGE_CACHE_SIZE;
2114 * each time an IO finishes, we do a fast check in the IO failure tree
2115 * to see if we need to process or clean up an io_failure_record
2117 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2118 unsigned int pg_offset)
2121 u64 private_failure;
2122 struct io_failure_record *failrec;
2123 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2124 struct extent_state *state;
2129 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2130 (u64)-1, 1, EXTENT_DIRTY, 0);
2134 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2139 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2140 BUG_ON(!failrec->this_mirror);
2142 if (failrec->in_validation) {
2143 /* there was no real error, just free the record */
2144 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2148 if (fs_info->sb->s_flags & MS_RDONLY)
2151 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2152 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2155 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2157 if (state && state->start <= failrec->start &&
2158 state->end >= failrec->start + failrec->len - 1) {
2159 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2161 if (num_copies > 1) {
2162 repair_io_failure(inode, start, failrec->len,
2163 failrec->logical, page,
2164 pg_offset, failrec->failed_mirror);
2169 free_io_failure(inode, failrec);
2175 * Can be called when
2176 * - hold extent lock
2177 * - under ordered extent
2178 * - the inode is freeing
2180 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2182 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183 struct io_failure_record *failrec;
2184 struct extent_state *state, *next;
2186 if (RB_EMPTY_ROOT(&failure_tree->state))
2189 spin_lock(&failure_tree->lock);
2190 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2192 if (state->start > end)
2195 ASSERT(state->end <= end);
2197 next = next_state(state);
2199 failrec = (struct io_failure_record *)(unsigned long)state->private;
2200 free_extent_state(state);
2205 spin_unlock(&failure_tree->lock);
2208 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2209 struct io_failure_record **failrec_ret)
2211 struct io_failure_record *failrec;
2213 struct extent_map *em;
2214 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2215 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2216 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2220 ret = get_state_private(failure_tree, start, &private);
2222 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2226 failrec->start = start;
2227 failrec->len = end - start + 1;
2228 failrec->this_mirror = 0;
2229 failrec->bio_flags = 0;
2230 failrec->in_validation = 0;
2232 read_lock(&em_tree->lock);
2233 em = lookup_extent_mapping(em_tree, start, failrec->len);
2235 read_unlock(&em_tree->lock);
2240 if (em->start > start || em->start + em->len <= start) {
2241 free_extent_map(em);
2244 read_unlock(&em_tree->lock);
2250 logical = start - em->start;
2251 logical = em->block_start + logical;
2252 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2253 logical = em->block_start;
2254 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2255 extent_set_compress_type(&failrec->bio_flags,
2259 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2260 logical, start, failrec->len);
2262 failrec->logical = logical;
2263 free_extent_map(em);
2265 /* set the bits in the private failure tree */
2266 ret = set_extent_bits(failure_tree, start, end,
2267 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2269 ret = set_state_private(failure_tree, start,
2270 (u64)(unsigned long)failrec);
2271 /* set the bits in the inode's tree */
2273 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2280 failrec = (struct io_failure_record *)(unsigned long)private;
2281 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2282 failrec->logical, failrec->start, failrec->len,
2283 failrec->in_validation);
2285 * when data can be on disk more than twice, add to failrec here
2286 * (e.g. with a list for failed_mirror) to make
2287 * clean_io_failure() clean all those errors at once.
2291 *failrec_ret = failrec;
2296 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2297 struct io_failure_record *failrec, int failed_mirror)
2301 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2302 failrec->logical, failrec->len);
2303 if (num_copies == 1) {
2305 * we only have a single copy of the data, so don't bother with
2306 * all the retry and error correction code that follows. no
2307 * matter what the error is, it is very likely to persist.
2309 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2310 num_copies, failrec->this_mirror, failed_mirror);
2315 * there are two premises:
2316 * a) deliver good data to the caller
2317 * b) correct the bad sectors on disk
2319 if (failed_bio->bi_vcnt > 1) {
2321 * to fulfill b), we need to know the exact failing sectors, as
2322 * we don't want to rewrite any more than the failed ones. thus,
2323 * we need separate read requests for the failed bio
2325 * if the following BUG_ON triggers, our validation request got
2326 * merged. we need separate requests for our algorithm to work.
2328 BUG_ON(failrec->in_validation);
2329 failrec->in_validation = 1;
2330 failrec->this_mirror = failed_mirror;
2333 * we're ready to fulfill a) and b) alongside. get a good copy
2334 * of the failed sector and if we succeed, we have setup
2335 * everything for repair_io_failure to do the rest for us.
2337 if (failrec->in_validation) {
2338 BUG_ON(failrec->this_mirror != failed_mirror);
2339 failrec->in_validation = 0;
2340 failrec->this_mirror = 0;
2342 failrec->failed_mirror = failed_mirror;
2343 failrec->this_mirror++;
2344 if (failrec->this_mirror == failed_mirror)
2345 failrec->this_mirror++;
2348 if (failrec->this_mirror > num_copies) {
2349 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2350 num_copies, failrec->this_mirror, failed_mirror);
2358 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2359 struct io_failure_record *failrec,
2360 struct page *page, int pg_offset, int icsum,
2361 bio_end_io_t *endio_func, void *data)
2364 struct btrfs_io_bio *btrfs_failed_bio;
2365 struct btrfs_io_bio *btrfs_bio;
2367 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2371 bio->bi_end_io = endio_func;
2372 bio->bi_iter.bi_sector = failrec->logical >> 9;
2373 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2374 bio->bi_iter.bi_size = 0;
2375 bio->bi_private = data;
2377 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2378 if (btrfs_failed_bio->csum) {
2379 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2380 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2382 btrfs_bio = btrfs_io_bio(bio);
2383 btrfs_bio->csum = btrfs_bio->csum_inline;
2385 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2389 bio_add_page(bio, page, failrec->len, pg_offset);
2395 * this is a generic handler for readpage errors (default
2396 * readpage_io_failed_hook). if other copies exist, read those and write back
2397 * good data to the failed position. does not investigate in remapping the
2398 * failed extent elsewhere, hoping the device will be smart enough to do this as
2402 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2403 struct page *page, u64 start, u64 end,
2406 struct io_failure_record *failrec;
2407 struct inode *inode = page->mapping->host;
2408 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2413 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2415 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2419 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2421 free_io_failure(inode, failrec);
2425 if (failed_bio->bi_vcnt > 1)
2426 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2428 read_mode = READ_SYNC;
2430 phy_offset >>= inode->i_sb->s_blocksize_bits;
2431 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2432 start - page_offset(page),
2433 (int)phy_offset, failed_bio->bi_end_io,
2436 free_io_failure(inode, failrec);
2440 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2441 read_mode, failrec->this_mirror, failrec->in_validation);
2443 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2444 failrec->this_mirror,
2445 failrec->bio_flags, 0);
2447 free_io_failure(inode, failrec);
2454 /* lots and lots of room for performance fixes in the end_bio funcs */
2456 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2458 int uptodate = (err == 0);
2459 struct extent_io_tree *tree;
2462 tree = &BTRFS_I(page->mapping->host)->io_tree;
2464 if (tree->ops && tree->ops->writepage_end_io_hook) {
2465 ret = tree->ops->writepage_end_io_hook(page, start,
2466 end, NULL, uptodate);
2472 ClearPageUptodate(page);
2474 ret = ret < 0 ? ret : -EIO;
2475 mapping_set_error(page->mapping, ret);
2481 * after a writepage IO is done, we need to:
2482 * clear the uptodate bits on error
2483 * clear the writeback bits in the extent tree for this IO
2484 * end_page_writeback if the page has no more pending IO
2486 * Scheduling is not allowed, so the extent state tree is expected
2487 * to have one and only one object corresponding to this IO.
2489 static void end_bio_extent_writepage(struct bio *bio)
2491 struct bio_vec *bvec;
2496 bio_for_each_segment_all(bvec, bio, i) {
2497 struct page *page = bvec->bv_page;
2499 /* We always issue full-page reads, but if some block
2500 * in a page fails to read, blk_update_request() will
2501 * advance bv_offset and adjust bv_len to compensate.
2502 * Print a warning for nonzero offsets, and an error
2503 * if they don't add up to a full page. */
2504 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2505 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2506 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2507 "partial page write in btrfs with offset %u and length %u",
2508 bvec->bv_offset, bvec->bv_len);
2510 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2511 "incomplete page write in btrfs with offset %u and "
2513 bvec->bv_offset, bvec->bv_len);
2516 start = page_offset(page);
2517 end = start + bvec->bv_offset + bvec->bv_len - 1;
2519 if (end_extent_writepage(page, bio->bi_error, start, end))
2522 end_page_writeback(page);
2529 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2532 struct extent_state *cached = NULL;
2533 u64 end = start + len - 1;
2535 if (uptodate && tree->track_uptodate)
2536 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2537 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2541 * after a readpage IO is done, we need to:
2542 * clear the uptodate bits on error
2543 * set the uptodate bits if things worked
2544 * set the page up to date if all extents in the tree are uptodate
2545 * clear the lock bit in the extent tree
2546 * unlock the page if there are no other extents locked for it
2548 * Scheduling is not allowed, so the extent state tree is expected
2549 * to have one and only one object corresponding to this IO.
2551 static void end_bio_extent_readpage(struct bio *bio)
2553 struct bio_vec *bvec;
2554 int uptodate = !bio->bi_error;
2555 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2556 struct extent_io_tree *tree;
2561 u64 extent_start = 0;
2567 bio_for_each_segment_all(bvec, bio, i) {
2568 struct page *page = bvec->bv_page;
2569 struct inode *inode = page->mapping->host;
2571 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2572 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2573 bio->bi_error, io_bio->mirror_num);
2574 tree = &BTRFS_I(inode)->io_tree;
2576 /* We always issue full-page reads, but if some block
2577 * in a page fails to read, blk_update_request() will
2578 * advance bv_offset and adjust bv_len to compensate.
2579 * Print a warning for nonzero offsets, and an error
2580 * if they don't add up to a full page. */
2581 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2582 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2583 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2584 "partial page read in btrfs with offset %u and length %u",
2585 bvec->bv_offset, bvec->bv_len);
2587 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2588 "incomplete page read in btrfs with offset %u and "
2590 bvec->bv_offset, bvec->bv_len);
2593 start = page_offset(page);
2594 end = start + bvec->bv_offset + bvec->bv_len - 1;
2597 mirror = io_bio->mirror_num;
2598 if (likely(uptodate && tree->ops &&
2599 tree->ops->readpage_end_io_hook)) {
2600 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2606 clean_io_failure(inode, start, page, 0);
2609 if (likely(uptodate))
2612 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2613 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2614 if (!ret && !bio->bi_error)
2618 * The generic bio_readpage_error handles errors the
2619 * following way: If possible, new read requests are
2620 * created and submitted and will end up in
2621 * end_bio_extent_readpage as well (if we're lucky, not
2622 * in the !uptodate case). In that case it returns 0 and
2623 * we just go on with the next page in our bio. If it
2624 * can't handle the error it will return -EIO and we
2625 * remain responsible for that page.
2627 ret = bio_readpage_error(bio, offset, page, start, end,
2630 uptodate = !bio->bi_error;
2636 if (likely(uptodate)) {
2637 loff_t i_size = i_size_read(inode);
2638 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2641 /* Zero out the end if this page straddles i_size */
2642 off = i_size & (PAGE_CACHE_SIZE-1);
2643 if (page->index == end_index && off)
2644 zero_user_segment(page, off, PAGE_CACHE_SIZE);
2645 SetPageUptodate(page);
2647 ClearPageUptodate(page);
2653 if (unlikely(!uptodate)) {
2655 endio_readpage_release_extent(tree,
2661 endio_readpage_release_extent(tree, start,
2662 end - start + 1, 0);
2663 } else if (!extent_len) {
2664 extent_start = start;
2665 extent_len = end + 1 - start;
2666 } else if (extent_start + extent_len == start) {
2667 extent_len += end + 1 - start;
2669 endio_readpage_release_extent(tree, extent_start,
2670 extent_len, uptodate);
2671 extent_start = start;
2672 extent_len = end + 1 - start;
2677 endio_readpage_release_extent(tree, extent_start, extent_len,
2680 io_bio->end_io(io_bio, bio->bi_error);
2685 * this allocates from the btrfs_bioset. We're returning a bio right now
2686 * but you can call btrfs_io_bio for the appropriate container_of magic
2689 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2692 struct btrfs_io_bio *btrfs_bio;
2695 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2697 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2698 while (!bio && (nr_vecs /= 2)) {
2699 bio = bio_alloc_bioset(gfp_flags,
2700 nr_vecs, btrfs_bioset);
2705 bio->bi_bdev = bdev;
2706 bio->bi_iter.bi_sector = first_sector;
2707 btrfs_bio = btrfs_io_bio(bio);
2708 btrfs_bio->csum = NULL;
2709 btrfs_bio->csum_allocated = NULL;
2710 btrfs_bio->end_io = NULL;
2715 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2717 struct btrfs_io_bio *btrfs_bio;
2720 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2722 btrfs_bio = btrfs_io_bio(new);
2723 btrfs_bio->csum = NULL;
2724 btrfs_bio->csum_allocated = NULL;
2725 btrfs_bio->end_io = NULL;
2727 #ifdef CONFIG_BLK_CGROUP
2728 /* FIXME, put this into bio_clone_bioset */
2730 bio_associate_blkcg(new, bio->bi_css);
2736 /* this also allocates from the btrfs_bioset */
2737 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2739 struct btrfs_io_bio *btrfs_bio;
2742 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2744 btrfs_bio = btrfs_io_bio(bio);
2745 btrfs_bio->csum = NULL;
2746 btrfs_bio->csum_allocated = NULL;
2747 btrfs_bio->end_io = NULL;
2753 static int __must_check submit_one_bio(int rw, struct bio *bio,
2754 int mirror_num, unsigned long bio_flags)
2757 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2758 struct page *page = bvec->bv_page;
2759 struct extent_io_tree *tree = bio->bi_private;
2762 start = page_offset(page) + bvec->bv_offset;
2764 bio->bi_private = NULL;
2768 if (tree->ops && tree->ops->submit_bio_hook)
2769 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2770 mirror_num, bio_flags, start);
2772 btrfsic_submit_bio(rw, bio);
2778 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2779 unsigned long offset, size_t size, struct bio *bio,
2780 unsigned long bio_flags)
2783 if (tree->ops && tree->ops->merge_bio_hook)
2784 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2791 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2792 struct writeback_control *wbc,
2793 struct page *page, sector_t sector,
2794 size_t size, unsigned long offset,
2795 struct block_device *bdev,
2796 struct bio **bio_ret,
2797 unsigned long max_pages,
2798 bio_end_io_t end_io_func,
2800 unsigned long prev_bio_flags,
2801 unsigned long bio_flags,
2802 bool force_bio_submit)
2807 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2808 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2810 if (bio_ret && *bio_ret) {
2813 contig = bio->bi_iter.bi_sector == sector;
2815 contig = bio_end_sector(bio) == sector;
2817 if (prev_bio_flags != bio_flags || !contig ||
2819 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2820 bio_add_page(bio, page, page_size, offset) < page_size) {
2821 ret = submit_one_bio(rw, bio, mirror_num,
2830 wbc_account_io(wbc, page, page_size);
2835 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2836 GFP_NOFS | __GFP_HIGH);
2840 bio_add_page(bio, page, page_size, offset);
2841 bio->bi_end_io = end_io_func;
2842 bio->bi_private = tree;
2844 wbc_init_bio(wbc, bio);
2845 wbc_account_io(wbc, page, page_size);
2851 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2856 static void attach_extent_buffer_page(struct extent_buffer *eb,
2859 if (!PagePrivate(page)) {
2860 SetPagePrivate(page);
2861 page_cache_get(page);
2862 set_page_private(page, (unsigned long)eb);
2864 WARN_ON(page->private != (unsigned long)eb);
2868 void set_page_extent_mapped(struct page *page)
2870 if (!PagePrivate(page)) {
2871 SetPagePrivate(page);
2872 page_cache_get(page);
2873 set_page_private(page, EXTENT_PAGE_PRIVATE);
2877 static struct extent_map *
2878 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2879 u64 start, u64 len, get_extent_t *get_extent,
2880 struct extent_map **em_cached)
2882 struct extent_map *em;
2884 if (em_cached && *em_cached) {
2886 if (extent_map_in_tree(em) && start >= em->start &&
2887 start < extent_map_end(em)) {
2888 atomic_inc(&em->refs);
2892 free_extent_map(em);
2896 em = get_extent(inode, page, pg_offset, start, len, 0);
2897 if (em_cached && !IS_ERR_OR_NULL(em)) {
2899 atomic_inc(&em->refs);
2905 * basic readpage implementation. Locked extent state structs are inserted
2906 * into the tree that are removed when the IO is done (by the end_io
2908 * XXX JDM: This needs looking at to ensure proper page locking
2910 static int __do_readpage(struct extent_io_tree *tree,
2912 get_extent_t *get_extent,
2913 struct extent_map **em_cached,
2914 struct bio **bio, int mirror_num,
2915 unsigned long *bio_flags, int rw,
2918 struct inode *inode = page->mapping->host;
2919 u64 start = page_offset(page);
2920 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2924 u64 last_byte = i_size_read(inode);
2928 struct extent_map *em;
2929 struct block_device *bdev;
2932 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2933 size_t pg_offset = 0;
2935 size_t disk_io_size;
2936 size_t blocksize = inode->i_sb->s_blocksize;
2937 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2939 set_page_extent_mapped(page);
2942 if (!PageUptodate(page)) {
2943 if (cleancache_get_page(page) == 0) {
2944 BUG_ON(blocksize != PAGE_SIZE);
2945 unlock_extent(tree, start, end);
2950 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2952 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2955 iosize = PAGE_CACHE_SIZE - zero_offset;
2956 userpage = kmap_atomic(page);
2957 memset(userpage + zero_offset, 0, iosize);
2958 flush_dcache_page(page);
2959 kunmap_atomic(userpage);
2962 while (cur <= end) {
2963 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2964 bool force_bio_submit = false;
2966 if (cur >= last_byte) {
2968 struct extent_state *cached = NULL;
2970 iosize = PAGE_CACHE_SIZE - pg_offset;
2971 userpage = kmap_atomic(page);
2972 memset(userpage + pg_offset, 0, iosize);
2973 flush_dcache_page(page);
2974 kunmap_atomic(userpage);
2975 set_extent_uptodate(tree, cur, cur + iosize - 1,
2978 unlock_extent_cached(tree, cur,
2983 em = __get_extent_map(inode, page, pg_offset, cur,
2984 end - cur + 1, get_extent, em_cached);
2985 if (IS_ERR_OR_NULL(em)) {
2988 unlock_extent(tree, cur, end);
2991 extent_offset = cur - em->start;
2992 BUG_ON(extent_map_end(em) <= cur);
2995 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2996 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2997 extent_set_compress_type(&this_bio_flag,
3001 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3002 cur_end = min(extent_map_end(em) - 1, end);
3003 iosize = ALIGN(iosize, blocksize);
3004 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3005 disk_io_size = em->block_len;
3006 sector = em->block_start >> 9;
3008 sector = (em->block_start + extent_offset) >> 9;
3009 disk_io_size = iosize;
3012 block_start = em->block_start;
3013 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3014 block_start = EXTENT_MAP_HOLE;
3017 * If we have a file range that points to a compressed extent
3018 * and it's followed by a consecutive file range that points to
3019 * to the same compressed extent (possibly with a different
3020 * offset and/or length, so it either points to the whole extent
3021 * or only part of it), we must make sure we do not submit a
3022 * single bio to populate the pages for the 2 ranges because
3023 * this makes the compressed extent read zero out the pages
3024 * belonging to the 2nd range. Imagine the following scenario:
3027 * [0 - 8K] [8K - 24K]
3030 * points to extent X, points to extent X,
3031 * offset 4K, length of 8K offset 0, length 16K
3033 * [extent X, compressed length = 4K uncompressed length = 16K]
3035 * If the bio to read the compressed extent covers both ranges,
3036 * it will decompress extent X into the pages belonging to the
3037 * first range and then it will stop, zeroing out the remaining
3038 * pages that belong to the other range that points to extent X.
3039 * So here we make sure we submit 2 bios, one for the first
3040 * range and another one for the third range. Both will target
3041 * the same physical extent from disk, but we can't currently
3042 * make the compressed bio endio callback populate the pages
3043 * for both ranges because each compressed bio is tightly
3044 * coupled with a single extent map, and each range can have
3045 * an extent map with a different offset value relative to the
3046 * uncompressed data of our extent and different lengths. This
3047 * is a corner case so we prioritize correctness over
3048 * non-optimal behavior (submitting 2 bios for the same extent).
3050 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3051 prev_em_start && *prev_em_start != (u64)-1 &&
3052 *prev_em_start != em->orig_start)
3053 force_bio_submit = true;
3056 *prev_em_start = em->orig_start;
3058 free_extent_map(em);
3061 /* we've found a hole, just zero and go on */
3062 if (block_start == EXTENT_MAP_HOLE) {
3064 struct extent_state *cached = NULL;
3066 userpage = kmap_atomic(page);
3067 memset(userpage + pg_offset, 0, iosize);
3068 flush_dcache_page(page);
3069 kunmap_atomic(userpage);
3071 set_extent_uptodate(tree, cur, cur + iosize - 1,
3073 unlock_extent_cached(tree, cur, cur + iosize - 1,
3076 pg_offset += iosize;
3079 /* the get_extent function already copied into the page */
3080 if (test_range_bit(tree, cur, cur_end,
3081 EXTENT_UPTODATE, 1, NULL)) {
3082 check_page_uptodate(tree, page);
3084 unlock_extent(tree, cur, cur + iosize - 1);
3086 pg_offset += iosize;
3089 /* we have an inline extent but it didn't get marked up
3090 * to date. Error out
3092 if (block_start == EXTENT_MAP_INLINE) {
3095 unlock_extent(tree, cur, cur + iosize - 1);
3097 pg_offset += iosize;
3102 ret = submit_extent_page(rw, tree, NULL, page,
3103 sector, disk_io_size, pg_offset,
3105 end_bio_extent_readpage, mirror_num,
3111 *bio_flags = this_bio_flag;
3115 unlock_extent(tree, cur, cur + iosize - 1);
3118 pg_offset += iosize;
3122 if (!PageError(page))
3123 SetPageUptodate(page);
3129 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3130 struct page *pages[], int nr_pages,
3132 get_extent_t *get_extent,
3133 struct extent_map **em_cached,
3134 struct bio **bio, int mirror_num,
3135 unsigned long *bio_flags, int rw)
3137 struct inode *inode;
3138 struct btrfs_ordered_extent *ordered;
3140 u64 prev_em_start = (u64)-1;
3142 inode = pages[0]->mapping->host;
3144 lock_extent(tree, start, end);
3145 ordered = btrfs_lookup_ordered_range(inode, start,
3149 unlock_extent(tree, start, end);
3150 btrfs_start_ordered_extent(inode, ordered, 1);
3151 btrfs_put_ordered_extent(ordered);
3154 for (index = 0; index < nr_pages; index++) {
3155 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3156 mirror_num, bio_flags, rw, &prev_em_start);
3157 page_cache_release(pages[index]);
3161 static void __extent_readpages(struct extent_io_tree *tree,
3162 struct page *pages[],
3163 int nr_pages, get_extent_t *get_extent,
3164 struct extent_map **em_cached,
3165 struct bio **bio, int mirror_num,
3166 unsigned long *bio_flags, int rw)
3172 int first_index = 0;
3174 for (index = 0; index < nr_pages; index++) {
3175 page_start = page_offset(pages[index]);
3178 end = start + PAGE_CACHE_SIZE - 1;
3179 first_index = index;
3180 } else if (end + 1 == page_start) {
3181 end += PAGE_CACHE_SIZE;
3183 __do_contiguous_readpages(tree, &pages[first_index],
3184 index - first_index, start,
3185 end, get_extent, em_cached,
3186 bio, mirror_num, bio_flags,
3189 end = start + PAGE_CACHE_SIZE - 1;
3190 first_index = index;
3195 __do_contiguous_readpages(tree, &pages[first_index],
3196 index - first_index, start,
3197 end, get_extent, em_cached, bio,
3198 mirror_num, bio_flags, rw);
3201 static int __extent_read_full_page(struct extent_io_tree *tree,
3203 get_extent_t *get_extent,
3204 struct bio **bio, int mirror_num,
3205 unsigned long *bio_flags, int rw)
3207 struct inode *inode = page->mapping->host;
3208 struct btrfs_ordered_extent *ordered;
3209 u64 start = page_offset(page);
3210 u64 end = start + PAGE_CACHE_SIZE - 1;
3214 lock_extent(tree, start, end);
3215 ordered = btrfs_lookup_ordered_extent(inode, start);
3218 unlock_extent(tree, start, end);
3219 btrfs_start_ordered_extent(inode, ordered, 1);
3220 btrfs_put_ordered_extent(ordered);
3223 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3224 bio_flags, rw, NULL);
3228 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3229 get_extent_t *get_extent, int mirror_num)
3231 struct bio *bio = NULL;
3232 unsigned long bio_flags = 0;
3235 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3238 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3242 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3243 get_extent_t *get_extent, int mirror_num)
3245 struct bio *bio = NULL;
3246 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3249 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3250 &bio_flags, READ, NULL);
3252 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3256 static noinline void update_nr_written(struct page *page,
3257 struct writeback_control *wbc,
3258 unsigned long nr_written)
3260 wbc->nr_to_write -= nr_written;
3261 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3262 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3263 page->mapping->writeback_index = page->index + nr_written;
3267 * helper for __extent_writepage, doing all of the delayed allocation setup.
3269 * This returns 1 if our fill_delalloc function did all the work required
3270 * to write the page (copy into inline extent). In this case the IO has
3271 * been started and the page is already unlocked.
3273 * This returns 0 if all went well (page still locked)
3274 * This returns < 0 if there were errors (page still locked)
3276 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3277 struct page *page, struct writeback_control *wbc,
3278 struct extent_page_data *epd,
3280 unsigned long *nr_written)
3282 struct extent_io_tree *tree = epd->tree;
3283 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3285 u64 delalloc_to_write = 0;