4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/rculist_bl.h>
37 #include <linux/prefetch.h>
38 #include <linux/ratelimit.h>
39 #include <linux/list_lru.h>
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_u.d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_roots bl list spinlock protects:
50 * - the s_roots list (see __d_drop)
51 * dentry->d_sb->s_dentry_lru_lock protects:
52 * - the dcache lru lists and counters
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_u.d_alias, d_inode
64 * dentry->d_inode->i_lock
66 * dentry->d_sb->s_dentry_lru_lock
67 * dcache_hash_bucket lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
73 * dentry->d_parent->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 EXPORT_SYMBOL(rename_lock);
88 static struct kmem_cache *dentry_cache __read_mostly;
90 const struct qstr empty_name = QSTR_INIT("", 0);
91 EXPORT_SYMBOL(empty_name);
92 const struct qstr slash_name = QSTR_INIT("/", 1);
93 EXPORT_SYMBOL(slash_name);
96 * This is the single most critical data structure when it comes
97 * to the dcache: the hashtable for lookups. Somebody should try
98 * to make this good - I've just made it work.
100 * This hash-function tries to avoid losing too many bits of hash
101 * information, yet avoid using a prime hash-size or similar.
104 static unsigned int d_hash_shift __read_mostly;
106 static struct hlist_bl_head *dentry_hashtable __read_mostly;
108 static inline struct hlist_bl_head *d_hash(unsigned int hash)
110 return dentry_hashtable + (hash >> d_hash_shift);
113 #define IN_LOOKUP_SHIFT 10
114 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
116 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
119 hash += (unsigned long) parent / L1_CACHE_BYTES;
120 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
124 /* Statistics gathering. */
125 struct dentry_stat_t dentry_stat = {
129 static DEFINE_PER_CPU(long, nr_dentry);
130 static DEFINE_PER_CPU(long, nr_dentry_unused);
132 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
135 * Here we resort to our own counters instead of using generic per-cpu counters
136 * for consistency with what the vfs inode code does. We are expected to harvest
137 * better code and performance by having our own specialized counters.
139 * Please note that the loop is done over all possible CPUs, not over all online
140 * CPUs. The reason for this is that we don't want to play games with CPUs going
141 * on and off. If one of them goes off, we will just keep their counters.
143 * glommer: See cffbc8a for details, and if you ever intend to change this,
144 * please update all vfs counters to match.
146 static long get_nr_dentry(void)
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry, i);
152 return sum < 0 ? 0 : sum;
155 static long get_nr_dentry_unused(void)
159 for_each_possible_cpu(i)
160 sum += per_cpu(nr_dentry_unused, i);
161 return sum < 0 ? 0 : sum;
164 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
165 size_t *lenp, loff_t *ppos)
167 dentry_stat.nr_dentry = get_nr_dentry();
168 dentry_stat.nr_unused = get_nr_dentry_unused();
169 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
174 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
175 * The strings are both count bytes long, and count is non-zero.
177 #ifdef CONFIG_DCACHE_WORD_ACCESS
179 #include <asm/word-at-a-time.h>
181 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
182 * aligned allocation for this particular component. We don't
183 * strictly need the load_unaligned_zeropad() safety, but it
184 * doesn't hurt either.
186 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
187 * need the careful unaligned handling.
189 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
191 unsigned long a,b,mask;
194 a = read_word_at_a_time(cs);
195 b = load_unaligned_zeropad(ct);
196 if (tcount < sizeof(unsigned long))
198 if (unlikely(a != b))
200 cs += sizeof(unsigned long);
201 ct += sizeof(unsigned long);
202 tcount -= sizeof(unsigned long);
206 mask = bytemask_from_count(tcount);
207 return unlikely(!!((a ^ b) & mask));
212 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
226 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
229 * Be careful about RCU walk racing with rename:
230 * use 'READ_ONCE' to fetch the name pointer.
232 * NOTE! Even if a rename will mean that the length
233 * was not loaded atomically, we don't care. The
234 * RCU walk will check the sequence count eventually,
235 * and catch it. And we won't overrun the buffer,
236 * because we're reading the name pointer atomically,
237 * and a dentry name is guaranteed to be properly
238 * terminated with a NUL byte.
240 * End result: even if 'len' is wrong, we'll exit
241 * early because the data cannot match (there can
242 * be no NUL in the ct/tcount data)
244 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
246 return dentry_string_cmp(cs, ct, tcount);
249 struct external_name {
252 struct rcu_head head;
254 unsigned char name[];
257 static inline struct external_name *external_name(struct dentry *dentry)
259 return container_of(dentry->d_name.name, struct external_name, name[0]);
262 static void __d_free(struct rcu_head *head)
264 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
266 kmem_cache_free(dentry_cache, dentry);
269 static void __d_free_external(struct rcu_head *head)
271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
272 kfree(external_name(dentry));
273 kmem_cache_free(dentry_cache, dentry);
276 static inline int dname_external(const struct dentry *dentry)
278 return dentry->d_name.name != dentry->d_iname;
281 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
283 spin_lock(&dentry->d_lock);
284 if (unlikely(dname_external(dentry))) {
285 struct external_name *p = external_name(dentry);
286 atomic_inc(&p->u.count);
287 spin_unlock(&dentry->d_lock);
288 name->name = p->name;
290 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
291 spin_unlock(&dentry->d_lock);
292 name->name = name->inline_name;
295 EXPORT_SYMBOL(take_dentry_name_snapshot);
297 void release_dentry_name_snapshot(struct name_snapshot *name)
299 if (unlikely(name->name != name->inline_name)) {
300 struct external_name *p;
301 p = container_of(name->name, struct external_name, name[0]);
302 if (unlikely(atomic_dec_and_test(&p->u.count)))
303 kfree_rcu(p, u.head);
306 EXPORT_SYMBOL(release_dentry_name_snapshot);
308 static inline void __d_set_inode_and_type(struct dentry *dentry,
314 dentry->d_inode = inode;
315 flags = READ_ONCE(dentry->d_flags);
316 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
318 WRITE_ONCE(dentry->d_flags, flags);
321 static inline void __d_clear_type_and_inode(struct dentry *dentry)
323 unsigned flags = READ_ONCE(dentry->d_flags);
325 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
326 WRITE_ONCE(dentry->d_flags, flags);
327 dentry->d_inode = NULL;
330 static void dentry_free(struct dentry *dentry)
332 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
333 if (unlikely(dname_external(dentry))) {
334 struct external_name *p = external_name(dentry);
335 if (likely(atomic_dec_and_test(&p->u.count))) {
336 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
340 /* if dentry was never visible to RCU, immediate free is OK */
341 if (!(dentry->d_flags & DCACHE_RCUACCESS))
342 __d_free(&dentry->d_u.d_rcu);
344 call_rcu(&dentry->d_u.d_rcu, __d_free);
348 * Release the dentry's inode, using the filesystem
349 * d_iput() operation if defined.
351 static void dentry_unlink_inode(struct dentry * dentry)
352 __releases(dentry->d_lock)
353 __releases(dentry->d_inode->i_lock)
355 struct inode *inode = dentry->d_inode;
356 bool hashed = !d_unhashed(dentry);
359 raw_write_seqcount_begin(&dentry->d_seq);
360 __d_clear_type_and_inode(dentry);
361 hlist_del_init(&dentry->d_u.d_alias);
363 raw_write_seqcount_end(&dentry->d_seq);
364 spin_unlock(&dentry->d_lock);
365 spin_unlock(&inode->i_lock);
367 fsnotify_inoderemove(inode);
368 if (dentry->d_op && dentry->d_op->d_iput)
369 dentry->d_op->d_iput(dentry, inode);
375 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
376 * is in use - which includes both the "real" per-superblock
377 * LRU list _and_ the DCACHE_SHRINK_LIST use.
379 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
380 * on the shrink list (ie not on the superblock LRU list).
382 * The per-cpu "nr_dentry_unused" counters are updated with
383 * the DCACHE_LRU_LIST bit.
385 * These helper functions make sure we always follow the
386 * rules. d_lock must be held by the caller.
388 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
389 static void d_lru_add(struct dentry *dentry)
391 D_FLAG_VERIFY(dentry, 0);
392 dentry->d_flags |= DCACHE_LRU_LIST;
393 this_cpu_inc(nr_dentry_unused);
394 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
397 static void d_lru_del(struct dentry *dentry)
399 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
400 dentry->d_flags &= ~DCACHE_LRU_LIST;
401 this_cpu_dec(nr_dentry_unused);
402 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 static void d_shrink_del(struct dentry *dentry)
407 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
408 list_del_init(&dentry->d_lru);
409 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410 this_cpu_dec(nr_dentry_unused);
413 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
415 D_FLAG_VERIFY(dentry, 0);
416 list_add(&dentry->d_lru, list);
417 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
418 this_cpu_inc(nr_dentry_unused);
422 * These can only be called under the global LRU lock, ie during the
423 * callback for freeing the LRU list. "isolate" removes it from the
424 * LRU lists entirely, while shrink_move moves it to the indicated
427 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
429 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
430 dentry->d_flags &= ~DCACHE_LRU_LIST;
431 this_cpu_dec(nr_dentry_unused);
432 list_lru_isolate(lru, &dentry->d_lru);
435 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
436 struct list_head *list)
438 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
439 dentry->d_flags |= DCACHE_SHRINK_LIST;
440 list_lru_isolate_move(lru, &dentry->d_lru, list);
444 * dentry_lru_(add|del)_list) must be called with d_lock held.
446 static void dentry_lru_add(struct dentry *dentry)
448 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
450 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
451 dentry->d_flags |= DCACHE_REFERENCED;
455 * d_drop - drop a dentry
456 * @dentry: dentry to drop
458 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
459 * be found through a VFS lookup any more. Note that this is different from
460 * deleting the dentry - d_delete will try to mark the dentry negative if
461 * possible, giving a successful _negative_ lookup, while d_drop will
462 * just make the cache lookup fail.
464 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
465 * reason (NFS timeouts or autofs deletes).
467 * __d_drop requires dentry->d_lock
468 * ___d_drop doesn't mark dentry as "unhashed"
469 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
471 static void ___d_drop(struct dentry *dentry)
473 if (!d_unhashed(dentry)) {
474 struct hlist_bl_head *b;
476 * Hashed dentries are normally on the dentry hashtable,
477 * with the exception of those newly allocated by
478 * d_obtain_root, which are always IS_ROOT:
480 if (unlikely(IS_ROOT(dentry)))
481 b = &dentry->d_sb->s_roots;
483 b = d_hash(dentry->d_name.hash);
486 __hlist_bl_del(&dentry->d_hash);
488 /* After this call, in-progress rcu-walk path lookup will fail. */
489 write_seqcount_invalidate(&dentry->d_seq);
493 void __d_drop(struct dentry *dentry)
496 dentry->d_hash.pprev = NULL;
498 EXPORT_SYMBOL(__d_drop);
500 void d_drop(struct dentry *dentry)
502 spin_lock(&dentry->d_lock);
504 spin_unlock(&dentry->d_lock);
506 EXPORT_SYMBOL(d_drop);
508 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
512 * Inform d_walk() and shrink_dentry_list() that we are no longer
513 * attached to the dentry tree
515 dentry->d_flags |= DCACHE_DENTRY_KILLED;
516 if (unlikely(list_empty(&dentry->d_child)))
518 __list_del_entry(&dentry->d_child);
520 * Cursors can move around the list of children. While we'd been
521 * a normal list member, it didn't matter - ->d_child.next would've
522 * been updated. However, from now on it won't be and for the
523 * things like d_walk() it might end up with a nasty surprise.
524 * Normally d_walk() doesn't care about cursors moving around -
525 * ->d_lock on parent prevents that and since a cursor has no children
526 * of its own, we get through it without ever unlocking the parent.
527 * There is one exception, though - if we ascend from a child that
528 * gets killed as soon as we unlock it, the next sibling is found
529 * using the value left in its ->d_child.next. And if _that_
530 * pointed to a cursor, and cursor got moved (e.g. by lseek())
531 * before d_walk() regains parent->d_lock, we'll end up skipping
532 * everything the cursor had been moved past.
534 * Solution: make sure that the pointer left behind in ->d_child.next
535 * points to something that won't be moving around. I.e. skip the
538 while (dentry->d_child.next != &parent->d_subdirs) {
539 next = list_entry(dentry->d_child.next, struct dentry, d_child);
540 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
542 dentry->d_child.next = next->d_child.next;
546 static void __dentry_kill(struct dentry *dentry)
548 struct dentry *parent = NULL;
549 bool can_free = true;
550 if (!IS_ROOT(dentry))
551 parent = dentry->d_parent;
554 * The dentry is now unrecoverably dead to the world.
556 lockref_mark_dead(&dentry->d_lockref);
559 * inform the fs via d_prune that this dentry is about to be
560 * unhashed and destroyed.
562 if (dentry->d_flags & DCACHE_OP_PRUNE)
563 dentry->d_op->d_prune(dentry);
565 if (dentry->d_flags & DCACHE_LRU_LIST) {
566 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
569 /* if it was on the hash then remove it */
571 dentry_unlist(dentry, parent);
573 spin_unlock(&parent->d_lock);
575 dentry_unlink_inode(dentry);
577 spin_unlock(&dentry->d_lock);
578 this_cpu_dec(nr_dentry);
579 if (dentry->d_op && dentry->d_op->d_release)
580 dentry->d_op->d_release(dentry);
582 spin_lock(&dentry->d_lock);
583 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
584 dentry->d_flags |= DCACHE_MAY_FREE;
587 spin_unlock(&dentry->d_lock);
588 if (likely(can_free))
593 * Finish off a dentry we've decided to kill.
594 * dentry->d_lock must be held, returns with it unlocked.
595 * If ref is non-zero, then decrement the refcount too.
596 * Returns dentry requiring refcount drop, or NULL if we're done.
598 static struct dentry *dentry_kill(struct dentry *dentry)
599 __releases(dentry->d_lock)
601 struct inode *inode = dentry->d_inode;
602 struct dentry *parent = NULL;
604 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
607 if (!IS_ROOT(dentry)) {
608 parent = dentry->d_parent;
609 if (unlikely(!spin_trylock(&parent->d_lock))) {
611 spin_unlock(&inode->i_lock);
616 __dentry_kill(dentry);
620 spin_unlock(&dentry->d_lock);
621 return dentry; /* try again with same dentry */
624 static inline struct dentry *lock_parent(struct dentry *dentry)
626 struct dentry *parent = dentry->d_parent;
629 if (unlikely(dentry->d_lockref.count < 0))
631 if (likely(spin_trylock(&parent->d_lock)))
634 spin_unlock(&dentry->d_lock);
636 parent = READ_ONCE(dentry->d_parent);
637 spin_lock(&parent->d_lock);
639 * We can't blindly lock dentry until we are sure
640 * that we won't violate the locking order.
641 * Any changes of dentry->d_parent must have
642 * been done with parent->d_lock held, so
643 * spin_lock() above is enough of a barrier
644 * for checking if it's still our child.
646 if (unlikely(parent != dentry->d_parent)) {
647 spin_unlock(&parent->d_lock);
651 if (parent != dentry)
652 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
659 * Try to do a lockless dput(), and return whether that was successful.
661 * If unsuccessful, we return false, having already taken the dentry lock.
663 * The caller needs to hold the RCU read lock, so that the dentry is
664 * guaranteed to stay around even if the refcount goes down to zero!
666 static inline bool fast_dput(struct dentry *dentry)
669 unsigned int d_flags;
672 * If we have a d_op->d_delete() operation, we sould not
673 * let the dentry count go to zero, so use "put_or_lock".
675 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
676 return lockref_put_or_lock(&dentry->d_lockref);
679 * .. otherwise, we can try to just decrement the
680 * lockref optimistically.
682 ret = lockref_put_return(&dentry->d_lockref);
685 * If the lockref_put_return() failed due to the lock being held
686 * by somebody else, the fast path has failed. We will need to
687 * get the lock, and then check the count again.
689 if (unlikely(ret < 0)) {
690 spin_lock(&dentry->d_lock);
691 if (dentry->d_lockref.count > 1) {
692 dentry->d_lockref.count--;
693 spin_unlock(&dentry->d_lock);
700 * If we weren't the last ref, we're done.
706 * Careful, careful. The reference count went down
707 * to zero, but we don't hold the dentry lock, so
708 * somebody else could get it again, and do another
709 * dput(), and we need to not race with that.
711 * However, there is a very special and common case
712 * where we don't care, because there is nothing to
713 * do: the dentry is still hashed, it does not have
714 * a 'delete' op, and it's referenced and already on
717 * NOTE! Since we aren't locked, these values are
718 * not "stable". However, it is sufficient that at
719 * some point after we dropped the reference the
720 * dentry was hashed and the flags had the proper
721 * value. Other dentry users may have re-gotten
722 * a reference to the dentry and change that, but
723 * our work is done - we can leave the dentry
724 * around with a zero refcount.
727 d_flags = READ_ONCE(dentry->d_flags);
728 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
730 /* Nothing to do? Dropping the reference was all we needed? */
731 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
735 * Not the fast normal case? Get the lock. We've already decremented
736 * the refcount, but we'll need to re-check the situation after
739 spin_lock(&dentry->d_lock);
742 * Did somebody else grab a reference to it in the meantime, and
743 * we're no longer the last user after all? Alternatively, somebody
744 * else could have killed it and marked it dead. Either way, we
745 * don't need to do anything else.
747 if (dentry->d_lockref.count) {
748 spin_unlock(&dentry->d_lock);
753 * Re-get the reference we optimistically dropped. We hold the
754 * lock, and we just tested that it was zero, so we can just
757 dentry->d_lockref.count = 1;
765 * This is complicated by the fact that we do not want to put
766 * dentries that are no longer on any hash chain on the unused
767 * list: we'd much rather just get rid of them immediately.
769 * However, that implies that we have to traverse the dentry
770 * tree upwards to the parents which might _also_ now be
771 * scheduled for deletion (it may have been only waiting for
772 * its last child to go away).
774 * This tail recursion is done by hand as we don't want to depend
775 * on the compiler to always get this right (gcc generally doesn't).
776 * Real recursion would eat up our stack space.
780 * dput - release a dentry
781 * @dentry: dentry to release
783 * Release a dentry. This will drop the usage count and if appropriate
784 * call the dentry unlink method as well as removing it from the queues and
785 * releasing its resources. If the parent dentries were scheduled for release
786 * they too may now get deleted.
788 void dput(struct dentry *dentry)
790 if (unlikely(!dentry))
797 if (likely(fast_dput(dentry))) {
802 /* Slow case: now with the dentry lock held */
805 WARN_ON(d_in_lookup(dentry));
807 /* Unreachable? Get rid of it */
808 if (unlikely(d_unhashed(dentry)))
811 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
814 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
815 if (dentry->d_op->d_delete(dentry))
819 dentry_lru_add(dentry);
821 dentry->d_lockref.count--;
822 spin_unlock(&dentry->d_lock);
826 dentry = dentry_kill(dentry);
835 /* This must be called with d_lock held */
836 static inline void __dget_dlock(struct dentry *dentry)
838 dentry->d_lockref.count++;
841 static inline void __dget(struct dentry *dentry)
843 lockref_get(&dentry->d_lockref);
846 struct dentry *dget_parent(struct dentry *dentry)
852 * Do optimistic parent lookup without any
856 ret = READ_ONCE(dentry->d_parent);
857 gotref = lockref_get_not_zero(&ret->d_lockref);
859 if (likely(gotref)) {
860 if (likely(ret == READ_ONCE(dentry->d_parent)))
867 * Don't need rcu_dereference because we re-check it was correct under
871 ret = dentry->d_parent;
872 spin_lock(&ret->d_lock);
873 if (unlikely(ret != dentry->d_parent)) {
874 spin_unlock(&ret->d_lock);
879 BUG_ON(!ret->d_lockref.count);
880 ret->d_lockref.count++;
881 spin_unlock(&ret->d_lock);
884 EXPORT_SYMBOL(dget_parent);
887 * d_find_alias - grab a hashed alias of inode
888 * @inode: inode in question
890 * If inode has a hashed alias, or is a directory and has any alias,
891 * acquire the reference to alias and return it. Otherwise return NULL.
892 * Notice that if inode is a directory there can be only one alias and
893 * it can be unhashed only if it has no children, or if it is the root
894 * of a filesystem, or if the directory was renamed and d_revalidate
895 * was the first vfs operation to notice.
897 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
898 * any other hashed alias over that one.
900 static struct dentry *__d_find_alias(struct inode *inode)
902 struct dentry *alias, *discon_alias;
906 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
907 spin_lock(&alias->d_lock);
908 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
909 if (IS_ROOT(alias) &&
910 (alias->d_flags & DCACHE_DISCONNECTED)) {
911 discon_alias = alias;
914 spin_unlock(&alias->d_lock);
918 spin_unlock(&alias->d_lock);
921 alias = discon_alias;
922 spin_lock(&alias->d_lock);
923 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
925 spin_unlock(&alias->d_lock);
928 spin_unlock(&alias->d_lock);
934 struct dentry *d_find_alias(struct inode *inode)
936 struct dentry *de = NULL;
938 if (!hlist_empty(&inode->i_dentry)) {
939 spin_lock(&inode->i_lock);
940 de = __d_find_alias(inode);
941 spin_unlock(&inode->i_lock);
945 EXPORT_SYMBOL(d_find_alias);
948 * Try to kill dentries associated with this inode.
949 * WARNING: you must own a reference to inode.
951 void d_prune_aliases(struct inode *inode)
953 struct dentry *dentry;
955 spin_lock(&inode->i_lock);
956 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
957 spin_lock(&dentry->d_lock);
958 if (!dentry->d_lockref.count) {
959 struct dentry *parent = lock_parent(dentry);
960 if (likely(!dentry->d_lockref.count)) {
961 __dentry_kill(dentry);
966 spin_unlock(&parent->d_lock);
968 spin_unlock(&dentry->d_lock);
970 spin_unlock(&inode->i_lock);
972 EXPORT_SYMBOL(d_prune_aliases);
974 static void shrink_dentry_list(struct list_head *list)
976 struct dentry *dentry, *parent;
978 while (!list_empty(list)) {
980 dentry = list_entry(list->prev, struct dentry, d_lru);
981 spin_lock(&dentry->d_lock);
982 parent = lock_parent(dentry);
985 * The dispose list is isolated and dentries are not accounted
986 * to the LRU here, so we can simply remove it from the list
987 * here regardless of whether it is referenced or not.
989 d_shrink_del(dentry);
992 * We found an inuse dentry which was not removed from
993 * the LRU because of laziness during lookup. Do not free it.
995 if (dentry->d_lockref.count > 0) {
996 spin_unlock(&dentry->d_lock);
998 spin_unlock(&parent->d_lock);
1003 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1004 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1005 spin_unlock(&dentry->d_lock);
1007 spin_unlock(&parent->d_lock);
1009 dentry_free(dentry);
1013 inode = dentry->d_inode;
1014 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1015 d_shrink_add(dentry, list);
1016 spin_unlock(&dentry->d_lock);
1018 spin_unlock(&parent->d_lock);
1022 __dentry_kill(dentry);
1025 * We need to prune ancestors too. This is necessary to prevent
1026 * quadratic behavior of shrink_dcache_parent(), but is also
1027 * expected to be beneficial in reducing dentry cache
1031 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1032 parent = lock_parent(dentry);
1033 if (dentry->d_lockref.count != 1) {
1034 dentry->d_lockref.count--;
1035 spin_unlock(&dentry->d_lock);
1037 spin_unlock(&parent->d_lock);
1040 inode = dentry->d_inode; /* can't be NULL */
1041 if (unlikely(!spin_trylock(&inode->i_lock))) {
1042 spin_unlock(&dentry->d_lock);
1044 spin_unlock(&parent->d_lock);
1048 __dentry_kill(dentry);
1054 static enum lru_status dentry_lru_isolate(struct list_head *item,
1055 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1057 struct list_head *freeable = arg;
1058 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1062 * we are inverting the lru lock/dentry->d_lock here,
1063 * so use a trylock. If we fail to get the lock, just skip
1066 if (!spin_trylock(&dentry->d_lock))
1070 * Referenced dentries are still in use. If they have active
1071 * counts, just remove them from the LRU. Otherwise give them
1072 * another pass through the LRU.
1074 if (dentry->d_lockref.count) {
1075 d_lru_isolate(lru, dentry);
1076 spin_unlock(&dentry->d_lock);
1080 if (dentry->d_flags & DCACHE_REFERENCED) {
1081 dentry->d_flags &= ~DCACHE_REFERENCED;
1082 spin_unlock(&dentry->d_lock);
1085 * The list move itself will be made by the common LRU code. At
1086 * this point, we've dropped the dentry->d_lock but keep the
1087 * lru lock. This is safe to do, since every list movement is
1088 * protected by the lru lock even if both locks are held.
1090 * This is guaranteed by the fact that all LRU management
1091 * functions are intermediated by the LRU API calls like
1092 * list_lru_add and list_lru_del. List movement in this file
1093 * only ever occur through this functions or through callbacks
1094 * like this one, that are called from the LRU API.
1096 * The only exceptions to this are functions like
1097 * shrink_dentry_list, and code that first checks for the
1098 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1099 * operating only with stack provided lists after they are
1100 * properly isolated from the main list. It is thus, always a
1106 d_lru_shrink_move(lru, dentry, freeable);
1107 spin_unlock(&dentry->d_lock);
1113 * prune_dcache_sb - shrink the dcache
1115 * @sc: shrink control, passed to list_lru_shrink_walk()
1117 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1118 * is done when we need more memory and called from the superblock shrinker
1121 * This function may fail to free any resources if all the dentries are in
1124 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1129 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1130 dentry_lru_isolate, &dispose);
1131 shrink_dentry_list(&dispose);
1135 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1136 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1138 struct list_head *freeable = arg;
1139 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1142 * we are inverting the lru lock/dentry->d_lock here,
1143 * so use a trylock. If we fail to get the lock, just skip
1146 if (!spin_trylock(&dentry->d_lock))
1149 d_lru_shrink_move(lru, dentry, freeable);
1150 spin_unlock(&dentry->d_lock);
1157 * shrink_dcache_sb - shrink dcache for a superblock
1160 * Shrink the dcache for the specified super block. This is used to free
1161 * the dcache before unmounting a file system.
1163 void shrink_dcache_sb(struct super_block *sb)
1170 freed = list_lru_walk(&sb->s_dentry_lru,
1171 dentry_lru_isolate_shrink, &dispose, 1024);
1173 this_cpu_sub(nr_dentry_unused, freed);
1174 shrink_dentry_list(&dispose);
1176 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1178 EXPORT_SYMBOL(shrink_dcache_sb);
1181 * enum d_walk_ret - action to talke during tree walk
1182 * @D_WALK_CONTINUE: contrinue walk
1183 * @D_WALK_QUIT: quit walk
1184 * @D_WALK_NORETRY: quit when retry is needed
1185 * @D_WALK_SKIP: skip this dentry and its children
1195 * d_walk - walk the dentry tree
1196 * @parent: start of walk
1197 * @data: data passed to @enter() and @finish()
1198 * @enter: callback when first entering the dentry
1199 * @finish: callback when successfully finished the walk
1201 * The @enter() and @finish() callbacks are called with d_lock held.
1203 static void d_walk(struct dentry *parent, void *data,
1204 enum d_walk_ret (*enter)(void *, struct dentry *),
1205 void (*finish)(void *))
1207 struct dentry *this_parent;
1208 struct list_head *next;
1210 enum d_walk_ret ret;
1214 read_seqbegin_or_lock(&rename_lock, &seq);
1215 this_parent = parent;
1216 spin_lock(&this_parent->d_lock);
1218 ret = enter(data, this_parent);
1220 case D_WALK_CONTINUE:
1225 case D_WALK_NORETRY:
1230 next = this_parent->d_subdirs.next;
1232 while (next != &this_parent->d_subdirs) {
1233 struct list_head *tmp = next;
1234 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1237 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1240 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1242 ret = enter(data, dentry);
1244 case D_WALK_CONTINUE:
1247 spin_unlock(&dentry->d_lock);
1249 case D_WALK_NORETRY:
1253 spin_unlock(&dentry->d_lock);
1257 if (!list_empty(&dentry->d_subdirs)) {
1258 spin_unlock(&this_parent->d_lock);
1259 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1260 this_parent = dentry;
1261 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1264 spin_unlock(&dentry->d_lock);
1267 * All done at this level ... ascend and resume the search.
1271 if (this_parent != parent) {
1272 struct dentry *child = this_parent;
1273 this_parent = child->d_parent;
1275 spin_unlock(&child->d_lock);
1276 spin_lock(&this_parent->d_lock);
1278 /* might go back up the wrong parent if we have had a rename. */
1279 if (need_seqretry(&rename_lock, seq))
1281 /* go into the first sibling still alive */
1283 next = child->d_child.next;
1284 if (next == &this_parent->d_subdirs)
1286 child = list_entry(next, struct dentry, d_child);
1287 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1291 if (need_seqretry(&rename_lock, seq))
1298 spin_unlock(&this_parent->d_lock);
1299 done_seqretry(&rename_lock, seq);
1303 spin_unlock(&this_parent->d_lock);
1312 struct check_mount {
1313 struct vfsmount *mnt;
1314 unsigned int mounted;
1317 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1319 struct check_mount *info = data;
1320 struct path path = { .mnt = info->mnt, .dentry = dentry };
1322 if (likely(!d_mountpoint(dentry)))
1323 return D_WALK_CONTINUE;
1324 if (__path_is_mountpoint(&path)) {
1328 return D_WALK_CONTINUE;
1332 * path_has_submounts - check for mounts over a dentry in the
1333 * current namespace.
1334 * @parent: path to check.
1336 * Return true if the parent or its subdirectories contain
1337 * a mount point in the current namespace.
1339 int path_has_submounts(const struct path *parent)
1341 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1343 read_seqlock_excl(&mount_lock);
1344 d_walk(parent->dentry, &data, path_check_mount, NULL);
1345 read_sequnlock_excl(&mount_lock);
1347 return data.mounted;
1349 EXPORT_SYMBOL(path_has_submounts);
1352 * Called by mount code to set a mountpoint and check if the mountpoint is
1353 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1354 * subtree can become unreachable).
1356 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1357 * this reason take rename_lock and d_lock on dentry and ancestors.
1359 int d_set_mounted(struct dentry *dentry)
1363 write_seqlock(&rename_lock);
1364 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1365 /* Need exclusion wrt. d_invalidate() */
1366 spin_lock(&p->d_lock);
1367 if (unlikely(d_unhashed(p))) {
1368 spin_unlock(&p->d_lock);
1371 spin_unlock(&p->d_lock);
1373 spin_lock(&dentry->d_lock);
1374 if (!d_unlinked(dentry)) {
1376 if (!d_mountpoint(dentry)) {
1377 dentry->d_flags |= DCACHE_MOUNTED;
1381 spin_unlock(&dentry->d_lock);
1383 write_sequnlock(&rename_lock);
1388 * Search the dentry child list of the specified parent,
1389 * and move any unused dentries to the end of the unused
1390 * list for prune_dcache(). We descend to the next level
1391 * whenever the d_subdirs list is non-empty and continue
1394 * It returns zero iff there are no unused children,
1395 * otherwise it returns the number of children moved to
1396 * the end of the unused list. This may not be the total
1397 * number of unused children, because select_parent can
1398 * drop the lock and return early due to latency
1402 struct select_data {
1403 struct dentry *start;
1404 struct list_head dispose;
1408 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1410 struct select_data *data = _data;
1411 enum d_walk_ret ret = D_WALK_CONTINUE;
1413 if (data->start == dentry)
1416 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1419 if (dentry->d_flags & DCACHE_LRU_LIST)
1421 if (!dentry->d_lockref.count) {
1422 d_shrink_add(dentry, &data->dispose);
1427 * We can return to the caller if we have found some (this
1428 * ensures forward progress). We'll be coming back to find
1431 if (!list_empty(&data->dispose))
1432 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1438 * shrink_dcache_parent - prune dcache
1439 * @parent: parent of entries to prune
1441 * Prune the dcache to remove unused children of the parent dentry.
1443 void shrink_dcache_parent(struct dentry *parent)
1446 struct select_data data;
1448 INIT_LIST_HEAD(&data.dispose);
1449 data.start = parent;
1452 d_walk(parent, &data, select_collect, NULL);
1456 shrink_dentry_list(&data.dispose);
1460 EXPORT_SYMBOL(shrink_dcache_parent);
1462 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1464 /* it has busy descendents; complain about those instead */
1465 if (!list_empty(&dentry->d_subdirs))
1466 return D_WALK_CONTINUE;
1468 /* root with refcount 1 is fine */
1469 if (dentry == _data && dentry->d_lockref.count == 1)
1470 return D_WALK_CONTINUE;
1472 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1473 " still in use (%d) [unmount of %s %s]\n",
1476 dentry->d_inode->i_ino : 0UL,
1478 dentry->d_lockref.count,
1479 dentry->d_sb->s_type->name,
1480 dentry->d_sb->s_id);
1482 return D_WALK_CONTINUE;
1485 static void do_one_tree(struct dentry *dentry)
1487 shrink_dcache_parent(dentry);
1488 d_walk(dentry, dentry, umount_check, NULL);
1494 * destroy the dentries attached to a superblock on unmounting
1496 void shrink_dcache_for_umount(struct super_block *sb)
1498 struct dentry *dentry;
1500 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1502 dentry = sb->s_root;
1504 do_one_tree(dentry);
1506 while (!hlist_bl_empty(&sb->s_roots)) {
1507 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1508 do_one_tree(dentry);
1512 struct detach_data {
1513 struct select_data select;
1514 struct dentry *mountpoint;
1516 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1518 struct detach_data *data = _data;
1520 if (d_mountpoint(dentry)) {
1521 __dget_dlock(dentry);
1522 data->mountpoint = dentry;
1526 return select_collect(&data->select, dentry);
1529 static void check_and_drop(void *_data)
1531 struct detach_data *data = _data;
1533 if (!data->mountpoint && list_empty(&data->select.dispose))
1534 __d_drop(data->select.start);
1538 * d_invalidate - detach submounts, prune dcache, and drop
1539 * @dentry: dentry to invalidate (aka detach, prune and drop)
1543 * The final d_drop is done as an atomic operation relative to
1544 * rename_lock ensuring there are no races with d_set_mounted. This
1545 * ensures there are no unhashed dentries on the path to a mountpoint.
1547 void d_invalidate(struct dentry *dentry)
1550 * If it's already been dropped, return OK.
1552 spin_lock(&dentry->d_lock);
1553 if (d_unhashed(dentry)) {
1554 spin_unlock(&dentry->d_lock);
1557 spin_unlock(&dentry->d_lock);
1559 /* Negative dentries can be dropped without further checks */
1560 if (!dentry->d_inode) {
1566 struct detach_data data;
1568 data.mountpoint = NULL;
1569 INIT_LIST_HEAD(&data.select.dispose);
1570 data.select.start = dentry;
1571 data.select.found = 0;
1573 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1575 if (!list_empty(&data.select.dispose))
1576 shrink_dentry_list(&data.select.dispose);
1577 else if (!data.mountpoint)
1580 if (data.mountpoint) {
1581 detach_mounts(data.mountpoint);
1582 dput(data.mountpoint);
1587 EXPORT_SYMBOL(d_invalidate);
1590 * __d_alloc - allocate a dcache entry
1591 * @sb: filesystem it will belong to
1592 * @name: qstr of the name
1594 * Allocates a dentry. It returns %NULL if there is insufficient memory
1595 * available. On a success the dentry is returned. The name passed in is
1596 * copied and the copy passed in may be reused after this call.
1599 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1601 struct dentry *dentry;
1605 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1610 * We guarantee that the inline name is always NUL-terminated.
1611 * This way the memcpy() done by the name switching in rename
1612 * will still always have a NUL at the end, even if we might
1613 * be overwriting an internal NUL character
1615 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1616 if (unlikely(!name)) {
1618 dname = dentry->d_iname;
1619 } else if (name->len > DNAME_INLINE_LEN-1) {
1620 size_t size = offsetof(struct external_name, name[1]);
1621 struct external_name *p = kmalloc(size + name->len,
1622 GFP_KERNEL_ACCOUNT);
1624 kmem_cache_free(dentry_cache, dentry);
1627 atomic_set(&p->u.count, 1);
1630 dname = dentry->d_iname;
1633 dentry->d_name.len = name->len;
1634 dentry->d_name.hash = name->hash;
1635 memcpy(dname, name->name, name->len);
1636 dname[name->len] = 0;
1638 /* Make sure we always see the terminating NUL character */
1639 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1641 dentry->d_lockref.count = 1;
1642 dentry->d_flags = 0;
1643 spin_lock_init(&dentry->d_lock);
1644 seqcount_init(&dentry->d_seq);
1645 dentry->d_inode = NULL;
1646 dentry->d_parent = dentry;
1648 dentry->d_op = NULL;
1649 dentry->d_fsdata = NULL;
1650 INIT_HLIST_BL_NODE(&dentry->d_hash);
1651 INIT_LIST_HEAD(&dentry->d_lru);
1652 INIT_LIST_HEAD(&dentry->d_subdirs);
1653 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1654 INIT_LIST_HEAD(&dentry->d_child);
1655 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1657 if (dentry->d_op && dentry->d_op->d_init) {
1658 err = dentry->d_op->d_init(dentry);
1660 if (dname_external(dentry))
1661 kfree(external_name(dentry));
1662 kmem_cache_free(dentry_cache, dentry);
1667 this_cpu_inc(nr_dentry);
1673 * d_alloc - allocate a dcache entry
1674 * @parent: parent of entry to allocate
1675 * @name: qstr of the name
1677 * Allocates a dentry. It returns %NULL if there is insufficient memory
1678 * available. On a success the dentry is returned. The name passed in is
1679 * copied and the copy passed in may be reused after this call.
1681 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1683 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1686 dentry->d_flags |= DCACHE_RCUACCESS;
1687 spin_lock(&parent->d_lock);
1689 * don't need child lock because it is not subject
1690 * to concurrency here
1692 __dget_dlock(parent);
1693 dentry->d_parent = parent;
1694 list_add(&dentry->d_child, &parent->d_subdirs);
1695 spin_unlock(&parent->d_lock);
1699 EXPORT_SYMBOL(d_alloc);
1701 struct dentry *d_alloc_cursor(struct dentry * parent)
1703 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1705 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1706 dentry->d_parent = dget(parent);
1712 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1713 * @sb: the superblock
1714 * @name: qstr of the name
1716 * For a filesystem that just pins its dentries in memory and never
1717 * performs lookups at all, return an unhashed IS_ROOT dentry.
1719 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1721 return __d_alloc(sb, name);
1723 EXPORT_SYMBOL(d_alloc_pseudo);
1725 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1730 q.hash_len = hashlen_string(parent, name);
1731 return d_alloc(parent, &q);
1733 EXPORT_SYMBOL(d_alloc_name);
1735 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1737 WARN_ON_ONCE(dentry->d_op);
1738 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1740 DCACHE_OP_REVALIDATE |
1741 DCACHE_OP_WEAK_REVALIDATE |
1748 dentry->d_flags |= DCACHE_OP_HASH;
1750 dentry->d_flags |= DCACHE_OP_COMPARE;
1751 if (op->d_revalidate)
1752 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1753 if (op->d_weak_revalidate)
1754 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1756 dentry->d_flags |= DCACHE_OP_DELETE;
1758 dentry->d_flags |= DCACHE_OP_PRUNE;
1760 dentry->d_flags |= DCACHE_OP_REAL;
1763 EXPORT_SYMBOL(d_set_d_op);
1767 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1768 * @dentry - The dentry to mark
1770 * Mark a dentry as falling through to the lower layer (as set with
1771 * d_pin_lower()). This flag may be recorded on the medium.
1773 void d_set_fallthru(struct dentry *dentry)
1775 spin_lock(&dentry->d_lock);
1776 dentry->d_flags |= DCACHE_FALLTHRU;
1777 spin_unlock(&dentry->d_lock);
1779 EXPORT_SYMBOL(d_set_fallthru);
1781 static unsigned d_flags_for_inode(struct inode *inode)
1783 unsigned add_flags = DCACHE_REGULAR_TYPE;
1786 return DCACHE_MISS_TYPE;
1788 if (S_ISDIR(inode->i_mode)) {
1789 add_flags = DCACHE_DIRECTORY_TYPE;
1790 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1791 if (unlikely(!inode->i_op->lookup))
1792 add_flags = DCACHE_AUTODIR_TYPE;
1794 inode->i_opflags |= IOP_LOOKUP;
1796 goto type_determined;
1799 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1800 if (unlikely(inode->i_op->get_link)) {
1801 add_flags = DCACHE_SYMLINK_TYPE;
1802 goto type_determined;
1804 inode->i_opflags |= IOP_NOFOLLOW;
1807 if (unlikely(!S_ISREG(inode->i_mode)))
1808 add_flags = DCACHE_SPECIAL_TYPE;
1811 if (unlikely(IS_AUTOMOUNT(inode)))
1812 add_flags |= DCACHE_NEED_AUTOMOUNT;
1816 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1818 unsigned add_flags = d_flags_for_inode(inode);
1819 WARN_ON(d_in_lookup(dentry));
1821 spin_lock(&dentry->d_lock);
1822 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1823 raw_write_seqcount_begin(&dentry->d_seq);
1824 __d_set_inode_and_type(dentry, inode, add_flags);
1825 raw_write_seqcount_end(&dentry->d_seq);
1826 fsnotify_update_flags(dentry);
1827 spin_unlock(&dentry->d_lock);
1831 * d_instantiate - fill in inode information for a dentry
1832 * @entry: dentry to complete
1833 * @inode: inode to attach to this dentry
1835 * Fill in inode information in the entry.
1837 * This turns negative dentries into productive full members
1840 * NOTE! This assumes that the inode count has been incremented
1841 * (or otherwise set) by the caller to indicate that it is now
1842 * in use by the dcache.
1845 void d_instantiate(struct dentry *entry, struct inode * inode)
1847 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1849 security_d_instantiate(entry, inode);
1850 spin_lock(&inode->i_lock);
1851 __d_instantiate(entry, inode);
1852 spin_unlock(&inode->i_lock);
1855 EXPORT_SYMBOL(d_instantiate);
1858 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1859 * @entry: dentry to complete
1860 * @inode: inode to attach to this dentry
1862 * Fill in inode information in the entry. If a directory alias is found, then
1863 * return an error (and drop inode). Together with d_materialise_unique() this
1864 * guarantees that a directory inode may never have more than one alias.
1866 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1868 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1870 security_d_instantiate(entry, inode);
1871 spin_lock(&inode->i_lock);
1872 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1873 spin_unlock(&inode->i_lock);
1877 __d_instantiate(entry, inode);
1878 spin_unlock(&inode->i_lock);
1882 EXPORT_SYMBOL(d_instantiate_no_diralias);
1884 struct dentry *d_make_root(struct inode *root_inode)
1886 struct dentry *res = NULL;
1889 res = __d_alloc(root_inode->i_sb, NULL);
1891 d_instantiate(res, root_inode);
1897 EXPORT_SYMBOL(d_make_root);
1899 static struct dentry * __d_find_any_alias(struct inode *inode)
1901 struct dentry *alias;
1903 if (hlist_empty(&inode->i_dentry))
1905 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1911 * d_find_any_alias - find any alias for a given inode
1912 * @inode: inode to find an alias for
1914 * If any aliases exist for the given inode, take and return a
1915 * reference for one of them. If no aliases exist, return %NULL.
1917 struct dentry *d_find_any_alias(struct inode *inode)
1921 spin_lock(&inode->i_lock);
1922 de = __d_find_any_alias(inode);
1923 spin_unlock(&inode->i_lock);
1926 EXPORT_SYMBOL(d_find_any_alias);
1928 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1935 return ERR_PTR(-ESTALE);
1937 return ERR_CAST(inode);
1939 res = d_find_any_alias(inode);
1943 tmp = __d_alloc(inode->i_sb, NULL);
1945 res = ERR_PTR(-ENOMEM);
1949 security_d_instantiate(tmp, inode);
1950 spin_lock(&inode->i_lock);
1951 res = __d_find_any_alias(inode);
1953 spin_unlock(&inode->i_lock);
1958 /* attach a disconnected dentry */
1959 add_flags = d_flags_for_inode(inode);
1962 add_flags |= DCACHE_DISCONNECTED;
1964 spin_lock(&tmp->d_lock);
1965 __d_set_inode_and_type(tmp, inode, add_flags);
1966 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1967 if (!disconnected) {
1968 hlist_bl_lock(&tmp->d_sb->s_roots);
1969 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_roots);
1970 hlist_bl_unlock(&tmp->d_sb->s_roots);
1972 spin_unlock(&tmp->d_lock);
1973 spin_unlock(&inode->i_lock);
1983 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1984 * @inode: inode to allocate the dentry for
1986 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1987 * similar open by handle operations. The returned dentry may be anonymous,
1988 * or may have a full name (if the inode was already in the cache).
1990 * When called on a directory inode, we must ensure that the inode only ever
1991 * has one dentry. If a dentry is found, that is returned instead of
1992 * allocating a new one.
1994 * On successful return, the reference to the inode has been transferred
1995 * to the dentry. In case of an error the reference on the inode is released.
1996 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1997 * be passed in and the error will be propagated to the return value,
1998 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2000 struct dentry *d_obtain_alias(struct inode *inode)
2002 return __d_obtain_alias(inode, 1);
2004 EXPORT_SYMBOL(d_obtain_alias);
2007 * d_obtain_root - find or allocate a dentry for a given inode
2008 * @inode: inode to allocate the dentry for
2010 * Obtain an IS_ROOT dentry for the root of a filesystem.
2012 * We must ensure that directory inodes only ever have one dentry. If a
2013 * dentry is found, that is returned instead of allocating a new one.
2015 * On successful return, the reference to the inode has been transferred
2016 * to the dentry. In case of an error the reference on the inode is
2017 * released. A %NULL or IS_ERR inode may be passed in and will be the
2018 * error will be propagate to the return value, with a %NULL @inode
2019 * replaced by ERR_PTR(-ESTALE).
2021 struct dentry *d_obtain_root(struct inode *inode)
2023 return __d_obtain_alias(inode, 0);
2025 EXPORT_SYMBOL(d_obtain_root);
2028 * d_add_ci - lookup or allocate new dentry with case-exact name
2029 * @inode: the inode case-insensitive lookup has found
2030 * @dentry: the negative dentry that was passed to the parent's lookup func
2031 * @name: the case-exact name to be associated with the returned dentry
2033 * This is to avoid filling the dcache with case-insensitive names to the
2034 * same inode, only the actual correct case is stored in the dcache for
2035 * case-insensitive filesystems.
2037 * For a case-insensitive lookup match and if the the case-exact dentry
2038 * already exists in in the dcache, use it and return it.
2040 * If no entry exists with the exact case name, allocate new dentry with
2041 * the exact case, and return the spliced entry.
2043 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2046 struct dentry *found, *res;
2049 * First check if a dentry matching the name already exists,
2050 * if not go ahead and create it now.
2052 found = d_hash_and_lookup(dentry->d_parent, name);
2057 if (d_in_lookup(dentry)) {
2058 found = d_alloc_parallel(dentry->d_parent, name,
2060 if (IS_ERR(found) || !d_in_lookup(found)) {
2065 found = d_alloc(dentry->d_parent, name);
2068 return ERR_PTR(-ENOMEM);
2071 res = d_splice_alias(inode, found);
2078 EXPORT_SYMBOL(d_add_ci);
2081 static inline bool d_same_name(const struct dentry *dentry,
2082 const struct dentry *parent,
2083 const struct qstr *name)
2085 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2086 if (dentry->d_name.len != name->len)
2088 return dentry_cmp(dentry, name->name, name->len) == 0;
2090 return parent->d_op->d_compare(dentry,
2091 dentry->d_name.len, dentry->d_name.name,
2096 * __d_lookup_rcu - search for a dentry (racy, store-free)
2097 * @parent: parent dentry
2098 * @name: qstr of name we wish to find
2099 * @seqp: returns d_seq value at the point where the dentry was found
2100 * Returns: dentry, or NULL
2102 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2103 * resolution (store-free path walking) design described in
2104 * Documentation/filesystems/path-lookup.txt.
2106 * This is not to be used outside core vfs.
2108 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2109 * held, and rcu_read_lock held. The returned dentry must not be stored into
2110 * without taking d_lock and checking d_seq sequence count against @seq
2113 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2116 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2117 * the returned dentry, so long as its parent's seqlock is checked after the
2118 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2119 * is formed, giving integrity down the path walk.
2121 * NOTE! The caller *has* to check the resulting dentry against the sequence
2122 * number we've returned before using any of the resulting dentry state!
2124 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2125 const struct qstr *name,
2128 u64 hashlen = name->hash_len;
2129 const unsigned char *str = name->name;
2130 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2131 struct hlist_bl_node *node;
2132 struct dentry *dentry;
2135 * Note: There is significant duplication with __d_lookup_rcu which is
2136 * required to prevent single threaded performance regressions
2137 * especially on architectures where smp_rmb (in seqcounts) are costly.
2138 * Keep the two functions in sync.
2142 * The hash list is protected using RCU.
2144 * Carefully use d_seq when comparing a candidate dentry, to avoid
2145 * races with d_move().
2147 * It is possible that concurrent renames can mess up our list
2148 * walk here and result in missing our dentry, resulting in the
2149 * false-negative result. d_lookup() protects against concurrent
2150 * renames using rename_lock seqlock.
2152 * See Documentation/filesystems/path-lookup.txt for more details.
2154 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2159 * The dentry sequence count protects us from concurrent
2160 * renames, and thus protects parent and name fields.
2162 * The caller must perform a seqcount check in order
2163 * to do anything useful with the returned dentry.
2165 * NOTE! We do a "raw" seqcount_begin here. That means that
2166 * we don't wait for the sequence count to stabilize if it
2167 * is in the middle of a sequence change. If we do the slow
2168 * dentry compare, we will do seqretries until it is stable,
2169 * and if we end up with a successful lookup, we actually
2170 * want to exit RCU lookup anyway.
2172 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2173 * we are still guaranteed NUL-termination of ->d_name.name.
2175 seq = raw_seqcount_begin(&dentry->d_seq);
2176 if (dentry->d_parent != parent)
2178 if (d_unhashed(dentry))
2181 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2184 if (dentry->d_name.hash != hashlen_hash(hashlen))
2186 tlen = dentry->d_name.len;
2187 tname = dentry->d_name.name;
2188 /* we want a consistent (name,len) pair */
2189 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2193 if (parent->d_op->d_compare(dentry,
2194 tlen, tname, name) != 0)
2197 if (dentry->d_name.hash_len != hashlen)
2199 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2209 * d_lookup - search for a dentry
2210 * @parent: parent dentry
2211 * @name: qstr of name we wish to find
2212 * Returns: dentry, or NULL
2214 * d_lookup searches the children of the parent dentry for the name in
2215 * question. If the dentry is found its reference count is incremented and the
2216 * dentry is returned. The caller must use dput to free the entry when it has
2217 * finished using it. %NULL is returned if the dentry does not exist.
2219 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2221 struct dentry *dentry;
2225 seq = read_seqbegin(&rename_lock);
2226 dentry = __d_lookup(parent, name);
2229 } while (read_seqretry(&rename_lock, seq));
2232 EXPORT_SYMBOL(d_lookup);
2235 * __d_lookup - search for a dentry (racy)
2236 * @parent: parent dentry
2237 * @name: qstr of name we wish to find
2238 * Returns: dentry, or NULL
2240 * __d_lookup is like d_lookup, however it may (rarely) return a
2241 * false-negative result due to unrelated rename activity.
2243 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2244 * however it must be used carefully, eg. with a following d_lookup in
2245 * the case of failure.
2247 * __d_lookup callers must be commented.
2249 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2251 unsigned int hash = name->hash;
2252 struct hlist_bl_head *b = d_hash(hash);
2253 struct hlist_bl_node *node;
2254 struct dentry *found = NULL;
2255 struct dentry *dentry;
2258 * Note: There is significant duplication with __d_lookup_rcu which is
2259 * required to prevent single threaded performance regressions
2260 * especially on architectures where smp_rmb (in seqcounts) are costly.
2261 * Keep the two functions in sync.
2265 * The hash list is protected using RCU.
2267 * Take d_lock when comparing a candidate dentry, to avoid races
2270 * It is possible that concurrent renames can mess up our list
2271 * walk here and result in missing our dentry, resulting in the
2272 * false-negative result. d_lookup() protects against concurrent
2273 * renames using rename_lock seqlock.
2275 * See Documentation/filesystems/path-lookup.txt for more details.
2279 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2281 if (dentry->d_name.hash != hash)
2284 spin_lock(&dentry->d_lock);
2285 if (dentry->d_parent != parent)
2287 if (d_unhashed(dentry))
2290 if (!d_same_name(dentry, parent, name))
2293 dentry->d_lockref.count++;
2295 spin_unlock(&dentry->d_lock);
2298 spin_unlock(&dentry->d_lock);
2306 * d_hash_and_lookup - hash the qstr then search for a dentry
2307 * @dir: Directory to search in
2308 * @name: qstr of name we wish to find
2310 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2312 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2315 * Check for a fs-specific hash function. Note that we must
2316 * calculate the standard hash first, as the d_op->d_hash()
2317 * routine may choose to leave the hash value unchanged.
2319 name->hash = full_name_hash(dir, name->name, name->len);
2320 if (dir->d_flags & DCACHE_OP_HASH) {
2321 int err = dir->d_op->d_hash(dir, name);
2322 if (unlikely(err < 0))
2323 return ERR_PTR(err);
2325 return d_lookup(dir, name);
2327 EXPORT_SYMBOL(d_hash_and_lookup);
2330 * When a file is deleted, we have two options:
2331 * - turn this dentry into a negative dentry
2332 * - unhash this dentry and free it.
2334 * Usually, we want to just turn this into
2335 * a negative dentry, but if anybody else is
2336 * currently using the dentry or the inode
2337 * we can't do that and we fall back on removing
2338 * it from the hash queues and waiting for
2339 * it to be deleted later when it has no users
2343 * d_delete - delete a dentry
2344 * @dentry: The dentry to delete
2346 * Turn the dentry into a negative dentry if possible, otherwise
2347 * remove it from the hash queues so it can be deleted later
2350 void d_delete(struct dentry * dentry)
2352 struct inode *inode;
2355 * Are we the only user?
2358 spin_lock(&dentry->d_lock);
2359 inode = dentry->d_inode;
2360 isdir = S_ISDIR(inode->i_mode);
2361 if (dentry->d_lockref.count == 1) {
2362 if (!spin_trylock(&inode->i_lock)) {
2363 spin_unlock(&dentry->d_lock);
2367 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2368 dentry_unlink_inode(dentry);
2369 fsnotify_nameremove(dentry, isdir);
2373 if (!d_unhashed(dentry))
2376 spin_unlock(&dentry->d_lock);
2378 fsnotify_nameremove(dentry, isdir);
2380 EXPORT_SYMBOL(d_delete);
2382 static void __d_rehash(struct dentry *entry)
2384 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2387 hlist_bl_add_head_rcu(&entry->d_hash, b);
2392 * d_rehash - add an entry back to the hash
2393 * @entry: dentry to add to the hash
2395 * Adds a dentry to the hash according to its name.
2398 void d_rehash(struct dentry * entry)
2400 spin_lock(&entry->d_lock);
2402 spin_unlock(&entry->d_lock);
2404 EXPORT_SYMBOL(d_rehash);
2406 static inline unsigned start_dir_add(struct inode *dir)
2410 unsigned n = dir->i_dir_seq;
2411 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2417 static inline void end_dir_add(struct inode *dir, unsigned n)
2419 smp_store_release(&dir->i_dir_seq, n + 2);
2422 static void d_wait_lookup(struct dentry *dentry)
2424 if (d_in_lookup(dentry)) {
2425 DECLARE_WAITQUEUE(wait, current);
2426 add_wait_queue(dentry->d_wait, &wait);
2428 set_current_state(TASK_UNINTERRUPTIBLE);
2429 spin_unlock(&dentry->d_lock);
2431 spin_lock(&dentry->d_lock);
2432 } while (d_in_lookup(dentry));
2436 struct dentry *d_alloc_parallel(struct dentry *parent,
2437 const struct qstr *name,
2438 wait_queue_head_t *wq)
2440 unsigned int hash = name->hash;
2441 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2442 struct hlist_bl_node *node;
2443 struct dentry *new = d_alloc(parent, name);
2444 struct dentry *dentry;
2445 unsigned seq, r_seq, d_seq;
2448 return ERR_PTR(-ENOMEM);
2452 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2453 r_seq = read_seqbegin(&rename_lock);
2454 dentry = __d_lookup_rcu(parent, name, &d_seq);
2455 if (unlikely(dentry)) {
2456 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2460 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2469 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2474 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2480 * No changes for the parent since the beginning of d_lookup().
2481 * Since all removals from the chain happen with hlist_bl_lock(),
2482 * any potential in-lookup matches are going to stay here until
2483 * we unlock the chain. All fields are stable in everything
2486 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2487 if (dentry->d_name.hash != hash)
2489 if (dentry->d_parent != parent)
2491 if (!d_same_name(dentry, parent, name))
2494 /* now we can try to grab a reference */
2495 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2502 * somebody is likely to be still doing lookup for it;
2503 * wait for them to finish
2505 spin_lock(&dentry->d_lock);
2506 d_wait_lookup(dentry);
2508 * it's not in-lookup anymore; in principle we should repeat
2509 * everything from dcache lookup, but it's likely to be what
2510 * d_lookup() would've found anyway. If it is, just return it;
2511 * otherwise we really have to repeat the whole thing.
2513 if (unlikely(dentry->d_name.hash != hash))
2515 if (unlikely(dentry->d_parent != parent))
2517 if (unlikely(d_unhashed(dentry)))
2519 if (unlikely(!d_same_name(dentry, parent, name)))
2521 /* OK, it *is* a hashed match; return it */
2522 spin_unlock(&dentry->d_lock);
2527 /* we can't take ->d_lock here; it's OK, though. */
2528 new->d_flags |= DCACHE_PAR_LOOKUP;
2530 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2534 spin_unlock(&dentry->d_lock);
2538 EXPORT_SYMBOL(d_alloc_parallel);
2540 void __d_lookup_done(struct dentry *dentry)
2542 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2543 dentry->d_name.hash);
2545 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2546 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2547 wake_up_all(dentry->d_wait);
2548 dentry->d_wait = NULL;
2550 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2551 INIT_LIST_HEAD(&dentry->d_lru);
2553 EXPORT_SYMBOL(__d_lookup_done);
2555 /* inode->i_lock held if inode is non-NULL */
2557 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2559 struct inode *dir = NULL;
2561 spin_lock(&dentry->d_lock);
2562 if (unlikely(d_in_lookup(dentry))) {
2563 dir = dentry->d_parent->d_inode;
2564 n = start_dir_add(dir);
2565 __d_lookup_done(dentry);
2568 unsigned add_flags = d_flags_for_inode(inode);
2569 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2570 raw_write_seqcount_begin(&dentry->d_seq);
2571 __d_set_inode_and_type(dentry, inode, add_flags);
2572 raw_write_seqcount_end(&dentry->d_seq);
2573 fsnotify_update_flags(dentry);
2577 end_dir_add(dir, n);
2578 spin_unlock(&dentry->d_lock);
2580 spin_unlock(&inode->i_lock);
2584 * d_add - add dentry to hash queues
2585 * @entry: dentry to add
2586 * @inode: The inode to attach to this dentry
2588 * This adds the entry to the hash queues and initializes @inode.
2589 * The entry was actually filled in earlier during d_alloc().
2592 void d_add(struct dentry *entry, struct inode *inode)
2595 security_d_instantiate(entry, inode);
2596 spin_lock(&inode->i_lock);
2598 __d_add(entry, inode);
2600 EXPORT_SYMBOL(d_add);
2603 * d_exact_alias - find and hash an exact unhashed alias
2604 * @entry: dentry to add
2605 * @inode: The inode to go with this dentry
2607 * If an unhashed dentry with the same name/parent and desired
2608 * inode already exists, hash and return it. Otherwise, return
2611 * Parent directory should be locked.
2613 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2615 struct dentry *alias;
2616 unsigned int hash = entry->d_name.hash;
2618 spin_lock(&inode->i_lock);
2619 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2621 * Don't need alias->d_lock here, because aliases with
2622 * d_parent == entry->d_parent are not subject to name or
2623 * parent changes, because the parent inode i_mutex is held.
2625 if (alias->d_name.hash != hash)
2627 if (alias->d_parent != entry->d_parent)
2629 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2631 spin_lock(&alias->d_lock);
2632 if (!d_unhashed(alias)) {
2633 spin_unlock(&alias->d_lock);
2636 __dget_dlock(alias);
2638 spin_unlock(&alias->d_lock);
2640 spin_unlock(&inode->i_lock);
2643 spin_unlock(&inode->i_lock);
2646 EXPORT_SYMBOL(d_exact_alias);
2649 * dentry_update_name_case - update case insensitive dentry with a new name
2650 * @dentry: dentry to be updated
2653 * Update a case insensitive dentry with new case of name.
2655 * dentry must have been returned by d_lookup with name @name. Old and new
2656 * name lengths must match (ie. no d_compare which allows mismatched name
2659 * Parent inode i_mutex must be held over d_lookup and into this call (to
2660 * keep renames and concurrent inserts, and readdir(2) away).
2662 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2664 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2665 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2667 spin_lock(&dentry->d_lock);
2668 write_seqcount_begin(&dentry->d_seq);
2669 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2670 write_seqcount_end(&dentry->d_seq);
2671 spin_unlock(&dentry->d_lock);
2673 EXPORT_SYMBOL(dentry_update_name_case);
2675 static void swap_names(struct dentry *dentry, struct dentry *target)
2677 if (unlikely(dname_external(target))) {
2678 if (unlikely(dname_external(dentry))) {
2680 * Both external: swap the pointers
2682 swap(target->d_name.name, dentry->d_name.name);
2685 * dentry:internal, target:external. Steal target's
2686 * storage and make target internal.
2688 memcpy(target->d_iname, dentry->d_name.name,
2689 dentry->d_name.len + 1);
2690 dentry->d_name.name = target->d_name.name;
2691 target->d_name.name = target->d_iname;
2694 if (unlikely(dname_external(dentry))) {
2696 * dentry:external, target:internal. Give dentry's
2697 * storage to target and make dentry internal
2699 memcpy(dentry->d_iname, target->d_name.name,
2700 target->d_name.len + 1);
2701 target->d_name.name = dentry->d_name.name;
2702 dentry->d_name.name = dentry->d_iname;
2705 * Both are internal.
2708 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2709 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2710 swap(((long *) &dentry->d_iname)[i],
2711 ((long *) &target->d_iname)[i]);
2715 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2718 static void copy_name(struct dentry *dentry, struct dentry *target)
2720 struct external_name *old_name = NULL;
2721 if (unlikely(dname_external(dentry)))
2722 old_name = external_name(dentry);
2723 if (unlikely(dname_external(target))) {
2724 atomic_inc(&external_name(target)->u.count);
2725 dentry->d_name = target->d_name;
2727 memcpy(dentry->d_iname, target->d_name.name,
2728 target->d_name.len + 1);
2729 dentry->d_name.name = dentry->d_iname;
2730 dentry->d_name.hash_len = target->d_name.hash_len;
2732 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2733 kfree_rcu(old_name, u.head);
2736 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2739 * XXXX: do we really need to take target->d_lock?
2741 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2742 spin_lock(&target->d_parent->d_lock);
2744 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2745 spin_lock(&dentry->d_parent->d_lock);
2746 spin_lock_nested(&target->d_parent->d_lock,
2747 DENTRY_D_LOCK_NESTED);
2749 spin_lock(&target->d_parent->d_lock);
2750 spin_lock_nested(&dentry->d_parent->d_lock,
2751 DENTRY_D_LOCK_NESTED);
2754 if (target < dentry) {
2755 spin_lock_nested(&target->d_lock, 2);
2756 spin_lock_nested(&dentry->d_lock, 3);
2758 spin_lock_nested(&dentry->d_lock, 2);
2759 spin_lock_nested(&target->d_lock, 3);
2763 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2765 if (target->d_parent != dentry->d_parent)
2766 spin_unlock(&dentry->d_parent->d_lock);
2767 if (target->d_parent != target)
2768 spin_unlock(&target->d_parent->d_lock);
2769 spin_unlock(&target->d_lock);
2770 spin_unlock(&dentry->d_lock);
2774 * When switching names, the actual string doesn't strictly have to
2775 * be preserved in the target - because we're dropping the target
2776 * anyway. As such, we can just do a simple memcpy() to copy over
2777 * the new name before we switch, unless we are going to rehash
2778 * it. Note that if we *do* unhash the target, we are not allowed
2779 * to rehash it without giving it a new name/hash key - whether
2780 * we swap or overwrite the names here, resulting name won't match
2781 * the reality in filesystem; it's only there for d_path() purposes.
2782 * Note that all of this is happening under rename_lock, so the
2783 * any hash lookup seeing it in the middle of manipulations will
2784 * be discarded anyway. So we do not care what happens to the hash
2788 * __d_move - move a dentry
2789 * @dentry: entry to move
2790 * @target: new dentry
2791 * @exchange: exchange the two dentries
2793 * Update the dcache to reflect the move of a file name. Negative
2794 * dcache entries should not be moved in this way. Caller must hold
2795 * rename_lock, the i_mutex of the source and target directories,
2796 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2798 static void __d_move(struct dentry *dentry, struct dentry *target,
2801 struct inode *dir = NULL;
2803 if (!dentry->d_inode)
2804 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2806 BUG_ON(d_ancestor(dentry, target));
2807 BUG_ON(d_ancestor(target, dentry));
2809 dentry_lock_for_move(dentry, target);
2810 if (unlikely(d_in_lookup(target))) {
2811 dir = target->d_parent->d_inode;
2812 n = start_dir_add(dir);
2813 __d_lookup_done(target);
2816 write_seqcount_begin(&dentry->d_seq);
2817 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2820 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2824 /* Switch the names.. */
2826 swap_names(dentry, target);
2828 copy_name(dentry, target);
2830 /* rehash in new place(s) */
2835 target->d_hash.pprev = NULL;
2837 /* ... and switch them in the tree */
2838 if (IS_ROOT(dentry)) {
2839 /* splicing a tree */
2840 dentry->d_flags |= DCACHE_RCUACCESS;
2841 dentry->d_parent = target->d_parent;
2842 target->d_parent = target;
2843 list_del_init(&target->d_child);
2844 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2846 /* swapping two dentries */
2847 swap(dentry->d_parent, target->d_parent);
2848 list_move(&target->d_child, &target->d_parent->d_subdirs);
2849 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2851 fsnotify_update_flags(target);
2852 fsnotify_update_flags(dentry);
2855 write_seqcount_end(&target->d_seq);
2856 write_seqcount_end(&dentry->d_seq);
2859 end_dir_add(dir, n);
2860 dentry_unlock_for_move(dentry, target);
2864 * d_move - move a dentry
2865 * @dentry: entry to move
2866 * @target: new dentry
2868 * Update the dcache to reflect the move of a file name. Negative
2869 * dcache entries should not be moved in this way. See the locking
2870 * requirements for __d_move.
2872 void d_move(struct dentry *dentry, struct dentry *target)
2874 write_seqlock(&rename_lock);
2875 __d_move(dentry, target, false);
2876 write_sequnlock(&rename_lock);
2878 EXPORT_SYMBOL(d_move);
2881 * d_exchange - exchange two dentries
2882 * @dentry1: first dentry
2883 * @dentry2: second dentry
2885 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2887 write_seqlock(&rename_lock);
2889 WARN_ON(!dentry1->d_inode);
2890 WARN_ON(!dentry2->d_inode);
2891 WARN_ON(IS_ROOT(dentry1));
2892 WARN_ON(IS_ROOT(dentry2));
2894 __d_move(dentry1, dentry2, true);
2896 write_sequnlock(&rename_lock);
2900 * d_ancestor - search for an ancestor
2901 * @p1: ancestor dentry
2904 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2905 * an ancestor of p2, else NULL.
2907 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2911 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2912 if (p->d_parent == p1)
2919 * This helper attempts to cope with remotely renamed directories
2921 * It assumes that the caller is already holding
2922 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2924 * Note: If ever the locking in lock_rename() changes, then please
2925 * remember to update this too...
2927 static int __d_unalias(struct inode *inode,
2928 struct dentry *dentry, struct dentry *alias)
2930 struct mutex *m1 = NULL;
2931 struct rw_semaphore *m2 = NULL;
2934 /* If alias and dentry share a parent, then no extra locks required */
2935 if (alias->d_parent == dentry->d_parent)
2938 /* See lock_rename() */
2939 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2941 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2942 if (!inode_trylock_shared(alias->d_parent->d_inode))
2944 m2 = &alias->d_parent->d_inode->i_rwsem;
2946 __d_move(alias, dentry, false);
2957 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2958 * @inode: the inode which may have a disconnected dentry
2959 * @dentry: a negative dentry which we want to point to the inode.
2961 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2962 * place of the given dentry and return it, else simply d_add the inode
2963 * to the dentry and return NULL.
2965 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2966 * we should error out: directories can't have multiple aliases.
2968 * This is needed in the lookup routine of any filesystem that is exportable
2969 * (via knfsd) so that we can build dcache paths to directories effectively.
2971 * If a dentry was found and moved, then it is returned. Otherwise NULL
2972 * is returned. This matches the expected return value of ->lookup.
2974 * Cluster filesystems may call this function with a negative, hashed dentry.
2975 * In that case, we know that the inode will be a regular file, and also this
2976 * will only occur during atomic_open. So we need to check for the dentry
2977 * being already hashed only in the final case.
2979 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2982 return ERR_CAST(inode);
2984 BUG_ON(!d_unhashed(dentry));
2989 security_d_instantiate(dentry, inode);
2990 spin_lock(&inode->i_lock);
2991 if (S_ISDIR(inode->i_mode)) {
2992 struct dentry *new = __d_find_any_alias(inode);
2993 if (unlikely(new)) {
2994 /* The reference to new ensures it remains an alias */
2995 spin_unlock(&inode->i_lock);
2996 write_seqlock(&rename_lock);
2997 if (unlikely(d_ancestor(new, dentry))) {
2998 write_sequnlock(&rename_lock);
3000 new = ERR_PTR(-ELOOP);
3001 pr_warn_ratelimited(
3002 "VFS: Lookup of '%s' in %s %s"
3003 " would have caused loop\n",
3004 dentry->d_name.name,
3005 inode->i_sb->s_type->name,
3007 } else if (!IS_ROOT(new)) {
3008 int err = __d_unalias(inode, dentry, new);
3009 write_sequnlock(&rename_lock);
3015 __d_move(new, dentry, false);
3016 write_sequnlock(&rename_lock);
3023 __d_add(dentry, inode);
3026 EXPORT_SYMBOL(d_splice_alias);
3028 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3032 return -ENAMETOOLONG;
3034 memcpy(*buffer, str, namelen);
3039 * prepend_name - prepend a pathname in front of current buffer pointer
3040 * @buffer: buffer pointer
3041 * @buflen: allocated length of the buffer
3042 * @name: name string and length qstr structure
3044 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
3045 * make sure that either the old or the new name pointer and length are
3046 * fetched. However, there may be mismatch between length and pointer.
3047 * The length cannot be trusted, we need to copy it byte-by-byte until
3048 * the length is reached or a null byte is found. It also prepends "/" at
3049 * the beginning of the name. The sequence number check at the caller will
3050 * retry it again when a d_move() does happen. So any garbage in the buffer
3051 * due to mismatched pointer and length will be discarded.
3053 * Load acquire is needed to make sure that we see that terminating NUL.
3055 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3057 const char *dname = smp_load_acquire(&name->name); /* ^^^ */
3058 u32 dlen = READ_ONCE(name->len);
3061 *buflen -= dlen + 1;
3063 return -ENAMETOOLONG;
3064 p = *buffer -= dlen + 1;
3076 * prepend_path - Prepend path string to a buffer
3077 * @path: the dentry/vfsmount to report
3078 * @root: root vfsmnt/dentry
3079 * @buffer: pointer to the end of the buffer
3080 * @buflen: pointer to buffer length
3082 * The function will first try to write out the pathname without taking any
3083 * lock other than the RCU read lock to make sure that dentries won't go away.
3084 * It only checks the sequence number of the global rename_lock as any change
3085 * in the dentry's d_seq will be preceded by changes in the rename_lock
3086 * sequence number. If the sequence number had been changed, it will restart
3087 * the whole pathname back-tracing sequence again by taking the rename_lock.
3088 * In this case, there is no need to take the RCU read lock as the recursive
3089 * parent pointer references will keep the dentry chain alive as long as no
3090 * rename operation is performed.
3092 static int prepend_path(const struct path *path,
3093 const struct path *root,
3094 char **buffer, int *buflen)
3096 struct dentry *dentry;
3097 struct vfsmount *vfsmnt;
3100 unsigned seq, m_seq = 0;
3106 read_seqbegin_or_lock(&mount_lock, &m_seq);
3113 dentry = path->dentry;
3115 mnt = real_mount(vfsmnt);
3116 read_seqbegin_or_lock(&rename_lock, &seq);
3117 while (dentry != root->dentry || vfsmnt != root->mnt) {
3118 struct dentry * parent;
3120 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3121 struct mount *parent = READ_ONCE(mnt->mnt_parent);
3123 if (dentry != vfsmnt->mnt_root) {
3130 if (mnt != parent) {
3131 dentry = READ_ONCE(mnt->mnt_mountpoint);
3137 error = is_mounted(vfsmnt) ? 1 : 2;
3140 parent = dentry->d_parent;
3142 error = prepend_name(&bptr, &blen, &dentry->d_name);
3150 if (need_seqretry(&rename_lock, seq)) {
3154 done_seqretry(&rename_lock, seq);
3158 if (need_seqretry(&mount_lock, m_seq)) {
3162 done_seqretry(&mount_lock, m_seq);
3164 if (error >= 0 && bptr == *buffer) {
3166 error = -ENAMETOOLONG;
3176 * __d_path - return the path of a dentry
3177 * @path: the dentry/vfsmount to report
3178 * @root: root vfsmnt/dentry
3179 * @buf: buffer to return value in
3180 * @buflen: buffer length
3182 * Convert a dentry into an ASCII path name.
3184 * Returns a pointer into the buffer or an error code if the
3185 * path was too long.
3187 * "buflen" should be positive.
3189 * If the path is not reachable from the supplied root, return %NULL.
3191 char *__d_path(const struct path *path,
3192 const struct path *root,
3193 char *buf, int buflen)
3195 char *res = buf + buflen;
3198 prepend(&res, &buflen, "\0", 1);
3199 error = prepend_path(path, root, &res, &buflen);
3202 return ERR_PTR(error);
3208 char *d_absolute_path(const struct path *path,
3209 char *buf, int buflen)
3211 struct path root = {};
3212 char *res = buf + buflen;
3215 prepend(&res, &buflen, "\0", 1);
3216 error = prepend_path(path, &root, &res, &buflen);
3221 return ERR_PTR(error);
3226 * same as __d_path but appends "(deleted)" for unlinked files.
3228 static int path_with_deleted(const struct path *path,
3229 const struct path *root,
3230 char **buf, int *buflen)
3232 prepend(buf, buflen, "\0", 1);
3233 if (d_unlinked(path->dentry)) {
3234 int error = prepend(buf, buflen, " (deleted)", 10);
3239 return prepend_path(path, root, buf, buflen);
3242 static int prepend_unreachable(char **buffer, int *buflen)
3244 return prepend(buffer, buflen, "(unreachable)", 13);
3247 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3252 seq = read_seqcount_begin(&fs->seq);
3254 } while (read_seqcount_retry(&fs->seq, seq));
3258 * d_path - return the path of a dentry
3259 * @path: path to report
3260 * @buf: buffer to return value in
3261 * @buflen: buffer length
3263 * Convert a dentry into an ASCII path name. If the entry has been deleted
3264 * the string " (deleted)" is appended. Note that this is ambiguous.
3266 * Returns a pointer into the buffer or an error code if the path was
3267 * too long. Note: Callers should use the returned pointer, not the passed
3268 * in buffer, to use the name! The implementation often starts at an offset
3269 * into the buffer, and may leave 0 bytes at the start.
3271 * "buflen" should be positive.
3273 char *d_path(const struct path *path, char *buf, int buflen)
3275 char *res = buf + buflen;
3280 * We have various synthetic filesystems that never get mounted. On
3281 * these filesystems dentries are never used for lookup purposes, and
3282 * thus don't need to be hashed. They also don't need a name until a
3283 * user wants to identify the object in /proc/pid/fd/. The little hack
3284 * below allows us to generate a name for these objects on demand:
3286 * Some pseudo inodes are mountable. When they are mounted
3287 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3288 * and instead have d_path return the mounted path.
3290 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3291 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3292 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3295 get_fs_root_rcu(current->fs, &root);
3296 error = path_with_deleted(path, &root, &res, &buflen);
3300 res = ERR_PTR(error);
3303 EXPORT_SYMBOL(d_path);
3306 * Helper function for dentry_operations.d_dname() members
3308 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3309 const char *fmt, ...)
3315 va_start(args, fmt);
3316 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3319 if (sz > sizeof(temp) || sz > buflen)
3320 return ERR_PTR(-ENAMETOOLONG);
3322 buffer += buflen - sz;
3323 return memcpy(buffer, temp, sz);
3326 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3328 char *end = buffer + buflen;
3329 /* these dentries are never renamed, so d_lock is not needed */
3330 if (prepend(&end, &buflen, " (deleted)", 11) ||
3331 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3332 prepend(&end, &buflen, "/", 1))
3333 end = ERR_PTR(-ENAMETOOLONG);
3336 EXPORT_SYMBOL(simple_dname);
3339 * Write full pathname from the root of the filesystem into the buffer.
3341 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3343 struct dentry *dentry;
3356 prepend(&end, &len, "\0", 1);
3360 read_seqbegin_or_lock(&rename_lock, &seq);
3361 while (!IS_ROOT(dentry)) {
3362 struct dentry *parent = dentry->d_parent;
3365 error = prepend_name(&end, &len, &dentry->d_name);
3374 if (need_seqretry(&rename_lock, seq)) {
3378 done_seqretry(&rename_lock, seq);
3383 return ERR_PTR(-ENAMETOOLONG);
3386 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3388 return __dentry_path(dentry, buf, buflen);
3390 EXPORT_SYMBOL(dentry_path_raw);
3392 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3397 if (d_unlinked(dentry)) {
3399 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3403 retval = __dentry_path(dentry, buf, buflen);
3404 if (!IS_ERR(retval) && p)
3405 *p = '/'; /* restore '/' overriden with '\0' */
3408 return ERR_PTR(-ENAMETOOLONG);
3411 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3417 seq = read_seqcount_begin(&fs->seq);
3420 } while (read_seqcount_retry(&fs->seq, seq));
3424 * NOTE! The user-level library version returns a
3425 * character pointer. The kernel system call just
3426 * returns the length of the buffer filled (which
3427 * includes the ending '\0' character), or a negative
3428 * error value. So libc would do something like
3430 * char *getcwd(char * buf, size_t size)
3434 * retval = sys_getcwd(buf, size);
3441 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3444 struct path pwd, root;
3445 char *page = __getname();
3451 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3454 if (!d_unlinked(pwd.dentry)) {
3456 char *cwd = page + PATH_MAX;
3457 int buflen = PATH_MAX;
3459 prepend(&cwd, &buflen, "\0", 1);
3460 error = prepend_path(&pwd, &root, &cwd, &buflen);
3466 /* Unreachable from current root */
3468 error = prepend_unreachable(&cwd, &buflen);
3474 len = PATH_MAX + page - cwd;
3477 if (copy_to_user(buf, cwd, len))
3490 * Test whether new_dentry is a subdirectory of old_dentry.
3492 * Trivially implemented using the dcache structure
3496 * is_subdir - is new dentry a subdirectory of old_dentry
3497 * @new_dentry: new dentry
3498 * @old_dentry: old dentry
3500 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3501 * Returns false otherwise.
3502 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3505 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3510 if (new_dentry == old_dentry)
3514 /* for restarting inner loop in case of seq retry */
3515 seq = read_seqbegin(&rename_lock);
3517 * Need rcu_readlock to protect against the d_parent trashing
3521 if (d_ancestor(old_dentry, new_dentry))
3526 } while (read_seqretry(&rename_lock, seq));
3531 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3533 struct dentry *root = data;
3534 if (dentry != root) {
3535 if (d_unhashed(dentry) || !dentry->d_inode)
3538 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3539 dentry->d_flags |= DCACHE_GENOCIDE;
3540 dentry->d_lockref.count--;
3543 return D_WALK_CONTINUE;
3546 void d_genocide(struct dentry *parent)
3548 d_walk(parent, parent, d_genocide_kill, NULL);
3551 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3553 inode_dec_link_count(inode);
3554 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3555 !hlist_unhashed(&dentry->d_u.d_alias) ||
3556 !d_unlinked(dentry));
3557 spin_lock(&dentry->d_parent->d_lock);
3558 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3559 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3560 (unsigned long long)inode->i_ino);
3561 spin_unlock(&dentry->d_lock);
3562 spin_unlock(&dentry->d_parent->d_lock);
3563 d_instantiate(dentry, inode);
3565 EXPORT_SYMBOL(d_tmpfile);
3567 static __initdata unsigned long dhash_entries;
3568 static int __init set_dhash_entries(char *str)
3572 dhash_entries = simple_strtoul(str, &str, 0);
3575 __setup("dhash_entries=", set_dhash_entries);
3577 static void __init dcache_init_early(void)
3579 /* If hashes are distributed across NUMA nodes, defer
3580 * hash allocation until vmalloc space is available.
3586 alloc_large_system_hash("Dentry cache",
3587 sizeof(struct hlist_bl_head),
3590 HASH_EARLY | HASH_ZERO,
3595 d_hash_shift = 32 - d_hash_shift;
3598 static void __init dcache_init(void)
3601 * A constructor could be added for stable state like the lists,
3602 * but it is probably not worth it because of the cache nature
3605 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3606 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3609 /* Hash may have been set up in dcache_init_early */
3614 alloc_large_system_hash("Dentry cache",
3615 sizeof(struct hlist_bl_head),
3623 d_hash_shift = 32 - d_hash_shift;
3626 /* SLAB cache for __getname() consumers */
3627 struct kmem_cache *names_cachep __read_mostly;
3628 EXPORT_SYMBOL(names_cachep);
3630 EXPORT_SYMBOL(d_genocide);
3632 void __init vfs_caches_init_early(void)