2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
49 .devs_max = 0, /* 0 == as many as possible */
51 .tolerated_failures = 1,
55 [BTRFS_RAID_RAID1] = {
60 .tolerated_failures = 1,
69 .tolerated_failures = 0,
73 [BTRFS_RAID_RAID0] = {
78 .tolerated_failures = 0,
82 [BTRFS_RAID_SINGLE] = {
87 .tolerated_failures = 0,
91 [BTRFS_RAID_RAID5] = {
96 .tolerated_failures = 1,
100 [BTRFS_RAID_RAID6] = {
105 .tolerated_failures = 2,
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
159 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160 * The returned struct is not linked onto any lists and can be destroyed with
161 * kfree() right away.
163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
165 struct btrfs_fs_devices *fs_devs;
167 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
169 return ERR_PTR(-ENOMEM);
171 mutex_init(&fs_devs->device_list_mutex);
173 INIT_LIST_HEAD(&fs_devs->devices);
174 INIT_LIST_HEAD(&fs_devs->resized_devices);
175 INIT_LIST_HEAD(&fs_devs->alloc_list);
176 INIT_LIST_HEAD(&fs_devs->list);
178 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
185 struct btrfs_device *device;
186 WARN_ON(fs_devices->opened);
187 while (!list_empty(&fs_devices->devices)) {
188 device = list_entry(fs_devices->devices.next,
189 struct btrfs_device, dev_list);
190 list_del(&device->dev_list);
191 rcu_string_free(device->name);
197 static void btrfs_kobject_uevent(struct block_device *bdev,
198 enum kobject_action action)
202 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
204 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
206 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
207 &disk_to_dev(bdev->bd_disk)->kobj);
210 void btrfs_cleanup_fs_uuids(void)
212 struct btrfs_fs_devices *fs_devices;
214 while (!list_empty(&fs_uuids)) {
215 fs_devices = list_entry(fs_uuids.next,
216 struct btrfs_fs_devices, list);
217 list_del(&fs_devices->list);
218 free_fs_devices(fs_devices);
222 static struct btrfs_device *__alloc_device(void)
224 struct btrfs_device *dev;
226 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
228 return ERR_PTR(-ENOMEM);
231 * Preallocate a bio that's always going to be used for flushing device
232 * barriers and matches the device lifespan
234 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
235 if (!dev->flush_bio) {
237 return ERR_PTR(-ENOMEM);
239 bio_get(dev->flush_bio);
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
243 INIT_LIST_HEAD(&dev->resized_list);
245 spin_lock_init(&dev->io_lock);
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
249 atomic_set(&dev->dev_stats_ccnt, 0);
250 btrfs_device_data_ordered_init(dev);
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
258 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
261 * If devid and uuid are both specified, the match must be exact, otherwise
262 * only devid is used.
264 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
265 u64 devid, const u8 *uuid)
267 struct list_head *head = &fs_devices->devices;
268 struct btrfs_device *dev;
270 list_for_each_entry(dev, head, dev_list) {
271 if (dev->devid == devid &&
272 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
279 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
281 struct btrfs_fs_devices *fs_devices;
283 list_for_each_entry(fs_devices, &fs_uuids, list) {
284 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
291 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
292 int flush, struct block_device **bdev,
293 struct buffer_head **bh)
297 *bdev = blkdev_get_by_path(device_path, flags, holder);
300 ret = PTR_ERR(*bdev);
305 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
306 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
308 blkdev_put(*bdev, flags);
311 invalidate_bdev(*bdev);
312 *bh = btrfs_read_dev_super(*bdev);
315 blkdev_put(*bdev, flags);
327 static void requeue_list(struct btrfs_pending_bios *pending_bios,
328 struct bio *head, struct bio *tail)
331 struct bio *old_head;
333 old_head = pending_bios->head;
334 pending_bios->head = head;
335 if (pending_bios->tail)
336 tail->bi_next = old_head;
338 pending_bios->tail = tail;
342 * we try to collect pending bios for a device so we don't get a large
343 * number of procs sending bios down to the same device. This greatly
344 * improves the schedulers ability to collect and merge the bios.
346 * But, it also turns into a long list of bios to process and that is sure
347 * to eventually make the worker thread block. The solution here is to
348 * make some progress and then put this work struct back at the end of
349 * the list if the block device is congested. This way, multiple devices
350 * can make progress from a single worker thread.
352 static noinline void run_scheduled_bios(struct btrfs_device *device)
354 struct btrfs_fs_info *fs_info = device->fs_info;
356 struct backing_dev_info *bdi;
357 struct btrfs_pending_bios *pending_bios;
361 unsigned long num_run;
362 unsigned long batch_run = 0;
364 unsigned long last_waited = 0;
366 int sync_pending = 0;
367 struct blk_plug plug;
370 * this function runs all the bios we've collected for
371 * a particular device. We don't want to wander off to
372 * another device without first sending all of these down.
373 * So, setup a plug here and finish it off before we return
375 blk_start_plug(&plug);
377 bdi = device->bdev->bd_bdi;
378 limit = btrfs_async_submit_limit(fs_info);
379 limit = limit * 2 / 3;
382 spin_lock(&device->io_lock);
387 /* take all the bios off the list at once and process them
388 * later on (without the lock held). But, remember the
389 * tail and other pointers so the bios can be properly reinserted
390 * into the list if we hit congestion
392 if (!force_reg && device->pending_sync_bios.head) {
393 pending_bios = &device->pending_sync_bios;
396 pending_bios = &device->pending_bios;
400 pending = pending_bios->head;
401 tail = pending_bios->tail;
402 WARN_ON(pending && !tail);
405 * if pending was null this time around, no bios need processing
406 * at all and we can stop. Otherwise it'll loop back up again
407 * and do an additional check so no bios are missed.
409 * device->running_pending is used to synchronize with the
412 if (device->pending_sync_bios.head == NULL &&
413 device->pending_bios.head == NULL) {
415 device->running_pending = 0;
418 device->running_pending = 1;
421 pending_bios->head = NULL;
422 pending_bios->tail = NULL;
424 spin_unlock(&device->io_lock);
429 /* we want to work on both lists, but do more bios on the
430 * sync list than the regular list
433 pending_bios != &device->pending_sync_bios &&
434 device->pending_sync_bios.head) ||
435 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
436 device->pending_bios.head)) {
437 spin_lock(&device->io_lock);
438 requeue_list(pending_bios, pending, tail);
443 pending = pending->bi_next;
447 * atomic_dec_return implies a barrier for waitqueue_active
449 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
450 waitqueue_active(&fs_info->async_submit_wait))
451 wake_up(&fs_info->async_submit_wait);
453 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
456 * if we're doing the sync list, record that our
457 * plug has some sync requests on it
459 * If we're doing the regular list and there are
460 * sync requests sitting around, unplug before
463 if (pending_bios == &device->pending_sync_bios) {
465 } else if (sync_pending) {
466 blk_finish_plug(&plug);
467 blk_start_plug(&plug);
471 btrfsic_submit_bio(cur);
478 * we made progress, there is more work to do and the bdi
479 * is now congested. Back off and let other work structs
482 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
483 fs_info->fs_devices->open_devices > 1) {
484 struct io_context *ioc;
486 ioc = current->io_context;
489 * the main goal here is that we don't want to
490 * block if we're going to be able to submit
491 * more requests without blocking.
493 * This code does two great things, it pokes into
494 * the elevator code from a filesystem _and_
495 * it makes assumptions about how batching works.
497 if (ioc && ioc->nr_batch_requests > 0 &&
498 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
500 ioc->last_waited == last_waited)) {
502 * we want to go through our batch of
503 * requests and stop. So, we copy out
504 * the ioc->last_waited time and test
505 * against it before looping
507 last_waited = ioc->last_waited;
511 spin_lock(&device->io_lock);
512 requeue_list(pending_bios, pending, tail);
513 device->running_pending = 1;
515 spin_unlock(&device->io_lock);
516 btrfs_queue_work(fs_info->submit_workers,
520 /* unplug every 64 requests just for good measure */
521 if (batch_run % 64 == 0) {
522 blk_finish_plug(&plug);
523 blk_start_plug(&plug);
532 spin_lock(&device->io_lock);
533 if (device->pending_bios.head || device->pending_sync_bios.head)
535 spin_unlock(&device->io_lock);
538 blk_finish_plug(&plug);
541 static void pending_bios_fn(struct btrfs_work *work)
543 struct btrfs_device *device;
545 device = container_of(work, struct btrfs_device, work);
546 run_scheduled_bios(device);
550 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
552 struct btrfs_fs_devices *fs_devs;
553 struct btrfs_device *dev;
558 list_for_each_entry(fs_devs, &fs_uuids, list) {
563 if (fs_devs->seeding)
566 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
574 * Todo: This won't be enough. What if the same device
575 * comes back (with new uuid and) with its mapper path?
576 * But for now, this does help as mostly an admin will
577 * either use mapper or non mapper path throughout.
580 del = strcmp(rcu_str_deref(dev->name),
581 rcu_str_deref(cur_dev->name));
588 /* delete the stale device */
589 if (fs_devs->num_devices == 1) {
590 btrfs_sysfs_remove_fsid(fs_devs);
591 list_del(&fs_devs->list);
592 free_fs_devices(fs_devs);
594 fs_devs->num_devices--;
595 list_del(&dev->dev_list);
596 rcu_string_free(dev->name);
605 * Add new device to list of registered devices
608 * 1 - first time device is seen
609 * 0 - device already known
612 static noinline int device_list_add(const char *path,
613 struct btrfs_super_block *disk_super,
614 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
616 struct btrfs_device *device;
617 struct btrfs_fs_devices *fs_devices;
618 struct rcu_string *name;
620 u64 found_transid = btrfs_super_generation(disk_super);
622 fs_devices = find_fsid(disk_super->fsid);
624 fs_devices = alloc_fs_devices(disk_super->fsid);
625 if (IS_ERR(fs_devices))
626 return PTR_ERR(fs_devices);
628 list_add(&fs_devices->list, &fs_uuids);
632 device = find_device(fs_devices, devid,
633 disk_super->dev_item.uuid);
637 if (fs_devices->opened)
640 device = btrfs_alloc_device(NULL, &devid,
641 disk_super->dev_item.uuid);
642 if (IS_ERR(device)) {
643 /* we can safely leave the fs_devices entry around */
644 return PTR_ERR(device);
647 name = rcu_string_strdup(path, GFP_NOFS);
652 rcu_assign_pointer(device->name, name);
654 mutex_lock(&fs_devices->device_list_mutex);
655 list_add_rcu(&device->dev_list, &fs_devices->devices);
656 fs_devices->num_devices++;
657 mutex_unlock(&fs_devices->device_list_mutex);
660 device->fs_devices = fs_devices;
661 } else if (!device->name || strcmp(device->name->str, path)) {
663 * When FS is already mounted.
664 * 1. If you are here and if the device->name is NULL that
665 * means this device was missing at time of FS mount.
666 * 2. If you are here and if the device->name is different
667 * from 'path' that means either
668 * a. The same device disappeared and reappeared with
670 * b. The missing-disk-which-was-replaced, has
673 * We must allow 1 and 2a above. But 2b would be a spurious
676 * Further in case of 1 and 2a above, the disk at 'path'
677 * would have missed some transaction when it was away and
678 * in case of 2a the stale bdev has to be updated as well.
679 * 2b must not be allowed at all time.
683 * For now, we do allow update to btrfs_fs_device through the
684 * btrfs dev scan cli after FS has been mounted. We're still
685 * tracking a problem where systems fail mount by subvolume id
686 * when we reject replacement on a mounted FS.
688 if (!fs_devices->opened && found_transid < device->generation) {
690 * That is if the FS is _not_ mounted and if you
691 * are here, that means there is more than one
692 * disk with same uuid and devid.We keep the one
693 * with larger generation number or the last-in if
694 * generation are equal.
699 name = rcu_string_strdup(path, GFP_NOFS);
702 rcu_string_free(device->name);
703 rcu_assign_pointer(device->name, name);
704 if (device->missing) {
705 fs_devices->missing_devices--;
711 * Unmount does not free the btrfs_device struct but would zero
712 * generation along with most of the other members. So just update
713 * it back. We need it to pick the disk with largest generation
716 if (!fs_devices->opened)
717 device->generation = found_transid;
720 * if there is new btrfs on an already registered device,
721 * then remove the stale device entry.
724 btrfs_free_stale_device(device);
726 *fs_devices_ret = fs_devices;
731 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
733 struct btrfs_fs_devices *fs_devices;
734 struct btrfs_device *device;
735 struct btrfs_device *orig_dev;
737 fs_devices = alloc_fs_devices(orig->fsid);
738 if (IS_ERR(fs_devices))
741 mutex_lock(&orig->device_list_mutex);
742 fs_devices->total_devices = orig->total_devices;
744 /* We have held the volume lock, it is safe to get the devices. */
745 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
746 struct rcu_string *name;
748 device = btrfs_alloc_device(NULL, &orig_dev->devid,
754 * This is ok to do without rcu read locked because we hold the
755 * uuid mutex so nothing we touch in here is going to disappear.
757 if (orig_dev->name) {
758 name = rcu_string_strdup(orig_dev->name->str,
764 rcu_assign_pointer(device->name, name);
767 list_add(&device->dev_list, &fs_devices->devices);
768 device->fs_devices = fs_devices;
769 fs_devices->num_devices++;
771 mutex_unlock(&orig->device_list_mutex);
774 mutex_unlock(&orig->device_list_mutex);
775 free_fs_devices(fs_devices);
776 return ERR_PTR(-ENOMEM);
779 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
781 struct btrfs_device *device, *next;
782 struct btrfs_device *latest_dev = NULL;
784 mutex_lock(&uuid_mutex);
786 /* This is the initialized path, it is safe to release the devices. */
787 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
788 if (device->in_fs_metadata) {
789 if (!device->is_tgtdev_for_dev_replace &&
791 device->generation > latest_dev->generation)) {
797 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
799 * In the first step, keep the device which has
800 * the correct fsid and the devid that is used
801 * for the dev_replace procedure.
802 * In the second step, the dev_replace state is
803 * read from the device tree and it is known
804 * whether the procedure is really active or
805 * not, which means whether this device is
806 * used or whether it should be removed.
808 if (step == 0 || device->is_tgtdev_for_dev_replace) {
813 blkdev_put(device->bdev, device->mode);
815 fs_devices->open_devices--;
817 if (device->writeable) {
818 list_del_init(&device->dev_alloc_list);
819 device->writeable = 0;
820 if (!device->is_tgtdev_for_dev_replace)
821 fs_devices->rw_devices--;
823 list_del_init(&device->dev_list);
824 fs_devices->num_devices--;
825 rcu_string_free(device->name);
829 if (fs_devices->seed) {
830 fs_devices = fs_devices->seed;
834 fs_devices->latest_bdev = latest_dev->bdev;
836 mutex_unlock(&uuid_mutex);
839 static void __free_device(struct work_struct *work)
841 struct btrfs_device *device;
843 device = container_of(work, struct btrfs_device, rcu_work);
844 rcu_string_free(device->name);
845 bio_put(device->flush_bio);
849 static void free_device(struct rcu_head *head)
851 struct btrfs_device *device;
853 device = container_of(head, struct btrfs_device, rcu);
855 INIT_WORK(&device->rcu_work, __free_device);
856 schedule_work(&device->rcu_work);
859 static void btrfs_close_bdev(struct btrfs_device *device)
861 if (device->bdev && device->writeable) {
862 sync_blockdev(device->bdev);
863 invalidate_bdev(device->bdev);
867 blkdev_put(device->bdev, device->mode);
870 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
872 struct btrfs_fs_devices *fs_devices = device->fs_devices;
873 struct btrfs_device *new_device;
874 struct rcu_string *name;
877 fs_devices->open_devices--;
879 if (device->writeable &&
880 device->devid != BTRFS_DEV_REPLACE_DEVID) {
881 list_del_init(&device->dev_alloc_list);
882 fs_devices->rw_devices--;
886 fs_devices->missing_devices--;
888 new_device = btrfs_alloc_device(NULL, &device->devid,
890 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
892 /* Safe because we are under uuid_mutex */
894 name = rcu_string_strdup(device->name->str, GFP_NOFS);
895 BUG_ON(!name); /* -ENOMEM */
896 rcu_assign_pointer(new_device->name, name);
899 list_replace_rcu(&device->dev_list, &new_device->dev_list);
900 new_device->fs_devices = device->fs_devices;
903 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
905 struct btrfs_device *device, *tmp;
906 struct list_head pending_put;
908 INIT_LIST_HEAD(&pending_put);
910 if (--fs_devices->opened > 0)
913 mutex_lock(&fs_devices->device_list_mutex);
914 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
915 btrfs_prepare_close_one_device(device);
916 list_add(&device->dev_list, &pending_put);
918 mutex_unlock(&fs_devices->device_list_mutex);
921 * btrfs_show_devname() is using the device_list_mutex,
922 * sometimes call to blkdev_put() leads vfs calling
923 * into this func. So do put outside of device_list_mutex,
926 while (!list_empty(&pending_put)) {
927 device = list_first_entry(&pending_put,
928 struct btrfs_device, dev_list);
929 list_del(&device->dev_list);
930 btrfs_close_bdev(device);
931 call_rcu(&device->rcu, free_device);
934 WARN_ON(fs_devices->open_devices);
935 WARN_ON(fs_devices->rw_devices);
936 fs_devices->opened = 0;
937 fs_devices->seeding = 0;
942 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
944 struct btrfs_fs_devices *seed_devices = NULL;
947 mutex_lock(&uuid_mutex);
948 ret = __btrfs_close_devices(fs_devices);
949 if (!fs_devices->opened) {
950 seed_devices = fs_devices->seed;
951 fs_devices->seed = NULL;
953 mutex_unlock(&uuid_mutex);
955 while (seed_devices) {
956 fs_devices = seed_devices;
957 seed_devices = fs_devices->seed;
958 __btrfs_close_devices(fs_devices);
959 free_fs_devices(fs_devices);
962 * Wait for rcu kworkers under __btrfs_close_devices
963 * to finish all blkdev_puts so device is really
964 * free when umount is done.
970 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
971 fmode_t flags, void *holder)
973 struct request_queue *q;
974 struct block_device *bdev;
975 struct list_head *head = &fs_devices->devices;
976 struct btrfs_device *device;
977 struct btrfs_device *latest_dev = NULL;
978 struct buffer_head *bh;
979 struct btrfs_super_block *disk_super;
986 list_for_each_entry(device, head, dev_list) {
992 /* Just open everything we can; ignore failures here */
993 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
997 disk_super = (struct btrfs_super_block *)bh->b_data;
998 devid = btrfs_stack_device_id(&disk_super->dev_item);
999 if (devid != device->devid)
1002 if (memcmp(device->uuid, disk_super->dev_item.uuid,
1006 device->generation = btrfs_super_generation(disk_super);
1008 device->generation > latest_dev->generation)
1009 latest_dev = device;
1011 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1012 device->writeable = 0;
1014 device->writeable = !bdev_read_only(bdev);
1018 q = bdev_get_queue(bdev);
1019 if (blk_queue_discard(q))
1020 device->can_discard = 1;
1021 if (!blk_queue_nonrot(q))
1022 fs_devices->rotating = 1;
1024 device->bdev = bdev;
1025 device->in_fs_metadata = 0;
1026 device->mode = flags;
1028 fs_devices->open_devices++;
1029 if (device->writeable &&
1030 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1031 fs_devices->rw_devices++;
1032 list_add(&device->dev_alloc_list,
1033 &fs_devices->alloc_list);
1040 blkdev_put(bdev, flags);
1043 if (fs_devices->open_devices == 0) {
1047 fs_devices->seeding = seeding;
1048 fs_devices->opened = 1;
1049 fs_devices->latest_bdev = latest_dev->bdev;
1050 fs_devices->total_rw_bytes = 0;
1055 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1056 fmode_t flags, void *holder)
1060 mutex_lock(&uuid_mutex);
1061 if (fs_devices->opened) {
1062 fs_devices->opened++;
1065 ret = __btrfs_open_devices(fs_devices, flags, holder);
1067 mutex_unlock(&uuid_mutex);
1071 void btrfs_release_disk_super(struct page *page)
1077 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1078 struct page **page, struct btrfs_super_block **disk_super)
1083 /* make sure our super fits in the device */
1084 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1087 /* make sure our super fits in the page */
1088 if (sizeof(**disk_super) > PAGE_SIZE)
1091 /* make sure our super doesn't straddle pages on disk */
1092 index = bytenr >> PAGE_SHIFT;
1093 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1096 /* pull in the page with our super */
1097 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1100 if (IS_ERR_OR_NULL(*page))
1105 /* align our pointer to the offset of the super block */
1106 *disk_super = p + (bytenr & ~PAGE_MASK);
1108 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1109 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1110 btrfs_release_disk_super(*page);
1114 if ((*disk_super)->label[0] &&
1115 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1116 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1122 * Look for a btrfs signature on a device. This may be called out of the mount path
1123 * and we are not allowed to call set_blocksize during the scan. The superblock
1124 * is read via pagecache
1126 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1127 struct btrfs_fs_devices **fs_devices_ret)
1129 struct btrfs_super_block *disk_super;
1130 struct block_device *bdev;
1139 * we would like to check all the supers, but that would make
1140 * a btrfs mount succeed after a mkfs from a different FS.
1141 * So, we need to add a special mount option to scan for
1142 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1144 bytenr = btrfs_sb_offset(0);
1145 flags |= FMODE_EXCL;
1146 mutex_lock(&uuid_mutex);
1148 bdev = blkdev_get_by_path(path, flags, holder);
1150 ret = PTR_ERR(bdev);
1154 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1155 goto error_bdev_put;
1157 devid = btrfs_stack_device_id(&disk_super->dev_item);
1158 transid = btrfs_super_generation(disk_super);
1159 total_devices = btrfs_super_num_devices(disk_super);
1161 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1163 if (disk_super->label[0]) {
1164 pr_info("BTRFS: device label %s ", disk_super->label);
1166 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1169 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1172 if (!ret && fs_devices_ret)
1173 (*fs_devices_ret)->total_devices = total_devices;
1175 btrfs_release_disk_super(page);
1178 blkdev_put(bdev, flags);
1180 mutex_unlock(&uuid_mutex);
1184 /* helper to account the used device space in the range */
1185 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1186 u64 end, u64 *length)
1188 struct btrfs_key key;
1189 struct btrfs_root *root = device->fs_info->dev_root;
1190 struct btrfs_dev_extent *dev_extent;
1191 struct btrfs_path *path;
1195 struct extent_buffer *l;
1199 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1202 path = btrfs_alloc_path();
1205 path->reada = READA_FORWARD;
1207 key.objectid = device->devid;
1209 key.type = BTRFS_DEV_EXTENT_KEY;
1211 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1215 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1222 slot = path->slots[0];
1223 if (slot >= btrfs_header_nritems(l)) {
1224 ret = btrfs_next_leaf(root, path);
1232 btrfs_item_key_to_cpu(l, &key, slot);
1234 if (key.objectid < device->devid)
1237 if (key.objectid > device->devid)
1240 if (key.type != BTRFS_DEV_EXTENT_KEY)
1243 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1244 extent_end = key.offset + btrfs_dev_extent_length(l,
1246 if (key.offset <= start && extent_end > end) {
1247 *length = end - start + 1;
1249 } else if (key.offset <= start && extent_end > start)
1250 *length += extent_end - start;
1251 else if (key.offset > start && extent_end <= end)
1252 *length += extent_end - key.offset;
1253 else if (key.offset > start && key.offset <= end) {
1254 *length += end - key.offset + 1;
1256 } else if (key.offset > end)
1264 btrfs_free_path(path);
1268 static int contains_pending_extent(struct btrfs_transaction *transaction,
1269 struct btrfs_device *device,
1270 u64 *start, u64 len)
1272 struct btrfs_fs_info *fs_info = device->fs_info;
1273 struct extent_map *em;
1274 struct list_head *search_list = &fs_info->pinned_chunks;
1276 u64 physical_start = *start;
1279 search_list = &transaction->pending_chunks;
1281 list_for_each_entry(em, search_list, list) {
1282 struct map_lookup *map;
1285 map = em->map_lookup;
1286 for (i = 0; i < map->num_stripes; i++) {
1289 if (map->stripes[i].dev != device)
1291 if (map->stripes[i].physical >= physical_start + len ||
1292 map->stripes[i].physical + em->orig_block_len <=
1296 * Make sure that while processing the pinned list we do
1297 * not override our *start with a lower value, because
1298 * we can have pinned chunks that fall within this
1299 * device hole and that have lower physical addresses
1300 * than the pending chunks we processed before. If we
1301 * do not take this special care we can end up getting
1302 * 2 pending chunks that start at the same physical
1303 * device offsets because the end offset of a pinned
1304 * chunk can be equal to the start offset of some
1307 end = map->stripes[i].physical + em->orig_block_len;
1314 if (search_list != &fs_info->pinned_chunks) {
1315 search_list = &fs_info->pinned_chunks;
1324 * find_free_dev_extent_start - find free space in the specified device
1325 * @device: the device which we search the free space in
1326 * @num_bytes: the size of the free space that we need
1327 * @search_start: the position from which to begin the search
1328 * @start: store the start of the free space.
1329 * @len: the size of the free space. that we find, or the size
1330 * of the max free space if we don't find suitable free space
1332 * this uses a pretty simple search, the expectation is that it is
1333 * called very infrequently and that a given device has a small number
1336 * @start is used to store the start of the free space if we find. But if we
1337 * don't find suitable free space, it will be used to store the start position
1338 * of the max free space.
1340 * @len is used to store the size of the free space that we find.
1341 * But if we don't find suitable free space, it is used to store the size of
1342 * the max free space.
1344 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1345 struct btrfs_device *device, u64 num_bytes,
1346 u64 search_start, u64 *start, u64 *len)
1348 struct btrfs_fs_info *fs_info = device->fs_info;
1349 struct btrfs_root *root = fs_info->dev_root;
1350 struct btrfs_key key;
1351 struct btrfs_dev_extent *dev_extent;
1352 struct btrfs_path *path;
1357 u64 search_end = device->total_bytes;
1360 struct extent_buffer *l;
1363 * We don't want to overwrite the superblock on the drive nor any area
1364 * used by the boot loader (grub for example), so we make sure to start
1365 * at an offset of at least 1MB.
1367 search_start = max_t(u64, search_start, SZ_1M);
1369 path = btrfs_alloc_path();
1373 max_hole_start = search_start;
1377 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1382 path->reada = READA_FORWARD;
1383 path->search_commit_root = 1;
1384 path->skip_locking = 1;
1386 key.objectid = device->devid;
1387 key.offset = search_start;
1388 key.type = BTRFS_DEV_EXTENT_KEY;
1390 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1394 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1401 slot = path->slots[0];
1402 if (slot >= btrfs_header_nritems(l)) {
1403 ret = btrfs_next_leaf(root, path);
1411 btrfs_item_key_to_cpu(l, &key, slot);
1413 if (key.objectid < device->devid)
1416 if (key.objectid > device->devid)
1419 if (key.type != BTRFS_DEV_EXTENT_KEY)
1422 if (key.offset > search_start) {
1423 hole_size = key.offset - search_start;
1426 * Have to check before we set max_hole_start, otherwise
1427 * we could end up sending back this offset anyway.
1429 if (contains_pending_extent(transaction, device,
1432 if (key.offset >= search_start) {
1433 hole_size = key.offset - search_start;
1440 if (hole_size > max_hole_size) {
1441 max_hole_start = search_start;
1442 max_hole_size = hole_size;
1446 * If this free space is greater than which we need,
1447 * it must be the max free space that we have found
1448 * until now, so max_hole_start must point to the start
1449 * of this free space and the length of this free space
1450 * is stored in max_hole_size. Thus, we return
1451 * max_hole_start and max_hole_size and go back to the
1454 if (hole_size >= num_bytes) {
1460 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1461 extent_end = key.offset + btrfs_dev_extent_length(l,
1463 if (extent_end > search_start)
1464 search_start = extent_end;
1471 * At this point, search_start should be the end of
1472 * allocated dev extents, and when shrinking the device,
1473 * search_end may be smaller than search_start.
1475 if (search_end > search_start) {
1476 hole_size = search_end - search_start;
1478 if (contains_pending_extent(transaction, device, &search_start,
1480 btrfs_release_path(path);
1484 if (hole_size > max_hole_size) {
1485 max_hole_start = search_start;
1486 max_hole_size = hole_size;
1491 if (max_hole_size < num_bytes)
1497 btrfs_free_path(path);
1498 *start = max_hole_start;
1500 *len = max_hole_size;
1504 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1505 struct btrfs_device *device, u64 num_bytes,
1506 u64 *start, u64 *len)
1508 /* FIXME use last free of some kind */
1509 return find_free_dev_extent_start(trans->transaction, device,
1510 num_bytes, 0, start, len);
1513 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1514 struct btrfs_device *device,
1515 u64 start, u64 *dev_extent_len)
1517 struct btrfs_fs_info *fs_info = device->fs_info;
1518 struct btrfs_root *root = fs_info->dev_root;
1520 struct btrfs_path *path;
1521 struct btrfs_key key;
1522 struct btrfs_key found_key;
1523 struct extent_buffer *leaf = NULL;
1524 struct btrfs_dev_extent *extent = NULL;
1526 path = btrfs_alloc_path();
1530 key.objectid = device->devid;
1532 key.type = BTRFS_DEV_EXTENT_KEY;
1534 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1536 ret = btrfs_previous_item(root, path, key.objectid,
1537 BTRFS_DEV_EXTENT_KEY);
1540 leaf = path->nodes[0];
1541 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1542 extent = btrfs_item_ptr(leaf, path->slots[0],
1543 struct btrfs_dev_extent);
1544 BUG_ON(found_key.offset > start || found_key.offset +
1545 btrfs_dev_extent_length(leaf, extent) < start);
1547 btrfs_release_path(path);
1549 } else if (ret == 0) {
1550 leaf = path->nodes[0];
1551 extent = btrfs_item_ptr(leaf, path->slots[0],
1552 struct btrfs_dev_extent);
1554 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1558 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1560 ret = btrfs_del_item(trans, root, path);
1562 btrfs_handle_fs_error(fs_info, ret,
1563 "Failed to remove dev extent item");
1565 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1568 btrfs_free_path(path);
1572 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1573 struct btrfs_device *device,
1574 u64 chunk_offset, u64 start, u64 num_bytes)
1577 struct btrfs_path *path;
1578 struct btrfs_fs_info *fs_info = device->fs_info;
1579 struct btrfs_root *root = fs_info->dev_root;
1580 struct btrfs_dev_extent *extent;
1581 struct extent_buffer *leaf;
1582 struct btrfs_key key;
1584 WARN_ON(!device->in_fs_metadata);
1585 WARN_ON(device->is_tgtdev_for_dev_replace);
1586 path = btrfs_alloc_path();
1590 key.objectid = device->devid;
1592 key.type = BTRFS_DEV_EXTENT_KEY;
1593 ret = btrfs_insert_empty_item(trans, root, path, &key,
1598 leaf = path->nodes[0];
1599 extent = btrfs_item_ptr(leaf, path->slots[0],
1600 struct btrfs_dev_extent);
1601 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1602 BTRFS_CHUNK_TREE_OBJECTID);
1603 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1604 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1605 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1607 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1608 btrfs_mark_buffer_dirty(leaf);
1610 btrfs_free_path(path);
1614 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1616 struct extent_map_tree *em_tree;
1617 struct extent_map *em;
1621 em_tree = &fs_info->mapping_tree.map_tree;
1622 read_lock(&em_tree->lock);
1623 n = rb_last(&em_tree->map);
1625 em = rb_entry(n, struct extent_map, rb_node);
1626 ret = em->start + em->len;
1628 read_unlock(&em_tree->lock);
1633 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1637 struct btrfs_key key;
1638 struct btrfs_key found_key;
1639 struct btrfs_path *path;
1641 path = btrfs_alloc_path();
1645 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1646 key.type = BTRFS_DEV_ITEM_KEY;
1647 key.offset = (u64)-1;
1649 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1653 BUG_ON(ret == 0); /* Corruption */
1655 ret = btrfs_previous_item(fs_info->chunk_root, path,
1656 BTRFS_DEV_ITEMS_OBJECTID,
1657 BTRFS_DEV_ITEM_KEY);
1661 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1663 *devid_ret = found_key.offset + 1;
1667 btrfs_free_path(path);
1672 * the device information is stored in the chunk root
1673 * the btrfs_device struct should be fully filled in
1675 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1676 struct btrfs_fs_info *fs_info,
1677 struct btrfs_device *device)
1679 struct btrfs_root *root = fs_info->chunk_root;
1681 struct btrfs_path *path;
1682 struct btrfs_dev_item *dev_item;
1683 struct extent_buffer *leaf;
1684 struct btrfs_key key;
1687 path = btrfs_alloc_path();
1691 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1692 key.type = BTRFS_DEV_ITEM_KEY;
1693 key.offset = device->devid;
1695 ret = btrfs_insert_empty_item(trans, root, path, &key,
1700 leaf = path->nodes[0];
1701 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1703 btrfs_set_device_id(leaf, dev_item, device->devid);
1704 btrfs_set_device_generation(leaf, dev_item, 0);
1705 btrfs_set_device_type(leaf, dev_item, device->type);
1706 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1707 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1708 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1709 btrfs_set_device_total_bytes(leaf, dev_item,
1710 btrfs_device_get_disk_total_bytes(device));
1711 btrfs_set_device_bytes_used(leaf, dev_item,
1712 btrfs_device_get_bytes_used(device));
1713 btrfs_set_device_group(leaf, dev_item, 0);
1714 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1715 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1716 btrfs_set_device_start_offset(leaf, dev_item, 0);
1718 ptr = btrfs_device_uuid(dev_item);
1719 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1720 ptr = btrfs_device_fsid(dev_item);
1721 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1722 btrfs_mark_buffer_dirty(leaf);
1726 btrfs_free_path(path);
1731 * Function to update ctime/mtime for a given device path.
1732 * Mainly used for ctime/mtime based probe like libblkid.
1734 static void update_dev_time(const char *path_name)
1738 filp = filp_open(path_name, O_RDWR, 0);
1741 file_update_time(filp);
1742 filp_close(filp, NULL);
1745 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1746 struct btrfs_device *device)
1748 struct btrfs_root *root = fs_info->chunk_root;
1750 struct btrfs_path *path;
1751 struct btrfs_key key;
1752 struct btrfs_trans_handle *trans;
1754 path = btrfs_alloc_path();
1758 trans = btrfs_start_transaction(root, 0);
1759 if (IS_ERR(trans)) {
1760 btrfs_free_path(path);
1761 return PTR_ERR(trans);
1763 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1764 key.type = BTRFS_DEV_ITEM_KEY;
1765 key.offset = device->devid;
1767 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1776 ret = btrfs_del_item(trans, root, path);
1780 btrfs_free_path(path);
1781 btrfs_commit_transaction(trans);
1786 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1787 * filesystem. It's up to the caller to adjust that number regarding eg. device
1790 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1798 seq = read_seqbegin(&fs_info->profiles_lock);
1800 all_avail = fs_info->avail_data_alloc_bits |
1801 fs_info->avail_system_alloc_bits |
1802 fs_info->avail_metadata_alloc_bits;
1803 } while (read_seqretry(&fs_info->profiles_lock, seq));
1805 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1806 if (!(all_avail & btrfs_raid_group[i]))
1809 if (num_devices < btrfs_raid_array[i].devs_min) {
1810 int ret = btrfs_raid_mindev_error[i];
1820 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1821 struct btrfs_device *device)
1823 struct btrfs_device *next_device;
1825 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1826 if (next_device != device &&
1827 !next_device->missing && next_device->bdev)
1835 * Helper function to check if the given device is part of s_bdev / latest_bdev
1836 * and replace it with the provided or the next active device, in the context
1837 * where this function called, there should be always be another device (or
1838 * this_dev) which is active.
1840 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1841 struct btrfs_device *device, struct btrfs_device *this_dev)
1843 struct btrfs_device *next_device;
1846 next_device = this_dev;
1848 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1850 ASSERT(next_device);
1852 if (fs_info->sb->s_bdev &&
1853 (fs_info->sb->s_bdev == device->bdev))
1854 fs_info->sb->s_bdev = next_device->bdev;
1856 if (fs_info->fs_devices->latest_bdev == device->bdev)
1857 fs_info->fs_devices->latest_bdev = next_device->bdev;
1860 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1863 struct btrfs_device *device;
1864 struct btrfs_fs_devices *cur_devices;
1868 mutex_lock(&uuid_mutex);
1870 num_devices = fs_info->fs_devices->num_devices;
1871 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1872 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1873 WARN_ON(num_devices < 1);
1876 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1878 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1882 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1887 if (device->is_tgtdev_for_dev_replace) {
1888 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1892 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1893 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1897 if (device->writeable) {
1898 mutex_lock(&fs_info->chunk_mutex);
1899 list_del_init(&device->dev_alloc_list);
1900 device->fs_devices->rw_devices--;
1901 mutex_unlock(&fs_info->chunk_mutex);
1904 mutex_unlock(&uuid_mutex);
1905 ret = btrfs_shrink_device(device, 0);
1906 mutex_lock(&uuid_mutex);
1911 * TODO: the superblock still includes this device in its num_devices
1912 * counter although write_all_supers() is not locked out. This
1913 * could give a filesystem state which requires a degraded mount.
1915 ret = btrfs_rm_dev_item(fs_info, device);
1919 device->in_fs_metadata = 0;
1920 btrfs_scrub_cancel_dev(fs_info, device);
1923 * the device list mutex makes sure that we don't change
1924 * the device list while someone else is writing out all
1925 * the device supers. Whoever is writing all supers, should
1926 * lock the device list mutex before getting the number of
1927 * devices in the super block (super_copy). Conversely,
1928 * whoever updates the number of devices in the super block
1929 * (super_copy) should hold the device list mutex.
1932 cur_devices = device->fs_devices;
1933 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1934 list_del_rcu(&device->dev_list);
1936 device->fs_devices->num_devices--;
1937 device->fs_devices->total_devices--;
1939 if (device->missing)
1940 device->fs_devices->missing_devices--;
1942 btrfs_assign_next_active_device(fs_info, device, NULL);
1945 device->fs_devices->open_devices--;
1946 /* remove sysfs entry */
1947 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1950 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1951 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1952 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1955 * at this point, the device is zero sized and detached from
1956 * the devices list. All that's left is to zero out the old
1957 * supers and free the device.
1959 if (device->writeable)
1960 btrfs_scratch_superblocks(device->bdev, device->name->str);
1962 btrfs_close_bdev(device);
1963 call_rcu(&device->rcu, free_device);
1965 if (cur_devices->open_devices == 0) {
1966 struct btrfs_fs_devices *fs_devices;
1967 fs_devices = fs_info->fs_devices;
1968 while (fs_devices) {
1969 if (fs_devices->seed == cur_devices) {
1970 fs_devices->seed = cur_devices->seed;
1973 fs_devices = fs_devices->seed;
1975 cur_devices->seed = NULL;
1976 __btrfs_close_devices(cur_devices);
1977 free_fs_devices(cur_devices);
1981 mutex_unlock(&uuid_mutex);
1985 if (device->writeable) {
1986 mutex_lock(&fs_info->chunk_mutex);
1987 list_add(&device->dev_alloc_list,
1988 &fs_info->fs_devices->alloc_list);
1989 device->fs_devices->rw_devices++;
1990 mutex_unlock(&fs_info->chunk_mutex);
1995 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1996 struct btrfs_device *srcdev)
1998 struct btrfs_fs_devices *fs_devices;
2000 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2003 * in case of fs with no seed, srcdev->fs_devices will point
2004 * to fs_devices of fs_info. However when the dev being replaced is
2005 * a seed dev it will point to the seed's local fs_devices. In short
2006 * srcdev will have its correct fs_devices in both the cases.
2008 fs_devices = srcdev->fs_devices;
2010 list_del_rcu(&srcdev->dev_list);
2011 list_del_rcu(&srcdev->dev_alloc_list);
2012 fs_devices->num_devices--;
2013 if (srcdev->missing)
2014 fs_devices->missing_devices--;
2016 if (srcdev->writeable)
2017 fs_devices->rw_devices--;
2020 fs_devices->open_devices--;
2023 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2024 struct btrfs_device *srcdev)
2026 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2028 if (srcdev->writeable) {
2029 /* zero out the old super if it is writable */
2030 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2033 btrfs_close_bdev(srcdev);
2035 call_rcu(&srcdev->rcu, free_device);
2038 * unless fs_devices is seed fs, num_devices shouldn't go
2041 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2043 /* if this is no devs we rather delete the fs_devices */
2044 if (!fs_devices->num_devices) {
2045 struct btrfs_fs_devices *tmp_fs_devices;
2047 tmp_fs_devices = fs_info->fs_devices;
2048 while (tmp_fs_devices) {
2049 if (tmp_fs_devices->seed == fs_devices) {
2050 tmp_fs_devices->seed = fs_devices->seed;
2053 tmp_fs_devices = tmp_fs_devices->seed;
2055 fs_devices->seed = NULL;
2056 __btrfs_close_devices(fs_devices);
2057 free_fs_devices(fs_devices);
2061 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2062 struct btrfs_device *tgtdev)
2064 mutex_lock(&uuid_mutex);
2066 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2068 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2071 fs_info->fs_devices->open_devices--;
2073 fs_info->fs_devices->num_devices--;
2075 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2077 list_del_rcu(&tgtdev->dev_list);
2079 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2080 mutex_unlock(&uuid_mutex);
2083 * The update_dev_time() with in btrfs_scratch_superblocks()
2084 * may lead to a call to btrfs_show_devname() which will try
2085 * to hold device_list_mutex. And here this device
2086 * is already out of device list, so we don't have to hold
2087 * the device_list_mutex lock.
2089 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2091 btrfs_close_bdev(tgtdev);
2092 call_rcu(&tgtdev->rcu, free_device);
2095 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2096 const char *device_path,
2097 struct btrfs_device **device)
2100 struct btrfs_super_block *disk_super;
2103 struct block_device *bdev;
2104 struct buffer_head *bh;
2107 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2108 fs_info->bdev_holder, 0, &bdev, &bh);
2111 disk_super = (struct btrfs_super_block *)bh->b_data;
2112 devid = btrfs_stack_device_id(&disk_super->dev_item);
2113 dev_uuid = disk_super->dev_item.uuid;
2114 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2118 blkdev_put(bdev, FMODE_READ);
2122 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2123 const char *device_path,
2124 struct btrfs_device **device)
2127 if (strcmp(device_path, "missing") == 0) {
2128 struct list_head *devices;
2129 struct btrfs_device *tmp;
2131 devices = &fs_info->fs_devices->devices;
2133 * It is safe to read the devices since the volume_mutex
2134 * is held by the caller.
2136 list_for_each_entry(tmp, devices, dev_list) {
2137 if (tmp->in_fs_metadata && !tmp->bdev) {
2144 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2148 return btrfs_find_device_by_path(fs_info, device_path, device);
2153 * Lookup a device given by device id, or the path if the id is 0.
2155 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2156 const char *devpath,
2157 struct btrfs_device **device)
2163 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2167 if (!devpath || !devpath[0])
2170 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2177 * does all the dirty work required for changing file system's UUID.
2179 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2181 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2182 struct btrfs_fs_devices *old_devices;
2183 struct btrfs_fs_devices *seed_devices;
2184 struct btrfs_super_block *disk_super = fs_info->super_copy;
2185 struct btrfs_device *device;
2188 BUG_ON(!mutex_is_locked(&uuid_mutex));
2189 if (!fs_devices->seeding)
2192 seed_devices = alloc_fs_devices(NULL);
2193 if (IS_ERR(seed_devices))
2194 return PTR_ERR(seed_devices);
2196 old_devices = clone_fs_devices(fs_devices);
2197 if (IS_ERR(old_devices)) {
2198 kfree(seed_devices);
2199 return PTR_ERR(old_devices);
2202 list_add(&old_devices->list, &fs_uuids);
2204 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2205 seed_devices->opened = 1;
2206 INIT_LIST_HEAD(&seed_devices->devices);
2207 INIT_LIST_HEAD(&seed_devices->alloc_list);
2208 mutex_init(&seed_devices->device_list_mutex);
2210 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2211 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2213 list_for_each_entry(device, &seed_devices->devices, dev_list)
2214 device->fs_devices = seed_devices;
2216 mutex_lock(&fs_info->chunk_mutex);
2217 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2218 mutex_unlock(&fs_info->chunk_mutex);
2220 fs_devices->seeding = 0;
2221 fs_devices->num_devices = 0;
2222 fs_devices->open_devices = 0;
2223 fs_devices->missing_devices = 0;
2224 fs_devices->rotating = 0;
2225 fs_devices->seed = seed_devices;
2227 generate_random_uuid(fs_devices->fsid);
2228 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2229 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2230 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2232 super_flags = btrfs_super_flags(disk_super) &
2233 ~BTRFS_SUPER_FLAG_SEEDING;
2234 btrfs_set_super_flags(disk_super, super_flags);
2240 * Store the expected generation for seed devices in device items.
2242 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2243 struct btrfs_fs_info *fs_info)
2245 struct btrfs_root *root = fs_info->chunk_root;
2246 struct btrfs_path *path;
2247 struct extent_buffer *leaf;
2248 struct btrfs_dev_item *dev_item;
2249 struct btrfs_device *device;
2250 struct btrfs_key key;
2251 u8 fs_uuid[BTRFS_FSID_SIZE];
2252 u8 dev_uuid[BTRFS_UUID_SIZE];
2256 path = btrfs_alloc_path();
2260 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2262 key.type = BTRFS_DEV_ITEM_KEY;
2265 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2269 leaf = path->nodes[0];
2271 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2272 ret = btrfs_next_leaf(root, path);
2277 leaf = path->nodes[0];
2278 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2279 btrfs_release_path(path);
2283 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2284 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2285 key.type != BTRFS_DEV_ITEM_KEY)
2288 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2289 struct btrfs_dev_item);
2290 devid = btrfs_device_id(leaf, dev_item);
2291 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2293 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2295 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2296 BUG_ON(!device); /* Logic error */
2298 if (device->fs_devices->seeding) {
2299 btrfs_set_device_generation(leaf, dev_item,
2300 device->generation);
2301 btrfs_mark_buffer_dirty(leaf);
2309 btrfs_free_path(path);
2313 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2315 struct btrfs_root *root = fs_info->dev_root;
2316 struct request_queue *q;
2317 struct btrfs_trans_handle *trans;
2318 struct btrfs_device *device;
2319 struct block_device *bdev;
2320 struct list_head *devices;
2321 struct super_block *sb = fs_info->sb;
2322 struct rcu_string *name;
2324 int seeding_dev = 0;
2327 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2330 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2331 fs_info->bdev_holder);
2333 return PTR_ERR(bdev);
2335 if (fs_info->fs_devices->seeding) {
2337 down_write(&sb->s_umount);
2338 mutex_lock(&uuid_mutex);
2341 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2343 devices = &fs_info->fs_devices->devices;
2345 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2346 list_for_each_entry(device, devices, dev_list) {
2347 if (device->bdev == bdev) {
2350 &fs_info->fs_devices->device_list_mutex);
2354 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2356 device = btrfs_alloc_device(fs_info, NULL, NULL);
2357 if (IS_ERR(device)) {
2358 /* we can safely leave the fs_devices entry around */
2359 ret = PTR_ERR(device);
2363 name = rcu_string_strdup(device_path, GFP_KERNEL);
2369 rcu_assign_pointer(device->name, name);
2371 trans = btrfs_start_transaction(root, 0);
2372 if (IS_ERR(trans)) {
2373 rcu_string_free(device->name);
2375 ret = PTR_ERR(trans);
2379 q = bdev_get_queue(bdev);
2380 if (blk_queue_discard(q))
2381 device->can_discard = 1;
2382 device->writeable = 1;
2383 device->generation = trans->transid;
2384 device->io_width = fs_info->sectorsize;
2385 device->io_align = fs_info->sectorsize;
2386 device->sector_size = fs_info->sectorsize;
2387 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2388 fs_info->sectorsize);
2389 device->disk_total_bytes = device->total_bytes;
2390 device->commit_total_bytes = device->total_bytes;
2391 device->fs_info = fs_info;
2392 device->bdev = bdev;
2393 device->in_fs_metadata = 1;
2394 device->is_tgtdev_for_dev_replace = 0;
2395 device->mode = FMODE_EXCL;
2396 device->dev_stats_valid = 1;
2397 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2400 sb->s_flags &= ~MS_RDONLY;
2401 ret = btrfs_prepare_sprout(fs_info);
2402 BUG_ON(ret); /* -ENOMEM */
2405 device->fs_devices = fs_info->fs_devices;
2407 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2408 mutex_lock(&fs_info->chunk_mutex);
2409 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2410 list_add(&device->dev_alloc_list,
2411 &fs_info->fs_devices->alloc_list);
2412 fs_info->fs_devices->num_devices++;
2413 fs_info->fs_devices->open_devices++;
2414 fs_info->fs_devices->rw_devices++;
2415 fs_info->fs_devices->total_devices++;
2416 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2418 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2420 if (!blk_queue_nonrot(q))
2421 fs_info->fs_devices->rotating = 1;
2423 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2424 btrfs_set_super_total_bytes(fs_info->super_copy,
2425 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2427 tmp = btrfs_super_num_devices(fs_info->super_copy);
2428 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2430 /* add sysfs device entry */
2431 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2434 * we've got more storage, clear any full flags on the space
2437 btrfs_clear_space_info_full(fs_info);
2439 mutex_unlock(&fs_info->chunk_mutex);
2440 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2443 mutex_lock(&fs_info->chunk_mutex);
2444 ret = init_first_rw_device(trans, fs_info);
2445 mutex_unlock(&fs_info->chunk_mutex);
2447 btrfs_abort_transaction(trans, ret);
2452 ret = btrfs_add_device(trans, fs_info, device);
2454 btrfs_abort_transaction(trans, ret);
2459 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2461 ret = btrfs_finish_sprout(trans, fs_info);
2463 btrfs_abort_transaction(trans, ret);
2467 /* Sprouting would change fsid of the mounted root,
2468 * so rename the fsid on the sysfs
2470 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2472 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2474 "sysfs: failed to create fsid for sprout");
2477 ret = btrfs_commit_transaction(trans);
2480 mutex_unlock(&uuid_mutex);
2481 up_write(&sb->s_umount);
2483 if (ret) /* transaction commit */
2486 ret = btrfs_relocate_sys_chunks(fs_info);
2488 btrfs_handle_fs_error(fs_info, ret,
2489 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2490 trans = btrfs_attach_transaction(root);
2491 if (IS_ERR(trans)) {
2492 if (PTR_ERR(trans) == -ENOENT)
2494 return PTR_ERR(trans);
2496 ret = btrfs_commit_transaction(trans);
2499 /* Update ctime/mtime for libblkid */
2500 update_dev_time(device_path);
2504 btrfs_end_transaction(trans);
2505 rcu_string_free(device->name);
2506 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2509 blkdev_put(bdev, FMODE_EXCL);
2511 mutex_unlock(&uuid_mutex);
2512 up_write(&sb->s_umount);
2517 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2518 const char *device_path,
2519 struct btrfs_device *srcdev,
2520 struct btrfs_device **device_out)
2522 struct request_queue *q;
2523 struct btrfs_device *device;
2524 struct block_device *bdev;
2525 struct list_head *devices;
2526 struct rcu_string *name;
2527 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2531 if (fs_info->fs_devices->seeding) {
2532 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2536 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2537 fs_info->bdev_holder);
2539 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2540 return PTR_ERR(bdev);
2543 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2545 devices = &fs_info->fs_devices->devices;
2546 list_for_each_entry(device, devices, dev_list) {
2547 if (device->bdev == bdev) {
2549 "target device is in the filesystem!");
2556 if (i_size_read(bdev->bd_inode) <
2557 btrfs_device_get_total_bytes(srcdev)) {
2559 "target device is smaller than source device!");
2565 device = btrfs_alloc_device(NULL, &devid, NULL);
2566 if (IS_ERR(device)) {
2567 ret = PTR_ERR(device);
2571 name = rcu_string_strdup(device_path, GFP_KERNEL);
2577 rcu_assign_pointer(device->name, name);
2579 q = bdev_get_queue(bdev);
2580 if (blk_queue_discard(q))
2581 device->can_discard = 1;
2582 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2583 device->writeable = 1;
2584 device->generation = 0;
2585 device->io_width = fs_info->sectorsize;
2586 device->io_align = fs_info->sectorsize;
2587 device->sector_size = fs_info->sectorsize;
2588 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2589 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2590 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2591 ASSERT(list_empty(&srcdev->resized_list));
2592 device->commit_total_bytes = srcdev->commit_total_bytes;
2593 device->commit_bytes_used = device->bytes_used;
2594 device->fs_info = fs_info;
2595 device->bdev = bdev;
2596 device->in_fs_metadata = 1;
2597 device->is_tgtdev_for_dev_replace = 1;
2598 device->mode = FMODE_EXCL;
2599 device->dev_stats_valid = 1;
2600 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2601 device->fs_devices = fs_info->fs_devices;
2602 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2603 fs_info->fs_devices->num_devices++;
2604 fs_info->fs_devices->open_devices++;
2605 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2607 *device_out = device;
2611 blkdev_put(bdev, FMODE_EXCL);
2615 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2616 struct btrfs_device *tgtdev)
2618 u32 sectorsize = fs_info->sectorsize;
2620 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2621 tgtdev->io_width = sectorsize;
2622 tgtdev->io_align = sectorsize;
2623 tgtdev->sector_size = sectorsize;
2624 tgtdev->fs_info = fs_info;
2625 tgtdev->in_fs_metadata = 1;
2628 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2629 struct btrfs_device *device)
2632 struct btrfs_path *path;
2633 struct btrfs_root *root = device->fs_info->chunk_root;
2634 struct btrfs_dev_item *dev_item;
2635 struct extent_buffer *leaf;
2636 struct btrfs_key key;
2638 path = btrfs_alloc_path();
2642 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2643 key.type = BTRFS_DEV_ITEM_KEY;
2644 key.offset = device->devid;
2646 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2655 leaf = path->nodes[0];
2656 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2658 btrfs_set_device_id(leaf, dev_item, device->devid);
2659 btrfs_set_device_type(leaf, dev_item, device->type);
2660 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2661 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2662 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2663 btrfs_set_device_total_bytes(leaf, dev_item,
2664 btrfs_device_get_disk_total_bytes(device));
2665 btrfs_set_device_bytes_used(leaf, dev_item,
2666 btrfs_device_get_bytes_used(device));
2667 btrfs_mark_buffer_dirty(leaf);
2670 btrfs_free_path(path);
2674 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2675 struct btrfs_device *device, u64 new_size)
2677 struct btrfs_fs_info *fs_info = device->fs_info;
2678 struct btrfs_super_block *super_copy = fs_info->super_copy;
2679 struct btrfs_fs_devices *fs_devices;
2683 if (!device->writeable)
2686 new_size = round_down(new_size, fs_info->sectorsize);
2688 mutex_lock(&fs_info->chunk_mutex);
2689 old_total = btrfs_super_total_bytes(super_copy);
2690 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2692 if (new_size <= device->total_bytes ||
2693 device->is_tgtdev_for_dev_replace) {
2694 mutex_unlock(&fs_info->chunk_mutex);
2698 fs_devices = fs_info->fs_devices;
2700 btrfs_set_super_total_bytes(super_copy,
2701 round_down(old_total + diff, fs_info->sectorsize));
2702 device->fs_devices->total_rw_bytes += diff;
2704 btrfs_device_set_total_bytes(device, new_size);
2705 btrfs_device_set_disk_total_bytes(device, new_size);
2706 btrfs_clear_space_info_full(device->fs_info);
2707 if (list_empty(&device->resized_list))
2708 list_add_tail(&device->resized_list,
2709 &fs_devices->resized_devices);
2710 mutex_unlock(&fs_info->chunk_mutex);
2712 return btrfs_update_device(trans, device);
2715 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2716 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2718 struct btrfs_root *root = fs_info->chunk_root;
2720 struct btrfs_path *path;
2721 struct btrfs_key key;
2723 path = btrfs_alloc_path();
2727 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2728 key.offset = chunk_offset;
2729 key.type = BTRFS_CHUNK_ITEM_KEY;
2731 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2734 else if (ret > 0) { /* Logic error or corruption */
2735 btrfs_handle_fs_error(fs_info, -ENOENT,
2736 "Failed lookup while freeing chunk.");
2741 ret = btrfs_del_item(trans, root, path);
2743 btrfs_handle_fs_error(fs_info, ret,
2744 "Failed to delete chunk item.");
2746 btrfs_free_path(path);
2750 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2752 struct btrfs_super_block *super_copy = fs_info->super_copy;
2753 struct btrfs_disk_key *disk_key;
2754 struct btrfs_chunk *chunk;
2761 struct btrfs_key key;
2763 mutex_lock(&fs_info->chunk_mutex);
2764 array_size = btrfs_super_sys_array_size(super_copy);
2766 ptr = super_copy->sys_chunk_array;
2769 while (cur < array_size) {
2770 disk_key = (struct btrfs_disk_key *)ptr;
2771 btrfs_disk_key_to_cpu(&key, disk_key);
2773 len = sizeof(*disk_key);
2775 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2776 chunk = (struct btrfs_chunk *)(ptr + len);
2777 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2778 len += btrfs_chunk_item_size(num_stripes);
2783 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2784 key.offset == chunk_offset) {
2785 memmove(ptr, ptr + len, array_size - (cur + len));
2787 btrfs_set_super_sys_array_size(super_copy, array_size);
2793 mutex_unlock(&fs_info->chunk_mutex);
2797 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2798 u64 logical, u64 length)
2800 struct extent_map_tree *em_tree;
2801 struct extent_map *em;
2803 em_tree = &fs_info->mapping_tree.map_tree;
2804 read_lock(&em_tree->lock);
2805 em = lookup_extent_mapping(em_tree, logical, length);
2806 read_unlock(&em_tree->lock);
2809 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2811 return ERR_PTR(-EINVAL);
2814 if (em->start > logical || em->start + em->len < logical) {
2816 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2817 logical, length, em->start, em->start + em->len);
2818 free_extent_map(em);
2819 return ERR_PTR(-EINVAL);
2822 /* callers are responsible for dropping em's ref. */
2826 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2827 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2829 struct extent_map *em;
2830 struct map_lookup *map;
2831 u64 dev_extent_len = 0;
2833 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2835 em = get_chunk_map(fs_info, chunk_offset, 1);
2838 * This is a logic error, but we don't want to just rely on the
2839 * user having built with ASSERT enabled, so if ASSERT doesn't
2840 * do anything we still error out.
2845 map = em->map_lookup;
2846 mutex_lock(&fs_info->chunk_mutex);
2847 check_system_chunk(trans, fs_info, map->type);
2848 mutex_unlock(&fs_info->chunk_mutex);
2851 * Take the device list mutex to prevent races with the final phase of
2852 * a device replace operation that replaces the device object associated
2853 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2855 mutex_lock(&fs_devices->device_list_mutex);
2856 for (i = 0; i < map->num_stripes; i++) {
2857 struct btrfs_device *device = map->stripes[i].dev;
2858 ret = btrfs_free_dev_extent(trans, device,
2859 map->stripes[i].physical,
2862 mutex_unlock(&fs_devices->device_list_mutex);
2863 btrfs_abort_transaction(trans, ret);
2867 if (device->bytes_used > 0) {
2868 mutex_lock(&fs_info->chunk_mutex);
2869 btrfs_device_set_bytes_used(device,
2870 device->bytes_used - dev_extent_len);
2871 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2872 btrfs_clear_space_info_full(fs_info);
2873 mutex_unlock(&fs_info->chunk_mutex);
2876 if (map->stripes[i].dev) {
2877 ret = btrfs_update_device(trans, map->stripes[i].dev);
2879 mutex_unlock(&fs_devices->device_list_mutex);
2880 btrfs_abort_transaction(trans, ret);
2885 mutex_unlock(&fs_devices->device_list_mutex);
2887 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2889 btrfs_abort_transaction(trans, ret);
2893 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2895 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2896 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2898 btrfs_abort_transaction(trans, ret);
2903 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2905 btrfs_abort_transaction(trans, ret);
2911 free_extent_map(em);
2915 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2917 struct btrfs_root *root = fs_info->chunk_root;
2918 struct btrfs_trans_handle *trans;
2922 * Prevent races with automatic removal of unused block groups.
2923 * After we relocate and before we remove the chunk with offset
2924 * chunk_offset, automatic removal of the block group can kick in,
2925 * resulting in a failure when calling btrfs_remove_chunk() below.
2927 * Make sure to acquire this mutex before doing a tree search (dev
2928 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2929 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2930 * we release the path used to search the chunk/dev tree and before
2931 * the current task acquires this mutex and calls us.
2933 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2935 ret = btrfs_can_relocate(fs_info, chunk_offset);
2939 /* step one, relocate all the extents inside this chunk */
2940 btrfs_scrub_pause(fs_info);
2941 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2942 btrfs_scrub_continue(fs_info);
2946 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2948 if (IS_ERR(trans)) {
2949 ret = PTR_ERR(trans);
2950 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2955 * step two, delete the device extents and the
2956 * chunk tree entries
2958 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2959 btrfs_end_transaction(trans);
2963 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2965 struct btrfs_root *chunk_root = fs_info->chunk_root;
2966 struct btrfs_path *path;
2967 struct extent_buffer *leaf;
2968 struct btrfs_chunk *chunk;
2969 struct btrfs_key key;
2970 struct btrfs_key found_key;
2972 bool retried = false;
2976 path = btrfs_alloc_path();
2981 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2982 key.offset = (u64)-1;
2983 key.type = BTRFS_CHUNK_ITEM_KEY;
2986 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2987 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2989 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2992 BUG_ON(ret == 0); /* Corruption */
2994 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2997 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3003 leaf = path->nodes[0];
3004 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3006 chunk = btrfs_item_ptr(leaf, path->slots[0],
3007 struct btrfs_chunk);
3008 chunk_type = btrfs_chunk_type(leaf, chunk);
3009 btrfs_release_path(path);
3011 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3012 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3018 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3020 if (found_key.offset == 0)
3022 key.offset = found_key.offset - 1;
3025 if (failed && !retried) {
3029 } else if (WARN_ON(failed && retried)) {
3033 btrfs_free_path(path);
3037 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3038 struct btrfs_balance_control *bctl)
3040 struct btrfs_root *root = fs_info->tree_root;
3041 struct btrfs_trans_handle *trans;
3042 struct btrfs_balance_item *item;
3043 struct btrfs_disk_balance_args disk_bargs;
3044 struct btrfs_path *path;
3045 struct extent_buffer *leaf;
3046 struct btrfs_key key;
3049 path = btrfs_alloc_path();
3053 trans = btrfs_start_transaction(root, 0);
3054 if (IS_ERR(trans)) {
3055 btrfs_free_path(path);
3056 return PTR_ERR(trans);
3059 key.objectid = BTRFS_BALANCE_OBJECTID;
3060 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3063 ret = btrfs_insert_empty_item(trans, root, path, &key,
3068 leaf = path->nodes[0];
3069 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3071 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3073 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3074 btrfs_set_balance_data(leaf, item, &disk_bargs);
3075 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3076 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3077 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3078 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3080 btrfs_set_balance_flags(leaf, item, bctl->flags);
3082 btrfs_mark_buffer_dirty(leaf);
3084 btrfs_free_path(path);
3085 err = btrfs_commit_transaction(trans);
3091 static int del_balance_item(struct btrfs_fs_info *fs_info)
3093 struct btrfs_root *root = fs_info->tree_root;
3094 struct btrfs_trans_handle *trans;
3095 struct btrfs_path *path;
3096 struct btrfs_key key;
3099 path = btrfs_alloc_path();
3103 trans = btrfs_start_transaction(root, 0);
3104 if (IS_ERR(trans)) {
3105 btrfs_free_path(path);
3106 return PTR_ERR(trans);
3109 key.objectid = BTRFS_BALANCE_OBJECTID;
3110 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3113 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3121 ret = btrfs_del_item(trans, root, path);
3123 btrfs_free_path(path);
3124 err = btrfs_commit_transaction(trans);
3131 * This is a heuristic used to reduce the number of chunks balanced on
3132 * resume after balance was interrupted.
3134 static void update_balance_args(struct btrfs_balance_control *bctl)
3137 * Turn on soft mode for chunk types that were being converted.
3139 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3140 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3141 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3142 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3143 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3144 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3147 * Turn on usage filter if is not already used. The idea is
3148 * that chunks that we have already balanced should be
3149 * reasonably full. Don't do it for chunks that are being
3150 * converted - that will keep us from relocating unconverted
3151 * (albeit full) chunks.
3153 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3154 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3155 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3156 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3157 bctl->data.usage = 90;
3159 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3160 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3161 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3162 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3163 bctl->sys.usage = 90;
3165 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3166 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3167 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3168 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3169 bctl->meta.usage = 90;
3174 * Should be called with both balance and volume mutexes held to
3175 * serialize other volume operations (add_dev/rm_dev/resize) with
3176 * restriper. Same goes for unset_balance_control.
3178 static void set_balance_control(struct btrfs_balance_control *bctl)
3180 struct btrfs_fs_info *fs_info = bctl->fs_info;
3182 BUG_ON(fs_info->balance_ctl);
3184 spin_lock(&fs_info->balance_lock);
3185 fs_info->balance_ctl = bctl;
3186 spin_unlock(&fs_info->balance_lock);
3189 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3191 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3193 BUG_ON(!fs_info->balance_ctl);
3195 spin_lock(&fs_info->balance_lock);
3196 fs_info->balance_ctl = NULL;
3197 spin_unlock(&fs_info->balance_lock);
3203 * Balance filters. Return 1 if chunk should be filtered out
3204 * (should not be balanced).
3206 static int chunk_profiles_filter(u64 chunk_type,
3207 struct btrfs_balance_args *bargs)
3209 chunk_type = chunk_to_extended(chunk_type) &
3210 BTRFS_EXTENDED_PROFILE_MASK;
3212 if (bargs->profiles & chunk_type)
3218 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3219 struct btrfs_balance_args *bargs)
3221 struct btrfs_block_group_cache *cache;
3223 u64 user_thresh_min;
3224 u64 user_thresh_max;
3227 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3228 chunk_used = btrfs_block_group_used(&cache->item);
3230 if (bargs->usage_min == 0)
3231 user_thresh_min = 0;
3233 user_thresh_min = div_factor_fine(cache->key.offset,
3236 if (bargs->usage_max == 0)
3237 user_thresh_max = 1;
3238 else if (bargs->usage_max > 100)
3239 user_thresh_max = cache->key.offset;
3241 user_thresh_max = div_factor_fine(cache->key.offset,
3244 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3247 btrfs_put_block_group(cache);
3251 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3252 u64 chunk_offset, struct btrfs_balance_args *bargs)
3254 struct btrfs_block_group_cache *cache;
3255 u64 chunk_used, user_thresh;
3258 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3259 chunk_used = btrfs_block_group_used(&cache->item);
3261 if (bargs->usage_min == 0)
3263 else if (bargs->usage > 100)
3264 user_thresh = cache->key.offset;
3266 user_thresh = div_factor_fine(cache->key.offset,
3269 if (chunk_used < user_thresh)
3272 btrfs_put_block_group(cache);
3276 static int chunk_devid_filter(struct extent_buffer *leaf,
3277 struct btrfs_chunk *chunk,
3278 struct btrfs_balance_args *bargs)
3280 struct btrfs_stripe *stripe;
3281 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3284 for (i = 0; i < num_stripes; i++) {
3285 stripe = btrfs_stripe_nr(chunk, i);
3286 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3293 /* [pstart, pend) */
3294 static int chunk_drange_filter(struct extent_buffer *leaf,
3295 struct btrfs_chunk *chunk,
3296 struct btrfs_balance_args *bargs)
3298 struct btrfs_stripe *stripe;
3299 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3305 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3308 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3309 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3310 factor = num_stripes / 2;
3311 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3312 factor = num_stripes - 1;
3313 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3314 factor = num_stripes - 2;
3316 factor = num_stripes;
3319 for (i = 0; i < num_stripes; i++) {
3320 stripe = btrfs_stripe_nr(chunk, i);
3321 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3324 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3325 stripe_length = btrfs_chunk_length(leaf, chunk);
3326 stripe_length = div_u64(stripe_length, factor);
3328 if (stripe_offset < bargs->pend &&
3329 stripe_offset + stripe_length > bargs->pstart)
3336 /* [vstart, vend) */
3337 static int chunk_vrange_filter(struct extent_buffer *leaf,
3338 struct btrfs_chunk *chunk,
3340 struct btrfs_balance_args *bargs)
3342 if (chunk_offset < bargs->vend &&
3343 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3344 /* at least part of the chunk is inside this vrange */
3350 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3351 struct btrfs_chunk *chunk,
3352 struct btrfs_balance_args *bargs)
3354 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3356 if (bargs->stripes_min <= num_stripes
3357 && num_stripes <= bargs->stripes_max)
3363 static int chunk_soft_convert_filter(u64 chunk_type,
3364 struct btrfs_balance_args *bargs)
3366 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3369 chunk_type = chunk_to_extended(chunk_type) &
3370 BTRFS_EXTENDED_PROFILE_MASK;
3372 if (bargs->target == chunk_type)
3378 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3379 struct extent_buffer *leaf,
3380 struct btrfs_chunk *chunk, u64 chunk_offset)
3382 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3383 struct btrfs_balance_args *bargs = NULL;
3384 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3387 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3388 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3392 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3393 bargs = &bctl->data;
3394 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3396 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3397 bargs = &bctl->meta;
3399 /* profiles filter */
3400 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3401 chunk_profiles_filter(chunk_type, bargs)) {
3406 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3407 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3409 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3410 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3415 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3416 chunk_devid_filter(leaf, chunk, bargs)) {