2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "print-tree.h"
50 #include "ordered-data.h"
54 #include "compression.h"
56 #include "free-space-cache.h"
57 #include "inode-map.h"
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
69 struct btrfs_dio_data {
70 u64 outstanding_extents;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, u64 delalloc_end,
109 int *page_started, unsigned long *nr_written,
110 int unlock, struct btrfs_dedupe_hash *hash);
111 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 u64 orig_start, u64 block_start,
113 u64 block_len, u64 orig_block_len,
114 u64 ram_bytes, int compress_type,
117 static void __endio_write_update_ordered(struct inode *inode,
118 const u64 offset, const u64 bytes,
119 const bool uptodate);
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
134 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
138 unsigned long index = offset >> PAGE_SHIFT;
139 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
142 while (index <= end_index) {
143 page = find_get_page(inode->i_mapping, index);
147 ClearPagePrivate2(page);
150 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
151 bytes - PAGE_SIZE, false);
154 static int btrfs_dirty_inode(struct inode *inode);
156 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
157 void btrfs_test_inode_set_ops(struct inode *inode)
159 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
163 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
164 struct inode *inode, struct inode *dir,
165 const struct qstr *qstr)
169 err = btrfs_init_acl(trans, inode, dir);
171 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
176 * this does all the hard work for inserting an inline extent into
177 * the btree. The caller should have done a btrfs_drop_extents so that
178 * no overlapping inline items exist in the btree
180 static int insert_inline_extent(struct btrfs_trans_handle *trans,
181 struct btrfs_path *path, int extent_inserted,
182 struct btrfs_root *root, struct inode *inode,
183 u64 start, size_t size, size_t compressed_size,
185 struct page **compressed_pages)
187 struct extent_buffer *leaf;
188 struct page *page = NULL;
191 struct btrfs_file_extent_item *ei;
193 size_t cur_size = size;
194 unsigned long offset;
196 if (compressed_size && compressed_pages)
197 cur_size = compressed_size;
199 inode_add_bytes(inode, size);
201 if (!extent_inserted) {
202 struct btrfs_key key;
205 key.objectid = btrfs_ino(BTRFS_I(inode));
207 key.type = BTRFS_EXTENT_DATA_KEY;
209 datasize = btrfs_file_extent_calc_inline_size(cur_size);
210 path->leave_spinning = 1;
211 ret = btrfs_insert_empty_item(trans, root, path, &key,
216 leaf = path->nodes[0];
217 ei = btrfs_item_ptr(leaf, path->slots[0],
218 struct btrfs_file_extent_item);
219 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
220 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
221 btrfs_set_file_extent_encryption(leaf, ei, 0);
222 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
223 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
224 ptr = btrfs_file_extent_inline_start(ei);
226 if (compress_type != BTRFS_COMPRESS_NONE) {
229 while (compressed_size > 0) {
230 cpage = compressed_pages[i];
231 cur_size = min_t(unsigned long, compressed_size,
234 kaddr = kmap_atomic(cpage);
235 write_extent_buffer(leaf, kaddr, ptr, cur_size);
236 kunmap_atomic(kaddr);
240 compressed_size -= cur_size;
242 btrfs_set_file_extent_compression(leaf, ei,
245 page = find_get_page(inode->i_mapping,
246 start >> PAGE_SHIFT);
247 btrfs_set_file_extent_compression(leaf, ei, 0);
248 kaddr = kmap_atomic(page);
249 offset = start & (PAGE_SIZE - 1);
250 write_extent_buffer(leaf, kaddr + offset, ptr, size);
251 kunmap_atomic(kaddr);
254 btrfs_mark_buffer_dirty(leaf);
255 btrfs_release_path(path);
258 * we're an inline extent, so nobody can
259 * extend the file past i_size without locking
260 * a page we already have locked.
262 * We must do any isize and inode updates
263 * before we unlock the pages. Otherwise we
264 * could end up racing with unlink.
266 BTRFS_I(inode)->disk_i_size = inode->i_size;
267 ret = btrfs_update_inode(trans, root, inode);
275 * conditionally insert an inline extent into the file. This
276 * does the checks required to make sure the data is small enough
277 * to fit as an inline extent.
279 static noinline int cow_file_range_inline(struct btrfs_root *root,
280 struct inode *inode, u64 start,
281 u64 end, size_t compressed_size,
283 struct page **compressed_pages)
285 struct btrfs_fs_info *fs_info = root->fs_info;
286 struct btrfs_trans_handle *trans;
287 u64 isize = i_size_read(inode);
288 u64 actual_end = min(end + 1, isize);
289 u64 inline_len = actual_end - start;
290 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
291 u64 data_len = inline_len;
293 struct btrfs_path *path;
294 int extent_inserted = 0;
295 u32 extent_item_size;
298 data_len = compressed_size;
301 actual_end > fs_info->sectorsize ||
302 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
304 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
306 data_len > fs_info->max_inline) {
310 path = btrfs_alloc_path();
314 trans = btrfs_join_transaction(root);
316 btrfs_free_path(path);
317 return PTR_ERR(trans);
319 trans->block_rsv = &fs_info->delalloc_block_rsv;
321 if (compressed_size && compressed_pages)
322 extent_item_size = btrfs_file_extent_calc_inline_size(
325 extent_item_size = btrfs_file_extent_calc_inline_size(
328 ret = __btrfs_drop_extents(trans, root, inode, path,
329 start, aligned_end, NULL,
330 1, 1, extent_item_size, &extent_inserted);
332 btrfs_abort_transaction(trans, ret);
336 if (isize > actual_end)
337 inline_len = min_t(u64, isize, actual_end);
338 ret = insert_inline_extent(trans, path, extent_inserted,
340 inline_len, compressed_size,
341 compress_type, compressed_pages);
342 if (ret && ret != -ENOSPC) {
343 btrfs_abort_transaction(trans, ret);
345 } else if (ret == -ENOSPC) {
350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
351 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
352 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
355 * Don't forget to free the reserved space, as for inlined extent
356 * it won't count as data extent, free them directly here.
357 * And at reserve time, it's always aligned to page size, so
358 * just free one page here.
360 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
361 btrfs_free_path(path);
362 btrfs_end_transaction(trans);
366 struct async_extent {
371 unsigned long nr_pages;
373 struct list_head list;
378 struct btrfs_root *root;
379 struct page *locked_page;
382 struct list_head extents;
383 struct btrfs_work work;
386 static noinline int add_async_extent(struct async_cow *cow,
387 u64 start, u64 ram_size,
390 unsigned long nr_pages,
393 struct async_extent *async_extent;
395 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
396 BUG_ON(!async_extent); /* -ENOMEM */
397 async_extent->start = start;
398 async_extent->ram_size = ram_size;
399 async_extent->compressed_size = compressed_size;
400 async_extent->pages = pages;
401 async_extent->nr_pages = nr_pages;
402 async_extent->compress_type = compress_type;
403 list_add_tail(&async_extent->list, &cow->extents);
407 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
412 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
415 if (BTRFS_I(inode)->defrag_compress)
417 /* bad compression ratios */
418 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
420 if (btrfs_test_opt(fs_info, COMPRESS) ||
421 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
422 BTRFS_I(inode)->prop_compress)
423 return btrfs_compress_heuristic(inode, start, end);
427 static inline void inode_should_defrag(struct btrfs_inode *inode,
428 u64 start, u64 end, u64 num_bytes, u64 small_write)
430 /* If this is a small write inside eof, kick off a defrag */
431 if (num_bytes < small_write &&
432 (start > 0 || end + 1 < inode->disk_i_size))
433 btrfs_add_inode_defrag(NULL, inode);
437 * we create compressed extents in two phases. The first
438 * phase compresses a range of pages that have already been
439 * locked (both pages and state bits are locked).
441 * This is done inside an ordered work queue, and the compression
442 * is spread across many cpus. The actual IO submission is step
443 * two, and the ordered work queue takes care of making sure that
444 * happens in the same order things were put onto the queue by
445 * writepages and friends.
447 * If this code finds it can't get good compression, it puts an
448 * entry onto the work queue to write the uncompressed bytes. This
449 * makes sure that both compressed inodes and uncompressed inodes
450 * are written in the same order that the flusher thread sent them
453 static noinline void compress_file_range(struct inode *inode,
454 struct page *locked_page,
456 struct async_cow *async_cow,
459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
460 struct btrfs_root *root = BTRFS_I(inode)->root;
462 u64 blocksize = fs_info->sectorsize;
464 u64 isize = i_size_read(inode);
466 struct page **pages = NULL;
467 unsigned long nr_pages;
468 unsigned long total_compressed = 0;
469 unsigned long total_in = 0;
472 int compress_type = fs_info->compress_type;
475 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
478 actual_end = min_t(u64, isize, end + 1);
481 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
482 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
483 nr_pages = min_t(unsigned long, nr_pages,
484 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
487 * we don't want to send crud past the end of i_size through
488 * compression, that's just a waste of CPU time. So, if the
489 * end of the file is before the start of our current
490 * requested range of bytes, we bail out to the uncompressed
491 * cleanup code that can deal with all of this.
493 * It isn't really the fastest way to fix things, but this is a
494 * very uncommon corner.
496 if (actual_end <= start)
497 goto cleanup_and_bail_uncompressed;
499 total_compressed = actual_end - start;
502 * skip compression for a small file range(<=blocksize) that
503 * isn't an inline extent, since it doesn't save disk space at all.
505 if (total_compressed <= blocksize &&
506 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
507 goto cleanup_and_bail_uncompressed;
509 total_compressed = min_t(unsigned long, total_compressed,
510 BTRFS_MAX_UNCOMPRESSED);
511 num_bytes = ALIGN(end - start + 1, blocksize);
512 num_bytes = max(blocksize, num_bytes);
517 * we do compression for mount -o compress and when the
518 * inode has not been flagged as nocompress. This flag can
519 * change at any time if we discover bad compression ratios.
521 if (inode_need_compress(inode, start, end)) {
523 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
525 /* just bail out to the uncompressed code */
529 if (BTRFS_I(inode)->defrag_compress)
530 compress_type = BTRFS_I(inode)->defrag_compress;
531 else if (BTRFS_I(inode)->prop_compress)
532 compress_type = BTRFS_I(inode)->prop_compress;
535 * we need to call clear_page_dirty_for_io on each
536 * page in the range. Otherwise applications with the file
537 * mmap'd can wander in and change the page contents while
538 * we are compressing them.
540 * If the compression fails for any reason, we set the pages
541 * dirty again later on.
543 extent_range_clear_dirty_for_io(inode, start, end);
545 ret = btrfs_compress_pages(compress_type,
546 inode->i_mapping, start,
553 unsigned long offset = total_compressed &
555 struct page *page = pages[nr_pages - 1];
558 /* zero the tail end of the last page, we might be
559 * sending it down to disk
562 kaddr = kmap_atomic(page);
563 memset(kaddr + offset, 0,
565 kunmap_atomic(kaddr);
572 /* lets try to make an inline extent */
573 if (ret || total_in < (actual_end - start)) {
574 /* we didn't compress the entire range, try
575 * to make an uncompressed inline extent.
577 ret = cow_file_range_inline(root, inode, start, end,
578 0, BTRFS_COMPRESS_NONE, NULL);
580 /* try making a compressed inline extent */
581 ret = cow_file_range_inline(root, inode, start, end,
583 compress_type, pages);
586 unsigned long clear_flags = EXTENT_DELALLOC |
587 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG;
588 unsigned long page_error_op;
590 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
591 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
594 * inline extent creation worked or returned error,
595 * we don't need to create any more async work items.
596 * Unlock and free up our temp pages.
598 extent_clear_unlock_delalloc(inode, start, end, end,
606 btrfs_free_reserved_data_space_noquota(inode,
615 * we aren't doing an inline extent round the compressed size
616 * up to a block size boundary so the allocator does sane
619 total_compressed = ALIGN(total_compressed, blocksize);
622 * one last check to make sure the compression is really a
623 * win, compare the page count read with the blocks on disk,
624 * compression must free at least one sector size
626 total_in = ALIGN(total_in, PAGE_SIZE);
627 if (total_compressed + blocksize <= total_in) {
628 num_bytes = total_in;
632 * The async work queues will take care of doing actual
633 * allocation on disk for these compressed pages, and
634 * will submit them to the elevator.
636 add_async_extent(async_cow, start, num_bytes,
637 total_compressed, pages, nr_pages,
640 if (start + num_bytes < end) {
651 * the compression code ran but failed to make things smaller,
652 * free any pages it allocated and our page pointer array
654 for (i = 0; i < nr_pages; i++) {
655 WARN_ON(pages[i]->mapping);
660 total_compressed = 0;
663 /* flag the file so we don't compress in the future */
664 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
665 !(BTRFS_I(inode)->prop_compress)) {
666 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
669 cleanup_and_bail_uncompressed:
671 * No compression, but we still need to write the pages in the file
672 * we've been given so far. redirty the locked page if it corresponds
673 * to our extent and set things up for the async work queue to run
674 * cow_file_range to do the normal delalloc dance.
676 if (page_offset(locked_page) >= start &&
677 page_offset(locked_page) <= end)
678 __set_page_dirty_nobuffers(locked_page);
679 /* unlocked later on in the async handlers */
682 extent_range_redirty_for_io(inode, start, end);
683 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
684 BTRFS_COMPRESS_NONE);
690 for (i = 0; i < nr_pages; i++) {
691 WARN_ON(pages[i]->mapping);
697 static void free_async_extent_pages(struct async_extent *async_extent)
701 if (!async_extent->pages)
704 for (i = 0; i < async_extent->nr_pages; i++) {
705 WARN_ON(async_extent->pages[i]->mapping);
706 put_page(async_extent->pages[i]);
708 kfree(async_extent->pages);
709 async_extent->nr_pages = 0;
710 async_extent->pages = NULL;
714 * phase two of compressed writeback. This is the ordered portion
715 * of the code, which only gets called in the order the work was
716 * queued. We walk all the async extents created by compress_file_range
717 * and send them down to the disk.
719 static noinline void submit_compressed_extents(struct inode *inode,
720 struct async_cow *async_cow)
722 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
723 struct async_extent *async_extent;
725 struct btrfs_key ins;
726 struct extent_map *em;
727 struct btrfs_root *root = BTRFS_I(inode)->root;
728 struct extent_io_tree *io_tree;
732 while (!list_empty(&async_cow->extents)) {
733 async_extent = list_entry(async_cow->extents.next,
734 struct async_extent, list);
735 list_del(&async_extent->list);
737 io_tree = &BTRFS_I(inode)->io_tree;
740 /* did the compression code fall back to uncompressed IO? */
741 if (!async_extent->pages) {
742 int page_started = 0;
743 unsigned long nr_written = 0;
745 lock_extent(io_tree, async_extent->start,
746 async_extent->start +
747 async_extent->ram_size - 1);
749 /* allocate blocks */
750 ret = cow_file_range(inode, async_cow->locked_page,
752 async_extent->start +
753 async_extent->ram_size - 1,
754 async_extent->start +
755 async_extent->ram_size - 1,
756 &page_started, &nr_written, 0,
762 * if page_started, cow_file_range inserted an
763 * inline extent and took care of all the unlocking
764 * and IO for us. Otherwise, we need to submit
765 * all those pages down to the drive.
767 if (!page_started && !ret)
768 extent_write_locked_range(io_tree,
769 inode, async_extent->start,
770 async_extent->start +
771 async_extent->ram_size - 1,
775 unlock_page(async_cow->locked_page);
781 lock_extent(io_tree, async_extent->start,
782 async_extent->start + async_extent->ram_size - 1);
784 ret = btrfs_reserve_extent(root, async_extent->ram_size,
785 async_extent->compressed_size,
786 async_extent->compressed_size,
787 0, alloc_hint, &ins, 1, 1);
789 free_async_extent_pages(async_extent);
791 if (ret == -ENOSPC) {
792 unlock_extent(io_tree, async_extent->start,
793 async_extent->start +
794 async_extent->ram_size - 1);
797 * we need to redirty the pages if we decide to
798 * fallback to uncompressed IO, otherwise we
799 * will not submit these pages down to lower
802 extent_range_redirty_for_io(inode,
804 async_extent->start +
805 async_extent->ram_size - 1);
812 * here we're doing allocation and writeback of the
815 em = create_io_em(inode, async_extent->start,
816 async_extent->ram_size, /* len */
817 async_extent->start, /* orig_start */
818 ins.objectid, /* block_start */
819 ins.offset, /* block_len */
820 ins.offset, /* orig_block_len */
821 async_extent->ram_size, /* ram_bytes */
822 async_extent->compress_type,
823 BTRFS_ORDERED_COMPRESSED);
825 /* ret value is not necessary due to void function */
826 goto out_free_reserve;
829 ret = btrfs_add_ordered_extent_compress(inode,
832 async_extent->ram_size,
834 BTRFS_ORDERED_COMPRESSED,
835 async_extent->compress_type);
837 btrfs_drop_extent_cache(BTRFS_I(inode),
839 async_extent->start +
840 async_extent->ram_size - 1, 0);
841 goto out_free_reserve;
843 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
846 * clear dirty, set writeback and unlock the pages.
848 extent_clear_unlock_delalloc(inode, async_extent->start,
849 async_extent->start +
850 async_extent->ram_size - 1,
851 async_extent->start +
852 async_extent->ram_size - 1,
853 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
854 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
856 if (btrfs_submit_compressed_write(inode,
858 async_extent->ram_size,
860 ins.offset, async_extent->pages,
861 async_extent->nr_pages)) {
862 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
863 struct page *p = async_extent->pages[0];
864 const u64 start = async_extent->start;
865 const u64 end = start + async_extent->ram_size - 1;
867 p->mapping = inode->i_mapping;
868 tree->ops->writepage_end_io_hook(p, start, end,
871 extent_clear_unlock_delalloc(inode, start, end, end,
875 free_async_extent_pages(async_extent);
877 alloc_hint = ins.objectid + ins.offset;
883 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
884 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
886 extent_clear_unlock_delalloc(inode, async_extent->start,
887 async_extent->start +
888 async_extent->ram_size - 1,
889 async_extent->start +
890 async_extent->ram_size - 1,
891 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
892 EXTENT_DELALLOC_NEW |
893 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
894 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
895 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
897 free_async_extent_pages(async_extent);
902 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
905 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
906 struct extent_map *em;
909 read_lock(&em_tree->lock);
910 em = search_extent_mapping(em_tree, start, num_bytes);
913 * if block start isn't an actual block number then find the
914 * first block in this inode and use that as a hint. If that
915 * block is also bogus then just don't worry about it.
917 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
919 em = search_extent_mapping(em_tree, 0, 0);
920 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
921 alloc_hint = em->block_start;
925 alloc_hint = em->block_start;
929 read_unlock(&em_tree->lock);
935 * when extent_io.c finds a delayed allocation range in the file,
936 * the call backs end up in this code. The basic idea is to
937 * allocate extents on disk for the range, and create ordered data structs
938 * in ram to track those extents.
940 * locked_page is the page that writepage had locked already. We use
941 * it to make sure we don't do extra locks or unlocks.
943 * *page_started is set to one if we unlock locked_page and do everything
944 * required to start IO on it. It may be clean and already done with
947 static noinline int cow_file_range(struct inode *inode,
948 struct page *locked_page,
949 u64 start, u64 end, u64 delalloc_end,
950 int *page_started, unsigned long *nr_written,
951 int unlock, struct btrfs_dedupe_hash *hash)
953 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
954 struct btrfs_root *root = BTRFS_I(inode)->root;
957 unsigned long ram_size;
959 u64 cur_alloc_size = 0;
960 u64 blocksize = fs_info->sectorsize;
961 struct btrfs_key ins;
962 struct extent_map *em;
964 unsigned long page_ops;
965 bool extent_reserved = false;
968 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
974 num_bytes = ALIGN(end - start + 1, blocksize);
975 num_bytes = max(blocksize, num_bytes);
976 disk_num_bytes = num_bytes;
978 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
981 /* lets try to make an inline extent */
982 ret = cow_file_range_inline(root, inode, start, end, 0,
983 BTRFS_COMPRESS_NONE, NULL);
985 extent_clear_unlock_delalloc(inode, start, end,
987 EXTENT_LOCKED | EXTENT_DELALLOC |
988 EXTENT_DELALLOC_NEW |
989 EXTENT_DEFRAG, PAGE_UNLOCK |
990 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
992 btrfs_free_reserved_data_space_noquota(inode, start,
994 *nr_written = *nr_written +
995 (end - start + PAGE_SIZE) / PAGE_SIZE;
998 } else if (ret < 0) {
1003 BUG_ON(disk_num_bytes >
1004 btrfs_super_total_bytes(fs_info->super_copy));
1006 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1007 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1008 start + num_bytes - 1, 0);
1010 while (disk_num_bytes > 0) {
1011 cur_alloc_size = disk_num_bytes;
1012 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1013 fs_info->sectorsize, 0, alloc_hint,
1017 cur_alloc_size = ins.offset;
1018 extent_reserved = true;
1020 ram_size = ins.offset;
1021 em = create_io_em(inode, start, ins.offset, /* len */
1022 start, /* orig_start */
1023 ins.objectid, /* block_start */
1024 ins.offset, /* block_len */
1025 ins.offset, /* orig_block_len */
1026 ram_size, /* ram_bytes */
1027 BTRFS_COMPRESS_NONE, /* compress_type */
1028 BTRFS_ORDERED_REGULAR /* type */);
1031 free_extent_map(em);
1033 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1034 ram_size, cur_alloc_size, 0);
1036 goto out_drop_extent_cache;
1038 if (root->root_key.objectid ==
1039 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1040 ret = btrfs_reloc_clone_csums(inode, start,
1043 * Only drop cache here, and process as normal.
1045 * We must not allow extent_clear_unlock_delalloc()
1046 * at out_unlock label to free meta of this ordered
1047 * extent, as its meta should be freed by
1048 * btrfs_finish_ordered_io().
1050 * So we must continue until @start is increased to
1051 * skip current ordered extent.
1054 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1055 start + ram_size - 1, 0);
1058 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1060 /* we're not doing compressed IO, don't unlock the first
1061 * page (which the caller expects to stay locked), don't
1062 * clear any dirty bits and don't set any writeback bits
1064 * Do set the Private2 bit so we know this page was properly
1065 * setup for writepage
1067 page_ops = unlock ? PAGE_UNLOCK : 0;
1068 page_ops |= PAGE_SET_PRIVATE2;
1070 extent_clear_unlock_delalloc(inode, start,
1071 start + ram_size - 1,
1072 delalloc_end, locked_page,
1073 EXTENT_LOCKED | EXTENT_DELALLOC,
1075 if (disk_num_bytes < cur_alloc_size)
1078 disk_num_bytes -= cur_alloc_size;
1079 num_bytes -= cur_alloc_size;
1080 alloc_hint = ins.objectid + ins.offset;
1081 start += cur_alloc_size;
1082 extent_reserved = false;
1085 * btrfs_reloc_clone_csums() error, since start is increased
1086 * extent_clear_unlock_delalloc() at out_unlock label won't
1087 * free metadata of current ordered extent, we're OK to exit.
1095 out_drop_extent_cache:
1096 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1098 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1099 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1101 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1102 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1103 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1106 * If we reserved an extent for our delalloc range (or a subrange) and
1107 * failed to create the respective ordered extent, then it means that
1108 * when we reserved the extent we decremented the extent's size from
1109 * the data space_info's bytes_may_use counter and incremented the
1110 * space_info's bytes_reserved counter by the same amount. We must make
1111 * sure extent_clear_unlock_delalloc() does not try to decrement again
1112 * the data space_info's bytes_may_use counter, therefore we do not pass
1113 * it the flag EXTENT_CLEAR_DATA_RESV.
1115 if (extent_reserved) {
1116 extent_clear_unlock_delalloc(inode, start,
1117 start + cur_alloc_size,
1118 start + cur_alloc_size,
1122 start += cur_alloc_size;
1126 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1128 clear_bits | EXTENT_CLEAR_DATA_RESV,
1134 * work queue call back to started compression on a file and pages
1136 static noinline void async_cow_start(struct btrfs_work *work)
1138 struct async_cow *async_cow;
1140 async_cow = container_of(work, struct async_cow, work);
1142 compress_file_range(async_cow->inode, async_cow->locked_page,
1143 async_cow->start, async_cow->end, async_cow,
1145 if (num_added == 0) {
1146 btrfs_add_delayed_iput(async_cow->inode);
1147 async_cow->inode = NULL;
1152 * work queue call back to submit previously compressed pages
1154 static noinline void async_cow_submit(struct btrfs_work *work)
1156 struct btrfs_fs_info *fs_info;
1157 struct async_cow *async_cow;
1158 struct btrfs_root *root;
1159 unsigned long nr_pages;
1161 async_cow = container_of(work, struct async_cow, work);
1163 root = async_cow->root;
1164 fs_info = root->fs_info;
1165 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1169 * atomic_sub_return implies a barrier for waitqueue_active
1171 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1173 waitqueue_active(&fs_info->async_submit_wait))
1174 wake_up(&fs_info->async_submit_wait);
1176 if (async_cow->inode)
1177 submit_compressed_extents(async_cow->inode, async_cow);
1180 static noinline void async_cow_free(struct btrfs_work *work)
1182 struct async_cow *async_cow;
1183 async_cow = container_of(work, struct async_cow, work);
1184 if (async_cow->inode)
1185 btrfs_add_delayed_iput(async_cow->inode);
1189 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1190 u64 start, u64 end, int *page_started,
1191 unsigned long *nr_written)
1193 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1194 struct async_cow *async_cow;
1195 struct btrfs_root *root = BTRFS_I(inode)->root;
1196 unsigned long nr_pages;
1199 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1200 1, 0, NULL, GFP_NOFS);
1201 while (start < end) {
1202 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1203 BUG_ON(!async_cow); /* -ENOMEM */
1204 async_cow->inode = igrab(inode);
1205 async_cow->root = root;
1206 async_cow->locked_page = locked_page;
1207 async_cow->start = start;
1209 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1210 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1213 cur_end = min(end, start + SZ_512K - 1);
1215 async_cow->end = cur_end;
1216 INIT_LIST_HEAD(&async_cow->extents);
1218 btrfs_init_work(&async_cow->work,
1219 btrfs_delalloc_helper,
1220 async_cow_start, async_cow_submit,
1223 nr_pages = (cur_end - start + PAGE_SIZE) >>
1225 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1227 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1229 while (atomic_read(&fs_info->async_submit_draining) &&
1230 atomic_read(&fs_info->async_delalloc_pages)) {
1231 wait_event(fs_info->async_submit_wait,
1232 (atomic_read(&fs_info->async_delalloc_pages) ==
1236 *nr_written += nr_pages;
1237 start = cur_end + 1;
1243 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1244 u64 bytenr, u64 num_bytes)
1247 struct btrfs_ordered_sum *sums;
1250 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1251 bytenr + num_bytes - 1, &list, 0);
1252 if (ret == 0 && list_empty(&list))
1255 while (!list_empty(&list)) {
1256 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1257 list_del(&sums->list);
1264 * when nowcow writeback call back. This checks for snapshots or COW copies
1265 * of the extents that exist in the file, and COWs the file as required.
1267 * If no cow copies or snapshots exist, we write directly to the existing
1270 static noinline int run_delalloc_nocow(struct inode *inode,
1271 struct page *locked_page,
1272 u64 start, u64 end, int *page_started, int force,
1273 unsigned long *nr_written)
1275 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1276 struct btrfs_root *root = BTRFS_I(inode)->root;
1277 struct extent_buffer *leaf;
1278 struct btrfs_path *path;
1279 struct btrfs_file_extent_item *fi;
1280 struct btrfs_key found_key;
1281 struct extent_map *em;
1296 u64 ino = btrfs_ino(BTRFS_I(inode));
1298 path = btrfs_alloc_path();
1300 extent_clear_unlock_delalloc(inode, start, end, end,
1302 EXTENT_LOCKED | EXTENT_DELALLOC |
1303 EXTENT_DO_ACCOUNTING |
1304 EXTENT_DEFRAG, PAGE_UNLOCK |
1306 PAGE_SET_WRITEBACK |
1307 PAGE_END_WRITEBACK);
1311 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1313 cow_start = (u64)-1;
1316 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1320 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1321 leaf = path->nodes[0];
1322 btrfs_item_key_to_cpu(leaf, &found_key,
1323 path->slots[0] - 1);
1324 if (found_key.objectid == ino &&
1325 found_key.type == BTRFS_EXTENT_DATA_KEY)
1330 leaf = path->nodes[0];
1331 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1332 ret = btrfs_next_leaf(root, path);
1337 leaf = path->nodes[0];
1343 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1345 if (found_key.objectid > ino)
1347 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1348 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1352 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1353 found_key.offset > end)
1356 if (found_key.offset > cur_offset) {
1357 extent_end = found_key.offset;
1362 fi = btrfs_item_ptr(leaf, path->slots[0],
1363 struct btrfs_file_extent_item);
1364 extent_type = btrfs_file_extent_type(leaf, fi);
1366 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1367 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1368 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1369 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1370 extent_offset = btrfs_file_extent_offset(leaf, fi);
1371 extent_end = found_key.offset +
1372 btrfs_file_extent_num_bytes(leaf, fi);
1374 btrfs_file_extent_disk_num_bytes(leaf, fi);
1375 if (extent_end <= start) {
1379 if (disk_bytenr == 0)
1381 if (btrfs_file_extent_compression(leaf, fi) ||
1382 btrfs_file_extent_encryption(leaf, fi) ||
1383 btrfs_file_extent_other_encoding(leaf, fi))
1385 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1387 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1389 if (btrfs_cross_ref_exist(root, ino,
1391 extent_offset, disk_bytenr))
1393 disk_bytenr += extent_offset;
1394 disk_bytenr += cur_offset - found_key.offset;
1395 num_bytes = min(end + 1, extent_end) - cur_offset;
1397 * if there are pending snapshots for this root,
1398 * we fall into common COW way.
1401 err = btrfs_start_write_no_snapshotting(root);
1406 * force cow if csum exists in the range.
1407 * this ensure that csum for a given extent are
1408 * either valid or do not exist.
1410 if (csum_exist_in_range(fs_info, disk_bytenr,
1413 btrfs_end_write_no_snapshotting(root);
1416 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1418 btrfs_end_write_no_snapshotting(root);
1422 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1423 extent_end = found_key.offset +
1424 btrfs_file_extent_inline_len(leaf,
1425 path->slots[0], fi);
1426 extent_end = ALIGN(extent_end,
1427 fs_info->sectorsize);
1432 if (extent_end <= start) {
1434 if (!nolock && nocow)
1435 btrfs_end_write_no_snapshotting(root);
1437 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1441 if (cow_start == (u64)-1)
1442 cow_start = cur_offset;
1443 cur_offset = extent_end;
1444 if (cur_offset > end)
1450 btrfs_release_path(path);
1451 if (cow_start != (u64)-1) {
1452 ret = cow_file_range(inode, locked_page,
1453 cow_start, found_key.offset - 1,
1454 end, page_started, nr_written, 1,
1457 if (!nolock && nocow)
1458 btrfs_end_write_no_snapshotting(root);
1460 btrfs_dec_nocow_writers(fs_info,
1464 cow_start = (u64)-1;
1467 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1468 u64 orig_start = found_key.offset - extent_offset;
1470 em = create_io_em(inode, cur_offset, num_bytes,
1472 disk_bytenr, /* block_start */
1473 num_bytes, /* block_len */
1474 disk_num_bytes, /* orig_block_len */
1475 ram_bytes, BTRFS_COMPRESS_NONE,
1476 BTRFS_ORDERED_PREALLOC);
1478 if (!nolock && nocow)
1479 btrfs_end_write_no_snapshotting(root);
1481 btrfs_dec_nocow_writers(fs_info,
1486 free_extent_map(em);
1489 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1490 type = BTRFS_ORDERED_PREALLOC;
1492 type = BTRFS_ORDERED_NOCOW;
1495 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1496 num_bytes, num_bytes, type);
1498 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1499 BUG_ON(ret); /* -ENOMEM */
1501 if (root->root_key.objectid ==
1502 BTRFS_DATA_RELOC_TREE_OBJECTID)
1504 * Error handled later, as we must prevent
1505 * extent_clear_unlock_delalloc() in error handler
1506 * from freeing metadata of created ordered extent.
1508 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1511 extent_clear_unlock_delalloc(inode, cur_offset,
1512 cur_offset + num_bytes - 1, end,
1513 locked_page, EXTENT_LOCKED |
1515 EXTENT_CLEAR_DATA_RESV,
1516 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1518 if (!nolock && nocow)
1519 btrfs_end_write_no_snapshotting(root);
1520 cur_offset = extent_end;
1523 * btrfs_reloc_clone_csums() error, now we're OK to call error
1524 * handler, as metadata for created ordered extent will only
1525 * be freed by btrfs_finish_ordered_io().
1529 if (cur_offset > end)
1532 btrfs_release_path(path);
1534 if (cur_offset <= end && cow_start == (u64)-1) {
1535 cow_start = cur_offset;
1539 if (cow_start != (u64)-1) {
1540 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1541 page_started, nr_written, 1, NULL);
1547 if (ret && cur_offset < end)
1548 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1549 locked_page, EXTENT_LOCKED |
1550 EXTENT_DELALLOC | EXTENT_DEFRAG |
1551 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1553 PAGE_SET_WRITEBACK |
1554 PAGE_END_WRITEBACK);
1555 btrfs_free_path(path);
1559 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1562 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1563 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1567 * @defrag_bytes is a hint value, no spinlock held here,
1568 * if is not zero, it means the file is defragging.
1569 * Force cow if given extent needs to be defragged.
1571 if (BTRFS_I(inode)->defrag_bytes &&
1572 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1573 EXTENT_DEFRAG, 0, NULL))
1580 * extent_io.c call back to do delayed allocation processing
1582 static int run_delalloc_range(void *private_data, struct page *locked_page,
1583 u64 start, u64 end, int *page_started,
1584 unsigned long *nr_written)
1586 struct inode *inode = private_data;
1588 int force_cow = need_force_cow(inode, start, end);
1590 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1591 ret = run_delalloc_nocow(inode, locked_page, start, end,
1592 page_started, 1, nr_written);
1593 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1594 ret = run_delalloc_nocow(inode, locked_page, start, end,
1595 page_started, 0, nr_written);
1596 } else if (!inode_need_compress(inode, start, end)) {
1597 ret = cow_file_range(inode, locked_page, start, end, end,
1598 page_started, nr_written, 1, NULL);
1600 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1601 &BTRFS_I(inode)->runtime_flags);
1602 ret = cow_file_range_async(inode, locked_page, start, end,
1603 page_started, nr_written);
1606 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1610 static void btrfs_split_extent_hook(void *private_data,
1611 struct extent_state *orig, u64 split)
1613 struct inode *inode = private_data;
1616 /* not delalloc, ignore it */
1617 if (!(orig->state & EXTENT_DELALLOC))
1620 size = orig->end - orig->start + 1;
1621 if (size > BTRFS_MAX_EXTENT_SIZE) {
1626 * See the explanation in btrfs_merge_extent_hook, the same
1627 * applies here, just in reverse.
1629 new_size = orig->end - split + 1;
1630 num_extents = count_max_extents(new_size);
1631 new_size = split - orig->start;
1632 num_extents += count_max_extents(new_size);
1633 if (count_max_extents(size) >= num_extents)
1637 spin_lock(&BTRFS_I(inode)->lock);
1638 BTRFS_I(inode)->outstanding_extents++;
1639 spin_unlock(&BTRFS_I(inode)->lock);
1643 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1644 * extents so we can keep track of new extents that are just merged onto old
1645 * extents, such as when we are doing sequential writes, so we can properly
1646 * account for the metadata space we'll need.
1648 static void btrfs_merge_extent_hook(void *private_data,
1649 struct extent_state *new,
1650 struct extent_state *other)
1652 struct inode *inode = private_data;
1653 u64 new_size, old_size;
1656 /* not delalloc, ignore it */
1657 if (!(other->state & EXTENT_DELALLOC))
1660 if (new->start > other->start)
1661 new_size = new->end - other->start + 1;
1663 new_size = other->end - new->start + 1;
1665 /* we're not bigger than the max, unreserve the space and go */
1666 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1667 spin_lock(&BTRFS_I(inode)->lock);
1668 BTRFS_I(inode)->outstanding_extents--;
1669 spin_unlock(&BTRFS_I(inode)->lock);
1674 * We have to add up either side to figure out how many extents were
1675 * accounted for before we merged into one big extent. If the number of
1676 * extents we accounted for is <= the amount we need for the new range
1677 * then we can return, otherwise drop. Think of it like this
1681 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1682 * need 2 outstanding extents, on one side we have 1 and the other side
1683 * we have 1 so they are == and we can return. But in this case
1685 * [MAX_SIZE+4k][MAX_SIZE+4k]
1687 * Each range on their own accounts for 2 extents, but merged together
1688 * they are only 3 extents worth of accounting, so we need to drop in
1691 old_size = other->end - other->start + 1;
1692 num_extents = count_max_extents(old_size);
1693 old_size = new->end - new->start + 1;
1694 num_extents += count_max_extents(old_size);
1695 if (count_max_extents(new_size) >= num_extents)
1698 spin_lock(&BTRFS_I(inode)->lock);
1699 BTRFS_I(inode)->outstanding_extents--;
1700 spin_unlock(&BTRFS_I(inode)->lock);
1703 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1704 struct inode *inode)
1706 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1708 spin_lock(&root->delalloc_lock);
1709 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1710 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1711 &root->delalloc_inodes);
1712 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1713 &BTRFS_I(inode)->runtime_flags);
1714 root->nr_delalloc_inodes++;
1715 if (root->nr_delalloc_inodes == 1) {
1716 spin_lock(&fs_info->delalloc_root_lock);
1717 BUG_ON(!list_empty(&root->delalloc_root));
1718 list_add_tail(&root->delalloc_root,
1719 &fs_info->delalloc_roots);
1720 spin_unlock(&fs_info->delalloc_root_lock);
1723 spin_unlock(&root->delalloc_lock);
1726 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1727 struct btrfs_inode *inode)
1729 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1731 spin_lock(&root->delalloc_lock);
1732 if (!list_empty(&inode->delalloc_inodes)) {
1733 list_del_init(&inode->delalloc_inodes);
1734 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1735 &inode->runtime_flags);
1736 root->nr_delalloc_inodes--;
1737 if (!root->nr_delalloc_inodes) {
1738 spin_lock(&fs_info->delalloc_root_lock);
1739 BUG_ON(list_empty(&root->delalloc_root));
1740 list_del_init(&root->delalloc_root);
1741 spin_unlock(&fs_info->delalloc_root_lock);
1744 spin_unlock(&root->delalloc_lock);
1748 * extent_io.c set_bit_hook, used to track delayed allocation
1749 * bytes in this file, and to maintain the list of inodes that
1750 * have pending delalloc work to be done.
1752 static void btrfs_set_bit_hook(void *private_data,
1753 struct extent_state *state, unsigned *bits)
1755 struct inode *inode = private_data;
1757 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1759 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1762 * set_bit and clear bit hooks normally require _irqsave/restore
1763 * but in this case, we are only testing for the DELALLOC
1764 * bit, which is only set or cleared with irqs on
1766 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1767 struct btrfs_root *root = BTRFS_I(inode)->root;
1768 u64 len = state->end + 1 - state->start;
1769 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1771 if (*bits & EXTENT_FIRST_DELALLOC) {
1772 *bits &= ~EXTENT_FIRST_DELALLOC;
1774 spin_lock(&BTRFS_I(inode)->lock);
1775 BTRFS_I(inode)->outstanding_extents++;
1776 spin_unlock(&BTRFS_I(inode)->lock);
1779 /* For sanity tests */
1780 if (btrfs_is_testing(fs_info))
1783 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1784 fs_info->delalloc_batch);
1785 spin_lock(&BTRFS_I(inode)->lock);
1786 BTRFS_I(inode)->delalloc_bytes += len;
1787 if (*bits & EXTENT_DEFRAG)
1788 BTRFS_I(inode)->defrag_bytes += len;
1789 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1790 &BTRFS_I(inode)->runtime_flags))
1791 btrfs_add_delalloc_inodes(root, inode);
1792 spin_unlock(&BTRFS_I(inode)->lock);
1795 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1796 (*bits & EXTENT_DELALLOC_NEW)) {
1797 spin_lock(&BTRFS_I(inode)->lock);
1798 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1800 spin_unlock(&BTRFS_I(inode)->lock);
1805 * extent_io.c clear_bit_hook, see set_bit_hook for why
1807 static void btrfs_clear_bit_hook(void *private_data,
1808 struct extent_state *state,
1811 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1812 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1813 u64 len = state->end + 1 - state->start;
1814 u32 num_extents = count_max_extents(len);
1816 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1817 spin_lock(&inode->lock);
1818 inode->defrag_bytes -= len;
1819 spin_unlock(&inode->lock);
1823 * set_bit and clear bit hooks normally require _irqsave/restore
1824 * but in this case, we are only testing for the DELALLOC
1825 * bit, which is only set or cleared with irqs on
1827 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1828 struct btrfs_root *root = inode->root;
1829 bool do_list = !btrfs_is_free_space_inode(inode);
1831 if (*bits & EXTENT_FIRST_DELALLOC) {
1832 *bits &= ~EXTENT_FIRST_DELALLOC;
1833 } else if (!(*bits & EXTENT_CLEAR_META_RESV)) {
1834 spin_lock(&inode->lock);
1835 inode->outstanding_extents -= num_extents;
1836 spin_unlock(&inode->lock);
1840 * We don't reserve metadata space for space cache inodes so we
1841 * don't need to call dellalloc_release_metadata if there is an
1844 if (*bits & EXTENT_CLEAR_META_RESV &&
1845 root != fs_info->tree_root)
1846 btrfs_delalloc_release_metadata(inode, len);
1848 /* For sanity tests. */
1849 if (btrfs_is_testing(fs_info))
1852 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1853 do_list && !(state->state & EXTENT_NORESERVE) &&
1854 (*bits & EXTENT_CLEAR_DATA_RESV))
1855 btrfs_free_reserved_data_space_noquota(
1859 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1860 fs_info->delalloc_batch);
1861 spin_lock(&inode->lock);
1862 inode->delalloc_bytes -= len;
1863 if (do_list && inode->delalloc_bytes == 0 &&
1864 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1865 &inode->runtime_flags))
1866 btrfs_del_delalloc_inode(root, inode);
1867 spin_unlock(&inode->lock);
1870 if ((state->state & EXTENT_DELALLOC_NEW) &&
1871 (*bits & EXTENT_DELALLOC_NEW)) {
1872 spin_lock(&inode->lock);
1873 ASSERT(inode->new_delalloc_bytes >= len);
1874 inode->new_delalloc_bytes -= len;
1875 spin_unlock(&inode->lock);
1880 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1881 * we don't create bios that span stripes or chunks
1883 * return 1 if page cannot be merged to bio
1884 * return 0 if page can be merged to bio
1885 * return error otherwise
1887 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1888 size_t size, struct bio *bio,
1889 unsigned long bio_flags)
1891 struct inode *inode = page->mapping->host;
1892 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1893 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1898 if (bio_flags & EXTENT_BIO_COMPRESSED)
1901 length = bio->bi_iter.bi_size;
1902 map_length = length;
1903 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1907 if (map_length < length + size)
1913 * in order to insert checksums into the metadata in large chunks,
1914 * we wait until bio submission time. All the pages in the bio are
1915 * checksummed and sums are attached onto the ordered extent record.
1917 * At IO completion time the cums attached on the ordered extent record
1918 * are inserted into the btree
1920 static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
1921 int mirror_num, unsigned long bio_flags,
1924 struct inode *inode = private_data;
1925 blk_status_t ret = 0;
1927 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1928 BUG_ON(ret); /* -ENOMEM */
1933 * in order to insert checksums into the metadata in large chunks,
1934 * we wait until bio submission time. All the pages in the bio are
1935 * checksummed and sums are attached onto the ordered extent record.
1937 * At IO completion time the cums attached on the ordered extent record
1938 * are inserted into the btree
1940 static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
1941 int mirror_num, unsigned long bio_flags,
1944 struct inode *inode = private_data;
1945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1948 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1950 bio->bi_status = ret;
1957 * extent_io.c submission hook. This does the right thing for csum calculation
1958 * on write, or reading the csums from the tree before a read
1960 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1961 int mirror_num, unsigned long bio_flags,
1964 struct inode *inode = private_data;
1965 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1966 struct btrfs_root *root = BTRFS_I(inode)->root;
1967 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1968 blk_status_t ret = 0;
1970 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1972 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1974 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1975 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1977 if (bio_op(bio) != REQ_OP_WRITE) {
1978 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1982 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1983 ret = btrfs_submit_compressed_read(inode, bio,
1987 } else if (!skip_sum) {
1988 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
1993 } else if (async && !skip_sum) {
1994 /* csum items have already been cloned */
1995 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1997 /* we're doing a write, do the async checksumming */
1998 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2000 __btrfs_submit_bio_start,
2001 __btrfs_submit_bio_done);
2003 } else if (!skip_sum) {
2004 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2010 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2014 bio->bi_status = ret;
2021 * given a list of ordered sums record them in the inode. This happens
2022 * at IO completion time based on sums calculated at bio submission time.
2024 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2025 struct inode *inode, struct list_head *list)
2027 struct btrfs_ordered_sum *sum;
2029 list_for_each_entry(sum, list, list) {
2030 trans->adding_csums = 1;
2031 btrfs_csum_file_blocks(trans,
2032 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2033 trans->adding_csums = 0;
2038 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2039 struct extent_state **cached_state, int dedupe)
2041 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2042 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2046 /* see btrfs_writepage_start_hook for details on why this is required */
2047 struct btrfs_writepage_fixup {
2049 struct btrfs_work work;
2052 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2054 struct btrfs_writepage_fixup *fixup;
2055 struct btrfs_ordered_extent *ordered;
2056 struct extent_state *cached_state = NULL;
2057 struct extent_changeset *data_reserved = NULL;
2059 struct inode *inode;
2064 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2068 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2069 ClearPageChecked(page);
2073 inode = page->mapping->host;
2074 page_start = page_offset(page);
2075 page_end = page_offset(page) + PAGE_SIZE - 1;
2077 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2080 /* already ordered? We're done */
2081 if (PagePrivate2(page))
2084 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2087 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2088 page_end, &cached_state, GFP_NOFS);
2090 btrfs_start_ordered_extent(inode, ordered, 1);
2091 btrfs_put_ordered_extent(ordered);
2095 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2098 mapping_set_error(page->mapping, ret);
2099 end_extent_writepage(page, ret, page_start, page_end);
2100 ClearPageChecked(page);
2104 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2106 ClearPageChecked(page);
2107 set_page_dirty(page);
2109 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2110 &cached_state, GFP_NOFS);
2115 extent_changeset_free(data_reserved);
2119 * There are a few paths in the higher layers of the kernel that directly
2120 * set the page dirty bit without asking the filesystem if it is a
2121 * good idea. This causes problems because we want to make sure COW
2122 * properly happens and the data=ordered rules are followed.
2124 * In our case any range that doesn't have the ORDERED bit set
2125 * hasn't been properly setup for IO. We kick off an async process
2126 * to fix it up. The async helper will wait for ordered extents, set
2127 * the delalloc bit and make it safe to write the page.
2129 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2131 struct inode *inode = page->mapping->host;
2132 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2133 struct btrfs_writepage_fixup *fixup;
2135 /* this page is properly in the ordered list */
2136 if (TestClearPagePrivate2(page))
2139 if (PageChecked(page))
2142 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2146 SetPageChecked(page);
2148 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2149 btrfs_writepage_fixup_worker, NULL, NULL);
2151 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2155 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2156 struct inode *inode, u64 file_pos,
2157 u64 disk_bytenr, u64 disk_num_bytes,
2158 u64 num_bytes, u64 ram_bytes,
2159 u8 compression, u8 encryption,
2160 u16 other_encoding, int extent_type)
2162 struct btrfs_root *root = BTRFS_I(inode)->root;
2163 struct btrfs_file_extent_item *fi;
2164 struct btrfs_path *path;
2165 struct extent_buffer *leaf;
2166 struct btrfs_key ins;
2168 int extent_inserted = 0;
2171 path = btrfs_alloc_path();
2176 * we may be replacing one extent in the tree with another.
2177 * The new extent is pinned in the extent map, and we don't want
2178 * to drop it from the cache until it is completely in the btree.
2180 * So, tell btrfs_drop_extents to leave this extent in the cache.
2181 * the caller is expected to unpin it and allow it to be merged
2184 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2185 file_pos + num_bytes, NULL, 0,
2186 1, sizeof(*fi), &extent_inserted);
2190 if (!extent_inserted) {
2191 ins.objectid = btrfs_ino(BTRFS_I(inode));
2192 ins.offset = file_pos;
2193 ins.type = BTRFS_EXTENT_DATA_KEY;
2195 path->leave_spinning = 1;
2196 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2201 leaf = path->nodes[0];
2202 fi = btrfs_item_ptr(leaf, path->slots[0],
2203 struct btrfs_file_extent_item);
2204 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2205 btrfs_set_file_extent_type(leaf, fi, extent_type);
2206 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2207 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2208 btrfs_set_file_extent_offset(leaf, fi, 0);
2209 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2210 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2211 btrfs_set_file_extent_compression(leaf, fi, compression);
2212 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2213 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2215 btrfs_mark_buffer_dirty(leaf);
2216 btrfs_release_path(path);
2218 inode_add_bytes(inode, num_bytes);
2220 ins.objectid = disk_bytenr;
2221 ins.offset = disk_num_bytes;
2222 ins.type = BTRFS_EXTENT_ITEM_KEY;
2225 * Release the reserved range from inode dirty range map, as it is
2226 * already moved into delayed_ref_head
2228 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2232 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
2233 btrfs_ino(BTRFS_I(inode)), file_pos, qg_released, &ins);
2235 btrfs_free_path(path);
2240 /* snapshot-aware defrag */
2241 struct sa_defrag_extent_backref {
2242 struct rb_node node;
2243 struct old_sa_defrag_extent *old;
2252 struct old_sa_defrag_extent {
2253 struct list_head list;
2254 struct new_sa_defrag_extent *new;
2263 struct new_sa_defrag_extent {
2264 struct rb_root root;
2265 struct list_head head;
2266 struct btrfs_path *path;
2267 struct inode *inode;
2275 static int backref_comp(struct sa_defrag_extent_backref *b1,
2276 struct sa_defrag_extent_backref *b2)
2278 if (b1->root_id < b2->root_id)
2280 else if (b1->root_id > b2->root_id)
2283 if (b1->inum < b2->inum)
2285 else if (b1->inum > b2->inum)
2288 if (b1->file_pos < b2->file_pos)
2290 else if (b1->file_pos > b2->file_pos)
2294 * [------------------------------] ===> (a range of space)
2295 * |<--->| |<---->| =============> (fs/file tree A)
2296 * |<---------------------------->| ===> (fs/file tree B)
2298 * A range of space can refer to two file extents in one tree while
2299 * refer to only one file extent in another tree.
2301 * So we may process a disk offset more than one time(two extents in A)
2302 * and locate at the same extent(one extent in B), then insert two same
2303 * backrefs(both refer to the extent in B).
2308 static void backref_insert(struct rb_root *root,
2309 struct sa_defrag_extent_backref *backref)
2311 struct rb_node **p = &root->rb_node;
2312 struct rb_node *parent = NULL;
2313 struct sa_defrag_extent_backref *entry;
2318 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2320 ret = backref_comp(backref, entry);
2324 p = &(*p)->rb_right;
2327 rb_link_node(&backref->node, parent, p);
2328 rb_insert_color(&backref->node, root);
2332 * Note the backref might has changed, and in this case we just return 0.
2334 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2337 struct btrfs_file_extent_item *extent;
2338 struct old_sa_defrag_extent *old = ctx;
2339 struct new_sa_defrag_extent *new = old->new;
2340 struct btrfs_path *path = new->path;
2341 struct btrfs_key key;
2342 struct btrfs_root *root;
2343 struct sa_defrag_extent_backref *backref;
2344 struct extent_buffer *leaf;
2345 struct inode *inode = new->inode;
2346 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2352 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2353 inum == btrfs_ino(BTRFS_I(inode)))
2356 key.objectid = root_id;
2357 key.type = BTRFS_ROOT_ITEM_KEY;
2358 key.offset = (u64)-1;
2360 root = btrfs_read_fs_root_no_name(fs_info, &key);
2362 if (PTR_ERR(root) == -ENOENT)
2365 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2366 inum, offset, root_id);
2367 return PTR_ERR(root);
2370 key.objectid = inum;
2371 key.type = BTRFS_EXTENT_DATA_KEY;
2372 if (offset > (u64)-1 << 32)
2375 key.offset = offset;
2377 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2378 if (WARN_ON(ret < 0))
2385 leaf = path->nodes[0];
2386 slot = path->slots[0];
2388 if (slot >= btrfs_header_nritems(leaf)) {
2389 ret = btrfs_next_leaf(root, path);
2392 } else if (ret > 0) {
2401 btrfs_item_key_to_cpu(leaf, &key, slot);
2403 if (key.objectid > inum)
2406 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2409 extent = btrfs_item_ptr(leaf, slot,
2410 struct btrfs_file_extent_item);
2412 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2416 * 'offset' refers to the exact key.offset,
2417 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2418 * (key.offset - extent_offset).
2420 if (key.offset != offset)
2423 extent_offset = btrfs_file_extent_offset(leaf, extent);
2424 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2426 if (extent_offset >= old->extent_offset + old->offset +
2427 old->len || extent_offset + num_bytes <=
2428 old->extent_offset + old->offset)
2433 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2439 backref->root_id = root_id;
2440 backref->inum = inum;
2441 backref->file_pos = offset;
2442 backref->num_bytes = num_bytes;
2443 backref->extent_offset = extent_offset;
2444 backref->generation = btrfs_file_extent_generation(leaf, extent);
2446 backref_insert(&new->root, backref);
2449 btrfs_release_path(path);
2454 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2455 struct new_sa_defrag_extent *new)
2457 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2458 struct old_sa_defrag_extent *old, *tmp;
2463 list_for_each_entry_safe(old, tmp, &new->head, list) {
2464 ret = iterate_inodes_from_logical(old->bytenr +
2465 old->extent_offset, fs_info,
2466 path, record_one_backref,
2468 if (ret < 0 && ret != -ENOENT)
2471 /* no backref to be processed for this extent */
2473 list_del(&old->list);
2478 if (list_empty(&new->head))
2484 static int relink_is_mergable(struct extent_buffer *leaf,
2485 struct btrfs_file_extent_item *fi,
2486 struct new_sa_defrag_extent *new)
2488 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2491 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2494 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2497 if (btrfs_file_extent_encryption(leaf, fi) ||
2498 btrfs_file_extent_other_encoding(leaf, fi))
2505 * Note the backref might has changed, and in this case we just return 0.
2507 static noinline int relink_extent_backref(struct btrfs_path *path,
2508 struct sa_defrag_extent_backref *prev,
2509 struct sa_defrag_extent_backref *backref)
2511 struct btrfs_file_extent_item *extent;
2512 struct btrfs_file_extent_item *item;
2513 struct btrfs_ordered_extent *ordered;
2514 struct btrfs_trans_handle *trans;
2515 struct btrfs_root *root;
2516 struct btrfs_key key;
2517 struct extent_buffer *leaf;
2518 struct old_sa_defrag_extent *old = backref->old;
2519 struct new_sa_defrag_extent *new = old->new;
2520 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2521 struct inode *inode;
2522 struct extent_state *cached = NULL;
2531 if (prev && prev->root_id == backref->root_id &&
2532 prev->inum == backref->inum &&
2533 prev->file_pos + prev->num_bytes == backref->file_pos)
2536 /* step 1: get root */
2537 key.objectid = backref->root_id;
2538 key.type = BTRFS_ROOT_ITEM_KEY;
2539 key.offset = (u64)-1;
2541 index = srcu_read_lock(&fs_info->subvol_srcu);
2543 root = btrfs_read_fs_root_no_name(fs_info, &key);
2545 srcu_read_unlock(&fs_info->subvol_srcu, index);
2546 if (PTR_ERR(root) == -ENOENT)
2548 return PTR_ERR(root);
2551 if (btrfs_root_readonly(root)) {
2552 srcu_read_unlock(&fs_info->subvol_srcu, index);
2556 /* step 2: get inode */
2557 key.objectid = backref->inum;
2558 key.type = BTRFS_INODE_ITEM_KEY;
2561 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2562 if (IS_ERR(inode)) {
2563 srcu_read_unlock(&fs_info->subvol_srcu, index);
2567 srcu_read_unlock(&fs_info->subvol_srcu, index);
2569 /* step 3: relink backref */
2570 lock_start = backref->file_pos;
2571 lock_end = backref->file_pos + backref->num_bytes - 1;
2572 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2575 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2577 btrfs_put_ordered_extent(ordered);
2581 trans = btrfs_join_transaction(root);
2582 if (IS_ERR(trans)) {
2583 ret = PTR_ERR(trans);
2587 key.objectid = backref->inum;
2588 key.type = BTRFS_EXTENT_DATA_KEY;
2589 key.offset = backref->file_pos;
2591 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2594 } else if (ret > 0) {
2599 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2600 struct btrfs_file_extent_item);
2602 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2603 backref->generation)
2606 btrfs_release_path(path);
2608 start = backref->file_pos;
2609 if (backref->extent_offset < old->extent_offset + old->offset)
2610 start += old->extent_offset + old->offset -
2611 backref->extent_offset;
2613 len = min(backref->extent_offset + backref->num_bytes,
2614 old->extent_offset + old->offset + old->len);
2615 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2617 ret = btrfs_drop_extents(trans, root, inode, start,
2622 key.objectid = btrfs_ino(BTRFS_I(inode));
2623 key.type = BTRFS_EXTENT_DATA_KEY;
2626 path->leave_spinning = 1;
2628 struct btrfs_file_extent_item *fi;
2630 struct btrfs_key found_key;
2632 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2637 leaf = path->nodes[0];
2638 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2640 fi = btrfs_item_ptr(leaf, path->slots[0],
2641 struct btrfs_file_extent_item);
2642 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2644 if (extent_len + found_key.offset == start &&
2645 relink_is_mergable(leaf, fi, new)) {
2646 btrfs_set_file_extent_num_bytes(leaf, fi,
2648 btrfs_mark_buffer_dirty(leaf);
2649 inode_add_bytes(inode, len);
2655 btrfs_release_path(path);
2660 ret = btrfs_insert_empty_item(trans, root, path, &key,
2663 btrfs_abort_transaction(trans, ret);
2667 leaf = path->nodes[0];
2668 item = btrfs_item_ptr(leaf, path->slots[0],
2669 struct btrfs_file_extent_item);
2670 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2671 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2672 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2673 btrfs_set_file_extent_num_bytes(leaf, item, len);
2674 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2675 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2676 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2677 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2678 btrfs_set_file_extent_encryption(leaf, item, 0);
2679 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2681 btrfs_mark_buffer_dirty(leaf);
2682 inode_add_bytes(inode, len);
2683 btrfs_release_path(path);
2685 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
2687 backref->root_id, backref->inum,
2688 new->file_pos); /* start - extent_offset */
2690 btrfs_abort_transaction(trans, ret);
2696 btrfs_release_path(path);
2697 path->leave_spinning = 0;
2698 btrfs_end_transaction(trans);
2700 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2706 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2708 struct old_sa_defrag_extent *old, *tmp;
2713 list_for_each_entry_safe(old, tmp, &new->head, list) {
2719 static void relink_file_extents(struct new_sa_defrag_extent *new)
2721 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2722 struct btrfs_path *path;
2723 struct sa_defrag_extent_backref *backref;
2724 struct sa_defrag_extent_backref *prev = NULL;
2725 struct inode *inode;
2726 struct btrfs_root *root;
2727 struct rb_node *node;
2731 root = BTRFS_I(inode)->root;
2733 path = btrfs_alloc_path();
2737 if (!record_extent_backrefs(path, new)) {
2738 btrfs_free_path(path);
2741 btrfs_release_path(path);
2744 node = rb_first(&new->root);
2747 rb_erase(node, &new->root);
2749 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2751 ret = relink_extent_backref(path, prev, backref);
2764 btrfs_free_path(path);
2766 free_sa_defrag_extent(new);
2768 atomic_dec(&fs_info->defrag_running);
2769 wake_up(&fs_info->transaction_wait);
2772 static struct new_sa_defrag_extent *
2773 record_old_file_extents(struct inode *inode,
2774 struct btrfs_ordered_extent *ordered)
2776 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2777 struct btrfs_root *root = BTRFS_I(inode)->root;
2778 struct btrfs_path *path;
2779 struct btrfs_key key;
2780 struct old_sa_defrag_extent *old;
2781 struct new_sa_defrag_extent *new;
2784 new = kmalloc(sizeof(*new), GFP_NOFS);
2789 new->file_pos = ordered->file_offset;
2790 new->len = ordered->len;
2791 new->bytenr = ordered->start;
2792 new->disk_len = ordered->disk_len;
2793 new->compress_type = ordered->compress_type;
2794 new->root = RB_ROOT;
2795 INIT_LIST_HEAD(&new->head);
2797 path = btrfs_alloc_path();
2801 key.objectid = btrfs_ino(BTRFS_I(inode));
2802 key.type = BTRFS_EXTENT_DATA_KEY;
2803 key.offset = new->file_pos;
2805 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2808 if (ret > 0 && path->slots[0] > 0)
2811 /* find out all the old extents for the file range */
2813 struct btrfs_file_extent_item *extent;
2814 struct extent_buffer *l;
2823 slot = path->slots[0];
2825 if (slot >= btrfs_header_nritems(l)) {
2826 ret = btrfs_next_leaf(root, path);
2834 btrfs_item_key_to_cpu(l, &key, slot);
2836 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2838 if (key.type != BTRFS_EXTENT_DATA_KEY)
2840 if (key.offset >= new->file_pos + new->len)
2843 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2845 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2846 if (key.offset + num_bytes < new->file_pos)
2849 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2853 extent_offset = btrfs_file_extent_offset(l, extent);
2855 old = kmalloc(sizeof(*old), GFP_NOFS);
2859 offset = max(new->file_pos, key.offset);
2860 end = min(new->file_pos + new->len, key.offset + num_bytes);
2862 old->bytenr = disk_bytenr;
2863 old->extent_offset = extent_offset;
2864 old->offset = offset - key.offset;
2865 old->len = end - offset;
2868 list_add_tail(&old->list, &new->head);
2874 btrfs_free_path(path);
2875 atomic_inc(&fs_info->defrag_running);
2880 btrfs_free_path(path);
2882 free_sa_defrag_extent(new);
2886 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2889 struct btrfs_block_group_cache *cache;
2891 cache = btrfs_lookup_block_group(fs_info, start);
2894 spin_lock(&cache->lock);
2895 cache->delalloc_bytes -= len;
2896 spin_unlock(&cache->lock);
2898 btrfs_put_block_group(cache);
2901 /* as ordered data IO finishes, this gets called so we can finish
2902 * an ordered extent if the range of bytes in the file it covers are
2905 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2907 struct inode *inode = ordered_extent->inode;
2908 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2909 struct btrfs_root *root = BTRFS_I(inode)->root;
2910 struct btrfs_trans_handle *trans = NULL;
2911 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2912 struct extent_state *cached_state = NULL;
2913 struct new_sa_defrag_extent *new = NULL;
2914 int compress_type = 0;
2916 u64 logical_len = ordered_extent->len;
2918 bool truncated = false;
2919 bool range_locked = false;
2920 bool clear_new_delalloc_bytes = false;
2922 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2923 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2924 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2925 clear_new_delalloc_bytes = true;
2927 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2929 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2934 btrfs_free_io_failure_record(BTRFS_I(inode),
2935 ordered_extent->file_offset,
2936 ordered_extent->file_offset +
2937 ordered_extent->len - 1);
2939 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2941 logical_len = ordered_extent->truncated_len;
2942 /* Truncated the entire extent, don't bother adding */
2947 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2948 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2951 * For mwrite(mmap + memset to write) case, we still reserve
2952 * space for NOCOW range.
2953 * As NOCOW won't cause a new delayed ref, just free the space
2955 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2956 ordered_extent->len);
2957 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2959 trans = btrfs_join_transaction_nolock(root);
2961 trans = btrfs_join_transaction(root);
2962 if (IS_ERR(trans)) {
2963 ret = PTR_ERR(trans);
2967 trans->block_rsv = &fs_info->delalloc_block_rsv;
2968 ret = btrfs_update_inode_fallback(trans, root, inode);
2969 if (ret) /* -ENOMEM or corruption */
2970 btrfs_abort_transaction(trans, ret);
2974 range_locked = true;
2975 lock_extent_bits(io_tree, ordered_extent->file_offset,
2976 ordered_extent->file_offset + ordered_extent->len - 1,
2979 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2980 ordered_extent->file_offset + ordered_extent->len - 1,
2981 EXTENT_DEFRAG, 0, cached_state);
2983 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2984 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2985 /* the inode is shared */
2986 new = record_old_file_extents(inode, ordered_extent);
2988 clear_extent_bit(io_tree, ordered_extent->file_offset,
2989 ordered_extent->file_offset + ordered_extent->len - 1,
2990 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2994 trans = btrfs_join_transaction_nolock(root);
2996 trans = btrfs_join_transaction(root);
2997 if (IS_ERR(trans)) {
2998 ret = PTR_ERR(trans);
3003 trans->block_rsv = &fs_info->delalloc_block_rsv;
3005 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3006 compress_type = ordered_extent->compress_type;
3007 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3008 BUG_ON(compress_type);
3009 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3010 ordered_extent->file_offset,
3011 ordered_extent->file_offset +
3014 BUG_ON(root == fs_info->tree_root);
3015 ret = insert_reserved_file_extent(trans, inode,
3016 ordered_extent->file_offset,
3017 ordered_extent->start,
3018 ordered_extent->disk_len,
3019 logical_len, logical_len,
3020 compress_type, 0, 0,
3021 BTRFS_FILE_EXTENT_REG);
3023 btrfs_release_delalloc_bytes(fs_info,
3024 ordered_extent->start,
3025 ordered_extent->disk_len);
3027 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3028 ordered_extent->file_offset, ordered_extent->len,
3031 btrfs_abort_transaction(trans, ret);
3035 add_pending_csums(trans, inode, &ordered_extent->list);
3037 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3038 ret = btrfs_update_inode_fallback(trans, root, inode);
3039 if (ret) { /* -ENOMEM or corruption */
3040 btrfs_abort_transaction(trans, ret);
3045 if (range_locked || clear_new_delalloc_bytes) {
3046 unsigned int clear_bits = 0;
3049 clear_bits |= EXTENT_LOCKED;
3050 if (clear_new_delalloc_bytes)
3051 clear_bits |= EXTENT_DELALLOC_NEW;
3052 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3053 ordered_extent->file_offset,
3054 ordered_extent->file_offset +
3055 ordered_extent->len - 1,
3057 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3058 0, &cached_state, GFP_NOFS);
3061 if (root != fs_info->tree_root)
3062 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3063 ordered_extent->len);
3065 btrfs_end_transaction(trans);
3067 if (ret || truncated) {
3071 start = ordered_extent->file_offset + logical_len;
3073 start = ordered_extent->file_offset;
3074 end = ordered_extent->file_offset + ordered_extent->len - 1;
3075 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3077 /* Drop the cache for the part of the extent we didn't write. */
3078 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3081 * If the ordered extent had an IOERR or something else went
3082 * wrong we need to return the space for this ordered extent
3083 * back to the allocator. We only free the extent in the
3084 * truncated case if we didn't write out the extent at all.
3086 if ((ret || !logical_len) &&
3087 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3088 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3089 btrfs_free_reserved_extent(fs_info,
3090 ordered_extent->start,
3091 ordered_extent->disk_len, 1);
3096 * This needs to be done to make sure anybody waiting knows we are done
3097 * updating everything for this ordered extent.
3099 btrfs_remove_ordered_extent(inode, ordered_extent);
3101 /* for snapshot-aware defrag */
3104 free_sa_defrag_extent(new);
3105 atomic_dec(&fs_info->defrag_running);
3107 relink_file_extents(new);
3112 btrfs_put_ordered_extent(ordered_extent);
3113 /* once for the tree */
3114 btrfs_put_ordered_extent(ordered_extent);
3119 static void finish_ordered_fn(struct btrfs_work *work)
3121 struct btrfs_ordered_extent *ordered_extent;
3122 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3123 btrfs_finish_ordered_io(ordered_extent);
3126 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3127 struct extent_state *state, int uptodate)
3129 struct inode *inode = page->mapping->host;
3130 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3131 struct btrfs_ordered_extent *ordered_extent = NULL;
3132 struct btrfs_workqueue *wq;
3133 btrfs_work_func_t func;
3135 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3137 ClearPagePrivate2(page);
3138 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3139 end - start + 1, uptodate))
3142 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3143 wq = fs_info->endio_freespace_worker;
3144 func = btrfs_freespace_write_helper;
3146 wq = fs_info->endio_write_workers;
3147 func = btrfs_endio_write_helper;
3150 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3152 btrfs_queue_work(wq, &ordered_extent->work);
3155 static int __readpage_endio_check(struct inode *inode,
3156 struct btrfs_io_bio *io_bio,
3157 int icsum, struct page *page,
3158 int pgoff, u64 start, size_t len)
3164 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3166 kaddr = kmap_atomic(page);
3167 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3168 btrfs_csum_final(csum, (u8 *)&csum);
3169 if (csum != csum_expected)
3172 kunmap_atomic(kaddr);
3175 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3176 io_bio->mirror_num);
3177 memset(kaddr + pgoff, 1, len);
3178 flush_dcache_page(page);
3179 kunmap_atomic(kaddr);
3184 * when reads are done, we need to check csums to verify the data is correct
3185 * if there's a match, we allow the bio to finish. If not, the code in
3186 * extent_io.c will try to find good copies for us.
3188 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3189 u64 phy_offset, struct page *page,
3190 u64 start, u64 end, int mirror)
3192 size_t offset = start - page_offset(page);
3193 struct inode *inode = page->mapping->host;
3194 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3195 struct btrfs_root *root = BTRFS_I(inode)->root;
3197 if (PageChecked(page)) {
3198 ClearPageChecked(page);
3202 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3205 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3206 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3207 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3211 phy_offset >>= inode->i_sb->s_blocksize_bits;
3212 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3213 start, (size_t)(end - start + 1));
3216 void btrfs_add_delayed_iput(struct inode *inode)
3218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3219 struct btrfs_inode *binode = BTRFS_I(inode);
3221 if (atomic_add_unless(&inode->i_count, -1, 1))
3224 spin_lock(&fs_info->delayed_iput_lock);
3225 if (binode->delayed_iput_count == 0) {
3226 ASSERT(list_empty(&binode->delayed_iput));
3227 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3229 binode->delayed_iput_count++;
3231 spin_unlock(&fs_info->delayed_iput_lock);
3234 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)