2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
54 #include "inode-map.h"
56 #include "rcu-string.h"
58 #include "dev-replace.h"
63 #include "compression.h"
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
71 struct btrfs_ioctl_timespec_32 {
74 } __attribute__ ((__packed__));
76 struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
83 __u64 reserved[16]; /* in */
84 } __attribute__ ((__packed__));
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
91 static int btrfs_clone(struct inode *src, struct inode *inode,
92 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
95 /* Mask out flags that are inappropriate for the given type of inode. */
96 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
100 else if (S_ISREG(mode))
101 return flags & ~FS_DIRSYNC_FL;
103 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
111 unsigned int iflags = 0;
113 if (flags & BTRFS_INODE_SYNC)
114 iflags |= FS_SYNC_FL;
115 if (flags & BTRFS_INODE_IMMUTABLE)
116 iflags |= FS_IMMUTABLE_FL;
117 if (flags & BTRFS_INODE_APPEND)
118 iflags |= FS_APPEND_FL;
119 if (flags & BTRFS_INODE_NODUMP)
120 iflags |= FS_NODUMP_FL;
121 if (flags & BTRFS_INODE_NOATIME)
122 iflags |= FS_NOATIME_FL;
123 if (flags & BTRFS_INODE_DIRSYNC)
124 iflags |= FS_DIRSYNC_FL;
125 if (flags & BTRFS_INODE_NODATACOW)
126 iflags |= FS_NOCOW_FL;
128 if (flags & BTRFS_INODE_NOCOMPRESS)
129 iflags |= FS_NOCOMP_FL;
130 else if (flags & BTRFS_INODE_COMPRESS)
131 iflags |= FS_COMPR_FL;
137 * Update inode->i_flags based on the btrfs internal flags.
139 void btrfs_update_iflags(struct inode *inode)
141 struct btrfs_inode *ip = BTRFS_I(inode);
142 unsigned int new_fl = 0;
144 if (ip->flags & BTRFS_INODE_SYNC)
146 if (ip->flags & BTRFS_INODE_IMMUTABLE)
147 new_fl |= S_IMMUTABLE;
148 if (ip->flags & BTRFS_INODE_APPEND)
150 if (ip->flags & BTRFS_INODE_NOATIME)
152 if (ip->flags & BTRFS_INODE_DIRSYNC)
155 set_mask_bits(&inode->i_flags,
156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
161 * Inherit flags from the parent inode.
163 * Currently only the compression flags and the cow flags are inherited.
165 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
172 flags = BTRFS_I(dir)->flags;
174 if (flags & BTRFS_INODE_NOCOMPRESS) {
175 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
176 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
177 } else if (flags & BTRFS_INODE_COMPRESS) {
178 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
179 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
182 if (flags & BTRFS_INODE_NODATACOW) {
183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
184 if (S_ISREG(inode->i_mode))
185 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
188 btrfs_update_iflags(inode);
191 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
193 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
194 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
196 if (copy_to_user(arg, &flags, sizeof(flags)))
201 static int check_flags(unsigned int flags)
203 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
204 FS_NOATIME_FL | FS_NODUMP_FL | \
205 FS_SYNC_FL | FS_DIRSYNC_FL | \
206 FS_NOCOMP_FL | FS_COMPR_FL |
210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
216 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
218 struct inode *inode = file_inode(file);
219 struct btrfs_inode *ip = BTRFS_I(inode);
220 struct btrfs_root *root = ip->root;
221 struct btrfs_trans_handle *trans;
222 unsigned int flags, oldflags;
225 unsigned int i_oldflags;
228 if (!inode_owner_or_capable(inode))
231 if (btrfs_root_readonly(root))
234 if (copy_from_user(&flags, arg, sizeof(flags)))
237 ret = check_flags(flags);
241 ret = mnt_want_write_file(file);
247 ip_oldflags = ip->flags;
248 i_oldflags = inode->i_flags;
249 mode = inode->i_mode;
251 flags = btrfs_mask_flags(inode->i_mode, flags);
252 oldflags = btrfs_flags_to_ioctl(ip->flags);
253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254 if (!capable(CAP_LINUX_IMMUTABLE)) {
260 if (flags & FS_SYNC_FL)
261 ip->flags |= BTRFS_INODE_SYNC;
263 ip->flags &= ~BTRFS_INODE_SYNC;
264 if (flags & FS_IMMUTABLE_FL)
265 ip->flags |= BTRFS_INODE_IMMUTABLE;
267 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268 if (flags & FS_APPEND_FL)
269 ip->flags |= BTRFS_INODE_APPEND;
271 ip->flags &= ~BTRFS_INODE_APPEND;
272 if (flags & FS_NODUMP_FL)
273 ip->flags |= BTRFS_INODE_NODUMP;
275 ip->flags &= ~BTRFS_INODE_NODUMP;
276 if (flags & FS_NOATIME_FL)
277 ip->flags |= BTRFS_INODE_NOATIME;
279 ip->flags &= ~BTRFS_INODE_NOATIME;
280 if (flags & FS_DIRSYNC_FL)
281 ip->flags |= BTRFS_INODE_DIRSYNC;
283 ip->flags &= ~BTRFS_INODE_DIRSYNC;
284 if (flags & FS_NOCOW_FL) {
287 * It's safe to turn csums off here, no extents exist.
288 * Otherwise we want the flag to reflect the real COW
289 * status of the file and will not set it.
291 if (inode->i_size == 0)
292 ip->flags |= BTRFS_INODE_NODATACOW
293 | BTRFS_INODE_NODATASUM;
295 ip->flags |= BTRFS_INODE_NODATACOW;
299 * Revert back under same assumptions as above
302 if (inode->i_size == 0)
303 ip->flags &= ~(BTRFS_INODE_NODATACOW
304 | BTRFS_INODE_NODATASUM);
306 ip->flags &= ~BTRFS_INODE_NODATACOW;
311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 * flag may be changed automatically if compression code won't make
315 if (flags & FS_NOCOMP_FL) {
316 ip->flags &= ~BTRFS_INODE_COMPRESS;
317 ip->flags |= BTRFS_INODE_NOCOMPRESS;
319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320 if (ret && ret != -ENODATA)
322 } else if (flags & FS_COMPR_FL) {
325 ip->flags |= BTRFS_INODE_COMPRESS;
326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
328 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
332 ret = btrfs_set_prop(inode, "btrfs.compression",
333 comp, strlen(comp), 0);
338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339 if (ret && ret != -ENODATA)
341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
344 trans = btrfs_start_transaction(root, 1);
346 ret = PTR_ERR(trans);
350 btrfs_update_iflags(inode);
351 inode_inc_iversion(inode);
352 inode->i_ctime = current_time(inode);
353 ret = btrfs_update_inode(trans, root, inode);
355 btrfs_end_transaction(trans, root);
358 ip->flags = ip_oldflags;
359 inode->i_flags = i_oldflags;
364 mnt_drop_write_file(file);
368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
370 struct inode *inode = file_inode(file);
372 return put_user(inode->i_generation, arg);
375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
377 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
378 struct btrfs_device *device;
379 struct request_queue *q;
380 struct fstrim_range range;
381 u64 minlen = ULLONG_MAX;
383 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
386 if (!capable(CAP_SYS_ADMIN))
390 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
394 q = bdev_get_queue(device->bdev);
395 if (blk_queue_discard(q)) {
397 minlen = min((u64)q->limits.discard_granularity,
405 if (copy_from_user(&range, arg, sizeof(range)))
407 if (range.start > total_bytes ||
408 range.len < fs_info->sb->s_blocksize)
411 range.len = min(range.len, total_bytes - range.start);
412 range.minlen = max(range.minlen, minlen);
413 ret = btrfs_trim_fs(fs_info->tree_root, &range);
417 if (copy_to_user(arg, &range, sizeof(range)))
423 int btrfs_is_empty_uuid(u8 *uuid)
427 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
434 static noinline int create_subvol(struct inode *dir,
435 struct dentry *dentry,
436 char *name, int namelen,
438 struct btrfs_qgroup_inherit *inherit)
440 struct btrfs_trans_handle *trans;
441 struct btrfs_key key;
442 struct btrfs_root_item *root_item;
443 struct btrfs_inode_item *inode_item;
444 struct extent_buffer *leaf;
445 struct btrfs_root *root = BTRFS_I(dir)->root;
446 struct btrfs_root *new_root;
447 struct btrfs_block_rsv block_rsv;
448 struct timespec cur_time = current_time(dir);
453 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
458 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
462 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
467 * Don't create subvolume whose level is not zero. Or qgroup will be
468 * screwed up since it assumes subvolume qgroup's level to be 0.
470 if (btrfs_qgroup_level(objectid)) {
475 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
477 * The same as the snapshot creation, please see the comment
478 * of create_snapshot().
480 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
481 8, &qgroup_reserved, false);
485 trans = btrfs_start_transaction(root, 0);
487 ret = PTR_ERR(trans);
488 btrfs_subvolume_release_metadata(root, &block_rsv,
492 trans->block_rsv = &block_rsv;
493 trans->bytes_reserved = block_rsv.size;
495 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
499 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
505 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
506 btrfs_set_header_bytenr(leaf, leaf->start);
507 btrfs_set_header_generation(leaf, trans->transid);
508 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
509 btrfs_set_header_owner(leaf, objectid);
511 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
513 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
514 btrfs_header_chunk_tree_uuid(leaf),
516 btrfs_mark_buffer_dirty(leaf);
518 inode_item = &root_item->inode;
519 btrfs_set_stack_inode_generation(inode_item, 1);
520 btrfs_set_stack_inode_size(inode_item, 3);
521 btrfs_set_stack_inode_nlink(inode_item, 1);
522 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
523 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
525 btrfs_set_root_flags(root_item, 0);
526 btrfs_set_root_limit(root_item, 0);
527 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
529 btrfs_set_root_bytenr(root_item, leaf->start);
530 btrfs_set_root_generation(root_item, trans->transid);
531 btrfs_set_root_level(root_item, 0);
532 btrfs_set_root_refs(root_item, 1);
533 btrfs_set_root_used(root_item, leaf->len);
534 btrfs_set_root_last_snapshot(root_item, 0);
536 btrfs_set_root_generation_v2(root_item,
537 btrfs_root_generation(root_item));
538 uuid_le_gen(&new_uuid);
539 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
540 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
541 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
542 root_item->ctime = root_item->otime;
543 btrfs_set_root_ctransid(root_item, trans->transid);
544 btrfs_set_root_otransid(root_item, trans->transid);
546 btrfs_tree_unlock(leaf);
547 free_extent_buffer(leaf);
550 btrfs_set_root_dirid(root_item, new_dirid);
552 key.objectid = objectid;
554 key.type = BTRFS_ROOT_ITEM_KEY;
555 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
560 key.offset = (u64)-1;
561 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
562 if (IS_ERR(new_root)) {
563 ret = PTR_ERR(new_root);
564 btrfs_abort_transaction(trans, ret);
568 btrfs_record_root_in_trans(trans, new_root);
570 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
572 /* We potentially lose an unused inode item here */
573 btrfs_abort_transaction(trans, ret);
577 mutex_lock(&new_root->objectid_mutex);
578 new_root->highest_objectid = new_dirid;
579 mutex_unlock(&new_root->objectid_mutex);
582 * insert the directory item
584 ret = btrfs_set_inode_index(dir, &index);
586 btrfs_abort_transaction(trans, ret);
590 ret = btrfs_insert_dir_item(trans, root,
591 name, namelen, dir, &key,
592 BTRFS_FT_DIR, index);
594 btrfs_abort_transaction(trans, ret);
598 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
599 ret = btrfs_update_inode(trans, root, dir);
602 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
603 objectid, root->root_key.objectid,
604 btrfs_ino(dir), index, name, namelen);
607 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
608 root_item->uuid, BTRFS_UUID_KEY_SUBVOL,
611 btrfs_abort_transaction(trans, ret);
615 trans->block_rsv = NULL;
616 trans->bytes_reserved = 0;
617 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
620 *async_transid = trans->transid;
621 err = btrfs_commit_transaction_async(trans, root, 1);
623 err = btrfs_commit_transaction(trans, root);
625 err = btrfs_commit_transaction(trans, root);
631 inode = btrfs_lookup_dentry(dir, dentry);
633 return PTR_ERR(inode);
634 d_instantiate(dentry, inode);
643 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
649 prepare_to_wait(&root->subv_writers->wait, &wait,
650 TASK_UNINTERRUPTIBLE);
652 writers = percpu_counter_sum(&root->subv_writers->counter);
656 finish_wait(&root->subv_writers->wait, &wait);
660 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
661 struct dentry *dentry, char *name, int namelen,
662 u64 *async_transid, bool readonly,
663 struct btrfs_qgroup_inherit *inherit)
666 struct btrfs_pending_snapshot *pending_snapshot;
667 struct btrfs_trans_handle *trans;
670 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
673 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
674 if (!pending_snapshot)
677 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
679 pending_snapshot->path = btrfs_alloc_path();
680 if (!pending_snapshot->root_item || !pending_snapshot->path) {
685 atomic_inc(&root->will_be_snapshoted);
686 smp_mb__after_atomic();
687 btrfs_wait_for_no_snapshoting_writes(root);
689 ret = btrfs_start_delalloc_inodes(root, 0);
693 btrfs_wait_ordered_extents(root, -1, 0, (u64)-1);
695 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
696 BTRFS_BLOCK_RSV_TEMP);
698 * 1 - parent dir inode
701 * 2 - root ref/backref
702 * 1 - root of snapshot
705 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
706 &pending_snapshot->block_rsv, 8,
707 &pending_snapshot->qgroup_reserved,
712 pending_snapshot->dentry = dentry;
713 pending_snapshot->root = root;
714 pending_snapshot->readonly = readonly;
715 pending_snapshot->dir = dir;
716 pending_snapshot->inherit = inherit;
718 trans = btrfs_start_transaction(root, 0);
720 ret = PTR_ERR(trans);
724 spin_lock(&root->fs_info->trans_lock);
725 list_add(&pending_snapshot->list,
726 &trans->transaction->pending_snapshots);
727 spin_unlock(&root->fs_info->trans_lock);
729 *async_transid = trans->transid;
730 ret = btrfs_commit_transaction_async(trans,
731 root->fs_info->extent_root, 1);
733 ret = btrfs_commit_transaction(trans, root);
735 ret = btrfs_commit_transaction(trans,
736 root->fs_info->extent_root);
741 ret = pending_snapshot->error;
745 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
749 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
751 ret = PTR_ERR(inode);
755 d_instantiate(dentry, inode);
758 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
759 &pending_snapshot->block_rsv,
760 pending_snapshot->qgroup_reserved);
762 if (atomic_dec_and_test(&root->will_be_snapshoted))
763 wake_up_atomic_t(&root->will_be_snapshoted);
765 kfree(pending_snapshot->root_item);
766 btrfs_free_path(pending_snapshot->path);
767 kfree(pending_snapshot);
772 /* copy of may_delete in fs/namei.c()
773 * Check whether we can remove a link victim from directory dir, check
774 * whether the type of victim is right.
775 * 1. We can't do it if dir is read-only (done in permission())
776 * 2. We should have write and exec permissions on dir
777 * 3. We can't remove anything from append-only dir
778 * 4. We can't do anything with immutable dir (done in permission())
779 * 5. If the sticky bit on dir is set we should either
780 * a. be owner of dir, or
781 * b. be owner of victim, or
782 * c. have CAP_FOWNER capability
783 * 6. If the victim is append-only or immutable we can't do anything with
784 * links pointing to it.
785 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
786 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
787 * 9. We can't remove a root or mountpoint.
788 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
789 * nfs_async_unlink().
792 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
796 if (d_really_is_negative(victim))
799 BUG_ON(d_inode(victim->d_parent) != dir);
800 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
802 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
807 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
808 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
811 if (!d_is_dir(victim))
815 } else if (d_is_dir(victim))
819 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
824 /* copy of may_create in fs/namei.c() */
825 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
827 if (d_really_is_positive(child))
831 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
835 * Create a new subvolume below @parent. This is largely modeled after
836 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
837 * inside this filesystem so it's quite a bit simpler.
839 static noinline int btrfs_mksubvol(struct path *parent,
840 char *name, int namelen,
841 struct btrfs_root *snap_src,
842 u64 *async_transid, bool readonly,
843 struct btrfs_qgroup_inherit *inherit)
845 struct inode *dir = d_inode(parent->dentry);
846 struct dentry *dentry;
849 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
853 dentry = lookup_one_len(name, parent->dentry, namelen);
854 error = PTR_ERR(dentry);
858 error = btrfs_may_create(dir, dentry);
863 * even if this name doesn't exist, we may get hash collisions.
864 * check for them now when we can safely fail
866 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
872 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
874 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
878 error = create_snapshot(snap_src, dir, dentry, name, namelen,
879 async_transid, readonly, inherit);
881 error = create_subvol(dir, dentry, name, namelen,
882 async_transid, inherit);
885 fsnotify_mkdir(dir, dentry);
887 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
896 * When we're defragging a range, we don't want to kick it off again
897 * if it is really just waiting for delalloc to send it down.
898 * If we find a nice big extent or delalloc range for the bytes in the
899 * file you want to defrag, we return 0 to let you know to skip this
902 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
904 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
905 struct extent_map *em = NULL;
906 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
909 read_lock(&em_tree->lock);
910 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
911 read_unlock(&em_tree->lock);
914 end = extent_map_end(em);
916 if (end - offset > thresh)
919 /* if we already have a nice delalloc here, just stop */
921 end = count_range_bits(io_tree, &offset, offset + thresh,
922 thresh, EXTENT_DELALLOC, 1);
929 * helper function to walk through a file and find extents
930 * newer than a specific transid, and smaller than thresh.
932 * This is used by the defragging code to find new and small
935 static int find_new_extents(struct btrfs_root *root,
936 struct inode *inode, u64 newer_than,
937 u64 *off, u32 thresh)
939 struct btrfs_path *path;
940 struct btrfs_key min_key;
941 struct extent_buffer *leaf;
942 struct btrfs_file_extent_item *extent;
945 u64 ino = btrfs_ino(inode);
947 path = btrfs_alloc_path();
951 min_key.objectid = ino;
952 min_key.type = BTRFS_EXTENT_DATA_KEY;
953 min_key.offset = *off;
956 ret = btrfs_search_forward(root, &min_key, path, newer_than);
960 if (min_key.objectid != ino)
962 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
965 leaf = path->nodes[0];
966 extent = btrfs_item_ptr(leaf, path->slots[0],
967 struct btrfs_file_extent_item);
969 type = btrfs_file_extent_type(leaf, extent);
970 if (type == BTRFS_FILE_EXTENT_REG &&
971 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
972 check_defrag_in_cache(inode, min_key.offset, thresh)) {
973 *off = min_key.offset;
974 btrfs_free_path(path);
979 if (path->slots[0] < btrfs_header_nritems(leaf)) {
980 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
984 if (min_key.offset == (u64)-1)
988 btrfs_release_path(path);
991 btrfs_free_path(path);
995 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
997 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
998 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
999 struct extent_map *em;
1000 u64 len = PAGE_SIZE;
1003 * hopefully we have this extent in the tree already, try without
1004 * the full extent lock
1006 read_lock(&em_tree->lock);
1007 em = lookup_extent_mapping(em_tree, start, len);
1008 read_unlock(&em_tree->lock);
1011 struct extent_state *cached = NULL;
1012 u64 end = start + len - 1;
1014 /* get the big lock and read metadata off disk */
1015 lock_extent_bits(io_tree, start, end, &cached);
1016 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1017 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1026 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1028 struct extent_map *next;
1031 /* this is the last extent */
1032 if (em->start + em->len >= i_size_read(inode))
1035 next = defrag_lookup_extent(inode, em->start + em->len);
1036 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1038 else if ((em->block_start + em->block_len == next->block_start) &&
1039 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1042 free_extent_map(next);
1046 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1047 u64 *last_len, u64 *skip, u64 *defrag_end,
1050 struct extent_map *em;
1052 bool next_mergeable = true;
1053 bool prev_mergeable = true;
1056 * make sure that once we start defragging an extent, we keep on
1059 if (start < *defrag_end)
1064 em = defrag_lookup_extent(inode, start);
1068 /* this will cover holes, and inline extents */
1069 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1075 prev_mergeable = false;
1077 next_mergeable = defrag_check_next_extent(inode, em);
1079 * we hit a real extent, if it is big or the next extent is not a
1080 * real extent, don't bother defragging it
1082 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1083 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1087 * last_len ends up being a counter of how many bytes we've defragged.
1088 * every time we choose not to defrag an extent, we reset *last_len
1089 * so that the next tiny extent will force a defrag.
1091 * The end result of this is that tiny extents before a single big
1092 * extent will force at least part of that big extent to be defragged.
1095 *defrag_end = extent_map_end(em);
1098 *skip = extent_map_end(em);
1102 free_extent_map(em);
1107 * it doesn't do much good to defrag one or two pages
1108 * at a time. This pulls in a nice chunk of pages
1109 * to COW and defrag.
1111 * It also makes sure the delalloc code has enough
1112 * dirty data to avoid making new small extents as part
1115 * It's a good idea to start RA on this range
1116 * before calling this.
1118 static int cluster_pages_for_defrag(struct inode *inode,
1119 struct page **pages,
1120 unsigned long start_index,
1121 unsigned long num_pages)
1123 unsigned long file_end;
1124 u64 isize = i_size_read(inode);
1131 struct btrfs_ordered_extent *ordered;
1132 struct extent_state *cached_state = NULL;
1133 struct extent_io_tree *tree;
1134 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1136 file_end = (isize - 1) >> PAGE_SHIFT;
1137 if (!isize || start_index > file_end)
1140 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1142 ret = btrfs_delalloc_reserve_space(inode,
1143 start_index << PAGE_SHIFT,
1144 page_cnt << PAGE_SHIFT);
1148 tree = &BTRFS_I(inode)->io_tree;
1150 /* step one, lock all the pages */
1151 for (i = 0; i < page_cnt; i++) {
1154 page = find_or_create_page(inode->i_mapping,
1155 start_index + i, mask);
1159 page_start = page_offset(page);
1160 page_end = page_start + PAGE_SIZE - 1;
1162 lock_extent_bits(tree, page_start, page_end,
1164 ordered = btrfs_lookup_ordered_extent(inode,
1166 unlock_extent_cached(tree, page_start, page_end,
1167 &cached_state, GFP_NOFS);
1172 btrfs_start_ordered_extent(inode, ordered, 1);
1173 btrfs_put_ordered_extent(ordered);
1176 * we unlocked the page above, so we need check if
1177 * it was released or not.
1179 if (page->mapping != inode->i_mapping) {
1186 if (!PageUptodate(page)) {
1187 btrfs_readpage(NULL, page);
1189 if (!PageUptodate(page)) {
1197 if (page->mapping != inode->i_mapping) {
1209 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1213 * so now we have a nice long stream of locked
1214 * and up to date pages, lets wait on them
1216 for (i = 0; i < i_done; i++)
1217 wait_on_page_writeback(pages[i]);
1219 page_start = page_offset(pages[0]);
1220 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1222 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1223 page_start, page_end - 1, &cached_state);
1224 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1225 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1226 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1227 &cached_state, GFP_NOFS);
1229 if (i_done != page_cnt) {
1230 spin_lock(&BTRFS_I(inode)->lock);
1231 BTRFS_I(inode)->outstanding_extents++;
1232 spin_unlock(&BTRFS_I(inode)->lock);
1233 btrfs_delalloc_release_space(inode,
1234 start_index << PAGE_SHIFT,
1235 (page_cnt - i_done) << PAGE_SHIFT);
1239 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1242 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1243 page_start, page_end - 1, &cached_state,
1246 for (i = 0; i < i_done; i++) {
1247 clear_page_dirty_for_io(pages[i]);
1248 ClearPageChecked(pages[i]);
1249 set_page_extent_mapped(pages[i]);
1250 set_page_dirty(pages[i]);
1251 unlock_page(pages[i]);
1256 for (i = 0; i < i_done; i++) {
1257 unlock_page(pages[i]);
1260 btrfs_delalloc_release_space(inode,
1261 start_index << PAGE_SHIFT,
1262 page_cnt << PAGE_SHIFT);
1267 int btrfs_defrag_file(struct inode *inode, struct file *file,
1268 struct btrfs_ioctl_defrag_range_args *range,
1269 u64 newer_than, unsigned long max_to_defrag)
1271 struct btrfs_root *root = BTRFS_I(inode)->root;
1272 struct file_ra_state *ra = NULL;
1273 unsigned long last_index;
1274 u64 isize = i_size_read(inode);
1278 u64 newer_off = range->start;
1280 unsigned long ra_index = 0;
1282 int defrag_count = 0;
1283 int compress_type = BTRFS_COMPRESS_ZLIB;
1284 u32 extent_thresh = range->extent_thresh;
1285 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1286 unsigned long cluster = max_cluster;
1287 u64 new_align = ~((u64)SZ_128K - 1);
1288 struct page **pages = NULL;
1293 if (range->start >= isize)
1296 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1297 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1299 if (range->compress_type)
1300 compress_type = range->compress_type;
1303 if (extent_thresh == 0)
1304 extent_thresh = SZ_256K;
1307 * if we were not given a file, allocate a readahead
1311 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1314 file_ra_state_init(ra, inode->i_mapping);
1319 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1326 /* find the last page to defrag */
1327 if (range->start + range->len > range->start) {
1328 last_index = min_t(u64, isize - 1,
1329 range->start + range->len - 1) >> PAGE_SHIFT;
1331 last_index = (isize - 1) >> PAGE_SHIFT;
1335 ret = find_new_extents(root, inode, newer_than,
1336 &newer_off, SZ_64K);
1338 range->start = newer_off;
1340 * we always align our defrag to help keep
1341 * the extents in the file evenly spaced
1343 i = (newer_off & new_align) >> PAGE_SHIFT;
1347 i = range->start >> PAGE_SHIFT;
1350 max_to_defrag = last_index - i + 1;
1353 * make writeback starts from i, so the defrag range can be
1354 * written sequentially.
1356 if (i < inode->i_mapping->writeback_index)
1357 inode->i_mapping->writeback_index = i;
1359 while (i <= last_index && defrag_count < max_to_defrag &&
1360 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1362 * make sure we stop running if someone unmounts
1365 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1368 if (btrfs_defrag_cancelled(root->fs_info)) {
1369 btrfs_debug(root->fs_info, "defrag_file cancelled");
1374 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1375 extent_thresh, &last_len, &skip,
1376 &defrag_end, range->flags &
1377 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1380 * the should_defrag function tells us how much to skip
1381 * bump our counter by the suggested amount
1383 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1384 i = max(i + 1, next);
1389 cluster = (PAGE_ALIGN(defrag_end) >>
1391 cluster = min(cluster, max_cluster);
1393 cluster = max_cluster;
1396 if (i + cluster > ra_index) {
1397 ra_index = max(i, ra_index);
1398 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1400 ra_index += cluster;
1404 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1405 BTRFS_I(inode)->force_compress = compress_type;
1406 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1408 inode_unlock(inode);
1412 defrag_count += ret;
1413 balance_dirty_pages_ratelimited(inode->i_mapping);
1414 inode_unlock(inode);
1417 if (newer_off == (u64)-1)
1423 newer_off = max(newer_off + 1,
1424 (u64)i << PAGE_SHIFT);
1426 ret = find_new_extents(root, inode, newer_than,
1427 &newer_off, SZ_64K);
1429 range->start = newer_off;
1430 i = (newer_off & new_align) >> PAGE_SHIFT;
1437 last_len += ret << PAGE_SHIFT;
1445 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1446 filemap_flush(inode->i_mapping);
1447 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1448 &BTRFS_I(inode)->runtime_flags))
1449 filemap_flush(inode->i_mapping);
1452 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1453 /* the filemap_flush will queue IO into the worker threads, but
1454 * we have to make sure the IO is actually started and that
1455 * ordered extents get created before we return
1457 atomic_inc(&root->fs_info->async_submit_draining);
1458 while (atomic_read(&root->fs_info->nr_async_submits) ||
1459 atomic_read(&root->fs_info->async_delalloc_pages)) {
1460 wait_event(root->fs_info->async_submit_wait,
1461 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1462 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1464 atomic_dec(&root->fs_info->async_submit_draining);
1467 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1468 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1474 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1476 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1477 inode_unlock(inode);
1485 static noinline int btrfs_ioctl_resize(struct file *file,
1491 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1492 struct btrfs_ioctl_vol_args *vol_args;
1493 struct btrfs_trans_handle *trans;
1494 struct btrfs_device *device = NULL;
1497 char *devstr = NULL;
1501 if (!capable(CAP_SYS_ADMIN))
1504 ret = mnt_want_write_file(file);
1508 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1510 mnt_drop_write_file(file);
1511 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1514 mutex_lock(&root->fs_info->volume_mutex);
1515 vol_args = memdup_user(arg, sizeof(*vol_args));
1516 if (IS_ERR(vol_args)) {
1517 ret = PTR_ERR(vol_args);
1521 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1523 sizestr = vol_args->name;
1524 devstr = strchr(sizestr, ':');
1526 sizestr = devstr + 1;
1528 devstr = vol_args->name;
1529 ret = kstrtoull(devstr, 10, &devid);
1536 btrfs_info(root->fs_info, "resizing devid %llu", devid);
1539 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1541 btrfs_info(root->fs_info, "resizer unable to find device %llu",
1547 if (!device->writeable) {
1548 btrfs_info(root->fs_info,
1549 "resizer unable to apply on readonly device %llu",
1555 if (!strcmp(sizestr, "max"))
1556 new_size = device->bdev->bd_inode->i_size;
1558 if (sizestr[0] == '-') {
1561 } else if (sizestr[0] == '+') {
1565 new_size = memparse(sizestr, &retptr);
1566 if (*retptr != '\0' || new_size == 0) {
1572 if (device->is_tgtdev_for_dev_replace) {
1577 old_size = btrfs_device_get_total_bytes(device);
1580 if (new_size > old_size) {
1584 new_size = old_size - new_size;
1585 } else if (mod > 0) {
1586 if (new_size > ULLONG_MAX - old_size) {
1590 new_size = old_size + new_size;
1593 if (new_size < SZ_256M) {
1597 if (new_size > device->bdev->bd_inode->i_size) {
1602 new_size = div_u64(new_size, root->sectorsize);
1603 new_size *= root->sectorsize;
1605 btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1606 rcu_str_deref(device->name), new_size);
1608 if (new_size > old_size) {
1609 trans = btrfs_start_transaction(root, 0);
1610 if (IS_ERR(trans)) {
1611 ret = PTR_ERR(trans);
1614 ret = btrfs_grow_device(trans, device, new_size);
1615 btrfs_commit_transaction(trans, root);
1616 } else if (new_size < old_size) {
1617 ret = btrfs_shrink_device(device, new_size);
1618 } /* equal, nothing need to do */
1623 mutex_unlock(&root->fs_info->volume_mutex);
1624 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1625 mnt_drop_write_file(file);
1629 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1630 char *name, unsigned long fd, int subvol,
1631 u64 *transid, bool readonly,
1632 struct btrfs_qgroup_inherit *inherit)
1637 if (!S_ISDIR(file_inode(file)->i_mode))
1640 ret = mnt_want_write_file(file);
1644 namelen = strlen(name);
1645 if (strchr(name, '/')) {
1647 goto out_drop_write;
1650 if (name[0] == '.' &&
1651 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1653 goto out_drop_write;
1657 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1658 NULL, transid, readonly, inherit);
1660 struct fd src = fdget(fd);
1661 struct inode *src_inode;
1664 goto out_drop_write;
1667 src_inode = file_inode(src.file);
1668 if (src_inode->i_sb != file_inode(file)->i_sb) {
1669 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1670 "Snapshot src from another FS");
1672 } else if (!inode_owner_or_capable(src_inode)) {
1674 * Subvolume creation is not restricted, but snapshots
1675 * are limited to own subvolumes only
1679 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1680 BTRFS_I(src_inode)->root,
1681 transid, readonly, inherit);
1686 mnt_drop_write_file(file);
1691 static noinline int btrfs_ioctl_snap_create(struct file *file,
1692 void __user *arg, int subvol)
1694 struct btrfs_ioctl_vol_args *vol_args;
1697 if (!S_ISDIR(file_inode(file)->i_mode))
1700 vol_args = memdup_user(arg, sizeof(*vol_args));
1701 if (IS_ERR(vol_args))
1702 return PTR_ERR(vol_args);
1703 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1705 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1706 vol_args->fd, subvol,
1713 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1714 void __user *arg, int subvol)
1716 struct btrfs_ioctl_vol_args_v2 *vol_args;
1720 bool readonly = false;
1721 struct btrfs_qgroup_inherit *inherit = NULL;
1723 if (!S_ISDIR(file_inode(file)->i_mode))
1726 vol_args = memdup_user(arg, sizeof(*vol_args));
1727 if (IS_ERR(vol_args))
1728 return PTR_ERR(vol_args);
1729 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1731 if (vol_args->flags &
1732 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1733 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1738 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1740 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1742 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1743 if (vol_args->size > PAGE_SIZE) {
1747 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1748 if (IS_ERR(inherit)) {
1749 ret = PTR_ERR(inherit);
1754 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1755 vol_args->fd, subvol, ptr,
1760 if (ptr && copy_to_user(arg +
1761 offsetof(struct btrfs_ioctl_vol_args_v2,
1773 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1776 struct inode *inode = file_inode(file);
1777 struct btrfs_root *root = BTRFS_I(inode)->root;
1781 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1784 down_read(&root->fs_info->subvol_sem);
1785 if (btrfs_root_readonly(root))
1786 flags |= BTRFS_SUBVOL_RDONLY;
1787 up_read(&root->fs_info->subvol_sem);
1789 if (copy_to_user(arg, &flags, sizeof(flags)))
1795 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1798 struct inode *inode = file_inode(file);
1799 struct btrfs_root *root = BTRFS_I(inode)->root;
1800 struct btrfs_trans_handle *trans;
1805 if (!inode_owner_or_capable(inode))
1808 ret = mnt_want_write_file(file);
1812 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1814 goto out_drop_write;
1817 if (copy_from_user(&flags, arg, sizeof(flags))) {
1819 goto out_drop_write;
1822 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1824 goto out_drop_write;
1827 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1829 goto out_drop_write;
1832 down_write(&root->fs_info->subvol_sem);
1835 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1838 root_flags = btrfs_root_flags(&root->root_item);
1839 if (flags & BTRFS_SUBVOL_RDONLY) {
1840 btrfs_set_root_flags(&root->root_item,
1841 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1844 * Block RO -> RW transition if this subvolume is involved in
1847 spin_lock(&root->root_item_lock);
1848 if (root->send_in_progress == 0) {
1849 btrfs_set_root_flags(&root->root_item,
1850 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1851 spin_unlock(&root->root_item_lock);
1853 spin_unlock(&root->root_item_lock);
1854 btrfs_warn(root->fs_info,
1855 "Attempt to set subvolume %llu read-write during send",
1856 root->root_key.objectid);
1862 trans = btrfs_start_transaction(root, 1);
1863 if (IS_ERR(trans)) {
1864 ret = PTR_ERR(trans);
1868 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1869 &root->root_key, &root->root_item);
1871 btrfs_commit_transaction(trans, root);
1874 btrfs_set_root_flags(&root->root_item, root_flags);
1876 up_write(&root->fs_info->subvol_sem);
1878 mnt_drop_write_file(file);
1884 * helper to check if the subvolume references other subvolumes
1886 static noinline int may_destroy_subvol(struct btrfs_root *root)
1888 struct btrfs_path *path;
1889 struct btrfs_dir_item *di;
1890 struct btrfs_key key;
1894 path = btrfs_alloc_path();
1898 /* Make sure this root isn't set as the default subvol */
1899 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1900 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1901 dir_id, "default", 7, 0);
1902 if (di && !IS_ERR(di)) {
1903 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1904 if (key.objectid == root->root_key.objectid) {
1906 btrfs_err(root->fs_info,
1907 "deleting default subvolume %llu is not allowed",
1911 btrfs_release_path(path);
1914 key.objectid = root->root_key.objectid;
1915 key.type = BTRFS_ROOT_REF_KEY;
1916 key.offset = (u64)-1;
1918 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1925 if (path->slots[0] > 0) {
1927 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1928 if (key.objectid == root->root_key.objectid &&
1929 key.type == BTRFS_ROOT_REF_KEY)
1933 btrfs_free_path(path);
1937 static noinline int key_in_sk(struct btrfs_key *key,
1938 struct btrfs_ioctl_search_key *sk)
1940 struct btrfs_key test;
1943 test.objectid = sk->min_objectid;
1944 test.type = sk->min_type;
1945 test.offset = sk->min_offset;
1947 ret = btrfs_comp_cpu_keys(key, &test);
1951 test.objectid = sk->max_objectid;
1952 test.type = sk->max_type;
1953 test.offset = sk->max_offset;
1955 ret = btrfs_comp_cpu_keys(key, &test);
1961 static noinline int copy_to_sk(struct btrfs_path *path,
1962 struct btrfs_key *key,
1963 struct btrfs_ioctl_search_key *sk,
1966 unsigned long *sk_offset,
1970 struct extent_buffer *leaf;
1971 struct btrfs_ioctl_search_header sh;
1972 struct btrfs_key test;
1973 unsigned long item_off;
1974 unsigned long item_len;
1980 leaf = path->nodes[0];
1981 slot = path->slots[0];
1982 nritems = btrfs_header_nritems(leaf);
1984 if (btrfs_header_generation(leaf) > sk->max_transid) {
1988 found_transid = btrfs_header_generation(leaf);
1990 for (i = slot; i < nritems; i++) {
1991 item_off = btrfs_item_ptr_offset(leaf, i);
1992 item_len = btrfs_item_size_nr(leaf, i);
1994 btrfs_item_key_to_cpu(leaf, key, i);
1995 if (!key_in_sk(key, sk))
1998 if (sizeof(sh) + item_len > *buf_size) {
2005 * return one empty item back for v1, which does not
2009 *buf_size = sizeof(sh) + item_len;
2014 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2019 sh.objectid = key->objectid;
2020 sh.offset = key->offset;
2021 sh.type = key->type;
2023 sh.transid = found_transid;
2025 /* copy search result header */
2026 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2031 *sk_offset += sizeof(sh);
2034 char __user *up = ubuf + *sk_offset;
2036 if (read_extent_buffer_to_user(leaf, up,
2037 item_off, item_len)) {
2042 *sk_offset += item_len;
2046 if (ret) /* -EOVERFLOW from above */
2049 if (*num_found >= sk->nr_items) {
2056 test.objectid = sk->max_objectid;
2057 test.type = sk->max_type;
2058 test.offset = sk->max_offset;
2059 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2061 else if (key->offset < (u64)-1)
2063 else if (key->type < (u8)-1) {
2066 } else if (key->objectid < (u64)-1) {
2074 * 0: all items from this leaf copied, continue with next
2075 * 1: * more items can be copied, but unused buffer is too small
2076 * * all items were found
2077 * Either way, it will stops the loop which iterates to the next
2079 * -EOVERFLOW: item was to large for buffer
2080 * -EFAULT: could not copy extent buffer back to userspace
2085 static noinline int search_ioctl(struct inode *inode,
2086 struct btrfs_ioctl_search_key *sk,
2090 struct btrfs_root *root;
2091 struct btrfs_key key;
2092 struct btrfs_path *path;
2093 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2096 unsigned long sk_offset = 0;
2098 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2099 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2103 path = btrfs_alloc_path();
2107 if (sk->tree_id == 0) {
2108 /* search the root of the inode that was passed */
2109 root = BTRFS_I(inode)->root;
2111 key.objectid = sk->tree_id;
2112 key.type = BTRFS_ROOT_ITEM_KEY;
2113 key.offset = (u64)-1;
2114 root = btrfs_read_fs_root_no_name(info, &key);
2116 btrfs_free_path(path);
2121 key.objectid = sk->min_objectid;
2122 key.type = sk->min_type;
2123 key.offset = sk->min_offset;
2126 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2132 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2133 &sk_offset, &num_found);
2134 btrfs_release_path(path);
2142 sk->nr_items = num_found;
2143 btrfs_free_path(path);
2147 static noinline int btrfs_ioctl_tree_search(struct file *file,
2150 struct btrfs_ioctl_search_args __user *uargs;
2151 struct btrfs_ioctl_search_key sk;
2152 struct inode *inode;
2156 if (!capable(CAP_SYS_ADMIN))
2159 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2161 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2164 buf_size = sizeof(uargs->buf);
2166 inode = file_inode(file);
2167 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2170 * In the origin implementation an overflow is handled by returning a
2171 * search header with a len of zero, so reset ret.
2173 if (ret == -EOVERFLOW)
2176 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2181 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2184 struct btrfs_ioctl_search_args_v2 __user *uarg;
2185 struct btrfs_ioctl_search_args_v2 args;
2186 struct inode *inode;
2189 const size_t buf_limit = SZ_16M;
2191 if (!capable(CAP_SYS_ADMIN))
2194 /* copy search header and buffer size */
2195 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2196 if (copy_from_user(&args, uarg, sizeof(args)))
2199 buf_size = args.buf_size;
2201 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2204 /* limit result size to 16MB */
2205 if (buf_size > buf_limit)
2206 buf_size = buf_limit;
2208 inode = file_inode(file);
2209 ret = search_ioctl(inode, &args.key, &buf_size,
2210 (char *)(&uarg->buf[0]));
2211 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2213 else if (ret == -EOVERFLOW &&
2214 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2221 * Search INODE_REFs to identify path name of 'dirid' directory
2222 * in a 'tree_id' tree. and sets path name to 'name'.
2224 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2225 u64 tree_id, u64 dirid, char *name)
2227 struct btrfs_root *root;
2228 struct btrfs_key key;
2234 struct btrfs_inode_ref *iref;
2235 struct extent_buffer *l;
2236 struct btrfs_path *path;
2238 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2243 path = btrfs_alloc_path();
2247 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2249 key.objectid = tree_id;
2250 key.type = BTRFS_ROOT_ITEM_KEY;
2251 key.offset = (u64)-1;
2252 root = btrfs_read_fs_root_no_name(info, &key);
2254 btrfs_err(info, "could not find root %llu", tree_id);
2259 key.objectid = dirid;
2260 key.type = BTRFS_INODE_REF_KEY;
2261 key.offset = (u64)-1;
2264 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2268 ret = btrfs_previous_item(root, path, dirid,
2269 BTRFS_INODE_REF_KEY);
2279 slot = path->slots[0];
2280 btrfs_item_key_to_cpu(l, &key, slot);
2282 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2283 len = btrfs_inode_ref_name_len(l, iref);
2285 total_len += len + 1;
2287 ret = -ENAMETOOLONG;
2292 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2294 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2297 btrfs_release_path(path);
2298 key.objectid = key.offset;
2299 key.offset = (u64)-1;
2300 dirid = key.objectid;
2302 memmove(name, ptr, total_len);
2303 name[total_len] = '\0';
2306 btrfs_free_path(path);
2310 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2313 struct btrfs_ioctl_ino_lookup_args *args;
2314 struct inode *inode;
2317 args = memdup_user(argp, sizeof(*args));
2319 return PTR_ERR(args);
2321 inode = file_inode(file);
2324 * Unprivileged query to obtain the containing subvolume root id. The
2325 * path is reset so it's consistent with btrfs_search_path_in_tree.
2327 if (args->treeid == 0)
2328 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2330 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2335 if (!capable(CAP_SYS_ADMIN)) {
2340 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2341 args->treeid, args->objectid,
2345 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2352 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2355 struct dentry *parent = file->f_path.dentry;
2356 struct dentry *dentry;
2357 struct inode *dir = d_inode(parent);
2358 struct inode *inode;
2359 struct btrfs_root *root = BTRFS_I(dir)->root;
2360 struct btrfs_root *dest = NULL;
2361 struct btrfs_ioctl_vol_args *vol_args;
2362 struct btrfs_trans_handle *trans;
2363 struct btrfs_block_rsv block_rsv;
2365 u64 qgroup_reserved;
2370 if (!S_ISDIR(dir->i_mode))
2373 vol_args = memdup_user(arg, sizeof(*vol_args));
2374 if (IS_ERR(vol_args))
2375 return PTR_ERR(vol_args);
2377 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2378 namelen = strlen(vol_args->name);
2379 if (strchr(vol_args->name, '/') ||
2380 strncmp(vol_args->name, "..", namelen) == 0) {
2385 err = mnt_want_write_file(file);
2390 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2392 goto out_drop_write;
2393 dentry = lookup_one_len(vol_args->name, parent, namelen);
2394 if (IS_ERR(dentry)) {
2395 err = PTR_ERR(dentry);
2396 goto out_unlock_dir;
2399 if (d_really_is_negative(dentry)) {
2404 inode = d_inode(dentry);
2405 dest = BTRFS_I(inode)->root;
2406 if (!capable(CAP_SYS_ADMIN)) {
2408 * Regular user. Only allow this with a special mount
2409 * option, when the user has write+exec access to the
2410 * subvol root, and when rmdir(2) would have been
2413 * Note that this is _not_ check that the subvol is
2414 * empty or doesn't contain data that we wouldn't
2415 * otherwise be able to delete.
2417 * Users who want to delete empty subvols should try
2421 if (!btrfs_test_opt(root->fs_info, USER_SUBVOL_RM_ALLOWED))
2425 * Do not allow deletion if the parent dir is the same
2426 * as the dir to be deleted. That means the ioctl
2427 * must be called on the dentry referencing the root
2428 * of the subvol, not a random directory contained
2435 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2440 /* check if subvolume may be deleted by a user */
2441 err = btrfs_may_delete(dir, dentry, 1);
2445 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2453 * Don't allow to delete a subvolume with send in progress. This is
2454 * inside the i_mutex so the error handling that has to drop the bit
2455 * again is not run concurrently.
2457 spin_lock(&dest->root_item_lock);
2458 root_flags = btrfs_root_flags(&dest->root_item);
2459 if (dest->send_in_progress == 0) {
2460 btrfs_set_root_flags(&dest->root_item,
2461 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2462 spin_unlock(&dest->root_item_lock);
2464 spin_unlock(&dest->root_item_lock);
2465 btrfs_warn(root->fs_info,
2466 "Attempt to delete subvolume %llu during send",
2467 dest->root_key.objectid);
2469 goto out_unlock_inode;
2472 down_write(&root->fs_info->subvol_sem);
2474 err = may_destroy_subvol(dest);
2478 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2480 * One for dir inode, two for dir entries, two for root
2483 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2484 5, &qgroup_reserved, true);
2488 trans = btrfs_start_transaction(root, 0);
2489 if (IS_ERR(trans)) {
2490 err = PTR_ERR(trans);
2493 trans->block_rsv = &block_rsv;
2494 trans->bytes_reserved = block_rsv.size;
2496 btrfs_record_snapshot_destroy(trans, dir);
2498 ret = btrfs_unlink_subvol(trans, root, dir,
2499 dest->root_key.objectid,
2500 dentry->d_name.name,
2501 dentry->d_name.len);
2504 btrfs_abort_transaction(trans, ret);
2508 btrfs_record_root_in_trans(trans, dest);
2510 memset(&dest->root_item.drop_progress, 0,
2511 sizeof(dest->root_item.drop_progress));
2512 dest->root_item.drop_level = 0;
2513 btrfs_set_root_refs(&dest->root_item, 0);
2515 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2516 ret = btrfs_insert_orphan_item(trans,
2517 root->fs_info->tree_root,
2518 dest->root_key.objectid);
2520 btrfs_abort_transaction(trans, ret);
2526 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2527 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2528 dest->root_key.objectid);
2529 if (ret && ret != -ENOENT) {
2530 btrfs_abort_transaction(trans, ret);
2534 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2535 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2536 dest->root_item.received_uuid,
2537 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2538 dest->root_key.objectid);
2539 if (ret && ret != -ENOENT) {
2540 btrfs_abort_transaction(trans, ret);
2547 trans->block_rsv = NULL;
2548 trans->bytes_reserved = 0;
2549 ret = btrfs_end_transaction(trans, root);
2552 inode->i_flags |= S_DEAD;
2554 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2556 up_write(&root->fs_info->subvol_sem);
2558 spin_lock(&dest->root_item_lock);
2559 root_flags = btrfs_root_flags(&dest->root_item);
2560 btrfs_set_root_flags(&dest->root_item,
2561 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2562 spin_unlock(&dest->root_item_lock);
2565 inode_unlock(inode);
2567 d_invalidate(dentry);
2568 btrfs_invalidate_inodes(dest);
2570 ASSERT(dest->send_in_progress == 0);
2573 if (dest->ino_cache_inode) {
2574 iput(dest->ino_cache_inode);
2575 dest->ino_cache_inode = NULL;
2583 mnt_drop_write_file(file);
2589 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2591 struct inode *inode = file_inode(file);
2592 struct btrfs_root *root = BTRFS_I(inode)->root;
2593 struct btrfs_ioctl_defrag_range_args *range;
2596 ret = mnt_want_write_file(file);
2600 if (btrfs_root_readonly(root)) {
2605 switch (inode->i_mode & S_IFMT) {
2607 if (!capable(CAP_SYS_ADMIN)) {
2611 ret = btrfs_defrag_root(root);
2614 ret = btrfs_defrag_root(root->fs_info->extent_root);
2617 if (!(file->f_mode & FMODE_WRITE)) {
2622 range = kzalloc(sizeof(*range), GFP_KERNEL);
2629 if (copy_from_user(range, argp,
2635 /* compression requires us to start the IO */
2636 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2637 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2638 range->extent_thresh = (u32)-1;
2641 /* the rest are all set to zero by kzalloc */
2642 range->len = (u64)-1;
2644 ret = btrfs_defrag_file(file_inode(file), file,
2654 mnt_drop_write_file(file);
2658 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2660 struct btrfs_ioctl_vol_args *vol_args;
2663 if (!capable(CAP_SYS_ADMIN))
2666 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2668 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2671 mutex_lock(&root->fs_info->volume_mutex);
2672 vol_args = memdup_user(arg, sizeof(*vol_args));
2673 if (IS_ERR(vol_args)) {
2674 ret = PTR_ERR(vol_args);
2678 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2679 ret = btrfs_init_new_device(root, vol_args->name);
2682 btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2686 mutex_unlock(&root->fs_info->volume_mutex);
2687 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2691 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2693 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2694 struct btrfs_ioctl_vol_args_v2 *vol_args;
2697 if (!capable(CAP_SYS_ADMIN))
2700 ret = mnt_want_write_file(file);
2704 vol_args = memdup_user(arg, sizeof(*vol_args));
2705 if (IS_ERR(vol_args)) {
2706 ret = PTR_ERR(vol_args);
2710 /* Check for compatibility reject unknown flags */
2711 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2714 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2716 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2720 mutex_lock(&root->fs_info->volume_mutex);
2721 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2722 ret = btrfs_rm_device(root, NULL, vol_args->devid);
2724 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2725 ret = btrfs_rm_device(root, vol_args->name, 0);
2727 mutex_unlock(&root->fs_info->volume_mutex);
2728 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2731 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2732 btrfs_info(root->fs_info, "device deleted: id %llu",
2735 btrfs_info(root->fs_info, "device deleted: %s",
2741 mnt_drop_write_file(file);
2745 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2747 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2748 struct btrfs_ioctl_vol_args *vol_args;
2751 if (!capable(CAP_SYS_ADMIN))
2754 ret = mnt_want_write_file(file);
2758 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2760 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2761 goto out_drop_write;
2764 vol_args = memdup_user(arg, sizeof(*vol_args));
2765 if (IS_ERR(vol_args)) {
2766 ret = PTR_ERR(vol_args);
2770 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2771 mutex_lock(&root->fs_info->volume_mutex);
2772 ret = btrfs_rm_device(root, vol_args->name, 0);
2773 mutex_unlock(&root->fs_info->volume_mutex);
2776 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2779 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2781 mnt_drop_write_file(file);
2786 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2788 struct btrfs_ioctl_fs_info_args *fi_args;
2789 struct btrfs_device *device;
2790 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2793 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2797 mutex_lock(&fs_devices->device_list_mutex);
2798 fi_args->num_devices = fs_devices->num_devices;
2799 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2801 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2802 if (device->devid > fi_args->max_id)
2803 fi_args->max_id = device->devid;
2805 mutex_unlock(&fs_devices->device_list_mutex);
2807 fi_args->nodesize = root->fs_info->super_copy->nodesize;
2808 fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2809 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2811 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2818 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2820 struct btrfs_ioctl_dev_info_args *di_args;
2821 struct btrfs_device *dev;
2822 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2824 char *s_uuid = NULL;
2826 di_args = memdup_user(arg, sizeof(*di_args));
2827 if (IS_ERR(di_args))
2828 return PTR_ERR(di_args);
2830 if (!btrfs_is_empty_uuid(di_args->uuid))
2831 s_uuid = di_args->uuid;
2833 mutex_lock(&fs_devices->device_list_mutex);
2834 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2841 di_args->devid = dev->devid;
2842 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2843 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2844 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2846 struct rcu_string *name;
2849 name = rcu_dereference(dev->name);
2850 strncpy(di_args->path, name->str, sizeof(di_args->path));
2852 di_args->path[sizeof(di_args->path) - 1] = 0;
2854 di_args->path[0] = '\0';
2858 mutex_unlock(&fs_devices->device_list_mutex);
2859 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2866 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2870 page = grab_cache_page(inode->i_mapping, index);
2872 return ERR_PTR(-ENOMEM);
2874 if (!PageUptodate(page)) {
2877 ret = btrfs_readpage(NULL, page);
2879 return ERR_PTR(ret);
2881 if (!PageUptodate(page)) {
2884 return ERR_PTR(-EIO);
2886 if (page->mapping != inode->i_mapping) {
2889 return ERR_PTR(-EAGAIN);
2896 static int gather_extent_pages(struct inode *inode, struct page **pages,
2897 int num_pages, u64 off)
2900 pgoff_t index = off >> PAGE_SHIFT;
2902 for (i = 0; i < num_pages; i++) {
2904 pages[i] = extent_same_get_page(inode, index + i);
2905 if (IS_ERR(pages[i])) {
2906 int err = PTR_ERR(pages[i]);
2917 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2918 bool retry_range_locking)
2921 * Do any pending delalloc/csum calculations on inode, one way or
2922 * another, and lock file content.
2923 * The locking order is:
2926 * 2) range in the inode's io tree
2929 struct btrfs_ordered_extent *ordered;
2930 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2931 ordered = btrfs_lookup_first_ordered_extent(inode,
2934 ordered->file_offset + ordered->len <= off ||
2935 ordered->file_offset >= off + len) &&
2936 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2937 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2939 btrfs_put_ordered_extent(ordered);
2942 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2944 btrfs_put_ordered_extent(ordered);
2945 if (!retry_range_locking)
2947 btrfs_wait_ordered_range(inode, off, len);
2952 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2954 inode_unlock(inode1);
2955 inode_unlock(inode2);
2958 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2960 if (inode1 < inode2)
2961 swap(inode1, inode2);
2963 inode_lock_nested(inode1, I_MUTEX_PARENT);
2964 inode_lock_nested(inode2, I_MUTEX_CHILD);
2967 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2968 struct inode *inode2, u64 loff2, u64 len)
2970 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2971 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2974 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2975 struct inode *inode2, u64 loff2, u64 len,
2976 bool retry_range_locking)
2980 if (inode1 < inode2) {
2981 swap(inode1, inode2);
2984 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2987 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2989 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2996 struct page **src_pages;
2997 struct page **dst_pages;
3000 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
3005 for (i = 0; i < cmp->num_pages; i++) {
3006 pg = cmp->src_pages[i];
3011 pg = cmp->dst_pages[i];
3017 kfree(cmp->src_pages);
3018 kfree(cmp->dst_pages);
3021 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3022 struct inode *dst, u64 dst_loff,
3023 u64 len, struct cmp_pages *cmp)
3026 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3027 struct page **src_pgarr, **dst_pgarr;
3030 * We must gather up all the pages before we initiate our
3031 * extent locking. We use an array for the page pointers. Size
3032 * of the array is bounded by len, which is in turn bounded by
3033 * BTRFS_MAX_DEDUPE_LEN.
3035 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3036 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3037 if (!src_pgarr || !dst_pgarr) {
3042 cmp->num_pages = num_pages;
3043 cmp->src_pages = src_pgarr;
3044 cmp->dst_pages = dst_pgarr;
3046 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
3050 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
3054 btrfs_cmp_data_free(cmp);
3058 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
3059 u64 dst_loff, u64 len, struct cmp_pages *cmp)
3063 struct page *src_page, *dst_page;
3064 unsigned int cmp_len = PAGE_SIZE;
3065 void *addr, *dst_addr;
3069 if (len < PAGE_SIZE)
3072 BUG_ON(i >= cmp->num_pages);
3074 src_page = cmp->src_pages[i];
3075 dst_page = cmp->dst_pages[i];
3076 ASSERT(PageLocked(src_page));
3077 ASSERT(PageLocked(dst_page));
3079 addr = kmap_atomic(src_page);
3080 dst_addr = kmap_atomic(dst_page);
3082 flush_dcache_page(src_page);
3083 flush_dcache_page(dst_page);
3085 if (memcmp(addr, dst_addr, cmp_len))
3088 kunmap_atomic(addr);
3089 kunmap_atomic(dst_addr);
3101 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3105 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3107 if (off + olen > inode->i_size || off + olen < off)
3110 /* if we extend to eof, continue to block boundary */
3111 if (off + len == inode->i_size)
3112 *plen = len = ALIGN(inode->i_size, bs) - off;
3114 /* Check that we are block aligned - btrfs_clone() requires this */
3115 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3121 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3122 struct inode *dst, u64 dst_loff)
3126 struct cmp_pages cmp;
3128 u64 same_lock_start = 0;
3129 u64 same_lock_len = 0;
3140 ret = extent_same_check_offsets(src, loff, &len, olen);
3143 ret = extent_same_check_offsets(src, dst_loff, &len, olen);
3148 * Single inode case wants the same checks, except we
3149 * don't want our length pushed out past i_size as
3150 * comparing that data range makes no sense.
3152 * extent_same_check_offsets() will do this for an
3153 * unaligned length at i_size, so catch it here and
3154 * reject the request.
3156 * This effectively means we require aligned extents
3157 * for the single-inode case, whereas the other cases
3158 * allow an unaligned length so long as it ends at
3166 /* Check for overlapping ranges */
3167 if (dst_loff + len > loff && dst_loff < loff + len) {
3172 same_lock_start = min_t(u64, loff, dst_loff);
3173 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3175 btrfs_double_inode_lock(src, dst);
3177 ret = extent_same_check_offsets(src, loff, &len, olen);
3181 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3186 /* don't make the dst file partly checksummed */
3187 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3188 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3194 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3199 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3202 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3205 * If one of the inodes has dirty pages in the respective range or
3206 * ordered extents, we need to flush dellaloc and wait for all ordered
3207 * extents in the range. We must unlock the pages and the ranges in the
3208 * io trees to avoid deadlocks when flushing delalloc (requires locking
3209 * pages) and when waiting for ordered extents to complete (they require
3212 if (ret == -EAGAIN) {
3214 * Ranges in the io trees already unlocked. Now unlock all
3215 * pages before waiting for all IO to complete.
3217 btrfs_cmp_data_free(&cmp);
3219 btrfs_wait_ordered_range(src, same_lock_start,
3222 btrfs_wait_ordered_range(src, loff, len);
3223 btrfs_wait_ordered_range(dst, dst_loff, len);
3229 /* ranges in the io trees already unlocked */
3230 btrfs_cmp_data_free(&cmp);
3234 /* pass original length for comparison so we stay within i_size */
3235 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3237 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3240 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3241 same_lock_start + same_lock_len - 1);
3243 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3245 btrfs_cmp_data_free(&cmp);
3250 btrfs_double_inode_unlock(src, dst);
3255 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3257 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3258 struct file *dst_file, u64 dst_loff)
3260 struct inode *src = file_inode(src_file);
3261 struct inode *dst = file_inode(dst_file);
3262 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3265 if (olen > BTRFS_MAX_DEDUPE_LEN)
3266 olen = BTRFS_MAX_DEDUPE_LEN;
3268 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3270 * Btrfs does not support blocksize < page_size. As a
3271 * result, btrfs_cmp_data() won't correctly handle
3272 * this situation without an update.
3277 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3283 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3284 struct inode *inode,
3290 struct btrfs_root *root = BTRFS_I(inode)->root;
3293 inode_inc_iversion(inode);
3294 if (!no_time_update)
3295 inode->i_mtime = inode->i_ctime = current_time(inode);
3297 * We round up to the block size at eof when determining which
3298 * extents to clone above, but shouldn't round up the file size.
3300 if (endoff > destoff + olen)
3301 endoff = destoff + olen;
3302 if (endoff > inode->i_size)
3303 btrfs_i_size_write(inode, endoff);
3305 ret = btrfs_update_inode(trans, root, inode);
3307 btrfs_abort_transaction(trans, ret);
3308 btrfs_end_transaction(trans, root);
3311 ret = btrfs_end_transaction(trans, root);
3316 static void clone_update_extent_map(struct inode *inode,
3317 const struct btrfs_trans_handle *trans,
3318 const struct btrfs_path *path,
3319 const u64 hole_offset,
3322 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3323 struct extent_map *em;
3326 em = alloc_extent_map();
3328 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3329 &BTRFS_I(inode)->runtime_flags);
3334 struct btrfs_file_extent_item *fi;
3336 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3337 struct btrfs_file_extent_item);
3338 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3339 em->generation = -1;
3340 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3341 BTRFS_FILE_EXTENT_INLINE)
3342 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3343 &BTRFS_I(inode)->runtime_flags);
3345 em->start = hole_offset;
3347 em->ram_bytes = em->len;
3348 em->orig_start = hole_offset;
3349 em->block_start = EXTENT_MAP_HOLE;
3351 em->orig_block_len = 0;
3352 em->compress_type = BTRFS_COMPRESS_NONE;
3353 em->generation = trans->transid;
3357 write_lock(&em_tree->lock);
3358 ret = add_extent_mapping(em_tree, em, 1);
3359 write_unlock(&em_tree->lock);
3360 if (ret != -EEXIST) {
3361 free_extent_map(em);
3364 btrfs_drop_extent_cache(inode, em->start,
3365 em->start + em->len - 1, 0);
3369 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3370 &BTRFS_I(inode)->runtime_flags);
3374 * Make sure we do not end up inserting an inline extent into a file that has
3375 * already other (non-inline) extents. If a file has an inline extent it can
3376 * not have any other extents and the (single) inline extent must start at the
3377 * file offset 0. Failing to respect these rules will lead to file corruption,
3378 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3380 * We can have extents that have been already written to disk or we can have
3381 * dirty ranges still in delalloc, in which case the extent maps and items are
3382 * created only when we run delalloc, and the delalloc ranges might fall outside
3383 * the range we are currently locking in the inode's io tree. So we check the
3384 * inode's i_size because of that (i_size updates are done while holding the
3385 * i_mutex, which we are holding here).
3386 * We also check to see if the inode has a size not greater than "datal" but has
3387 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3388 * protected against such concurrent fallocate calls by the i_mutex).
3390 * If the file has no extents but a size greater than datal, do not allow the
3391 * copy because we would need turn the inline extent into a non-inline one (even
3392 * with NO_HOLES enabled). If we find our destination inode only has one inline
3393 * extent, just overwrite it with the source inline extent if its size is less
3394 * than the source extent's size, or we could copy the source inline extent's
3395 * data into the destination inode's inline extent if the later is greater then
3398 static int clone_copy_inline_extent(struct inode *src,
3400 struct btrfs_trans_handle *trans,
3401 struct btrfs_path *path,
3402 struct btrfs_key *new_key,
3403 const u64 drop_start,
3409 struct btrfs_root *root = BTRFS_I(dst)->root;
3410 const u64 aligned_end = ALIGN(new_key->offset + datal,
3413 struct btrfs_key key;
3415 if (new_key->offset > 0)
3418 key.objectid = btrfs_ino(dst);
3419 key.type = BTRFS_EXTENT_DATA_KEY;