4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/rculist_bl.h>
37 #include <linux/prefetch.h>
38 #include <linux/ratelimit.h>
39 #include <linux/list_lru.h>
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_u.d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_roots bl list spinlock protects:
50 * - the s_roots list (see __d_drop)
51 * dentry->d_sb->s_dentry_lru_lock protects:
52 * - the dcache lru lists and counters
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_u.d_alias, d_inode
64 * dentry->d_inode->i_lock
66 * dentry->d_sb->s_dentry_lru_lock
67 * dcache_hash_bucket lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
73 * dentry->d_parent->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 EXPORT_SYMBOL(rename_lock);
88 static struct kmem_cache *dentry_cache __read_mostly;
90 const struct qstr empty_name = QSTR_INIT("", 0);
91 EXPORT_SYMBOL(empty_name);
92 const struct qstr slash_name = QSTR_INIT("/", 1);
93 EXPORT_SYMBOL(slash_name);
96 * This is the single most critical data structure when it comes
97 * to the dcache: the hashtable for lookups. Somebody should try
98 * to make this good - I've just made it work.
100 * This hash-function tries to avoid losing too many bits of hash
101 * information, yet avoid using a prime hash-size or similar.
104 static unsigned int d_hash_shift __read_mostly;
106 static struct hlist_bl_head *dentry_hashtable __read_mostly;
108 static inline struct hlist_bl_head *d_hash(unsigned int hash)
110 return dentry_hashtable + (hash >> d_hash_shift);
113 #define IN_LOOKUP_SHIFT 10
114 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
116 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
119 hash += (unsigned long) parent / L1_CACHE_BYTES;
120 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
124 /* Statistics gathering. */
125 struct dentry_stat_t dentry_stat = {
129 static DEFINE_PER_CPU(long, nr_dentry);
130 static DEFINE_PER_CPU(long, nr_dentry_unused);
132 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
135 * Here we resort to our own counters instead of using generic per-cpu counters
136 * for consistency with what the vfs inode code does. We are expected to harvest
137 * better code and performance by having our own specialized counters.
139 * Please note that the loop is done over all possible CPUs, not over all online
140 * CPUs. The reason for this is that we don't want to play games with CPUs going
141 * on and off. If one of them goes off, we will just keep their counters.
143 * glommer: See cffbc8a for details, and if you ever intend to change this,
144 * please update all vfs counters to match.
146 static long get_nr_dentry(void)
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry, i);
152 return sum < 0 ? 0 : sum;
155 static long get_nr_dentry_unused(void)
159 for_each_possible_cpu(i)
160 sum += per_cpu(nr_dentry_unused, i);
161 return sum < 0 ? 0 : sum;
164 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
165 size_t *lenp, loff_t *ppos)
167 dentry_stat.nr_dentry = get_nr_dentry();
168 dentry_stat.nr_unused = get_nr_dentry_unused();
169 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
174 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
175 * The strings are both count bytes long, and count is non-zero.
177 #ifdef CONFIG_DCACHE_WORD_ACCESS
179 #include <asm/word-at-a-time.h>
181 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
182 * aligned allocation for this particular component. We don't
183 * strictly need the load_unaligned_zeropad() safety, but it
184 * doesn't hurt either.
186 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
187 * need the careful unaligned handling.
189 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
191 unsigned long a,b,mask;
194 a = read_word_at_a_time(cs);
195 b = load_unaligned_zeropad(ct);
196 if (tcount < sizeof(unsigned long))
198 if (unlikely(a != b))
200 cs += sizeof(unsigned long);
201 ct += sizeof(unsigned long);
202 tcount -= sizeof(unsigned long);
206 mask = bytemask_from_count(tcount);
207 return unlikely(!!((a ^ b) & mask));
212 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
226 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
229 * Be careful about RCU walk racing with rename:
230 * use 'READ_ONCE' to fetch the name pointer.
232 * NOTE! Even if a rename will mean that the length
233 * was not loaded atomically, we don't care. The
234 * RCU walk will check the sequence count eventually,
235 * and catch it. And we won't overrun the buffer,
236 * because we're reading the name pointer atomically,
237 * and a dentry name is guaranteed to be properly
238 * terminated with a NUL byte.
240 * End result: even if 'len' is wrong, we'll exit
241 * early because the data cannot match (there can
242 * be no NUL in the ct/tcount data)
244 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
246 return dentry_string_cmp(cs, ct, tcount);
249 struct external_name {
252 struct rcu_head head;
254 unsigned char name[];
257 static inline struct external_name *external_name(struct dentry *dentry)
259 return container_of(dentry->d_name.name, struct external_name, name[0]);
262 static void __d_free(struct rcu_head *head)
264 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
266 kmem_cache_free(dentry_cache, dentry);
269 static void __d_free_external(struct rcu_head *head)
271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
272 kfree(external_name(dentry));
273 kmem_cache_free(dentry_cache, dentry);
276 static inline int dname_external(const struct dentry *dentry)
278 return dentry->d_name.name != dentry->d_iname;
281 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
283 spin_lock(&dentry->d_lock);
284 if (unlikely(dname_external(dentry))) {
285 struct external_name *p = external_name(dentry);
286 atomic_inc(&p->u.count);
287 spin_unlock(&dentry->d_lock);
288 name->name = p->name;
290 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
291 spin_unlock(&dentry->d_lock);
292 name->name = name->inline_name;
295 EXPORT_SYMBOL(take_dentry_name_snapshot);
297 void release_dentry_name_snapshot(struct name_snapshot *name)
299 if (unlikely(name->name != name->inline_name)) {
300 struct external_name *p;
301 p = container_of(name->name, struct external_name, name[0]);
302 if (unlikely(atomic_dec_and_test(&p->u.count)))
303 kfree_rcu(p, u.head);
306 EXPORT_SYMBOL(release_dentry_name_snapshot);
308 static inline void __d_set_inode_and_type(struct dentry *dentry,
314 dentry->d_inode = inode;
315 flags = READ_ONCE(dentry->d_flags);
316 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
318 WRITE_ONCE(dentry->d_flags, flags);
321 static inline void __d_clear_type_and_inode(struct dentry *dentry)
323 unsigned flags = READ_ONCE(dentry->d_flags);
325 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
326 WRITE_ONCE(dentry->d_flags, flags);
327 dentry->d_inode = NULL;
330 static void dentry_free(struct dentry *dentry)
332 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
333 if (unlikely(dname_external(dentry))) {
334 struct external_name *p = external_name(dentry);
335 if (likely(atomic_dec_and_test(&p->u.count))) {
336 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
340 /* if dentry was never visible to RCU, immediate free is OK */
341 if (!(dentry->d_flags & DCACHE_RCUACCESS))
342 __d_free(&dentry->d_u.d_rcu);
344 call_rcu(&dentry->d_u.d_rcu, __d_free);
348 * Release the dentry's inode, using the filesystem
349 * d_iput() operation if defined.
351 static void dentry_unlink_inode(struct dentry * dentry)
352 __releases(dentry->d_lock)
353 __releases(dentry->d_inode->i_lock)
355 struct inode *inode = dentry->d_inode;
356 bool hashed = !d_unhashed(dentry);
359 raw_write_seqcount_begin(&dentry->d_seq);
360 __d_clear_type_and_inode(dentry);
361 hlist_del_init(&dentry->d_u.d_alias);
363 raw_write_seqcount_end(&dentry->d_seq);
364 spin_unlock(&dentry->d_lock);
365 spin_unlock(&inode->i_lock);
367 fsnotify_inoderemove(inode);
368 if (dentry->d_op && dentry->d_op->d_iput)
369 dentry->d_op->d_iput(dentry, inode);
375 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
376 * is in use - which includes both the "real" per-superblock
377 * LRU list _and_ the DCACHE_SHRINK_LIST use.
379 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
380 * on the shrink list (ie not on the superblock LRU list).
382 * The per-cpu "nr_dentry_unused" counters are updated with
383 * the DCACHE_LRU_LIST bit.
385 * These helper functions make sure we always follow the
386 * rules. d_lock must be held by the caller.
388 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
389 static void d_lru_add(struct dentry *dentry)
391 D_FLAG_VERIFY(dentry, 0);
392 dentry->d_flags |= DCACHE_LRU_LIST;
393 this_cpu_inc(nr_dentry_unused);
394 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
397 static void d_lru_del(struct dentry *dentry)
399 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
400 dentry->d_flags &= ~DCACHE_LRU_LIST;
401 this_cpu_dec(nr_dentry_unused);
402 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 static void d_shrink_del(struct dentry *dentry)
407 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
408 list_del_init(&dentry->d_lru);
409 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410 this_cpu_dec(nr_dentry_unused);
413 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
415 D_FLAG_VERIFY(dentry, 0);
416 list_add(&dentry->d_lru, list);
417 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
418 this_cpu_inc(nr_dentry_unused);
422 * These can only be called under the global LRU lock, ie during the
423 * callback for freeing the LRU list. "isolate" removes it from the
424 * LRU lists entirely, while shrink_move moves it to the indicated
427 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
429 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
430 dentry->d_flags &= ~DCACHE_LRU_LIST;
431 this_cpu_dec(nr_dentry_unused);
432 list_lru_isolate(lru, &dentry->d_lru);
435 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
436 struct list_head *list)
438 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
439 dentry->d_flags |= DCACHE_SHRINK_LIST;
440 list_lru_isolate_move(lru, &dentry->d_lru, list);
444 * dentry_lru_(add|del)_list) must be called with d_lock held.
446 static void dentry_lru_add(struct dentry *dentry)
448 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
450 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
451 dentry->d_flags |= DCACHE_REFERENCED;
455 * d_drop - drop a dentry
456 * @dentry: dentry to drop
458 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
459 * be found through a VFS lookup any more. Note that this is different from
460 * deleting the dentry - d_delete will try to mark the dentry negative if
461 * possible, giving a successful _negative_ lookup, while d_drop will
462 * just make the cache lookup fail.
464 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
465 * reason (NFS timeouts or autofs deletes).
467 * __d_drop requires dentry->d_lock
468 * ___d_drop doesn't mark dentry as "unhashed"
469 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
471 static void ___d_drop(struct dentry *dentry)
473 struct hlist_bl_head *b;
475 * Hashed dentries are normally on the dentry hashtable,
476 * with the exception of those newly allocated by
477 * d_obtain_root, which are always IS_ROOT:
479 if (unlikely(IS_ROOT(dentry)))
480 b = &dentry->d_sb->s_roots;
482 b = d_hash(dentry->d_name.hash);
485 __hlist_bl_del(&dentry->d_hash);
489 void __d_drop(struct dentry *dentry)
491 if (!d_unhashed(dentry)) {
493 dentry->d_hash.pprev = NULL;
494 write_seqcount_invalidate(&dentry->d_seq);
497 EXPORT_SYMBOL(__d_drop);
499 void d_drop(struct dentry *dentry)
501 spin_lock(&dentry->d_lock);
503 spin_unlock(&dentry->d_lock);
505 EXPORT_SYMBOL(d_drop);
507 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
511 * Inform d_walk() and shrink_dentry_list() that we are no longer
512 * attached to the dentry tree
514 dentry->d_flags |= DCACHE_DENTRY_KILLED;
515 if (unlikely(list_empty(&dentry->d_child)))
517 __list_del_entry(&dentry->d_child);
519 * Cursors can move around the list of children. While we'd been
520 * a normal list member, it didn't matter - ->d_child.next would've
521 * been updated. However, from now on it won't be and for the
522 * things like d_walk() it might end up with a nasty surprise.
523 * Normally d_walk() doesn't care about cursors moving around -
524 * ->d_lock on parent prevents that and since a cursor has no children
525 * of its own, we get through it without ever unlocking the parent.
526 * There is one exception, though - if we ascend from a child that
527 * gets killed as soon as we unlock it, the next sibling is found
528 * using the value left in its ->d_child.next. And if _that_
529 * pointed to a cursor, and cursor got moved (e.g. by lseek())
530 * before d_walk() regains parent->d_lock, we'll end up skipping
531 * everything the cursor had been moved past.
533 * Solution: make sure that the pointer left behind in ->d_child.next
534 * points to something that won't be moving around. I.e. skip the
537 while (dentry->d_child.next != &parent->d_subdirs) {
538 next = list_entry(dentry->d_child.next, struct dentry, d_child);
539 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
541 dentry->d_child.next = next->d_child.next;
545 static void __dentry_kill(struct dentry *dentry)
547 struct dentry *parent = NULL;
548 bool can_free = true;
549 if (!IS_ROOT(dentry))
550 parent = dentry->d_parent;
553 * The dentry is now unrecoverably dead to the world.
555 lockref_mark_dead(&dentry->d_lockref);
558 * inform the fs via d_prune that this dentry is about to be
559 * unhashed and destroyed.
561 if (dentry->d_flags & DCACHE_OP_PRUNE)
562 dentry->d_op->d_prune(dentry);
564 if (dentry->d_flags & DCACHE_LRU_LIST) {
565 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
568 /* if it was on the hash then remove it */
570 dentry_unlist(dentry, parent);
572 spin_unlock(&parent->d_lock);
574 dentry_unlink_inode(dentry);
576 spin_unlock(&dentry->d_lock);
577 this_cpu_dec(nr_dentry);
578 if (dentry->d_op && dentry->d_op->d_release)
579 dentry->d_op->d_release(dentry);
581 spin_lock(&dentry->d_lock);
582 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
583 dentry->d_flags |= DCACHE_MAY_FREE;
586 spin_unlock(&dentry->d_lock);
587 if (likely(can_free))
591 static inline struct dentry *lock_parent(struct dentry *dentry)
593 struct dentry *parent = dentry->d_parent;
596 if (likely(spin_trylock(&parent->d_lock)))
599 spin_unlock(&dentry->d_lock);
601 parent = READ_ONCE(dentry->d_parent);
602 spin_lock(&parent->d_lock);
604 * We can't blindly lock dentry until we are sure
605 * that we won't violate the locking order.
606 * Any changes of dentry->d_parent must have
607 * been done with parent->d_lock held, so
608 * spin_lock() above is enough of a barrier
609 * for checking if it's still our child.
611 if (unlikely(parent != dentry->d_parent)) {
612 spin_unlock(&parent->d_lock);
616 if (parent != dentry)
617 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
624 * Finish off a dentry we've decided to kill.
625 * dentry->d_lock must be held, returns with it unlocked.
626 * Returns dentry requiring refcount drop, or NULL if we're done.
628 static struct dentry *dentry_kill(struct dentry *dentry)
629 __releases(dentry->d_lock)
631 struct inode *inode = dentry->d_inode;
632 struct dentry *parent = NULL;
634 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
637 if (!IS_ROOT(dentry)) {
638 parent = dentry->d_parent;
639 if (unlikely(!spin_trylock(&parent->d_lock))) {
641 spin_unlock(&inode->i_lock);
646 __dentry_kill(dentry);
650 spin_unlock(&dentry->d_lock);
651 return dentry; /* try again with same dentry */
655 * Try to do a lockless dput(), and return whether that was successful.
657 * If unsuccessful, we return false, having already taken the dentry lock.
659 * The caller needs to hold the RCU read lock, so that the dentry is
660 * guaranteed to stay around even if the refcount goes down to zero!
662 static inline bool fast_dput(struct dentry *dentry)
665 unsigned int d_flags;
668 * If we have a d_op->d_delete() operation, we sould not
669 * let the dentry count go to zero, so use "put_or_lock".
671 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
672 return lockref_put_or_lock(&dentry->d_lockref);
675 * .. otherwise, we can try to just decrement the
676 * lockref optimistically.
678 ret = lockref_put_return(&dentry->d_lockref);
681 * If the lockref_put_return() failed due to the lock being held
682 * by somebody else, the fast path has failed. We will need to
683 * get the lock, and then check the count again.
685 if (unlikely(ret < 0)) {
686 spin_lock(&dentry->d_lock);
687 if (dentry->d_lockref.count > 1) {
688 dentry->d_lockref.count--;
689 spin_unlock(&dentry->d_lock);
696 * If we weren't the last ref, we're done.
702 * Careful, careful. The reference count went down
703 * to zero, but we don't hold the dentry lock, so
704 * somebody else could get it again, and do another
705 * dput(), and we need to not race with that.
707 * However, there is a very special and common case
708 * where we don't care, because there is nothing to
709 * do: the dentry is still hashed, it does not have
710 * a 'delete' op, and it's referenced and already on
713 * NOTE! Since we aren't locked, these values are
714 * not "stable". However, it is sufficient that at
715 * some point after we dropped the reference the
716 * dentry was hashed and the flags had the proper
717 * value. Other dentry users may have re-gotten
718 * a reference to the dentry and change that, but
719 * our work is done - we can leave the dentry
720 * around with a zero refcount.
723 d_flags = READ_ONCE(dentry->d_flags);
724 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
726 /* Nothing to do? Dropping the reference was all we needed? */
727 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
731 * Not the fast normal case? Get the lock. We've already decremented
732 * the refcount, but we'll need to re-check the situation after
735 spin_lock(&dentry->d_lock);
738 * Did somebody else grab a reference to it in the meantime, and
739 * we're no longer the last user after all? Alternatively, somebody
740 * else could have killed it and marked it dead. Either way, we
741 * don't need to do anything else.
743 if (dentry->d_lockref.count) {
744 spin_unlock(&dentry->d_lock);
749 * Re-get the reference we optimistically dropped. We hold the
750 * lock, and we just tested that it was zero, so we can just
753 dentry->d_lockref.count = 1;
761 * This is complicated by the fact that we do not want to put
762 * dentries that are no longer on any hash chain on the unused
763 * list: we'd much rather just get rid of them immediately.
765 * However, that implies that we have to traverse the dentry
766 * tree upwards to the parents which might _also_ now be
767 * scheduled for deletion (it may have been only waiting for
768 * its last child to go away).
770 * This tail recursion is done by hand as we don't want to depend
771 * on the compiler to always get this right (gcc generally doesn't).
772 * Real recursion would eat up our stack space.
776 * dput - release a dentry
777 * @dentry: dentry to release
779 * Release a dentry. This will drop the usage count and if appropriate
780 * call the dentry unlink method as well as removing it from the queues and
781 * releasing its resources. If the parent dentries were scheduled for release
782 * they too may now get deleted.
784 void dput(struct dentry *dentry)
786 if (unlikely(!dentry))
793 if (likely(fast_dput(dentry))) {
798 /* Slow case: now with the dentry lock held */
801 WARN_ON(d_in_lookup(dentry));
803 /* Unreachable? Get rid of it */
804 if (unlikely(d_unhashed(dentry)))
807 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
810 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
811 if (dentry->d_op->d_delete(dentry))
815 dentry_lru_add(dentry);
817 dentry->d_lockref.count--;
818 spin_unlock(&dentry->d_lock);
822 dentry = dentry_kill(dentry);
831 /* This must be called with d_lock held */
832 static inline void __dget_dlock(struct dentry *dentry)
834 dentry->d_lockref.count++;
837 static inline void __dget(struct dentry *dentry)
839 lockref_get(&dentry->d_lockref);
842 struct dentry *dget_parent(struct dentry *dentry)
848 * Do optimistic parent lookup without any
852 ret = READ_ONCE(dentry->d_parent);
853 gotref = lockref_get_not_zero(&ret->d_lockref);
855 if (likely(gotref)) {
856 if (likely(ret == READ_ONCE(dentry->d_parent)))
863 * Don't need rcu_dereference because we re-check it was correct under
867 ret = dentry->d_parent;
868 spin_lock(&ret->d_lock);
869 if (unlikely(ret != dentry->d_parent)) {
870 spin_unlock(&ret->d_lock);
875 BUG_ON(!ret->d_lockref.count);
876 ret->d_lockref.count++;
877 spin_unlock(&ret->d_lock);
880 EXPORT_SYMBOL(dget_parent);
883 * d_find_alias - grab a hashed alias of inode
884 * @inode: inode in question
886 * If inode has a hashed alias, or is a directory and has any alias,
887 * acquire the reference to alias and return it. Otherwise return NULL.
888 * Notice that if inode is a directory there can be only one alias and
889 * it can be unhashed only if it has no children, or if it is the root
890 * of a filesystem, or if the directory was renamed and d_revalidate
891 * was the first vfs operation to notice.
893 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
894 * any other hashed alias over that one.
896 static struct dentry *__d_find_alias(struct inode *inode)
898 struct dentry *alias, *discon_alias;
902 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
903 spin_lock(&alias->d_lock);
904 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
905 if (IS_ROOT(alias) &&
906 (alias->d_flags & DCACHE_DISCONNECTED)) {
907 discon_alias = alias;
910 spin_unlock(&alias->d_lock);
914 spin_unlock(&alias->d_lock);
917 alias = discon_alias;
918 spin_lock(&alias->d_lock);
919 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
921 spin_unlock(&alias->d_lock);
924 spin_unlock(&alias->d_lock);
930 struct dentry *d_find_alias(struct inode *inode)
932 struct dentry *de = NULL;
934 if (!hlist_empty(&inode->i_dentry)) {
935 spin_lock(&inode->i_lock);
936 de = __d_find_alias(inode);
937 spin_unlock(&inode->i_lock);
941 EXPORT_SYMBOL(d_find_alias);
944 * Try to kill dentries associated with this inode.
945 * WARNING: you must own a reference to inode.
947 void d_prune_aliases(struct inode *inode)
949 struct dentry *dentry;
951 spin_lock(&inode->i_lock);
952 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
953 spin_lock(&dentry->d_lock);
954 if (!dentry->d_lockref.count) {
955 struct dentry *parent = lock_parent(dentry);
956 if (likely(!dentry->d_lockref.count)) {
957 __dentry_kill(dentry);
962 spin_unlock(&parent->d_lock);
964 spin_unlock(&dentry->d_lock);
966 spin_unlock(&inode->i_lock);
968 EXPORT_SYMBOL(d_prune_aliases);
971 * Lock a dentry from shrink list.
972 * Note that dentry is *not* protected from concurrent dentry_kill(),
973 * d_delete(), etc. It is protected from freeing (by the fact of
974 * being on a shrink list), but everything else is fair game.
975 * Return false if dentry has been disrupted or grabbed, leaving
976 * the caller to kick it off-list. Otherwise, return true and have
977 * that dentry's inode and parent both locked.
979 static bool shrink_lock_dentry(struct dentry *dentry)
982 struct dentry *parent;
984 if (dentry->d_lockref.count)
987 inode = dentry->d_inode;
988 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
989 rcu_read_lock(); /* to protect inode */
990 spin_unlock(&dentry->d_lock);
991 spin_lock(&inode->i_lock);
992 spin_lock(&dentry->d_lock);
993 if (unlikely(dentry->d_lockref.count))
995 /* changed inode means that somebody had grabbed it */
996 if (unlikely(inode != dentry->d_inode))
1001 parent = dentry->d_parent;
1002 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1005 rcu_read_lock(); /* to protect parent */
1006 spin_unlock(&dentry->d_lock);
1007 parent = READ_ONCE(dentry->d_parent);
1008 spin_lock(&parent->d_lock);
1009 if (unlikely(parent != dentry->d_parent)) {
1010 spin_unlock(&parent->d_lock);
1011 spin_lock(&dentry->d_lock);
1014 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1015 if (likely(!dentry->d_lockref.count)) {
1019 spin_unlock(&parent->d_lock);
1022 spin_unlock(&inode->i_lock);
1027 static void shrink_dentry_list(struct list_head *list)
1029 while (!list_empty(list)) {
1030 struct dentry *dentry, *parent;
1031 struct inode *inode;
1033 dentry = list_entry(list->prev, struct dentry, d_lru);
1034 spin_lock(&dentry->d_lock);
1035 if (!shrink_lock_dentry(dentry)) {
1036 bool can_free = false;
1037 d_shrink_del(dentry);
1038 if (dentry->d_lockref.count < 0)
1039 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1040 spin_unlock(&dentry->d_lock);
1042 dentry_free(dentry);
1045 d_shrink_del(dentry);
1046 parent = dentry->d_parent;
1047 __dentry_kill(dentry);
1048 if (parent == dentry)
1051 * We need to prune ancestors too. This is necessary to prevent
1052 * quadratic behavior of shrink_dcache_parent(), but is also
1053 * expected to be beneficial in reducing dentry cache
1057 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1058 parent = lock_parent(dentry);
1059 if (dentry->d_lockref.count != 1) {
1060 dentry->d_lockref.count--;
1061 spin_unlock(&dentry->d_lock);
1063 spin_unlock(&parent->d_lock);
1066 inode = dentry->d_inode; /* can't be NULL */
1067 if (unlikely(!spin_trylock(&inode->i_lock))) {
1068 spin_unlock(&dentry->d_lock);
1070 spin_unlock(&parent->d_lock);
1074 __dentry_kill(dentry);
1080 static enum lru_status dentry_lru_isolate(struct list_head *item,
1081 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1083 struct list_head *freeable = arg;
1084 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1088 * we are inverting the lru lock/dentry->d_lock here,
1089 * so use a trylock. If we fail to get the lock, just skip
1092 if (!spin_trylock(&dentry->d_lock))
1096 * Referenced dentries are still in use. If they have active
1097 * counts, just remove them from the LRU. Otherwise give them
1098 * another pass through the LRU.
1100 if (dentry->d_lockref.count) {
1101 d_lru_isolate(lru, dentry);
1102 spin_unlock(&dentry->d_lock);
1106 if (dentry->d_flags & DCACHE_REFERENCED) {
1107 dentry->d_flags &= ~DCACHE_REFERENCED;
1108 spin_unlock(&dentry->d_lock);
1111 * The list move itself will be made by the common LRU code. At
1112 * this point, we've dropped the dentry->d_lock but keep the
1113 * lru lock. This is safe to do, since every list movement is
1114 * protected by the lru lock even if both locks are held.
1116 * This is guaranteed by the fact that all LRU management
1117 * functions are intermediated by the LRU API calls like
1118 * list_lru_add and list_lru_del. List movement in this file
1119 * only ever occur through this functions or through callbacks
1120 * like this one, that are called from the LRU API.
1122 * The only exceptions to this are functions like
1123 * shrink_dentry_list, and code that first checks for the
1124 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1125 * operating only with stack provided lists after they are
1126 * properly isolated from the main list. It is thus, always a
1132 d_lru_shrink_move(lru, dentry, freeable);
1133 spin_unlock(&dentry->d_lock);
1139 * prune_dcache_sb - shrink the dcache
1141 * @sc: shrink control, passed to list_lru_shrink_walk()
1143 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1144 * is done when we need more memory and called from the superblock shrinker
1147 * This function may fail to free any resources if all the dentries are in
1150 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1155 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1156 dentry_lru_isolate, &dispose);
1157 shrink_dentry_list(&dispose);
1161 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1162 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1164 struct list_head *freeable = arg;
1165 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1168 * we are inverting the lru lock/dentry->d_lock here,
1169 * so use a trylock. If we fail to get the lock, just skip
1172 if (!spin_trylock(&dentry->d_lock))
1175 d_lru_shrink_move(lru, dentry, freeable);
1176 spin_unlock(&dentry->d_lock);
1183 * shrink_dcache_sb - shrink dcache for a superblock
1186 * Shrink the dcache for the specified super block. This is used to free
1187 * the dcache before unmounting a file system.
1189 void shrink_dcache_sb(struct super_block *sb)
1196 freed = list_lru_walk(&sb->s_dentry_lru,
1197 dentry_lru_isolate_shrink, &dispose, 1024);
1199 this_cpu_sub(nr_dentry_unused, freed);
1200 shrink_dentry_list(&dispose);
1202 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1204 EXPORT_SYMBOL(shrink_dcache_sb);
1207 * enum d_walk_ret - action to talke during tree walk
1208 * @D_WALK_CONTINUE: contrinue walk
1209 * @D_WALK_QUIT: quit walk
1210 * @D_WALK_NORETRY: quit when retry is needed
1211 * @D_WALK_SKIP: skip this dentry and its children
1221 * d_walk - walk the dentry tree
1222 * @parent: start of walk
1223 * @data: data passed to @enter() and @finish()
1224 * @enter: callback when first entering the dentry
1225 * @finish: callback when successfully finished the walk
1227 * The @enter() and @finish() callbacks are called with d_lock held.
1229 static void d_walk(struct dentry *parent, void *data,
1230 enum d_walk_ret (*enter)(void *, struct dentry *),
1231 void (*finish)(void *))
1233 struct dentry *this_parent;
1234 struct list_head *next;
1236 enum d_walk_ret ret;
1240 read_seqbegin_or_lock(&rename_lock, &seq);
1241 this_parent = parent;
1242 spin_lock(&this_parent->d_lock);
1244 ret = enter(data, this_parent);
1246 case D_WALK_CONTINUE:
1251 case D_WALK_NORETRY:
1256 next = this_parent->d_subdirs.next;
1258 while (next != &this_parent->d_subdirs) {
1259 struct list_head *tmp = next;
1260 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1263 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1266 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1268 ret = enter(data, dentry);
1270 case D_WALK_CONTINUE:
1273 spin_unlock(&dentry->d_lock);
1275 case D_WALK_NORETRY:
1279 spin_unlock(&dentry->d_lock);
1283 if (!list_empty(&dentry->d_subdirs)) {
1284 spin_unlock(&this_parent->d_lock);
1285 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1286 this_parent = dentry;
1287 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1290 spin_unlock(&dentry->d_lock);
1293 * All done at this level ... ascend and resume the search.
1297 if (this_parent != parent) {
1298 struct dentry *child = this_parent;
1299 this_parent = child->d_parent;
1301 spin_unlock(&child->d_lock);
1302 spin_lock(&this_parent->d_lock);
1304 /* might go back up the wrong parent if we have had a rename. */
1305 if (need_seqretry(&rename_lock, seq))
1307 /* go into the first sibling still alive */
1309 next = child->d_child.next;
1310 if (next == &this_parent->d_subdirs)
1312 child = list_entry(next, struct dentry, d_child);
1313 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1317 if (need_seqretry(&rename_lock, seq))
1324 spin_unlock(&this_parent->d_lock);
1325 done_seqretry(&rename_lock, seq);
1329 spin_unlock(&this_parent->d_lock);
1338 struct check_mount {
1339 struct vfsmount *mnt;
1340 unsigned int mounted;
1343 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1345 struct check_mount *info = data;
1346 struct path path = { .mnt = info->mnt, .dentry = dentry };
1348 if (likely(!d_mountpoint(dentry)))
1349 return D_WALK_CONTINUE;
1350 if (__path_is_mountpoint(&path)) {
1354 return D_WALK_CONTINUE;
1358 * path_has_submounts - check for mounts over a dentry in the
1359 * current namespace.
1360 * @parent: path to check.
1362 * Return true if the parent or its subdirectories contain
1363 * a mount point in the current namespace.
1365 int path_has_submounts(const struct path *parent)
1367 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1369 read_seqlock_excl(&mount_lock);
1370 d_walk(parent->dentry, &data, path_check_mount, NULL);
1371 read_sequnlock_excl(&mount_lock);
1373 return data.mounted;
1375 EXPORT_SYMBOL(path_has_submounts);
1378 * Called by mount code to set a mountpoint and check if the mountpoint is
1379 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1380 * subtree can become unreachable).
1382 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1383 * this reason take rename_lock and d_lock on dentry and ancestors.
1385 int d_set_mounted(struct dentry *dentry)
1389 write_seqlock(&rename_lock);
1390 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1391 /* Need exclusion wrt. d_invalidate() */
1392 spin_lock(&p->d_lock);
1393 if (unlikely(d_unhashed(p))) {
1394 spin_unlock(&p->d_lock);
1397 spin_unlock(&p->d_lock);
1399 spin_lock(&dentry->d_lock);
1400 if (!d_unlinked(dentry)) {
1402 if (!d_mountpoint(dentry)) {
1403 dentry->d_flags |= DCACHE_MOUNTED;
1407 spin_unlock(&dentry->d_lock);
1409 write_sequnlock(&rename_lock);
1414 * Search the dentry child list of the specified parent,
1415 * and move any unused dentries to the end of the unused
1416 * list for prune_dcache(). We descend to the next level
1417 * whenever the d_subdirs list is non-empty and continue
1420 * It returns zero iff there are no unused children,
1421 * otherwise it returns the number of children moved to
1422 * the end of the unused list. This may not be the total
1423 * number of unused children, because select_parent can
1424 * drop the lock and return early due to latency
1428 struct select_data {
1429 struct dentry *start;
1430 struct list_head dispose;
1434 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1436 struct select_data *data = _data;
1437 enum d_walk_ret ret = D_WALK_CONTINUE;
1439 if (data->start == dentry)
1442 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1445 if (dentry->d_flags & DCACHE_LRU_LIST)
1447 if (!dentry->d_lockref.count) {
1448 d_shrink_add(dentry, &data->dispose);
1453 * We can return to the caller if we have found some (this
1454 * ensures forward progress). We'll be coming back to find
1457 if (!list_empty(&data->dispose))
1458 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1464 * shrink_dcache_parent - prune dcache
1465 * @parent: parent of entries to prune
1467 * Prune the dcache to remove unused children of the parent dentry.
1469 void shrink_dcache_parent(struct dentry *parent)
1472 struct select_data data;
1474 INIT_LIST_HEAD(&data.dispose);
1475 data.start = parent;
1478 d_walk(parent, &data, select_collect, NULL);
1482 shrink_dentry_list(&data.dispose);
1486 EXPORT_SYMBOL(shrink_dcache_parent);
1488 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1490 /* it has busy descendents; complain about those instead */
1491 if (!list_empty(&dentry->d_subdirs))
1492 return D_WALK_CONTINUE;
1494 /* root with refcount 1 is fine */
1495 if (dentry == _data && dentry->d_lockref.count == 1)
1496 return D_WALK_CONTINUE;
1498 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1499 " still in use (%d) [unmount of %s %s]\n",
1502 dentry->d_inode->i_ino : 0UL,
1504 dentry->d_lockref.count,
1505 dentry->d_sb->s_type->name,
1506 dentry->d_sb->s_id);
1508 return D_WALK_CONTINUE;
1511 static void do_one_tree(struct dentry *dentry)
1513 shrink_dcache_parent(dentry);
1514 d_walk(dentry, dentry, umount_check, NULL);
1520 * destroy the dentries attached to a superblock on unmounting
1522 void shrink_dcache_for_umount(struct super_block *sb)
1524 struct dentry *dentry;
1526 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1528 dentry = sb->s_root;
1530 do_one_tree(dentry);
1532 while (!hlist_bl_empty(&sb->s_roots)) {
1533 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1534 do_one_tree(dentry);
1538 struct detach_data {
1539 struct select_data select;
1540 struct dentry *mountpoint;
1542 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1544 struct detach_data *data = _data;
1546 if (d_mountpoint(dentry)) {
1547 __dget_dlock(dentry);
1548 data->mountpoint = dentry;
1552 return select_collect(&data->select, dentry);
1555 static void check_and_drop(void *_data)
1557 struct detach_data *data = _data;
1559 if (!data->mountpoint && list_empty(&data->select.dispose))
1560 __d_drop(data->select.start);
1564 * d_invalidate - detach submounts, prune dcache, and drop
1565 * @dentry: dentry to invalidate (aka detach, prune and drop)
1569 * The final d_drop is done as an atomic operation relative to
1570 * rename_lock ensuring there are no races with d_set_mounted. This
1571 * ensures there are no unhashed dentries on the path to a mountpoint.
1573 void d_invalidate(struct dentry *dentry)
1576 * If it's already been dropped, return OK.
1578 spin_lock(&dentry->d_lock);
1579 if (d_unhashed(dentry)) {
1580 spin_unlock(&dentry->d_lock);
1583 spin_unlock(&dentry->d_lock);
1585 /* Negative dentries can be dropped without further checks */
1586 if (!dentry->d_inode) {
1592 struct detach_data data;
1594 data.mountpoint = NULL;
1595 INIT_LIST_HEAD(&data.select.dispose);
1596 data.select.start = dentry;
1597 data.select.found = 0;
1599 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1601 if (!list_empty(&data.select.dispose))
1602 shrink_dentry_list(&data.select.dispose);
1603 else if (!data.mountpoint)
1606 if (data.mountpoint) {
1607 detach_mounts(data.mountpoint);
1608 dput(data.mountpoint);
1613 EXPORT_SYMBOL(d_invalidate);
1616 * __d_alloc - allocate a dcache entry
1617 * @sb: filesystem it will belong to
1618 * @name: qstr of the name
1620 * Allocates a dentry. It returns %NULL if there is insufficient memory
1621 * available. On a success the dentry is returned. The name passed in is
1622 * copied and the copy passed in may be reused after this call.
1625 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1627 struct dentry *dentry;
1631 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1636 * We guarantee that the inline name is always NUL-terminated.
1637 * This way the memcpy() done by the name switching in rename
1638 * will still always have a NUL at the end, even if we might
1639 * be overwriting an internal NUL character
1641 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1642 if (unlikely(!name)) {
1644 dname = dentry->d_iname;
1645 } else if (name->len > DNAME_INLINE_LEN-1) {
1646 size_t size = offsetof(struct external_name, name[1]);
1647 struct external_name *p = kmalloc(size + name->len,
1648 GFP_KERNEL_ACCOUNT);
1650 kmem_cache_free(dentry_cache, dentry);
1653 atomic_set(&p->u.count, 1);
1656 dname = dentry->d_iname;
1659 dentry->d_name.len = name->len;
1660 dentry->d_name.hash = name->hash;
1661 memcpy(dname, name->name, name->len);
1662 dname[name->len] = 0;
1664 /* Make sure we always see the terminating NUL character */
1665 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1667 dentry->d_lockref.count = 1;
1668 dentry->d_flags = 0;
1669 spin_lock_init(&dentry->d_lock);
1670 seqcount_init(&dentry->d_seq);
1671 dentry->d_inode = NULL;
1672 dentry->d_parent = dentry;
1674 dentry->d_op = NULL;
1675 dentry->d_fsdata = NULL;
1676 INIT_HLIST_BL_NODE(&dentry->d_hash);
1677 INIT_LIST_HEAD(&dentry->d_lru);
1678 INIT_LIST_HEAD(&dentry->d_subdirs);
1679 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1680 INIT_LIST_HEAD(&dentry->d_child);
1681 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1683 if (dentry->d_op && dentry->d_op->d_init) {
1684 err = dentry->d_op->d_init(dentry);
1686 if (dname_external(dentry))
1687 kfree(external_name(dentry));
1688 kmem_cache_free(dentry_cache, dentry);
1693 this_cpu_inc(nr_dentry);
1699 * d_alloc - allocate a dcache entry
1700 * @parent: parent of entry to allocate
1701 * @name: qstr of the name
1703 * Allocates a dentry. It returns %NULL if there is insufficient memory
1704 * available. On a success the dentry is returned. The name passed in is
1705 * copied and the copy passed in may be reused after this call.
1707 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1709 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1712 dentry->d_flags |= DCACHE_RCUACCESS;
1713 spin_lock(&parent->d_lock);
1715 * don't need child lock because it is not subject
1716 * to concurrency here
1718 __dget_dlock(parent);
1719 dentry->d_parent = parent;
1720 list_add(&dentry->d_child, &parent->d_subdirs);
1721 spin_unlock(&parent->d_lock);
1725 EXPORT_SYMBOL(d_alloc);
1727 struct dentry *d_alloc_anon(struct super_block *sb)
1729 return __d_alloc(sb, NULL);
1731 EXPORT_SYMBOL(d_alloc_anon);
1733 struct dentry *d_alloc_cursor(struct dentry * parent)
1735 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1737 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1738 dentry->d_parent = dget(parent);
1744 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1745 * @sb: the superblock
1746 * @name: qstr of the name
1748 * For a filesystem that just pins its dentries in memory and never
1749 * performs lookups at all, return an unhashed IS_ROOT dentry.
1751 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1753 return __d_alloc(sb, name);
1755 EXPORT_SYMBOL(d_alloc_pseudo);
1757 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1762 q.hash_len = hashlen_string(parent, name);
1763 return d_alloc(parent, &q);
1765 EXPORT_SYMBOL(d_alloc_name);
1767 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1769 WARN_ON_ONCE(dentry->d_op);
1770 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1772 DCACHE_OP_REVALIDATE |
1773 DCACHE_OP_WEAK_REVALIDATE |
1780 dentry->d_flags |= DCACHE_OP_HASH;
1782 dentry->d_flags |= DCACHE_OP_COMPARE;
1783 if (op->d_revalidate)
1784 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1785 if (op->d_weak_revalidate)
1786 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1788 dentry->d_flags |= DCACHE_OP_DELETE;
1790 dentry->d_flags |= DCACHE_OP_PRUNE;
1792 dentry->d_flags |= DCACHE_OP_REAL;
1795 EXPORT_SYMBOL(d_set_d_op);
1799 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1800 * @dentry - The dentry to mark
1802 * Mark a dentry as falling through to the lower layer (as set with
1803 * d_pin_lower()). This flag may be recorded on the medium.
1805 void d_set_fallthru(struct dentry *dentry)
1807 spin_lock(&dentry->d_lock);
1808 dentry->d_flags |= DCACHE_FALLTHRU;
1809 spin_unlock(&dentry->d_lock);
1811 EXPORT_SYMBOL(d_set_fallthru);
1813 static unsigned d_flags_for_inode(struct inode *inode)
1815 unsigned add_flags = DCACHE_REGULAR_TYPE;
1818 return DCACHE_MISS_TYPE;
1820 if (S_ISDIR(inode->i_mode)) {
1821 add_flags = DCACHE_DIRECTORY_TYPE;
1822 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1823 if (unlikely(!inode->i_op->lookup))
1824 add_flags = DCACHE_AUTODIR_TYPE;
1826 inode->i_opflags |= IOP_LOOKUP;
1828 goto type_determined;
1831 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1832 if (unlikely(inode->i_op->get_link)) {
1833 add_flags = DCACHE_SYMLINK_TYPE;
1834 goto type_determined;
1836 inode->i_opflags |= IOP_NOFOLLOW;
1839 if (unlikely(!S_ISREG(inode->i_mode)))
1840 add_flags = DCACHE_SPECIAL_TYPE;
1843 if (unlikely(IS_AUTOMOUNT(inode)))
1844 add_flags |= DCACHE_NEED_AUTOMOUNT;
1848 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1850 unsigned add_flags = d_flags_for_inode(inode);
1851 WARN_ON(d_in_lookup(dentry));
1853 spin_lock(&dentry->d_lock);
1854 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1855 raw_write_seqcount_begin(&dentry->d_seq);
1856 __d_set_inode_and_type(dentry, inode, add_flags);
1857 raw_write_seqcount_end(&dentry->d_seq);
1858 fsnotify_update_flags(dentry);
1859 spin_unlock(&dentry->d_lock);
1863 * d_instantiate - fill in inode information for a dentry
1864 * @entry: dentry to complete
1865 * @inode: inode to attach to this dentry
1867 * Fill in inode information in the entry.
1869 * This turns negative dentries into productive full members
1872 * NOTE! This assumes that the inode count has been incremented
1873 * (or otherwise set) by the caller to indicate that it is now
1874 * in use by the dcache.
1877 void d_instantiate(struct dentry *entry, struct inode * inode)
1879 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1881 security_d_instantiate(entry, inode);
1882 spin_lock(&inode->i_lock);
1883 __d_instantiate(entry, inode);
1884 spin_unlock(&inode->i_lock);
1887 EXPORT_SYMBOL(d_instantiate);
1890 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1891 * @entry: dentry to complete
1892 * @inode: inode to attach to this dentry
1894 * Fill in inode information in the entry. If a directory alias is found, then
1895 * return an error (and drop inode). Together with d_materialise_unique() this
1896 * guarantees that a directory inode may never have more than one alias.
1898 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1900 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1902 security_d_instantiate(entry, inode);
1903 spin_lock(&inode->i_lock);
1904 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1905 spin_unlock(&inode->i_lock);
1909 __d_instantiate(entry, inode);
1910 spin_unlock(&inode->i_lock);
1914 EXPORT_SYMBOL(d_instantiate_no_diralias);
1916 struct dentry *d_make_root(struct inode *root_inode)
1918 struct dentry *res = NULL;
1921 res = d_alloc_anon(root_inode->i_sb);
1923 d_instantiate(res, root_inode);
1929 EXPORT_SYMBOL(d_make_root);
1931 static struct dentry * __d_find_any_alias(struct inode *inode)
1933 struct dentry *alias;
1935 if (hlist_empty(&inode->i_dentry))
1937 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1943 * d_find_any_alias - find any alias for a given inode
1944 * @inode: inode to find an alias for
1946 * If any aliases exist for the given inode, take and return a
1947 * reference for one of them. If no aliases exist, return %NULL.
1949 struct dentry *d_find_any_alias(struct inode *inode)
1953 spin_lock(&inode->i_lock);
1954 de = __d_find_any_alias(inode);
1955 spin_unlock(&inode->i_lock);
1958 EXPORT_SYMBOL(d_find_any_alias);
1960 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1961 struct inode *inode,
1967 security_d_instantiate(dentry, inode);
1968 spin_lock(&inode->i_lock);
1969 res = __d_find_any_alias(inode);
1971 spin_unlock(&inode->i_lock);
1976 /* attach a disconnected dentry */
1977 add_flags = d_flags_for_inode(inode);
1980 add_flags |= DCACHE_DISCONNECTED;
1982 spin_lock(&dentry->d_lock);
1983 __d_set_inode_and_type(dentry, inode, add_flags);
1984 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1985 if (!disconnected) {
1986 hlist_bl_lock(&dentry->d_sb->s_roots);
1987 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1988 hlist_bl_unlock(&dentry->d_sb->s_roots);
1990 spin_unlock(&dentry->d_lock);
1991 spin_unlock(&inode->i_lock);
2000 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2002 return __d_instantiate_anon(dentry, inode, true);
2004 EXPORT_SYMBOL(d_instantiate_anon);
2006 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2012 return ERR_PTR(-ESTALE);
2014 return ERR_CAST(inode);
2016 res = d_find_any_alias(inode);
2020 tmp = d_alloc_anon(inode->i_sb);
2022 res = ERR_PTR(-ENOMEM);
2026 return __d_instantiate_anon(tmp, inode, disconnected);
2034 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2035 * @inode: inode to allocate the dentry for
2037 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2038 * similar open by handle operations. The returned dentry may be anonymous,
2039 * or may have a full name (if the inode was already in the cache).
2041 * When called on a directory inode, we must ensure that the inode only ever
2042 * has one dentry. If a dentry is found, that is returned instead of
2043 * allocating a new one.
2045 * On successful return, the reference to the inode has been transferred
2046 * to the dentry. In case of an error the reference on the inode is released.
2047 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2048 * be passed in and the error will be propagated to the return value,
2049 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2051 struct dentry *d_obtain_alias(struct inode *inode)
2053 return __d_obtain_alias(inode, true);
2055 EXPORT_SYMBOL(d_obtain_alias);
2058 * d_obtain_root - find or allocate a dentry for a given inode
2059 * @inode: inode to allocate the dentry for
2061 * Obtain an IS_ROOT dentry for the root of a filesystem.
2063 * We must ensure that directory inodes only ever have one dentry. If a
2064 * dentry is found, that is returned instead of allocating a new one.
2066 * On successful return, the reference to the inode has been transferred
2067 * to the dentry. In case of an error the reference on the inode is
2068 * released. A %NULL or IS_ERR inode may be passed in and will be the
2069 * error will be propagate to the return value, with a %NULL @inode
2070 * replaced by ERR_PTR(-ESTALE).
2072 struct dentry *d_obtain_root(struct inode *inode)
2074 return __d_obtain_alias(inode, false);
2076 EXPORT_SYMBOL(d_obtain_root);
2079 * d_add_ci - lookup or allocate new dentry with case-exact name
2080 * @inode: the inode case-insensitive lookup has found
2081 * @dentry: the negative dentry that was passed to the parent's lookup func
2082 * @name: the case-exact name to be associated with the returned dentry
2084 * This is to avoid filling the dcache with case-insensitive names to the
2085 * same inode, only the actual correct case is stored in the dcache for
2086 * case-insensitive filesystems.
2088 * For a case-insensitive lookup match and if the the case-exact dentry
2089 * already exists in in the dcache, use it and return it.
2091 * If no entry exists with the exact case name, allocate new dentry with
2092 * the exact case, and return the spliced entry.
2094 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2097 struct dentry *found, *res;
2100 * First check if a dentry matching the name already exists,
2101 * if not go ahead and create it now.
2103 found = d_hash_and_lookup(dentry->d_parent, name);
2108 if (d_in_lookup(dentry)) {
2109 found = d_alloc_parallel(dentry->d_parent, name,
2111 if (IS_ERR(found) || !d_in_lookup(found)) {
2116 found = d_alloc(dentry->d_parent, name);
2119 return ERR_PTR(-ENOMEM);
2122 res = d_splice_alias(inode, found);
2129 EXPORT_SYMBOL(d_add_ci);
2132 static inline bool d_same_name(const struct dentry *dentry,
2133 const struct dentry *parent,
2134 const struct qstr *name)
2136 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2137 if (dentry->d_name.len != name->len)
2139 return dentry_cmp(dentry, name->name, name->len) == 0;
2141 return parent->d_op->d_compare(dentry,
2142 dentry->d_name.len, dentry->d_name.name,
2147 * __d_lookup_rcu - search for a dentry (racy, store-free)
2148 * @parent: parent dentry
2149 * @name: qstr of name we wish to find
2150 * @seqp: returns d_seq value at the point where the dentry was found
2151 * Returns: dentry, or NULL
2153 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2154 * resolution (store-free path walking) design described in
2155 * Documentation/filesystems/path-lookup.txt.
2157 * This is not to be used outside core vfs.
2159 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2160 * held, and rcu_read_lock held. The returned dentry must not be stored into
2161 * without taking d_lock and checking d_seq sequence count against @seq
2164 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2167 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2168 * the returned dentry, so long as its parent's seqlock is checked after the
2169 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2170 * is formed, giving integrity down the path walk.
2172 * NOTE! The caller *has* to check the resulting dentry against the sequence
2173 * number we've returned before using any of the resulting dentry state!
2175 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2176 const struct qstr *name,
2179 u64 hashlen = name->hash_len;
2180 const unsigned char *str = name->name;
2181 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2182 struct hlist_bl_node *node;
2183 struct dentry *dentry;
2186 * Note: There is significant duplication with __d_lookup_rcu which is
2187 * required to prevent single threaded performance regressions
2188 * especially on architectures where smp_rmb (in seqcounts) are costly.
2189 * Keep the two functions in sync.
2193 * The hash list is protected using RCU.
2195 * Carefully use d_seq when comparing a candidate dentry, to avoid
2196 * races with d_move().
2198 * It is possible that concurrent renames can mess up our list
2199 * walk here and result in missing our dentry, resulting in the
2200 * false-negative result. d_lookup() protects against concurrent
2201 * renames using rename_lock seqlock.
2203 * See Documentation/filesystems/path-lookup.txt for more details.
2205 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2210 * The dentry sequence count protects us from concurrent
2211 * renames, and thus protects parent and name fields.
2213 * The caller must perform a seqcount check in order
2214 * to do anything useful with the returned dentry.
2216 * NOTE! We do a "raw" seqcount_begin here. That means that
2217 * we don't wait for the sequence count to stabilize if it
2218 * is in the middle of a sequence change. If we do the slow
2219 * dentry compare, we will do seqretries until it is stable,
2220 * and if we end up with a successful lookup, we actually
2221 * want to exit RCU lookup anyway.
2223 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2224 * we are still guaranteed NUL-termination of ->d_name.name.
2226 seq = raw_seqcount_begin(&dentry->d_seq);
2227 if (dentry->d_parent != parent)
2229 if (d_unhashed(dentry))
2232 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2235 if (dentry->d_name.hash != hashlen_hash(hashlen))
2237 tlen = dentry->d_name.len;
2238 tname = dentry->d_name.name;
2239 /* we want a consistent (name,len) pair */
2240 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2244 if (parent->d_op->d_compare(dentry,
2245 tlen, tname, name) != 0)
2248 if (dentry->d_name.hash_len != hashlen)
2250 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2260 * d_lookup - search for a dentry
2261 * @parent: parent dentry
2262 * @name: qstr of name we wish to find
2263 * Returns: dentry, or NULL
2265 * d_lookup searches the children of the parent dentry for the name in
2266 * question. If the dentry is found its reference count is incremented and the
2267 * dentry is returned. The caller must use dput to free the entry when it has
2268 * finished using it. %NULL is returned if the dentry does not exist.
2270 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2272 struct dentry *dentry;
2276 seq = read_seqbegin(&rename_lock);
2277 dentry = __d_lookup(parent, name);
2280 } while (read_seqretry(&rename_lock, seq));
2283 EXPORT_SYMBOL(d_lookup);
2286 * __d_lookup - search for a dentry (racy)
2287 * @parent: parent dentry
2288 * @name: qstr of name we wish to find
2289 * Returns: dentry, or NULL
2291 * __d_lookup is like d_lookup, however it may (rarely) return a
2292 * false-negative result due to unrelated rename activity.
2294 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2295 * however it must be used carefully, eg. with a following d_lookup in
2296 * the case of failure.
2298 * __d_lookup callers must be commented.
2300 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2302 unsigned int hash = name->hash;
2303 struct hlist_bl_head *b = d_hash(hash);
2304 struct hlist_bl_node *node;
2305 struct dentry *found = NULL;
2306 struct dentry *dentry;
2309 * Note: There is significant duplication with __d_lookup_rcu which is
2310 * required to prevent single threaded performance regressions
2311 * especially on architectures where smp_rmb (in seqcounts) are costly.
2312 * Keep the two functions in sync.
2316 * The hash list is protected using RCU.
2318 * Take d_lock when comparing a candidate dentry, to avoid races
2321 * It is possible that concurrent renames can mess up our list
2322 * walk here and result in missing our dentry, resulting in the
2323 * false-negative result. d_lookup() protects against concurrent
2324 * renames using rename_lock seqlock.
2326 * See Documentation/filesystems/path-lookup.txt for more details.
2330 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2332 if (dentry->d_name.hash != hash)
2335 spin_lock(&dentry->d_lock);
2336 if (dentry->d_parent != parent)
2338 if (d_unhashed(dentry))
2341 if (!d_same_name(dentry, parent, name))
2344 dentry->d_lockref.count++;
2346 spin_unlock(&dentry->d_lock);
2349 spin_unlock(&dentry->d_lock);
2357 * d_hash_and_lookup - hash the qstr then search for a dentry
2358 * @dir: Directory to search in
2359 * @name: qstr of name we wish to find
2361 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2363 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2366 * Check for a fs-specific hash function. Note that we must
2367 * calculate the standard hash first, as the d_op->d_hash()
2368 * routine may choose to leave the hash value unchanged.
2370 name->hash = full_name_hash(dir, name->name, name->len);
2371 if (dir->d_flags & DCACHE_OP_HASH) {
2372 int err = dir->d_op->d_hash(dir, name);
2373 if (unlikely(err < 0))
2374 return ERR_PTR(err);
2376 return d_lookup(dir, name);
2378 EXPORT_SYMBOL(d_hash_and_lookup);
2381 * When a file is deleted, we have two options:
2382 * - turn this dentry into a negative dentry
2383 * - unhash this dentry and free it.
2385 * Usually, we want to just turn this into
2386 * a negative dentry, but if anybody else is
2387 * currently using the dentry or the inode
2388 * we can't do that and we fall back on removing
2389 * it from the hash queues and waiting for
2390 * it to be deleted later when it has no users
2394 * d_delete - delete a dentry
2395 * @dentry: The dentry to delete
2397 * Turn the dentry into a negative dentry if possible, otherwise
2398 * remove it from the hash queues so it can be deleted later
2401 void d_delete(struct dentry * dentry)
2403 struct inode *inode = dentry->d_inode;
2404 int isdir = d_is_dir(dentry);
2406 spin_lock(&inode->i_lock);
2407 spin_lock(&dentry->d_lock);
2409 * Are we the only user?
2411 if (dentry->d_lockref.count == 1) {
2412 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2413 dentry_unlink_inode(dentry);
2416 spin_unlock(&dentry->d_lock);
2417 spin_unlock(&inode->i_lock);
2419 fsnotify_nameremove(dentry, isdir);
2421 EXPORT_SYMBOL(d_delete);
2423 static void __d_rehash(struct dentry *entry)
2425 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2428 hlist_bl_add_head_rcu(&entry->d_hash, b);
2433 * d_rehash - add an entry back to the hash
2434 * @entry: dentry to add to the hash
2436 * Adds a dentry to the hash according to its name.
2439 void d_rehash(struct dentry * entry)
2441 spin_lock(&entry->d_lock);
2443 spin_unlock(&entry->d_lock);
2445 EXPORT_SYMBOL(d_rehash);
2447 static inline unsigned start_dir_add(struct inode *dir)
2451 unsigned n = dir->i_dir_seq;
2452 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2458 static inline void end_dir_add(struct inode *dir, unsigned n)
2460 smp_store_release(&dir->i_dir_seq, n + 2);
2463 static void d_wait_lookup(struct dentry *dentry)
2465 if (d_in_lookup(dentry)) {
2466 DECLARE_WAITQUEUE(wait, current);
2467 add_wait_queue(dentry->d_wait, &wait);
2469 set_current_state(TASK_UNINTERRUPTIBLE);
2470 spin_unlock(&dentry->d_lock);
2472 spin_lock(&dentry->d_lock);
2473 } while (d_in_lookup(dentry));
2477 struct dentry *d_alloc_parallel(struct dentry *parent,
2478 const struct qstr *name,
2479 wait_queue_head_t *wq)
2481 unsigned int hash = name->hash;
2482 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2483 struct hlist_bl_node *node;
2484 struct dentry *new = d_alloc(parent, name);
2485 struct dentry *dentry;
2486 unsigned seq, r_seq, d_seq;
2489 return ERR_PTR(-ENOMEM);
2493 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2494 r_seq = read_seqbegin(&rename_lock);
2495 dentry = __d_lookup_rcu(parent, name, &d_seq);
2496 if (unlikely(dentry)) {
2497 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2501 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2510 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2515 if (unlikely(seq & 1)) {
2521 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2527 * No changes for the parent since the beginning of d_lookup().
2528 * Since all removals from the chain happen with hlist_bl_lock(),
2529 * any potential in-lookup matches are going to stay here until
2530 * we unlock the chain. All fields are stable in everything
2533 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2534 if (dentry->d_name.hash != hash)
2536 if (dentry->d_parent != parent)
2538 if (!d_same_name(dentry, parent, name))
2541 /* now we can try to grab a reference */
2542 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2549 * somebody is likely to be still doing lookup for it;
2550 * wait for them to finish
2552 spin_lock(&dentry->d_lock);
2553 d_wait_lookup(dentry);
2555 * it's not in-lookup anymore; in principle we should repeat
2556 * everything from dcache lookup, but it's likely to be what
2557 * d_lookup() would've found anyway. If it is, just return it;
2558 * otherwise we really have to repeat the whole thing.
2560 if (unlikely(dentry->d_name.hash != hash))
2562 if (unlikely(dentry->d_parent != parent))
2564 if (unlikely(d_unhashed(dentry)))
2566 if (unlikely(!d_same_name(dentry, parent, name)))
2568 /* OK, it *is* a hashed match; return it */
2569 spin_unlock(&dentry->d_lock);
2574 /* we can't take ->d_lock here; it's OK, though. */
2575 new->d_flags |= DCACHE_PAR_LOOKUP;
2577 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2581 spin_unlock(&dentry->d_lock);
2585 EXPORT_SYMBOL(d_alloc_parallel);
2587 void __d_lookup_done(struct dentry *dentry)
2589 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2590 dentry->d_name.hash);
2592 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2593 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2594 wake_up_all(dentry->d_wait);
2595 dentry->d_wait = NULL;
2597 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2598 INIT_LIST_HEAD(&dentry->d_lru);
2600 EXPORT_SYMBOL(__d_lookup_done);
2602 /* inode->i_lock held if inode is non-NULL */
2604 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2606 struct inode *dir = NULL;
2608 spin_lock(&dentry->d_lock);
2609 if (unlikely(d_in_lookup(dentry))) {
2610 dir = dentry->d_parent->d_inode;
2611 n = start_dir_add(dir);
2612 __d_lookup_done(dentry);
2615 unsigned add_flags = d_flags_for_inode(inode);
2616 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2617 raw_write_seqcount_begin(&dentry->d_seq);
2618 __d_set_inode_and_type(dentry, inode, add_flags);
2619 raw_write_seqcount_end(&dentry->d_seq);
2620 fsnotify_update_flags(dentry);
2624 end_dir_add(dir, n);
2625 spin_unlock(&dentry->d_lock);
2627 spin_unlock(&inode->i_lock);
2631 * d_add - add dentry to hash queues
2632 * @entry: dentry to add
2633 * @inode: The inode to attach to this dentry
2635 * This adds the entry to the hash queues and initializes @inode.
2636 * The entry was actually filled in earlier during d_alloc().
2639 void d_add(struct dentry *entry, struct inode *inode)
2642 security_d_instantiate(entry, inode);
2643 spin_lock(&inode->i_lock);
2645 __d_add(entry, inode);
2647 EXPORT_SYMBOL(d_add);
2650 * d_exact_alias - find and hash an exact unhashed alias
2651 * @entry: dentry to add
2652 * @inode: The inode to go with this dentry
2654 * If an unhashed dentry with the same name/parent and desired
2655 * inode already exists, hash and return it. Otherwise, return
2658 * Parent directory should be locked.
2660 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2662 struct dentry *alias;
2663 unsigned int hash = entry->d_name.hash;
2665 spin_lock(&inode->i_lock);
2666 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2668 * Don't need alias->d_lock here, because aliases with
2669 * d_parent == entry->d_parent are not subject to name or
2670 * parent changes, because the parent inode i_mutex is held.
2672 if (alias->d_name.hash != hash)
2674 if (alias->d_parent != entry->d_parent)
2676 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2678 spin_lock(&alias->d_lock);
2679 if (!d_unhashed(alias)) {
2680 spin_unlock(&alias->d_lock);
2683 __dget_dlock(alias);
2685 spin_unlock(&alias->d_lock);
2687 spin_unlock(&inode->i_lock);
2690 spin_unlock(&inode->i_lock);
2693 EXPORT_SYMBOL(d_exact_alias);
2696 * dentry_update_name_case - update case insensitive dentry with a new name
2697 * @dentry: dentry to be updated
2700 * Update a case insensitive dentry with new case of name.
2702 * dentry must have been returned by d_lookup with name @name. Old and new
2703 * name lengths must match (ie. no d_compare which allows mismatched name
2706 * Parent inode i_mutex must be held over d_lookup and into this call (to
2707 * keep renames and concurrent inserts, and readdir(2) away).
2709 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2711 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2712 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2714 spin_lock(&dentry->d_lock);
2715 write_seqcount_begin(&dentry->d_seq);
2716 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2717 write_seqcount_end(&dentry->d_seq);
2718 spin_unlock(&dentry->d_lock);
2720 EXPORT_SYMBOL(dentry_update_name_case);
2722 static void swap_names(struct dentry *dentry, struct dentry *target)
2724 if (unlikely(dname_external(target))) {
2725 if (unlikely(dname_external(dentry))) {
2727 * Both external: swap the pointers
2729 swap(target->d_name.name, dentry->d_name.name);
2732 * dentry:internal, target:external. Steal target's
2733 * storage and make target internal.
2735 memcpy(target->d_iname, dentry->d_name.name,
2736 dentry->d_name.len + 1);
2737 dentry->d_name.name = target->d_name.name;
2738 target->d_name.name = target->d_iname;
2741 if (unlikely(dname_external(dentry))) {
2743 * dentry:external, target:internal. Give dentry's
2744 * storage to target and make dentry internal
2746 memcpy(dentry->d_iname, target->d_name.name,
2747 target->d_name.len + 1);
2748 target->d_name.name = dentry->d_name.name;
2749 dentry->d_name.name = dentry->d_iname;
2752 * Both are internal.
2755 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2756 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2757 swap(((long *) &dentry->d_iname)[i],
2758 ((long *) &target->d_iname)[i]);
2762 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2765 static void copy_name(struct dentry *dentry, struct dentry *target)
2767 struct external_name *old_name = NULL;
2768 if (unlikely(dname_external(dentry)))
2769 old_name = external_name(dentry);
2770 if (unlikely(dname_external(target))) {
2771 atomic_inc(&external_name(target)->u.count);
2772 dentry->d_name = target->d_name;
2774 memcpy(dentry->d_iname, target->d_name.name,
2775 target->d_name.len + 1);
2776 dentry->d_name.name = dentry->d_iname;
2777 dentry->d_name.hash_len = target->d_name.hash_len;
2779 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2780 kfree_rcu(old_name, u.head);
2783 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2786 * XXXX: do we really need to take target->d_lock?
2788 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2789 spin_lock(&target->d_parent->d_lock);
2791 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2792 spin_lock(&dentry->d_parent->d_lock);
2793 spin_lock_nested(&target->d_parent->d_lock,
2794 DENTRY_D_LOCK_NESTED);
2796 spin_lock(&target->d_parent->d_lock);
2797 spin_lock_nested(&dentry->d_parent->d_lock,
2798 DENTRY_D_LOCK_NESTED);
2801 if (target < dentry) {
2802 spin_lock_nested(&target->d_lock, 2);
2803 spin_lock_nested(&dentry->d_lock, 3);
2805 spin_lock_nested(&dentry->d_lock, 2);
2806 spin_lock_nested(&target->d_lock, 3);
2810 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2812 if (target->d_parent != dentry->d_parent)
2813 spin_unlock(&dentry->d_parent->d_lock);
2814 if (target->d_parent != target)
2815 spin_unlock(&target->d_parent->d_lock);
2816 spin_unlock(&target->d_lock);
2817 spin_unlock(&dentry->d_lock);
2821 * When switching names, the actual string doesn't strictly have to
2822 * be preserved in the target - because we're dropping the target
2823 * anyway. As such, we can just do a simple memcpy() to copy over
2824 * the new name before we switch, unless we are going to rehash
2825 * it. Note that if we *do* unhash the target, we are not allowed
2826 * to rehash it without giving it a new name/hash key - whether
2827 * we swap or overwrite the names here, resulting name won't match
2828 * the reality in filesystem; it's only there for d_path() purposes.
2829 * Note that all of this is happening under rename_lock, so the
2830 * any hash lookup seeing it in the middle of manipulations will
2831 * be discarded anyway. So we do not care what happens to the hash
2835 * __d_move - move a dentry
2836 * @dentry: entry to move
2837 * @target: new dentry
2838 * @exchange: exchange the two dentries
2840 * Update the dcache to reflect the move of a file name. Negative
2841 * dcache entries should not be moved in this way. Caller must hold
2842 * rename_lock, the i_mutex of the source and target directories,
2843 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2845 static void __d_move(struct dentry *dentry, struct dentry *target,
2848 struct inode *dir = NULL;
2850 if (!dentry->d_inode)
2851 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2853 BUG_ON(d_ancestor(dentry, target));
2854 BUG_ON(d_ancestor(target, dentry));
2856 dentry_lock_for_move(dentry, target);
2857 if (unlikely(d_in_lookup(target))) {
2858 dir = target->d_parent->d_inode;
2859 n = start_dir_add(dir);
2860 __d_lookup_done(target);
2863 write_seqcount_begin(&dentry->d_seq);
2864 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2867 if (!d_unhashed(dentry))
2869 if (!d_unhashed(target))
2872 /* Switch the names.. */
2874 swap_names(dentry, target);
2876 copy_name(dentry, target);
2878 /* rehash in new place(s) */
2883 target->d_hash.pprev = NULL;
2885 /* ... and switch them in the tree */
2886 if (IS_ROOT(dentry)) {
2887 /* splicing a tree */
2888 dentry->d_flags |= DCACHE_RCUACCESS;
2889 dentry->d_parent = target->d_parent;
2890 target->d_parent = target;
2891 list_del_init(&target->d_child);
2892 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2894 /* swapping two dentries */
2895 swap(dentry->d_parent, target->d_parent);
2896 list_move(&target->d_child, &target->d_parent->d_subdirs);
2897 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2899 fsnotify_update_flags(target);
2900 fsnotify_update_flags(dentry);
2903 write_seqcount_end(&target->d_seq);
2904 write_seqcount_end(&dentry->d_seq);
2907 end_dir_add(dir, n);
2908 dentry_unlock_for_move(dentry, target);
2912 * d_move - move a dentry
2913 * @dentry: entry to move
2914 * @target: new dentry
2916 * Update the dcache to reflect the move of a file name. Negative
2917 * dcache entries should not be moved in this way. See the locking
2918 * requirements for __d_move.
2920 void d_move(struct dentry *dentry, struct dentry *target)
2922 write_seqlock(&rename_lock);
2923 __d_move(dentry, target, false);
2924 write_sequnlock(&rename_lock);
2926 EXPORT_SYMBOL(d_move);
2929 * d_exchange - exchange two dentries
2930 * @dentry1: first dentry
2931 * @dentry2: second dentry
2933 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2935 write_seqlock(&rename_lock);
2937 WARN_ON(!dentry1->d_inode);
2938 WARN_ON(!dentry2->d_inode);
2939 WARN_ON(IS_ROOT(dentry1));
2940 WARN_ON(IS_ROOT(dentry2));
2942 __d_move(dentry1, dentry2, true);
2944 write_sequnlock(&rename_lock);
2948 * d_ancestor - search for an ancestor
2949 * @p1: ancestor dentry
2952 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2953 * an ancestor of p2, else NULL.
2955 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2959 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2960 if (p->d_parent == p1)
2967 * This helper attempts to cope with remotely renamed directories
2969 * It assumes that the caller is already holding
2970 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2972 * Note: If ever the locking in lock_rename() changes, then please
2973 * remember to update this too...
2975 static int __d_unalias(struct inode *inode,
2976 struct dentry *dentry, struct dentry *alias)
2978 struct mutex *m1 = NULL;
2979 struct rw_semaphore *m2 = NULL;
2982 /* If alias and dentry share a parent, then no extra locks required */
2983 if (alias->d_parent == dentry->d_parent)
2986 /* See lock_rename() */
2987 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2989 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2990 if (!inode_trylock_shared(alias->d_parent->d_inode))
2992 m2 = &alias->d_parent->d_inode->i_rwsem;
2994 __d_move(alias, dentry, false);
3005 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3006 * @inode: the inode which may have a disconnected dentry
3007 * @dentry: a negative dentry which we want to point to the inode.
3009 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3010 * place of the given dentry and return it, else simply d_add the inode
3011 * to the dentry and return NULL.
3013 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3014 * we should error out: directories can't have multiple aliases.
3016 * This is needed in the lookup routine of any filesystem that is exportable
3017 * (via knfsd) so that we can build dcache paths to directories effectively.
3019 * If a dentry was found and moved, then it is returned. Otherwise NULL
3020 * is returned. This matches the expected return value of ->lookup.
3022 * Cluster filesystems may call this function with a negative, hashed dentry.
3023 * In that case, we know that the inode will be a regular file, and also this
3024 * will only occur during atomic_open. So we need to check for the dentry
3025 * being already hashed only in the final case.
3027 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3030 return ERR_CAST(inode);
3032 BUG_ON(!d_unhashed(dentry));
3037 security_d_instantiate(dentry, inode);
3038 spin_lock(&inode->i_lock);
3039 if (S_ISDIR(inode->i_mode)) {
3040 struct dentry *new = __d_find_any_alias(inode);
3041 if (unlikely(new)) {
3042 /* The reference to new ensures it remains an alias */
3043 spin_unlock(&inode->i_lock);
3044 write_seqlock(&rename_lock);
3045 if (unlikely(d_ancestor(new, dentry))) {
3046 write_sequnlock(&rename_lock);
3048 new = ERR_PTR(-ELOOP);
3049 pr_warn_ratelimited(
3050 "VFS: Lookup of '%s' in %s %s"
3051 " would have caused loop\n",
3052 dentry->d_name.name,
3053 inode->i_sb->s_type->name,
3055 } else if (!IS_ROOT(new)) {
3056 int err = __d_unalias(inode, dentry, new);
3057 write_sequnlock(&rename_lock);
3063 __d_move(new, dentry, false);
3064 write_sequnlock(&rename_lock);
3071 __d_add(dentry, inode);
3074 EXPORT_SYMBOL(d_splice_alias);
3076 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3080 return -ENAMETOOLONG;
3082 memcpy(*buffer, str, namelen);
3087 * prepend_name - prepend a pathname in front of current buffer pointer
3088 * @buffer: buffer pointer
3089 * @buflen: allocated length of the buffer
3090 * @name: name string and length qstr structure
3092 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
3093 * make sure that either the old or the new name pointer and length are
3094 * fetched. However, there may be mismatch between length and pointer.
3095 * The length cannot be trusted, we need to copy it byte-by-byte until
3096 * the length is reached or a null byte is found. It also prepends "/" at
3097 * the beginning of the name. The sequence number check at the caller will
3098 * retry it again when a d_move() does happen. So any garbage in the buffer
3099 * due to mismatched pointer and length will be discarded.
3101 * Load acquire is needed to make sure that we see that terminating NUL.
3103 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3105 const char *dname = smp_load_acquire(&name->name); /* ^^^ */
3106 u32 dlen = READ_ONCE(name->len);
3109 *buflen -= dlen + 1;
3111 return -ENAMETOOLONG;
3112 p = *buffer -= dlen + 1;
3124 * prepend_path - Prepend path string to a buffer
3125 * @path: the dentry/vfsmount to report
3126 * @root: root vfsmnt/dentry
3127 * @buffer: pointer to the end of the buffer
3128 * @buflen: pointer to buffer length
3130 * The function will first try to write out the pathname without taking any
3131 * lock other than the RCU read lock to make sure that dentries won't go away.
3132 * It only checks the sequence number of the global rename_lock as any change
3133 * in the dentry's d_seq will be preceded by changes in the rename_lock
3134 * sequence number. If the sequence number had been changed, it will restart
3135 * the whole pathname back-tracing sequence again by taking the rename_lock.
3136 * In this case, there is no need to take the RCU read lock as the recursive
3137 * parent pointer references will keep the dentry chain alive as long as no
3138 * rename operation is performed.
3140 static int prepend_path(const struct path *path,
3141 const struct path *root,
3142 char **buffer, int *buflen)
3144 struct dentry *dentry;
3145 struct vfsmount *vfsmnt;
3148 unsigned seq, m_seq = 0;
3154 read_seqbegin_or_lock(&mount_lock, &m_seq);
3161 dentry = path->dentry;
3163 mnt = real_mount(vfsmnt);
3164 read_seqbegin_or_lock(&rename_lock, &seq);
3165 while (dentry != root->dentry || vfsmnt != root->mnt) {
3166 struct dentry * parent;
3168 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3169 struct mount *parent = READ_ONCE(mnt->mnt_parent);
3171 if (dentry != vfsmnt->mnt_root) {
3178 if (mnt != parent) {
3179 dentry = READ_ONCE(mnt->mnt_mountpoint);
3185 error = is_mounted(vfsmnt) ? 1 : 2;
3188 parent = dentry->d_parent;
3190 error = prepend_name(&bptr, &blen, &dentry->d_name);
3198 if (need_seqretry(&rename_lock, seq)) {
3202 done_seqretry(&rename_lock, seq);
3206 if (need_seqretry(&mount_lock, m_seq)) {
3210 done_seqretry(&mount_lock, m_seq);
3212 if (error >= 0 && bptr == *buffer) {
3214 error = -ENAMETOOLONG;
3224 * __d_path - return the path of a dentry
3225 * @path: the dentry/vfsmount to report
3226 * @root: root vfsmnt/dentry
3227 * @buf: buffer to return value in
3228 * @buflen: buffer length
3230 * Convert a dentry into an ASCII path name.
3232 * Returns a pointer into the buffer or an error code if the
3233 * path was too long.
3235 * "buflen" should be positive.
3237 * If the path is not reachable from the supplied root, return %NULL.
3239 char *__d_path(const struct path *path,
3240 const struct path *root,
3241 char *buf, int buflen)
3243 char *res = buf + buflen;
3246 prepend(&res, &buflen, "\0", 1);
3247 error = prepend_path(path, root, &res, &buflen);
3250 return ERR_PTR(error);
3256 char *d_absolute_path(const struct path *path,
3257 char *buf, int buflen)
3259 struct path root = {};
3260 char *res = buf + buflen;
3263 prepend(&res, &buflen, "\0", 1);
3264 error = prepend_path(path, &root, &res, &buflen);
3269 return ERR_PTR(error);
3274 * same as __d_path but appends "(deleted)" for unlinked files.
3276 static int path_with_deleted(const struct path *path,
3277 const struct path *root,
3278 char **buf, int *buflen)
3280 prepend(buf, buflen, "\0", 1);
3281 if (d_unlinked(path->dentry)) {
3282 int error = prepend(buf, buflen, " (deleted)", 10);
3287 return prepend_path(path, root, buf, buflen);
3290 static int prepend_unreachable(char **buffer, int *buflen)
3292 return prepend(buffer, buflen, "(unreachable)", 13);
3295 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3300 seq = read_seqcount_begin(&fs->seq);
3302 } while (read_seqcount_retry(&fs->seq, seq));
3306 * d_path - return the path of a dentry
3307 * @path: path to report
3308 * @buf: buffer to return value in
3309 * @buflen: buffer length
3311 * Convert a dentry into an ASCII path name. If the entry has been deleted
3312 * the string " (deleted)" is appended. Note that this is ambiguous.
3314 * Returns a pointer into the buffer or an error code if the path was
3315 * too long. Note: Callers should use the returned pointer, not the passed
3316 * in buffer, to use the name! The implementation often starts at an offset
3317 * into the buffer, and may leave 0 bytes at the start.
3319 * "buflen" should be positive.
3321 char *d_path(const struct path *path, char *buf, int buflen)
3323 char *res = buf + buflen;
3328 * We have various synthetic filesystems that never get mounted. On
3329 * these filesystems dentries are never used for lookup purposes, and
3330 * thus don't need to be hashed. They also don't need a name until a
3331 * user wants to identify the object in /proc/pid/fd/. The little hack
3332 * below allows us to generate a name for these objects on demand:
3334 * Some pseudo inodes are mountable. When they are mounted
3335 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3336 * and instead have d_path return the mounted path.
3338 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3339 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3340 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3343 get_fs_root_rcu(current->fs, &root);
3344 error = path_with_deleted(path, &root, &res, &buflen);
3348 res = ERR_PTR(error);
3351 EXPORT_SYMBOL(d_path);
3354 * Helper function for dentry_operations.d_dname() members
3356 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3357 const char *fmt, ...)
3363 va_start(args, fmt);
3364 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3367 if (sz > sizeof(temp) || sz > buflen)
3368 return ERR_PTR(-ENAMETOOLONG);
3370 buffer += buflen - sz;
3371 return memcpy(buffer, temp, sz);
3374 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3376 char *end = buffer + buflen;
3377 /* these dentries are never renamed, so d_lock is not needed */
3378 if (prepend(&end, &buflen, " (deleted)", 11) ||
3379 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3380 prepend(&end, &buflen, "/", 1))
3381 end = ERR_PTR(-ENAMETOOLONG);
3384 EXPORT_SYMBOL(simple_dname);
3387 * Write full pathname from the root of the filesystem into the buffer.
3389 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3391 struct dentry *dentry;
3404 prepend(&end, &len, "\0", 1);
3408 read_seqbegin_or_lock(&rename_lock, &seq);
3409 while (!IS_ROOT(dentry)) {
3410 struct dentry *parent = dentry->d_parent;
3413 error = prepend_name(&end, &len, &dentry->d_name);
3422 if (need_seqretry(&rename_lock, seq)) {
3426 done_seqretry(&rename_lock, seq);
3431 return ERR_PTR(-ENAMETOOLONG);
3434 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3436 return __dentry_path(dentry, buf, buflen);
3438 EXPORT_SYMBOL(dentry_path_raw);
3440 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3445 if (d_unlinked(dentry)) {
3447 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3451 retval = __dentry_path(dentry, buf, buflen);
3452 if (!IS_ERR(retval) && p)
3453 *p = '/'; /* restore '/' overriden with '\0' */
3456 return ERR_PTR(-ENAMETOOLONG);
3459 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3465 seq = read_seqcount_begin(&fs->seq);
3468 } while (read_seqcount_retry(&fs->seq, seq));
3472 * NOTE! The user-level library version returns a
3473 * character pointer. The kernel system call just
3474 * returns the length of the buffer filled (which
3475 * includes the ending '\0' character), or a negative
3476 * error value. So libc would do something like
3478 * char *getcwd(char * buf, size_t size)
3482 * retval = sys_getcwd(buf, size);
3489 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3492 struct path pwd, root;
3493 char *page = __getname();
3499 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3502 if (!d_unlinked(pwd.dentry)) {
3504 char *cwd = page + PATH_MAX;
3505 int buflen = PATH_MAX;
3507 prepend(&cwd, &buflen, "\0", 1);
3508 error = prepend_path(&pwd, &root, &cwd, &buflen);
3514 /* Unreachable from current root */
3516 error = prepend_unreachable(&cwd, &buflen);
3522 len = PATH_MAX + page - cwd;
3525 if (copy_to_user(buf, cwd, len))
3538 * Test whether new_dentry is a subdirectory of old_dentry.
3540 * Trivially implemented using the dcache structure
3544 * is_subdir - is new dentry a subdirectory of old_dentry
3545 * @new_dentry: new dentry
3546 * @old_dentry: old dentry
3548 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3549 * Returns false otherwise.
3550 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3553 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3558 if (new_dentry == old_dentry)
3562 /* for restarting inner loop in case of seq retry */
3563 seq = read_seqbegin(&rename_lock);
3565 * Need rcu_readlock to protect against the d_parent trashing
3569 if (d_ancestor(old_dentry, new_dentry))
3574 } while (read_seqretry(&rename_lock, seq));
3578 EXPORT_SYMBOL(is_subdir);
3580 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3582 struct dentry *root = data;
3583 if (dentry != root) {
3584 if (d_unhashed(dentry) || !dentry->d_inode)
3587 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3588 dentry->d_flags |= DCACHE_GENOCIDE;
3589 dentry->d_lockref.count--;
3592 return D_WALK_CONTINUE;
3595 void d_genocide(struct dentry *parent)
3597 d_walk(parent, parent, d_genocide_kill, NULL);
3600 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3602 inode_dec_link_count(inode);
3603 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3604 !hlist_unhashed(&dentry->d_u.d_alias) ||
3605 !d_unlinked(dentry));
3606 spin_lock(&dentry->d_parent->d_lock);
3607 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3608 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3609 (unsigned long long)inode->i_ino);
3610 spin_unlock(&dentry->d_lock);
3611 spin_unlock(&dentry->d_parent->d_lock);
3612 d_instantiate(dentry, inode);
3614 EXPORT_SYMBOL(d_tmpfile);
3616 static __initdata unsigned long dhash_entries;
3617 static int __init set_dhash_entries(char *str)
3621 dhash_entries = simple_strtoul(str, &str, 0);
3624 __setup("dhash_entries=", set_dhash_entries);
3626 static void __init dcache_init_early(void)
3628 /* If hashes are distributed across NUMA nodes, defer
3629 * hash allocation until vmalloc space is available.
3635 alloc_large_system_hash("Dentry cache",
3636 sizeof(struct hlist_bl_head),
3639 HASH_EARLY | HASH_ZERO,