2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
54 #include "inode-map.h"
56 #include "rcu-string.h"
58 #include "dev-replace.h"
64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
65 * structures are incorrect, as the timespec structure from userspace
66 * is 4 bytes too small. We define these alternatives here to teach
67 * the kernel about the 32-bit struct packing.
69 struct btrfs_ioctl_timespec_32 {
72 } __attribute__ ((__packed__));
74 struct btrfs_ioctl_received_subvol_args_32 {
75 char uuid[BTRFS_UUID_SIZE]; /* in */
76 __u64 stransid; /* in */
77 __u64 rtransid; /* out */
78 struct btrfs_ioctl_timespec_32 stime; /* in */
79 struct btrfs_ioctl_timespec_32 rtime; /* out */
81 __u64 reserved[16]; /* in */
82 } __attribute__ ((__packed__));
84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
85 struct btrfs_ioctl_received_subvol_args_32)
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
93 /* Mask out flags that are inappropriate for the given type of inode. */
94 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
98 else if (S_ISREG(mode))
99 return flags & ~FS_DIRSYNC_FL;
101 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
105 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
107 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
109 unsigned int iflags = 0;
111 if (flags & BTRFS_INODE_SYNC)
112 iflags |= FS_SYNC_FL;
113 if (flags & BTRFS_INODE_IMMUTABLE)
114 iflags |= FS_IMMUTABLE_FL;
115 if (flags & BTRFS_INODE_APPEND)
116 iflags |= FS_APPEND_FL;
117 if (flags & BTRFS_INODE_NODUMP)
118 iflags |= FS_NODUMP_FL;
119 if (flags & BTRFS_INODE_NOATIME)
120 iflags |= FS_NOATIME_FL;
121 if (flags & BTRFS_INODE_DIRSYNC)
122 iflags |= FS_DIRSYNC_FL;
123 if (flags & BTRFS_INODE_NODATACOW)
124 iflags |= FS_NOCOW_FL;
126 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
127 iflags |= FS_COMPR_FL;
128 else if (flags & BTRFS_INODE_NOCOMPRESS)
129 iflags |= FS_NOCOMP_FL;
135 * Update inode->i_flags based on the btrfs internal flags.
137 void btrfs_update_iflags(struct inode *inode)
139 struct btrfs_inode *ip = BTRFS_I(inode);
140 unsigned int new_fl = 0;
142 if (ip->flags & BTRFS_INODE_SYNC)
144 if (ip->flags & BTRFS_INODE_IMMUTABLE)
145 new_fl |= S_IMMUTABLE;
146 if (ip->flags & BTRFS_INODE_APPEND)
148 if (ip->flags & BTRFS_INODE_NOATIME)
150 if (ip->flags & BTRFS_INODE_DIRSYNC)
153 set_mask_bits(&inode->i_flags,
154 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
159 * Inherit flags from the parent inode.
161 * Currently only the compression flags and the cow flags are inherited.
163 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
170 flags = BTRFS_I(dir)->flags;
172 if (flags & BTRFS_INODE_NOCOMPRESS) {
173 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
174 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
175 } else if (flags & BTRFS_INODE_COMPRESS) {
176 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
177 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
180 if (flags & BTRFS_INODE_NODATACOW) {
181 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
182 if (S_ISREG(inode->i_mode))
183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
186 btrfs_update_iflags(inode);
189 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
191 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
192 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
194 if (copy_to_user(arg, &flags, sizeof(flags)))
199 static int check_flags(unsigned int flags)
201 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
202 FS_NOATIME_FL | FS_NODUMP_FL | \
203 FS_SYNC_FL | FS_DIRSYNC_FL | \
204 FS_NOCOMP_FL | FS_COMPR_FL |
208 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
214 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
216 struct inode *inode = file_inode(file);
217 struct btrfs_inode *ip = BTRFS_I(inode);
218 struct btrfs_root *root = ip->root;
219 struct btrfs_trans_handle *trans;
220 unsigned int flags, oldflags;
223 unsigned int i_oldflags;
226 if (!inode_owner_or_capable(inode))
229 if (btrfs_root_readonly(root))
232 if (copy_from_user(&flags, arg, sizeof(flags)))
235 ret = check_flags(flags);
239 ret = mnt_want_write_file(file);
243 mutex_lock(&inode->i_mutex);
245 ip_oldflags = ip->flags;
246 i_oldflags = inode->i_flags;
247 mode = inode->i_mode;
249 flags = btrfs_mask_flags(inode->i_mode, flags);
250 oldflags = btrfs_flags_to_ioctl(ip->flags);
251 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
252 if (!capable(CAP_LINUX_IMMUTABLE)) {
258 if (flags & FS_SYNC_FL)
259 ip->flags |= BTRFS_INODE_SYNC;
261 ip->flags &= ~BTRFS_INODE_SYNC;
262 if (flags & FS_IMMUTABLE_FL)
263 ip->flags |= BTRFS_INODE_IMMUTABLE;
265 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
266 if (flags & FS_APPEND_FL)
267 ip->flags |= BTRFS_INODE_APPEND;
269 ip->flags &= ~BTRFS_INODE_APPEND;
270 if (flags & FS_NODUMP_FL)
271 ip->flags |= BTRFS_INODE_NODUMP;
273 ip->flags &= ~BTRFS_INODE_NODUMP;
274 if (flags & FS_NOATIME_FL)
275 ip->flags |= BTRFS_INODE_NOATIME;
277 ip->flags &= ~BTRFS_INODE_NOATIME;
278 if (flags & FS_DIRSYNC_FL)
279 ip->flags |= BTRFS_INODE_DIRSYNC;
281 ip->flags &= ~BTRFS_INODE_DIRSYNC;
282 if (flags & FS_NOCOW_FL) {
285 * It's safe to turn csums off here, no extents exist.
286 * Otherwise we want the flag to reflect the real COW
287 * status of the file and will not set it.
289 if (inode->i_size == 0)
290 ip->flags |= BTRFS_INODE_NODATACOW
291 | BTRFS_INODE_NODATASUM;
293 ip->flags |= BTRFS_INODE_NODATACOW;
297 * Revert back under same assuptions as above
300 if (inode->i_size == 0)
301 ip->flags &= ~(BTRFS_INODE_NODATACOW
302 | BTRFS_INODE_NODATASUM);
304 ip->flags &= ~BTRFS_INODE_NODATACOW;
309 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
310 * flag may be changed automatically if compression code won't make
313 if (flags & FS_NOCOMP_FL) {
314 ip->flags &= ~BTRFS_INODE_COMPRESS;
315 ip->flags |= BTRFS_INODE_NOCOMPRESS;
317 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
318 if (ret && ret != -ENODATA)
320 } else if (flags & FS_COMPR_FL) {
323 ip->flags |= BTRFS_INODE_COMPRESS;
324 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
326 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
330 ret = btrfs_set_prop(inode, "btrfs.compression",
331 comp, strlen(comp), 0);
336 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
337 if (ret && ret != -ENODATA)
339 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
342 trans = btrfs_start_transaction(root, 1);
344 ret = PTR_ERR(trans);
348 btrfs_update_iflags(inode);
349 inode_inc_iversion(inode);
350 inode->i_ctime = CURRENT_TIME;
351 ret = btrfs_update_inode(trans, root, inode);
353 btrfs_end_transaction(trans, root);
356 ip->flags = ip_oldflags;
357 inode->i_flags = i_oldflags;
361 mutex_unlock(&inode->i_mutex);
362 mnt_drop_write_file(file);
366 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
368 struct inode *inode = file_inode(file);
370 return put_user(inode->i_generation, arg);
373 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
375 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
376 struct btrfs_device *device;
377 struct request_queue *q;
378 struct fstrim_range range;
379 u64 minlen = ULLONG_MAX;
381 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
384 if (!capable(CAP_SYS_ADMIN))
388 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
392 q = bdev_get_queue(device->bdev);
393 if (blk_queue_discard(q)) {
395 minlen = min((u64)q->limits.discard_granularity,
403 if (copy_from_user(&range, arg, sizeof(range)))
405 if (range.start > total_bytes ||
406 range.len < fs_info->sb->s_blocksize)
409 range.len = min(range.len, total_bytes - range.start);
410 range.minlen = max(range.minlen, minlen);
411 ret = btrfs_trim_fs(fs_info->tree_root, &range);
415 if (copy_to_user(arg, &range, sizeof(range)))
421 int btrfs_is_empty_uuid(u8 *uuid)
425 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
432 static noinline int create_subvol(struct inode *dir,
433 struct dentry *dentry,
434 char *name, int namelen,
436 struct btrfs_qgroup_inherit *inherit)
438 struct btrfs_trans_handle *trans;
439 struct btrfs_key key;
440 struct btrfs_root_item root_item;
441 struct btrfs_inode_item *inode_item;
442 struct extent_buffer *leaf;
443 struct btrfs_root *root = BTRFS_I(dir)->root;
444 struct btrfs_root *new_root;
445 struct btrfs_block_rsv block_rsv;
446 struct timespec cur_time = CURRENT_TIME;
451 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
456 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
461 * Don't create subvolume whose level is not zero. Or qgroup will be
462 * screwed up since it assume subvolme qgroup's level to be 0.
464 if (btrfs_qgroup_level(objectid))
467 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
469 * The same as the snapshot creation, please see the comment
470 * of create_snapshot().
472 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
473 8, &qgroup_reserved, false);
477 trans = btrfs_start_transaction(root, 0);
479 ret = PTR_ERR(trans);
480 btrfs_subvolume_release_metadata(root, &block_rsv,
484 trans->block_rsv = &block_rsv;
485 trans->bytes_reserved = block_rsv.size;
487 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
491 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
497 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
498 btrfs_set_header_bytenr(leaf, leaf->start);
499 btrfs_set_header_generation(leaf, trans->transid);
500 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
501 btrfs_set_header_owner(leaf, objectid);
503 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
505 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
506 btrfs_header_chunk_tree_uuid(leaf),
508 btrfs_mark_buffer_dirty(leaf);
510 memset(&root_item, 0, sizeof(root_item));
512 inode_item = &root_item.inode;
513 btrfs_set_stack_inode_generation(inode_item, 1);
514 btrfs_set_stack_inode_size(inode_item, 3);
515 btrfs_set_stack_inode_nlink(inode_item, 1);
516 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
517 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
519 btrfs_set_root_flags(&root_item, 0);
520 btrfs_set_root_limit(&root_item, 0);
521 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
523 btrfs_set_root_bytenr(&root_item, leaf->start);
524 btrfs_set_root_generation(&root_item, trans->transid);
525 btrfs_set_root_level(&root_item, 0);
526 btrfs_set_root_refs(&root_item, 1);
527 btrfs_set_root_used(&root_item, leaf->len);
528 btrfs_set_root_last_snapshot(&root_item, 0);
530 btrfs_set_root_generation_v2(&root_item,
531 btrfs_root_generation(&root_item));
532 uuid_le_gen(&new_uuid);
533 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
534 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
535 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
536 root_item.ctime = root_item.otime;
537 btrfs_set_root_ctransid(&root_item, trans->transid);
538 btrfs_set_root_otransid(&root_item, trans->transid);
540 btrfs_tree_unlock(leaf);
541 free_extent_buffer(leaf);
544 btrfs_set_root_dirid(&root_item, new_dirid);
546 key.objectid = objectid;
548 key.type = BTRFS_ROOT_ITEM_KEY;
549 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
554 key.offset = (u64)-1;
555 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
556 if (IS_ERR(new_root)) {
557 ret = PTR_ERR(new_root);
558 btrfs_abort_transaction(trans, root, ret);
562 btrfs_record_root_in_trans(trans, new_root);
564 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
566 /* We potentially lose an unused inode item here */
567 btrfs_abort_transaction(trans, root, ret);
572 * insert the directory item
574 ret = btrfs_set_inode_index(dir, &index);
576 btrfs_abort_transaction(trans, root, ret);
580 ret = btrfs_insert_dir_item(trans, root,
581 name, namelen, dir, &key,
582 BTRFS_FT_DIR, index);
584 btrfs_abort_transaction(trans, root, ret);
588 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
589 ret = btrfs_update_inode(trans, root, dir);
592 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
593 objectid, root->root_key.objectid,
594 btrfs_ino(dir), index, name, namelen);
597 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
598 root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
601 btrfs_abort_transaction(trans, root, ret);
604 trans->block_rsv = NULL;
605 trans->bytes_reserved = 0;
606 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
609 *async_transid = trans->transid;
610 err = btrfs_commit_transaction_async(trans, root, 1);
612 err = btrfs_commit_transaction(trans, root);
614 err = btrfs_commit_transaction(trans, root);
620 inode = btrfs_lookup_dentry(dir, dentry);
622 return PTR_ERR(inode);
623 d_instantiate(dentry, inode);
628 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
634 prepare_to_wait(&root->subv_writers->wait, &wait,
635 TASK_UNINTERRUPTIBLE);
637 writers = percpu_counter_sum(&root->subv_writers->counter);
641 finish_wait(&root->subv_writers->wait, &wait);
645 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
646 struct dentry *dentry, char *name, int namelen,
647 u64 *async_transid, bool readonly,
648 struct btrfs_qgroup_inherit *inherit)
651 struct btrfs_pending_snapshot *pending_snapshot;
652 struct btrfs_trans_handle *trans;
655 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
658 atomic_inc(&root->will_be_snapshoted);
659 smp_mb__after_atomic();
660 btrfs_wait_for_no_snapshoting_writes(root);
662 ret = btrfs_start_delalloc_inodes(root, 0);
666 btrfs_wait_ordered_extents(root, -1);
668 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
669 if (!pending_snapshot) {
674 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
675 BTRFS_BLOCK_RSV_TEMP);
677 * 1 - parent dir inode
680 * 2 - root ref/backref
681 * 1 - root of snapshot
684 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
685 &pending_snapshot->block_rsv, 8,
686 &pending_snapshot->qgroup_reserved,
691 pending_snapshot->dentry = dentry;
692 pending_snapshot->root = root;
693 pending_snapshot->readonly = readonly;
694 pending_snapshot->dir = dir;
695 pending_snapshot->inherit = inherit;
697 trans = btrfs_start_transaction(root, 0);
699 ret = PTR_ERR(trans);
703 spin_lock(&root->fs_info->trans_lock);
704 list_add(&pending_snapshot->list,
705 &trans->transaction->pending_snapshots);
706 spin_unlock(&root->fs_info->trans_lock);
708 *async_transid = trans->transid;
709 ret = btrfs_commit_transaction_async(trans,
710 root->fs_info->extent_root, 1);
712 ret = btrfs_commit_transaction(trans, root);
714 ret = btrfs_commit_transaction(trans,
715 root->fs_info->extent_root);
720 ret = pending_snapshot->error;
724 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
728 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
730 ret = PTR_ERR(inode);
734 d_instantiate(dentry, inode);
737 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
738 &pending_snapshot->block_rsv,
739 pending_snapshot->qgroup_reserved);
741 kfree(pending_snapshot);
743 if (atomic_dec_and_test(&root->will_be_snapshoted))
744 wake_up_atomic_t(&root->will_be_snapshoted);
748 /* copy of may_delete in fs/namei.c()
749 * Check whether we can remove a link victim from directory dir, check
750 * whether the type of victim is right.
751 * 1. We can't do it if dir is read-only (done in permission())
752 * 2. We should have write and exec permissions on dir
753 * 3. We can't remove anything from append-only dir
754 * 4. We can't do anything with immutable dir (done in permission())
755 * 5. If the sticky bit on dir is set we should either
756 * a. be owner of dir, or
757 * b. be owner of victim, or
758 * c. have CAP_FOWNER capability
759 * 6. If the victim is append-only or immutable we can't do antyhing with
760 * links pointing to it.
761 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
762 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
763 * 9. We can't remove a root or mountpoint.
764 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
765 * nfs_async_unlink().
768 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
772 if (d_really_is_negative(victim))
775 BUG_ON(d_inode(victim->d_parent) != dir);
776 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
778 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
783 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
784 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
787 if (!d_is_dir(victim))
791 } else if (d_is_dir(victim))
795 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
800 /* copy of may_create in fs/namei.c() */
801 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
803 if (d_really_is_positive(child))
807 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
811 * Create a new subvolume below @parent. This is largely modeled after
812 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
813 * inside this filesystem so it's quite a bit simpler.
815 static noinline int btrfs_mksubvol(struct path *parent,
816 char *name, int namelen,
817 struct btrfs_root *snap_src,
818 u64 *async_transid, bool readonly,
819 struct btrfs_qgroup_inherit *inherit)
821 struct inode *dir = d_inode(parent->dentry);
822 struct dentry *dentry;
825 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
829 dentry = lookup_one_len(name, parent->dentry, namelen);
830 error = PTR_ERR(dentry);
835 if (d_really_is_positive(dentry))
838 error = btrfs_may_create(dir, dentry);
843 * even if this name doesn't exist, we may get hash collisions.
844 * check for them now when we can safely fail
846 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
852 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
854 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
858 error = create_snapshot(snap_src, dir, dentry, name, namelen,
859 async_transid, readonly, inherit);
861 error = create_subvol(dir, dentry, name, namelen,
862 async_transid, inherit);
865 fsnotify_mkdir(dir, dentry);
867 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
871 mutex_unlock(&dir->i_mutex);
876 * When we're defragging a range, we don't want to kick it off again
877 * if it is really just waiting for delalloc to send it down.
878 * If we find a nice big extent or delalloc range for the bytes in the
879 * file you want to defrag, we return 0 to let you know to skip this
882 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
884 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
885 struct extent_map *em = NULL;
886 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
889 read_lock(&em_tree->lock);
890 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
891 read_unlock(&em_tree->lock);
894 end = extent_map_end(em);
896 if (end - offset > thresh)
899 /* if we already have a nice delalloc here, just stop */
901 end = count_range_bits(io_tree, &offset, offset + thresh,
902 thresh, EXTENT_DELALLOC, 1);
909 * helper function to walk through a file and find extents
910 * newer than a specific transid, and smaller than thresh.
912 * This is used by the defragging code to find new and small
915 static int find_new_extents(struct btrfs_root *root,
916 struct inode *inode, u64 newer_than,
917 u64 *off, u32 thresh)
919 struct btrfs_path *path;
920 struct btrfs_key min_key;
921 struct extent_buffer *leaf;
922 struct btrfs_file_extent_item *extent;
925 u64 ino = btrfs_ino(inode);
927 path = btrfs_alloc_path();
931 min_key.objectid = ino;
932 min_key.type = BTRFS_EXTENT_DATA_KEY;
933 min_key.offset = *off;
936 ret = btrfs_search_forward(root, &min_key, path, newer_than);
940 if (min_key.objectid != ino)
942 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
945 leaf = path->nodes[0];
946 extent = btrfs_item_ptr(leaf, path->slots[0],
947 struct btrfs_file_extent_item);
949 type = btrfs_file_extent_type(leaf, extent);
950 if (type == BTRFS_FILE_EXTENT_REG &&
951 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
952 check_defrag_in_cache(inode, min_key.offset, thresh)) {
953 *off = min_key.offset;
954 btrfs_free_path(path);
959 if (path->slots[0] < btrfs_header_nritems(leaf)) {
960 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
964 if (min_key.offset == (u64)-1)
968 btrfs_release_path(path);
971 btrfs_free_path(path);
975 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
977 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
978 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
979 struct extent_map *em;
980 u64 len = PAGE_CACHE_SIZE;
983 * hopefully we have this extent in the tree already, try without
984 * the full extent lock
986 read_lock(&em_tree->lock);
987 em = lookup_extent_mapping(em_tree, start, len);
988 read_unlock(&em_tree->lock);
991 struct extent_state *cached = NULL;
992 u64 end = start + len - 1;
994 /* get the big lock and read metadata off disk */
995 lock_extent_bits(io_tree, start, end, 0, &cached);
996 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
997 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1006 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1008 struct extent_map *next;
1011 /* this is the last extent */
1012 if (em->start + em->len >= i_size_read(inode))
1015 next = defrag_lookup_extent(inode, em->start + em->len);
1016 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1018 else if ((em->block_start + em->block_len == next->block_start) &&
1019 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024))
1022 free_extent_map(next);
1026 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1027 u64 *last_len, u64 *skip, u64 *defrag_end,
1030 struct extent_map *em;
1032 bool next_mergeable = true;
1033 bool prev_mergeable = true;
1036 * make sure that once we start defragging an extent, we keep on
1039 if (start < *defrag_end)
1044 em = defrag_lookup_extent(inode, start);
1048 /* this will cover holes, and inline extents */
1049 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1055 prev_mergeable = false;
1057 next_mergeable = defrag_check_next_extent(inode, em);
1059 * we hit a real extent, if it is big or the next extent is not a
1060 * real extent, don't bother defragging it
1062 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1063 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1067 * last_len ends up being a counter of how many bytes we've defragged.
1068 * every time we choose not to defrag an extent, we reset *last_len
1069 * so that the next tiny extent will force a defrag.
1071 * The end result of this is that tiny extents before a single big
1072 * extent will force at least part of that big extent to be defragged.
1075 *defrag_end = extent_map_end(em);
1078 *skip = extent_map_end(em);
1082 free_extent_map(em);
1087 * it doesn't do much good to defrag one or two pages
1088 * at a time. This pulls in a nice chunk of pages
1089 * to COW and defrag.
1091 * It also makes sure the delalloc code has enough
1092 * dirty data to avoid making new small extents as part
1095 * It's a good idea to start RA on this range
1096 * before calling this.
1098 static int cluster_pages_for_defrag(struct inode *inode,
1099 struct page **pages,
1100 unsigned long start_index,
1101 unsigned long num_pages)
1103 unsigned long file_end;
1104 u64 isize = i_size_read(inode);
1111 struct btrfs_ordered_extent *ordered;
1112 struct extent_state *cached_state = NULL;
1113 struct extent_io_tree *tree;
1114 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1116 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1117 if (!isize || start_index > file_end)
1120 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1122 ret = btrfs_delalloc_reserve_space(inode,
1123 page_cnt << PAGE_CACHE_SHIFT);
1127 tree = &BTRFS_I(inode)->io_tree;
1129 /* step one, lock all the pages */
1130 for (i = 0; i < page_cnt; i++) {
1133 page = find_or_create_page(inode->i_mapping,
1134 start_index + i, mask);
1138 page_start = page_offset(page);
1139 page_end = page_start + PAGE_CACHE_SIZE - 1;
1141 lock_extent_bits(tree, page_start, page_end,
1143 ordered = btrfs_lookup_ordered_extent(inode,
1145 unlock_extent_cached(tree, page_start, page_end,
1146 &cached_state, GFP_NOFS);
1151 btrfs_start_ordered_extent(inode, ordered, 1);
1152 btrfs_put_ordered_extent(ordered);
1155 * we unlocked the page above, so we need check if
1156 * it was released or not.
1158 if (page->mapping != inode->i_mapping) {
1160 page_cache_release(page);
1165 if (!PageUptodate(page)) {
1166 btrfs_readpage(NULL, page);
1168 if (!PageUptodate(page)) {
1170 page_cache_release(page);
1176 if (page->mapping != inode->i_mapping) {
1178 page_cache_release(page);
1188 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1192 * so now we have a nice long stream of locked
1193 * and up to date pages, lets wait on them
1195 for (i = 0; i < i_done; i++)
1196 wait_on_page_writeback(pages[i]);
1198 page_start = page_offset(pages[0]);
1199 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1201 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1202 page_start, page_end - 1, 0, &cached_state);
1203 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1204 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1205 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1206 &cached_state, GFP_NOFS);
1208 if (i_done != page_cnt) {
1209 spin_lock(&BTRFS_I(inode)->lock);
1210 BTRFS_I(inode)->outstanding_extents++;
1211 spin_unlock(&BTRFS_I(inode)->lock);
1212 btrfs_delalloc_release_space(inode,
1213 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1217 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1218 &cached_state, GFP_NOFS);
1220 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1221 page_start, page_end - 1, &cached_state,
1224 for (i = 0; i < i_done; i++) {
1225 clear_page_dirty_for_io(pages[i]);
1226 ClearPageChecked(pages[i]);
1227 set_page_extent_mapped(pages[i]);
1228 set_page_dirty(pages[i]);
1229 unlock_page(pages[i]);
1230 page_cache_release(pages[i]);
1234 for (i = 0; i < i_done; i++) {
1235 unlock_page(pages[i]);
1236 page_cache_release(pages[i]);
1238 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1243 int btrfs_defrag_file(struct inode *inode, struct file *file,
1244 struct btrfs_ioctl_defrag_range_args *range,
1245 u64 newer_than, unsigned long max_to_defrag)
1247 struct btrfs_root *root = BTRFS_I(inode)->root;
1248 struct file_ra_state *ra = NULL;
1249 unsigned long last_index;
1250 u64 isize = i_size_read(inode);
1254 u64 newer_off = range->start;
1256 unsigned long ra_index = 0;
1258 int defrag_count = 0;
1259 int compress_type = BTRFS_COMPRESS_ZLIB;
1260 u32 extent_thresh = range->extent_thresh;
1261 unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1262 unsigned long cluster = max_cluster;
1263 u64 new_align = ~((u64)128 * 1024 - 1);
1264 struct page **pages = NULL;
1269 if (range->start >= isize)
1272 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1273 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1275 if (range->compress_type)
1276 compress_type = range->compress_type;
1279 if (extent_thresh == 0)
1280 extent_thresh = 256 * 1024;
1283 * if we were not given a file, allocate a readahead
1287 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1290 file_ra_state_init(ra, inode->i_mapping);
1295 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1302 /* find the last page to defrag */
1303 if (range->start + range->len > range->start) {
1304 last_index = min_t(u64, isize - 1,
1305 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1307 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1311 ret = find_new_extents(root, inode, newer_than,
1312 &newer_off, 64 * 1024);
1314 range->start = newer_off;
1316 * we always align our defrag to help keep
1317 * the extents in the file evenly spaced
1319 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1323 i = range->start >> PAGE_CACHE_SHIFT;
1326 max_to_defrag = last_index - i + 1;
1329 * make writeback starts from i, so the defrag range can be
1330 * written sequentially.
1332 if (i < inode->i_mapping->writeback_index)
1333 inode->i_mapping->writeback_index = i;
1335 while (i <= last_index && defrag_count < max_to_defrag &&
1336 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) {
1338 * make sure we stop running if someone unmounts
1341 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1344 if (btrfs_defrag_cancelled(root->fs_info)) {
1345 printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1350 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1351 extent_thresh, &last_len, &skip,
1352 &defrag_end, range->flags &
1353 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1356 * the should_defrag function tells us how much to skip
1357 * bump our counter by the suggested amount
1359 next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE);
1360 i = max(i + 1, next);
1365 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1366 PAGE_CACHE_SHIFT) - i;
1367 cluster = min(cluster, max_cluster);
1369 cluster = max_cluster;
1372 if (i + cluster > ra_index) {
1373 ra_index = max(i, ra_index);
1374 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1376 ra_index += cluster;
1379 mutex_lock(&inode->i_mutex);
1380 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1381 BTRFS_I(inode)->force_compress = compress_type;
1382 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1384 mutex_unlock(&inode->i_mutex);
1388 defrag_count += ret;
1389 balance_dirty_pages_ratelimited(inode->i_mapping);
1390 mutex_unlock(&inode->i_mutex);
1393 if (newer_off == (u64)-1)
1399 newer_off = max(newer_off + 1,
1400 (u64)i << PAGE_CACHE_SHIFT);
1402 ret = find_new_extents(root, inode,
1403 newer_than, &newer_off,
1406 range->start = newer_off;
1407 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1414 last_len += ret << PAGE_CACHE_SHIFT;
1422 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1423 filemap_flush(inode->i_mapping);
1424 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1425 &BTRFS_I(inode)->runtime_flags))
1426 filemap_flush(inode->i_mapping);
1429 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1430 /* the filemap_flush will queue IO into the worker threads, but
1431 * we have to make sure the IO is actually started and that
1432 * ordered extents get created before we return
1434 atomic_inc(&root->fs_info->async_submit_draining);
1435 while (atomic_read(&root->fs_info->nr_async_submits) ||
1436 atomic_read(&root->fs_info->async_delalloc_pages)) {
1437 wait_event(root->fs_info->async_submit_wait,
1438 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1439 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1441 atomic_dec(&root->fs_info->async_submit_draining);
1444 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1445 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1451 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1452 mutex_lock(&inode->i_mutex);
1453 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1454 mutex_unlock(&inode->i_mutex);
1462 static noinline int btrfs_ioctl_resize(struct file *file,
1468 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1469 struct btrfs_ioctl_vol_args *vol_args;
1470 struct btrfs_trans_handle *trans;
1471 struct btrfs_device *device = NULL;
1474 char *devstr = NULL;
1478 if (!capable(CAP_SYS_ADMIN))
1481 ret = mnt_want_write_file(file);
1485 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1487 mnt_drop_write_file(file);
1488 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1491 mutex_lock(&root->fs_info->volume_mutex);
1492 vol_args = memdup_user(arg, sizeof(*vol_args));
1493 if (IS_ERR(vol_args)) {
1494 ret = PTR_ERR(vol_args);
1498 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1500 sizestr = vol_args->name;
1501 devstr = strchr(sizestr, ':');
1503 sizestr = devstr + 1;
1505 devstr = vol_args->name;
1506 ret = kstrtoull(devstr, 10, &devid);
1513 btrfs_info(root->fs_info, "resizing devid %llu", devid);
1516 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1518 btrfs_info(root->fs_info, "resizer unable to find device %llu",
1524 if (!device->writeable) {
1525 btrfs_info(root->fs_info,
1526 "resizer unable to apply on readonly device %llu",
1532 if (!strcmp(sizestr, "max"))
1533 new_size = device->bdev->bd_inode->i_size;
1535 if (sizestr[0] == '-') {
1538 } else if (sizestr[0] == '+') {
1542 new_size = memparse(sizestr, &retptr);
1543 if (*retptr != '\0' || new_size == 0) {
1549 if (device->is_tgtdev_for_dev_replace) {
1554 old_size = btrfs_device_get_total_bytes(device);
1557 if (new_size > old_size) {
1561 new_size = old_size - new_size;
1562 } else if (mod > 0) {
1563 if (new_size > ULLONG_MAX - old_size) {
1567 new_size = old_size + new_size;
1570 if (new_size < 256 * 1024 * 1024) {
1574 if (new_size > device->bdev->bd_inode->i_size) {
1579 new_size = div_u64(new_size, root->sectorsize);
1580 new_size *= root->sectorsize;
1582 printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1583 rcu_str_deref(device->name), new_size);
1585 if (new_size > old_size) {
1586 trans = btrfs_start_transaction(root, 0);
1587 if (IS_ERR(trans)) {
1588 ret = PTR_ERR(trans);
1591 ret = btrfs_grow_device(trans, device, new_size);
1592 btrfs_commit_transaction(trans, root);
1593 } else if (new_size < old_size) {
1594 ret = btrfs_shrink_device(device, new_size);
1595 } /* equal, nothing need to do */
1600 mutex_unlock(&root->fs_info->volume_mutex);
1601 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1602 mnt_drop_write_file(file);
1606 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1607 char *name, unsigned long fd, int subvol,
1608 u64 *transid, bool readonly,
1609 struct btrfs_qgroup_inherit *inherit)
1614 ret = mnt_want_write_file(file);
1618 namelen = strlen(name);
1619 if (strchr(name, '/')) {
1621 goto out_drop_write;
1624 if (name[0] == '.' &&
1625 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1627 goto out_drop_write;
1631 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1632 NULL, transid, readonly, inherit);
1634 struct fd src = fdget(fd);
1635 struct inode *src_inode;
1638 goto out_drop_write;
1641 src_inode = file_inode(src.file);
1642 if (src_inode->i_sb != file_inode(file)->i_sb) {
1643 btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1644 "Snapshot src from another FS");
1646 } else if (!inode_owner_or_capable(src_inode)) {
1648 * Subvolume creation is not restricted, but snapshots
1649 * are limited to own subvolumes only
1653 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1654 BTRFS_I(src_inode)->root,
1655 transid, readonly, inherit);
1660 mnt_drop_write_file(file);
1665 static noinline int btrfs_ioctl_snap_create(struct file *file,
1666 void __user *arg, int subvol)
1668 struct btrfs_ioctl_vol_args *vol_args;
1671 vol_args = memdup_user(arg, sizeof(*vol_args));
1672 if (IS_ERR(vol_args))
1673 return PTR_ERR(vol_args);
1674 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1676 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1677 vol_args->fd, subvol,
1684 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1685 void __user *arg, int subvol)
1687 struct btrfs_ioctl_vol_args_v2 *vol_args;
1691 bool readonly = false;
1692 struct btrfs_qgroup_inherit *inherit = NULL;
1694 vol_args = memdup_user(arg, sizeof(*vol_args));
1695 if (IS_ERR(vol_args))
1696 return PTR_ERR(vol_args);
1697 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1699 if (vol_args->flags &
1700 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1701 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1706 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1708 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1710 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1711 if (vol_args->size > PAGE_CACHE_SIZE) {
1715 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1716 if (IS_ERR(inherit)) {
1717 ret = PTR_ERR(inherit);
1722 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1723 vol_args->fd, subvol, ptr,
1728 if (ptr && copy_to_user(arg +
1729 offsetof(struct btrfs_ioctl_vol_args_v2,
1741 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1744 struct inode *inode = file_inode(file);
1745 struct btrfs_root *root = BTRFS_I(inode)->root;
1749 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1752 down_read(&root->fs_info->subvol_sem);
1753 if (btrfs_root_readonly(root))
1754 flags |= BTRFS_SUBVOL_RDONLY;
1755 up_read(&root->fs_info->subvol_sem);
1757 if (copy_to_user(arg, &flags, sizeof(flags)))
1763 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1766 struct inode *inode = file_inode(file);
1767 struct btrfs_root *root = BTRFS_I(inode)->root;
1768 struct btrfs_trans_handle *trans;
1773 if (!inode_owner_or_capable(inode))
1776 ret = mnt_want_write_file(file);
1780 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1782 goto out_drop_write;
1785 if (copy_from_user(&flags, arg, sizeof(flags))) {
1787 goto out_drop_write;
1790 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1792 goto out_drop_write;
1795 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1797 goto out_drop_write;
1800 down_write(&root->fs_info->subvol_sem);
1803 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1806 root_flags = btrfs_root_flags(&root->root_item);
1807 if (flags & BTRFS_SUBVOL_RDONLY) {
1808 btrfs_set_root_flags(&root->root_item,
1809 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1812 * Block RO -> RW transition if this subvolume is involved in
1815 spin_lock(&root->root_item_lock);
1816 if (root->send_in_progress == 0) {
1817 btrfs_set_root_flags(&root->root_item,
1818 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1819 spin_unlock(&root->root_item_lock);
1821 spin_unlock(&root->root_item_lock);
1822 btrfs_warn(root->fs_info,
1823 "Attempt to set subvolume %llu read-write during send",
1824 root->root_key.objectid);
1830 trans = btrfs_start_transaction(root, 1);
1831 if (IS_ERR(trans)) {
1832 ret = PTR_ERR(trans);
1836 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1837 &root->root_key, &root->root_item);
1839 btrfs_commit_transaction(trans, root);
1842 btrfs_set_root_flags(&root->root_item, root_flags);
1844 up_write(&root->fs_info->subvol_sem);
1846 mnt_drop_write_file(file);
1852 * helper to check if the subvolume references other subvolumes
1854 static noinline int may_destroy_subvol(struct btrfs_root *root)
1856 struct btrfs_path *path;
1857 struct btrfs_dir_item *di;
1858 struct btrfs_key key;
1862 path = btrfs_alloc_path();
1866 /* Make sure this root isn't set as the default subvol */
1867 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1868 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1869 dir_id, "default", 7, 0);
1870 if (di && !IS_ERR(di)) {
1871 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1872 if (key.objectid == root->root_key.objectid) {
1874 btrfs_err(root->fs_info, "deleting default subvolume "
1875 "%llu is not allowed", key.objectid);
1878 btrfs_release_path(path);
1881 key.objectid = root->root_key.objectid;
1882 key.type = BTRFS_ROOT_REF_KEY;
1883 key.offset = (u64)-1;
1885 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1892 if (path->slots[0] > 0) {
1894 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1895 if (key.objectid == root->root_key.objectid &&
1896 key.type == BTRFS_ROOT_REF_KEY)
1900 btrfs_free_path(path);
1904 static noinline int key_in_sk(struct btrfs_key *key,
1905 struct btrfs_ioctl_search_key *sk)
1907 struct btrfs_key test;
1910 test.objectid = sk->min_objectid;
1911 test.type = sk->min_type;
1912 test.offset = sk->min_offset;
1914 ret = btrfs_comp_cpu_keys(key, &test);
1918 test.objectid = sk->max_objectid;
1919 test.type = sk->max_type;
1920 test.offset = sk->max_offset;
1922 ret = btrfs_comp_cpu_keys(key, &test);
1928 static noinline int copy_to_sk(struct btrfs_root *root,
1929 struct btrfs_path *path,
1930 struct btrfs_key *key,
1931 struct btrfs_ioctl_search_key *sk,
1934 unsigned long *sk_offset,
1938 struct extent_buffer *leaf;
1939 struct btrfs_ioctl_search_header sh;
1940 struct btrfs_key test;
1941 unsigned long item_off;
1942 unsigned long item_len;
1948 leaf = path->nodes[0];
1949 slot = path->slots[0];
1950 nritems = btrfs_header_nritems(leaf);
1952 if (btrfs_header_generation(leaf) > sk->max_transid) {
1956 found_transid = btrfs_header_generation(leaf);
1958 for (i = slot; i < nritems; i++) {
1959 item_off = btrfs_item_ptr_offset(leaf, i);
1960 item_len = btrfs_item_size_nr(leaf, i);
1962 btrfs_item_key_to_cpu(leaf, key, i);
1963 if (!key_in_sk(key, sk))
1966 if (sizeof(sh) + item_len > *buf_size) {
1973 * return one empty item back for v1, which does not
1977 *buf_size = sizeof(sh) + item_len;
1982 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1987 sh.objectid = key->objectid;
1988 sh.offset = key->offset;
1989 sh.type = key->type;
1991 sh.transid = found_transid;
1993 /* copy search result header */
1994 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1999 *sk_offset += sizeof(sh);
2002 char __user *up = ubuf + *sk_offset;
2004 if (read_extent_buffer_to_user(leaf, up,
2005 item_off, item_len)) {
2010 *sk_offset += item_len;
2014 if (ret) /* -EOVERFLOW from above */
2017 if (*num_found >= sk->nr_items) {
2024 test.objectid = sk->max_objectid;
2025 test.type = sk->max_type;
2026 test.offset = sk->max_offset;
2027 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2029 else if (key->offset < (u64)-1)
2031 else if (key->type < (u8)-1) {
2034 } else if (key->objectid < (u64)-1) {
2042 * 0: all items from this leaf copied, continue with next
2043 * 1: * more items can be copied, but unused buffer is too small
2044 * * all items were found
2045 * Either way, it will stops the loop which iterates to the next
2047 * -EOVERFLOW: item was to large for buffer
2048 * -EFAULT: could not copy extent buffer back to userspace
2053 static noinline int search_ioctl(struct inode *inode,
2054 struct btrfs_ioctl_search_key *sk,
2058 struct btrfs_root *root;
2059 struct btrfs_key key;
2060 struct btrfs_path *path;
2061 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2064 unsigned long sk_offset = 0;
2066 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2067 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2071 path = btrfs_alloc_path();
2075 if (sk->tree_id == 0) {
2076 /* search the root of the inode that was passed */
2077 root = BTRFS_I(inode)->root;
2079 key.objectid = sk->tree_id;
2080 key.type = BTRFS_ROOT_ITEM_KEY;
2081 key.offset = (u64)-1;
2082 root = btrfs_read_fs_root_no_name(info, &key);
2084 printk(KERN_ERR "BTRFS: could not find root %llu\n",
2086 btrfs_free_path(path);
2091 key.objectid = sk->min_objectid;
2092 key.type = sk->min_type;
2093 key.offset = sk->min_offset;
2096 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2102 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2103 &sk_offset, &num_found);
2104 btrfs_release_path(path);
2112 sk->nr_items = num_found;
2113 btrfs_free_path(path);
2117 static noinline int btrfs_ioctl_tree_search(struct file *file,
2120 struct btrfs_ioctl_search_args __user *uargs;
2121 struct btrfs_ioctl_search_key sk;
2122 struct inode *inode;
2126 if (!capable(CAP_SYS_ADMIN))
2129 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2131 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2134 buf_size = sizeof(uargs->buf);
2136 inode = file_inode(file);
2137 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2140 * In the origin implementation an overflow is handled by returning a
2141 * search header with a len of zero, so reset ret.
2143 if (ret == -EOVERFLOW)
2146 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2151 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2154 struct btrfs_ioctl_search_args_v2 __user *uarg;
2155 struct btrfs_ioctl_search_args_v2 args;
2156 struct inode *inode;
2159 const size_t buf_limit = 16 * 1024 * 1024;
2161 if (!capable(CAP_SYS_ADMIN))
2164 /* copy search header and buffer size */
2165 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2166 if (copy_from_user(&args, uarg, sizeof(args)))
2169 buf_size = args.buf_size;
2171 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2174 /* limit result size to 16MB */
2175 if (buf_size > buf_limit)
2176 buf_size = buf_limit;
2178 inode = file_inode(file);
2179 ret = search_ioctl(inode, &args.key, &buf_size,
2180 (char *)(&uarg->buf[0]));
2181 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2183 else if (ret == -EOVERFLOW &&
2184 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2191 * Search INODE_REFs to identify path name of 'dirid' directory
2192 * in a 'tree_id' tree. and sets path name to 'name'.
2194 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2195 u64 tree_id, u64 dirid, char *name)
2197 struct btrfs_root *root;
2198 struct btrfs_key key;
2204 struct btrfs_inode_ref *iref;
2205 struct extent_buffer *l;
2206 struct btrfs_path *path;
2208 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2213 path = btrfs_alloc_path();
2217 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2219 key.objectid = tree_id;
2220 key.type = BTRFS_ROOT_ITEM_KEY;
2221 key.offset = (u64)-1;
2222 root = btrfs_read_fs_root_no_name(info, &key);
2224 printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2229 key.objectid = dirid;
2230 key.type = BTRFS_INODE_REF_KEY;
2231 key.offset = (u64)-1;
2234 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2238 ret = btrfs_previous_item(root, path, dirid,
2239 BTRFS_INODE_REF_KEY);
2249 slot = path->slots[0];
2250 btrfs_item_key_to_cpu(l, &key, slot);
2252 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2253 len = btrfs_inode_ref_name_len(l, iref);
2255 total_len += len + 1;
2257 ret = -ENAMETOOLONG;
2262 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2264 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2267 btrfs_release_path(path);
2268 key.objectid = key.offset;
2269 key.offset = (u64)-1;
2270 dirid = key.objectid;
2272 memmove(name, ptr, total_len);
2273 name[total_len] = '\0';
2276 btrfs_free_path(path);
2280 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2283 struct btrfs_ioctl_ino_lookup_args *args;
2284 struct inode *inode;
2287 args = memdup_user(argp, sizeof(*args));
2289 return PTR_ERR(args);
2291 inode = file_inode(file);
2294 * Unprivileged query to obtain the containing subvolume root id. The
2295 * path is reset so it's consistent with btrfs_search_path_in_tree.
2297 if (args->treeid == 0)
2298 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2300 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2305 if (!capable(CAP_SYS_ADMIN)) {
2310 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2311 args->treeid, args->objectid,
2315 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2322 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2325 struct dentry *parent = file->f_path.dentry;
2326 struct dentry *dentry;
2327 struct inode *dir = d_inode(parent);
2328 struct inode *inode;
2329 struct btrfs_root *root = BTRFS_I(dir)->root;
2330 struct btrfs_root *dest = NULL;
2331 struct btrfs_ioctl_vol_args *vol_args;
2332 struct btrfs_trans_handle *trans;
2333 struct btrfs_block_rsv block_rsv;
2335 u64 qgroup_reserved;
2340 vol_args = memdup_user(arg, sizeof(*vol_args));
2341 if (IS_ERR(vol_args))
2342 return PTR_ERR(vol_args);
2344 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2345 namelen = strlen(vol_args->name);
2346 if (strchr(vol_args->name, '/') ||
2347 strncmp(vol_args->name, "..", namelen) == 0) {
2352 err = mnt_want_write_file(file);
2357 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2359 goto out_drop_write;
2360 dentry = lookup_one_len(vol_args->name, parent, namelen);
2361 if (IS_ERR(dentry)) {
2362 err = PTR_ERR(dentry);
2363 goto out_unlock_dir;
2366 if (d_really_is_negative(dentry)) {
2371 inode = d_inode(dentry);
2372 dest = BTRFS_I(inode)->root;
2373 if (!capable(CAP_SYS_ADMIN)) {
2375 * Regular user. Only allow this with a special mount
2376 * option, when the user has write+exec access to the
2377 * subvol root, and when rmdir(2) would have been
2380 * Note that this is _not_ check that the subvol is
2381 * empty or doesn't contain data that we wouldn't
2382 * otherwise be able to delete.
2384 * Users who want to delete empty subvols should try
2388 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2392 * Do not allow deletion if the parent dir is the same
2393 * as the dir to be deleted. That means the ioctl
2394 * must be called on the dentry referencing the root
2395 * of the subvol, not a random directory contained
2402 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2407 /* check if subvolume may be deleted by a user */
2408 err = btrfs_may_delete(dir, dentry, 1);
2412 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2417 mutex_lock(&inode->i_mutex);
2420 * Don't allow to delete a subvolume with send in progress. This is
2421 * inside the i_mutex so the error handling that has to drop the bit
2422 * again is not run concurrently.
2424 spin_lock(&dest->root_item_lock);
2425 root_flags = btrfs_root_flags(&dest->root_item);
2426 if (dest->send_in_progress == 0) {
2427 btrfs_set_root_flags(&dest->root_item,
2428 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2429 spin_unlock(&dest->root_item_lock);
2431 spin_unlock(&dest->root_item_lock);
2432 btrfs_warn(root->fs_info,
2433 "Attempt to delete subvolume %llu during send",
2434 dest->root_key.objectid);
2436 goto out_unlock_inode;
2439 down_write(&root->fs_info->subvol_sem);
2441 err = may_destroy_subvol(dest);
2445 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2447 * One for dir inode, two for dir entries, two for root
2450 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2451 5, &qgroup_reserved, true);
2455 trans = btrfs_start_transaction(root, 0);
2456 if (IS_ERR(trans)) {
2457 err = PTR_ERR(trans);
2460 trans->block_rsv = &block_rsv;
2461 trans->bytes_reserved = block_rsv.size;
2463 ret = btrfs_unlink_subvol(trans, root, dir,
2464 dest->root_key.objectid,
2465 dentry->d_name.name,
2466 dentry->d_name.len);
2469 btrfs_abort_transaction(trans, root, ret);
2473 btrfs_record_root_in_trans(trans, dest);
2475 memset(&dest->root_item.drop_progress, 0,
2476 sizeof(dest->root_item.drop_progress));
2477 dest->root_item.drop_level = 0;
2478 btrfs_set_root_refs(&dest->root_item, 0);
2480 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2481 ret = btrfs_insert_orphan_item(trans,
2482 root->fs_info->tree_root,
2483 dest->root_key.objectid);
2485 btrfs_abort_transaction(trans, root, ret);
2491 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2492 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2493 dest->root_key.objectid);
2494 if (ret && ret != -ENOENT) {
2495 btrfs_abort_transaction(trans, root, ret);
2499 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2500 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2501 dest->root_item.received_uuid,
2502 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2503 dest->root_key.objectid);
2504 if (ret && ret != -ENOENT) {
2505 btrfs_abort_transaction(trans, root, ret);
2512 trans->block_rsv = NULL;
2513 trans->bytes_reserved = 0;
2514 ret = btrfs_end_transaction(trans, root);
2517 inode->i_flags |= S_DEAD;
2519 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2521 up_write(&root->fs_info->subvol_sem);
2523 spin_lock(&dest->root_item_lock);
2524 root_flags = btrfs_root_flags(&dest->root_item);
2525 btrfs_set_root_flags(&dest->root_item,
2526 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2527 spin_unlock(&dest->root_item_lock);
2530 mutex_unlock(&inode->i_mutex);
2532 d_invalidate(dentry);
2533 btrfs_invalidate_inodes(dest);
2535 ASSERT(dest->send_in_progress == 0);
2538 if (dest->ino_cache_inode) {
2539 iput(dest->ino_cache_inode);
2540 dest->ino_cache_inode = NULL;
2546 mutex_unlock(&dir->i_mutex);
2548 mnt_drop_write_file(file);
2554 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2556 struct inode *inode = file_inode(file);
2557 struct btrfs_root *root = BTRFS_I(inode)->root;
2558 struct btrfs_ioctl_defrag_range_args *range;
2561 ret = mnt_want_write_file(file);
2565 if (btrfs_root_readonly(root)) {
2570 switch (inode->i_mode & S_IFMT) {
2572 if (!capable(CAP_SYS_ADMIN)) {
2576 ret = btrfs_defrag_root(root);
2579 ret = btrfs_defrag_root(root->fs_info->extent_root);
2582 if (!(file->f_mode & FMODE_WRITE)) {
2587 range = kzalloc(sizeof(*range), GFP_KERNEL);
2594 if (copy_from_user(range, argp,
2600 /* compression requires us to start the IO */
2601 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2602 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2603 range->extent_thresh = (u32)-1;
2606 /* the rest are all set to zero by kzalloc */
2607 range->len = (u64)-1;
2609 ret = btrfs_defrag_file(file_inode(file), file,
2619 mnt_drop_write_file(file);
2623 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2625 struct btrfs_ioctl_vol_args *vol_args;
2628 if (!capable(CAP_SYS_ADMIN))
2631 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2633 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2636 mutex_lock(&root->fs_info->volume_mutex);
2637 vol_args = memdup_user(arg, sizeof(*vol_args));
2638 if (IS_ERR(vol_args)) {
2639 ret = PTR_ERR(vol_args);
2643 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2644 ret = btrfs_init_new_device(root, vol_args->name);
2647 btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2651 mutex_unlock(&root->fs_info->volume_mutex);
2652 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2656 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2658 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2659 struct btrfs_ioctl_vol_args *vol_args;
2662 if (!capable(CAP_SYS_ADMIN))
2665 ret = mnt_want_write_file(file);
2669 vol_args = memdup_user(arg, sizeof(*vol_args));
2670 if (IS_ERR(vol_args)) {
2671 ret = PTR_ERR(vol_args);
2675 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2677 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2679 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2683 mutex_lock(&root->fs_info->volume_mutex);
2684 ret = btrfs_rm_device(root, vol_args->name);
2685 mutex_unlock(&root->fs_info->volume_mutex);
2686 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2689 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2694 mnt_drop_write_file(file);
2698 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2700 struct btrfs_ioctl_fs_info_args *fi_args;
2701 struct btrfs_device *device;
2702 struct btrfs_device *next;
2703 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2706 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2710 mutex_lock(&fs_devices->device_list_mutex);
2711 fi_args->num_devices = fs_devices->num_devices;
2712 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2714 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2715 if (device->devid > fi_args->max_id)
2716 fi_args->max_id = device->devid;
2718 mutex_unlock(&fs_devices->device_list_mutex);
2720 fi_args->nodesize = root->fs_info->super_copy->nodesize;
2721 fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2722 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2724 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2731 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2733 struct btrfs_ioctl_dev_info_args *di_args;
2734 struct btrfs_device *dev;
2735 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2737 char *s_uuid = NULL;
2739 di_args = memdup_user(arg, sizeof(*di_args));
2740 if (IS_ERR(di_args))
2741 return PTR_ERR(di_args);
2743 if (!btrfs_is_empty_uuid(di_args->uuid))
2744 s_uuid = di_args->uuid;
2746 mutex_lock(&fs_devices->device_list_mutex);
2747 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2754 di_args->devid = dev->devid;
2755 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2756 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2757 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2759 struct rcu_string *name;
2762 name = rcu_dereference(dev->name);
2763 strncpy(di_args->path, name->str, sizeof(di_args->path));
2765 di_args->path[sizeof(di_args->path) - 1] = 0;
2767 di_args->path[0] = '\0';
2771 mutex_unlock(&fs_devices->device_list_mutex);
2772 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2779 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2782 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2784 page = grab_cache_page(inode->i_mapping, index);
2788 if (!PageUptodate(page)) {
2789 if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2793 if (!PageUptodate(page)) {
2795 page_cache_release(page);
2804 static int gather_extent_pages(struct inode *inode, struct page **pages,
2805 int num_pages, u64 off)
2808 pgoff_t index = off >> PAGE_CACHE_SHIFT;
2810 for (i = 0; i < num_pages; i++) {
2811 pages[i] = extent_same_get_page(inode, index + i);
2818 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2820 /* do any pending delalloc/csum calc on src, one way or
2821 another, and lock file content */
2823 struct btrfs_ordered_extent *ordered;
2824 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2825 ordered = btrfs_lookup_first_ordered_extent(inode,
2828 ordered->file_offset + ordered->len <= off ||
2829 ordered->file_offset >= off + len) &&
2830 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2831 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2833 btrfs_put_ordered_extent(ordered);
2836 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2838 btrfs_put_ordered_extent(ordered);
2839 btrfs_wait_ordered_range(inode, off, len);
2843 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2845 mutex_unlock(&inode1->i_mutex);
2846 mutex_unlock(&inode2->i_mutex);
2849 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2851 if (inode1 < inode2)
2852 swap(inode1, inode2);
2854 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2855 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2858 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2859 struct inode *inode2, u64 loff2, u64 len)
2861 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2862 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2865 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2866 struct inode *inode2, u64 loff2, u64 len)
2868 if (inode1 < inode2) {
2869 swap(inode1, inode2);
2872 lock_extent_range(inode1, loff1, len);
2873 lock_extent_range(inode2, loff2, len);
2878 struct page **src_pages;
2879 struct page **dst_pages;
2882 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2887 for (i = 0; i < cmp->num_pages; i++) {
2888 pg = cmp->src_pages[i];
2890 page_cache_release(pg);
2891 pg = cmp->dst_pages[i];
2893 page_cache_release(pg);
2895 kfree(cmp->src_pages);
2896 kfree(cmp->dst_pages);
2899 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2900 struct inode *dst, u64 dst_loff,
2901 u64 len, struct cmp_pages *cmp)
2904 int num_pages = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
2905 struct page **src_pgarr, **dst_pgarr;
2908 * We must gather up all the pages before we initiate our
2909 * extent locking. We use an array for the page pointers. Size
2910 * of the array is bounded by len, which is in turn bounded by
2911 * BTRFS_MAX_DEDUPE_LEN.
2913 src_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS);
2914 dst_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS);
2915 if (!src_pgarr || !dst_pgarr) {
2920 cmp->num_pages = num_pages;
2921 cmp->src_pages = src_pgarr;
2922 cmp->dst_pages = dst_pgarr;
2924 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
2928 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
2932 btrfs_cmp_data_free(cmp);
2936 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2937 u64 dst_loff, u64 len, struct cmp_pages *cmp)
2941 struct page *src_page, *dst_page;
2942 unsigned int cmp_len = PAGE_CACHE_SIZE;
2943 void *addr, *dst_addr;
2947 if (len < PAGE_CACHE_SIZE)
2950 BUG_ON(i >= cmp->num_pages);
2952 src_page = cmp->src_pages[i];
2953 dst_page = cmp->dst_pages[i];
2955 addr = kmap_atomic(src_page);
2956 dst_addr = kmap_atomic(dst_page);
2958 flush_dcache_page(src_page);
2959 flush_dcache_page(dst_page);
2961 if (memcmp(addr, dst_addr, cmp_len))
2962 ret = BTRFS_SAME_DATA_DIFFERS;
2964 kunmap_atomic(addr);
2965 kunmap_atomic(dst_addr);
2977 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
2981 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2983 if (off + olen > inode->i_size || off + olen < off)
2986 /* if we extend to eof, continue to block boundary */
2987 if (off + len == inode->i_size)
2988 *plen = len = ALIGN(inode->i_size, bs) - off;
2990 /* Check that we are block aligned - btrfs_clone() requires this */
2991 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2997 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
2998 struct inode *dst, u64 dst_loff)
3002 struct cmp_pages cmp;
3004 u64 same_lock_start = 0;
3005 u64 same_lock_len = 0;
3014 mutex_lock(&src->i_mutex);
3016 ret = extent_same_check_offsets(src, loff, &len, olen);
3021 * Single inode case wants the same checks, except we
3022 * don't want our length pushed out past i_size as
3023 * comparing that data range makes no sense.
3025 * extent_same_check_offsets() will do this for an
3026 * unaligned length at i_size, so catch it here and
3027 * reject the request.
3029 * This effectively means we require aligned extents
3030 * for the single-inode case, whereas the other cases
3031 * allow an unaligned length so long as it ends at
3039 /* Check for overlapping ranges */
3040 if (dst_loff + len > loff && dst_loff < loff + len) {
3045 same_lock_start = min_t(u64, loff, dst_loff);
3046 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3048 btrfs_double_inode_lock(src, dst);
3050 ret = extent_same_check_offsets(src, loff, &len, olen);
3054 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3059 /* don't make the dst file partly checksummed */
3060 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3061 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3066 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3071 lock_extent_range(src, same_lock_start, same_lock_len);
3073 btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
3075 /* pass original length for comparison so we stay within i_size */
3076 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3078 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3081 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3082 same_lock_start + same_lock_len - 1);
3084 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3086 btrfs_cmp_data_free(&cmp);
3089 mutex_unlock(&src->i_mutex);
3091 btrfs_double_inode_unlock(src, dst);
3096 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024)
3098 static long btrfs_ioctl_file_extent_same(struct file *file,
3099 struct btrfs_ioctl_same_args __user *argp)
3101 struct btrfs_ioctl_same_args *same = NULL;
3102 struct btrfs_ioctl_same_extent_info *info;
3103 struct inode *src = file_inode(file);
3109 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3110 bool is_admin = capable(CAP_SYS_ADMIN);
3113 if (!(file->f_mode & FMODE_READ))
3116 ret = mnt_want_write_file(file);
3120 if (get_user(count, &argp->dest_count)) {
3125 size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
3127 same = memdup_user(argp, size);
3130 ret = PTR_ERR(same);
3135 off = same->logical_offset;
3139 * Limit the total length we will dedupe for each operation.
3140 * This is intended to bound the total time spent in this
3141 * ioctl to something sane.
3143 if (len > BTRFS_MAX_DEDUPE_LEN)
3144 len = BTRFS_MAX_DEDUPE_LEN;
3146 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
3148 * Btrfs does not support blocksize < page_size. As a
3149 * result, btrfs_cmp_data() won't correctly handle
3150 * this situation without an update.
3157 if (S_ISDIR(src->i_mode))
3161 if (!S_ISREG(src->i_mode))
3164 /* pre-format output fields to sane values */
3165 for (i = 0; i < count; i++) {
3166 same->info[i].bytes_deduped = 0ULL;
3167 same->info[i].status = 0;
3170 for (i = 0, info = same->info; i < count; i++, info++) {
3172 struct fd dst_file = fdget(info->fd);
3173 if (!dst_file.file) {
3174 info->status = -EBADF;
3177 dst = file_inode(dst_file.file);
3179 if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
3180 info->status = -EINVAL;
3181 } else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
3182 info->status = -EXDEV;
3183 } else if (S_ISDIR(dst->i_mode)) {
3184 info->status = -EISDIR;
3185 } else if (!S_ISREG(dst->i_mode)) {
3186 info->status = -EACCES;
3188 info->status = btrfs_extent_same(src, off, len, dst,
3189 info->logical_offset);
3190 if (info->status == 0)
3191 info->bytes_deduped += len;
3196 ret = copy_to_user(argp, same, size);
3201 mnt_drop_write_file(file);
3206 /* Helper to check and see if this root currently has a ref on the given disk
3207 * bytenr. If it does then we need to update the quota for this root. This
3208 * doesn't do anything if quotas aren't enabled.
3210 static int check_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3213 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
3214 struct ulist *roots;
3215 struct ulist_iterator uiter;
3216 struct ulist_node *root_node = NULL;
3219 if (!root->fs_info->quota_enabled)
3222 btrfs_get_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3223 ret = btrfs_find_all_roots(trans, root->fs_info, disko,
3224 tree_mod_seq_elem.seq, &roots);
3228 ULIST_ITER_INIT(&uiter);
3229 while ((root_node = ulist_next(roots, &uiter))) {
3230 if (root_node->val == root->objectid) {
3237 btrfs_put_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3241 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3242 struct inode *inode,
3248 struct btrfs_root *root = BTRFS_I(inode)->root;
3251 inode_inc_iversion(inode);
3252 if (!no_time_update)
3253 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3255 * We round up to the block size at eof when determining which
3256 * extents to clone above, but shouldn't round up the file size.
3258 if (endoff > destoff + olen)
3259 endoff = destoff + olen;
3260 if (endoff > inode->i_size)
3261 btrfs_i_size_write(inode, endoff);
3263 ret = btrfs_update_inode(trans, root, inode);
3265 btrfs_abort_transaction(trans, root, ret);
3266 btrfs_end_transaction(trans, root);
3269 ret = btrfs_end_transaction(trans, root);
3274 static void clone_update_extent_map(struct inode *inode,
3275 const struct btrfs_trans_handle *trans,
3276 const struct btrfs_path *path,
3277 const u64 hole_offset,
3280 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3281 struct extent_map *em;
3284 em = alloc_extent_map();
3286 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3287 &BTRFS_I(inode)->runtime_flags);
3292 struct btrfs_file_extent_item *fi;
3294 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3295 struct btrfs_file_extent_item);
3296 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3297 em->generation = -1;
3298 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3299 BTRFS_FILE_EXTENT_INLINE)
3300 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3301 &BTRFS_I(inode)->runtime_flags);
3303 em->start = hole_offset;
3305 em->ram_bytes = em->len;
3306 em->orig_start = hole_offset;
3307 em->block_start = EXTENT_MAP_HOLE;
3309 em->orig_block_len = 0;
3310 em->compress_type = BTRFS_COMPRESS_NONE;
3311 em->generation = trans->transid;
3315 write_lock(&em_tree->lock);
3316 ret = add_extent_mapping(em_tree, em, 1);
3317 write_unlock(&em_tree->lock);
3318 if (ret != -EEXIST) {
3319 free_extent_map(em);
3322 btrfs_drop_extent_cache(inode, em->start,
3323 em->start + em->len - 1, 0);
3327 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3328 &BTRFS_I(inode)->runtime_flags);
3332 * btrfs_clone() - clone a range from inode file to another
3334 * @src: Inode to clone from
3335 * @inode: Inode to clone to
3336 * @off: Offset within source to start clone from
3337 * @olen: Original length, passed by user, of range to clone
3338 * @olen_aligned: Block-aligned value of olen
3339 * @destoff: Offset within @inode to start clone
3340 * @no_time_update: Whether to update mtime/ctime on the target inode
3342 static int btrfs_clone(struct inode *src, struct inode *inode,
3343 const u64 off, const u64 olen, const u64 olen_aligned,
3344 const u64 destoff, int no_time_update)
3346 struct btrfs_root *root = BTRFS_I(inode)->root;
3347 struct btrfs_path *path = NULL;
3348 struct extent_buffer *leaf;
3349 struct btrfs_trans_handle *trans;
3351 struct btrfs_key key;
3356 const u64 len = olen_aligned;
3358 u64 last_dest_end = destoff;
3361 buf = vmalloc(root->nodesize);
3365 path = btrfs_alloc_path();
3373 key.objectid = btrfs_ino(src);
3374 key.type = BTRFS_EXTENT_DATA_KEY;
3378 u64 next_key_min_offset = key.offset + 1;
3381 * note the key will change type as we walk through the
3384 path->leave_spinning = 1;
3385 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3390 * First search, if no extent item that starts at offset off was
3391 * found but the previous item is an extent item, it's possible
3392 * it might overlap our target range, therefore process it.
3394 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3395 btrfs_item_key_to_cpu(path->nodes[0], &key,
3396 path->slots[0] - 1);
3397 if (key.type == BTRFS_EXTENT_DATA_KEY)
3401 nritems = btrfs_header_nritems(path->nodes[0]);
3404 if (path->slots[0] >= nritems) {
3405 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3410 nritems = btrfs_header_nritems(path->nodes[0]);
3412 leaf = path->nodes[0];
3413 slot = path->slots[0];
3415 btrfs_item_key_to_cpu(leaf, &key, slot);
3416 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3417 key.objectid != btrfs_ino(src))
3420 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3421 struct btrfs_file_extent_item *extent;