1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
44 #include "ext4_jbd2.h"
49 #include <trace/events/ext4.h>
51 #define MPAGE_DA_EXTENT_TAIL 0x01
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
88 __u32 provided, calculated;
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
92 !ext4_has_metadata_csum(inode->i_sb))
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
101 calculated &= 0xFFFF;
103 return provided == calculated;
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
113 !ext4_has_metadata_csum(inode->i_sb))
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
126 trace_ext4_begin_ordered_truncate(inode, new_size);
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
133 if (!EXT4_I(inode)->jinode)
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
148 * Test whether an inode is a fast symlink.
149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
151 int ext4_inode_is_fast_symlink(struct inode *inode)
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
157 if (ext4_has_inline_data(inode))
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
178 * moment, get_block can be called only for blocks inside i_size since
179 * page cache has been already dropped and writes are blocked by
180 * i_mutex. So we can safely drop the i_data_sem here.
182 BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 jbd_debug(2, "restarting handle %p\n", handle);
184 up_write(&EXT4_I(inode)->i_data_sem);
185 ret = ext4_journal_restart(handle, nblocks);
186 down_write(&EXT4_I(inode)->i_data_sem);
187 ext4_discard_preallocations(inode);
193 * Called at the last iput() if i_nlink is zero.
195 void ext4_evict_inode(struct inode *inode)
199 int extra_credits = 3;
200 struct ext4_xattr_inode_array *ea_inode_array = NULL;
202 trace_ext4_evict_inode(inode);
204 if (inode->i_nlink) {
206 * When journalling data dirty buffers are tracked only in the
207 * journal. So although mm thinks everything is clean and
208 * ready for reaping the inode might still have some pages to
209 * write in the running transaction or waiting to be
210 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 * (via truncate_inode_pages()) to discard these buffers can
212 * cause data loss. Also even if we did not discard these
213 * buffers, we would have no way to find them after the inode
214 * is reaped and thus user could see stale data if he tries to
215 * read them before the transaction is checkpointed. So be
216 * careful and force everything to disk here... We use
217 * ei->i_datasync_tid to store the newest transaction
218 * containing inode's data.
220 * Note that directories do not have this problem because they
221 * don't use page cache.
223 if (inode->i_ino != EXT4_JOURNAL_INO &&
224 ext4_should_journal_data(inode) &&
225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 inode->i_data.nrpages) {
227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
230 jbd2_complete_transaction(journal, commit_tid);
231 filemap_write_and_wait(&inode->i_data);
233 truncate_inode_pages_final(&inode->i_data);
238 if (is_bad_inode(inode))
240 dquot_initialize(inode);
242 if (ext4_should_order_data(inode))
243 ext4_begin_ordered_truncate(inode, 0);
244 truncate_inode_pages_final(&inode->i_data);
247 * Protect us against freezing - iput() caller didn't have to have any
248 * protection against it
250 sb_start_intwrite(inode->i_sb);
252 if (!IS_NOQUOTA(inode))
253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 ext4_blocks_for_truncate(inode)+extra_credits);
257 if (IS_ERR(handle)) {
258 ext4_std_error(inode->i_sb, PTR_ERR(handle));
260 * If we're going to skip the normal cleanup, we still need to
261 * make sure that the in-core orphan linked list is properly
264 ext4_orphan_del(NULL, inode);
265 sb_end_intwrite(inode->i_sb);
270 ext4_handle_sync(handle);
273 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 * special handling of symlinks here because i_size is used to
275 * determine whether ext4_inode_info->i_data contains symlink data or
276 * block mappings. Setting i_size to 0 will remove its fast symlink
277 * status. Erase i_data so that it becomes a valid empty block map.
279 if (ext4_inode_is_fast_symlink(inode))
280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
282 err = ext4_mark_inode_dirty(handle, inode);
284 ext4_warning(inode->i_sb,
285 "couldn't mark inode dirty (err %d)", err);
288 if (inode->i_blocks) {
289 err = ext4_truncate(inode);
291 ext4_error(inode->i_sb,
292 "couldn't truncate inode %lu (err %d)",
298 /* Remove xattr references. */
299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
304 ext4_journal_stop(handle);
305 ext4_orphan_del(NULL, inode);
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
312 * Kill off the orphan record which ext4_truncate created.
313 * AKPM: I think this can be inside the above `if'.
314 * Note that ext4_orphan_del() has to be able to cope with the
315 * deletion of a non-existent orphan - this is because we don't
316 * know if ext4_truncate() actually created an orphan record.
317 * (Well, we could do this if we need to, but heck - it works)
319 ext4_orphan_del(handle, inode);
320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
329 if (ext4_mark_inode_dirty(handle, inode))
330 /* If that failed, just do the required in-core inode clear. */
331 ext4_clear_inode(inode);
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
335 sb_end_intwrite(inode->i_sb);
336 ext4_xattr_inode_array_free(ea_inode_array);
339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
345 return &EXT4_I(inode)->i_reserved_quota;
350 * Called with i_data_sem down, which is important since we can call
351 * ext4_discard_preallocations() from here.
353 void ext4_da_update_reserve_space(struct inode *inode,
354 int used, int quota_claim)
356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 struct ext4_inode_info *ei = EXT4_I(inode);
359 spin_lock(&ei->i_block_reservation_lock);
360 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 if (unlikely(used > ei->i_reserved_data_blocks)) {
362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 "with only %d reserved data blocks",
364 __func__, inode->i_ino, used,
365 ei->i_reserved_data_blocks);
367 used = ei->i_reserved_data_blocks;
370 /* Update per-inode reservations */
371 ei->i_reserved_data_blocks -= used;
372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
376 /* Update quota subsystem for data blocks */
378 dquot_claim_block(inode, EXT4_C2B(sbi, used));
381 * We did fallocate with an offset that is already delayed
382 * allocated. So on delayed allocated writeback we should
383 * not re-claim the quota for fallocated blocks.
385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
389 * If we have done all the pending block allocations and if
390 * there aren't any writers on the inode, we can discard the
391 * inode's preallocations.
393 if ((ei->i_reserved_data_blocks == 0) &&
394 !inode_is_open_for_write(inode))
395 ext4_discard_preallocations(inode);
398 static int __check_block_validity(struct inode *inode, const char *func,
400 struct ext4_map_blocks *map)
402 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
404 ext4_error_inode(inode, func, line, map->m_pblk,
405 "lblock %lu mapped to illegal pblock %llu "
406 "(length %d)", (unsigned long) map->m_lblk,
407 map->m_pblk, map->m_len);
408 return -EFSCORRUPTED;
413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418 if (IS_ENCRYPTED(inode))
419 return fscrypt_zeroout_range(inode, lblk, pblk, len);
421 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
428 #define check_block_validity(inode, map) \
429 __check_block_validity((inode), __func__, __LINE__, (map))
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
434 struct ext4_map_blocks *es_map,
435 struct ext4_map_blocks *map,
442 * There is a race window that the result is not the same.
443 * e.g. xfstests #223 when dioread_nolock enables. The reason
444 * is that we lookup a block mapping in extent status tree with
445 * out taking i_data_sem. So at the time the unwritten extent
446 * could be converted.
448 down_read(&EXT4_I(inode)->i_data_sem);
449 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
453 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454 EXT4_GET_BLOCKS_KEEP_SIZE);
456 up_read((&EXT4_I(inode)->i_data_sem));
459 * We don't check m_len because extent will be collpased in status
460 * tree. So the m_len might not equal.
462 if (es_map->m_lblk != map->m_lblk ||
463 es_map->m_flags != map->m_flags ||
464 es_map->m_pblk != map->m_pblk) {
465 printk("ES cache assertion failed for inode: %lu "
466 "es_cached ex [%d/%d/%llu/%x] != "
467 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468 inode->i_ino, es_map->m_lblk, es_map->m_len,
469 es_map->m_pblk, es_map->m_flags, map->m_lblk,
470 map->m_len, map->m_pblk, map->m_flags,
474 #endif /* ES_AGGRESSIVE_TEST */
477 * The ext4_map_blocks() function tries to look up the requested blocks,
478 * and returns if the blocks are already mapped.
480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481 * and store the allocated blocks in the result buffer head and mark it
484 * If file type is extents based, it will call ext4_ext_map_blocks(),
485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
488 * On success, it returns the number of blocks being mapped or allocated. if
489 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
492 * It returns 0 if plain look up failed (blocks have not been allocated), in
493 * that case, @map is returned as unmapped but we still do fill map->m_len to
494 * indicate the length of a hole starting at map->m_lblk.
496 * It returns the error in case of allocation failure.
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499 struct ext4_map_blocks *map, int flags)
501 struct extent_status es;
504 #ifdef ES_AGGRESSIVE_TEST
505 struct ext4_map_blocks orig_map;
507 memcpy(&orig_map, map, sizeof(*map));
511 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512 "logical block %lu\n", inode->i_ino, flags, map->m_len,
513 (unsigned long) map->m_lblk);
516 * ext4_map_blocks returns an int, and m_len is an unsigned int
518 if (unlikely(map->m_len > INT_MAX))
519 map->m_len = INT_MAX;
521 /* We can handle the block number less than EXT_MAX_BLOCKS */
522 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523 return -EFSCORRUPTED;
525 /* Lookup extent status tree firstly */
526 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528 map->m_pblk = ext4_es_pblock(&es) +
529 map->m_lblk - es.es_lblk;
530 map->m_flags |= ext4_es_is_written(&es) ?
531 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532 retval = es.es_len - (map->m_lblk - es.es_lblk);
533 if (retval > map->m_len)
536 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
538 retval = es.es_len - (map->m_lblk - es.es_lblk);
539 if (retval > map->m_len)
546 #ifdef ES_AGGRESSIVE_TEST
547 ext4_map_blocks_es_recheck(handle, inode, map,
554 * Try to see if we can get the block without requesting a new
557 down_read(&EXT4_I(inode)->i_data_sem);
558 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560 EXT4_GET_BLOCKS_KEEP_SIZE);
562 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563 EXT4_GET_BLOCKS_KEEP_SIZE);
568 if (unlikely(retval != map->m_len)) {
569 ext4_warning(inode->i_sb,
570 "ES len assertion failed for inode "
571 "%lu: retval %d != map->m_len %d",
572 inode->i_ino, retval, map->m_len);
576 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579 !(status & EXTENT_STATUS_WRITTEN) &&
580 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
581 map->m_lblk + map->m_len - 1))
582 status |= EXTENT_STATUS_DELAYED;
583 ret = ext4_es_insert_extent(inode, map->m_lblk,
584 map->m_len, map->m_pblk, status);
588 up_read((&EXT4_I(inode)->i_data_sem));
591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592 ret = check_block_validity(inode, map);
597 /* If it is only a block(s) look up */
598 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
602 * Returns if the blocks have already allocated
604 * Note that if blocks have been preallocated
605 * ext4_ext_get_block() returns the create = 0
606 * with buffer head unmapped.
608 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610 * If we need to convert extent to unwritten
611 * we continue and do the actual work in
612 * ext4_ext_map_blocks()
614 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
618 * Here we clear m_flags because after allocating an new extent,
619 * it will be set again.
621 map->m_flags &= ~EXT4_MAP_FLAGS;
624 * New blocks allocate and/or writing to unwritten extent
625 * will possibly result in updating i_data, so we take
626 * the write lock of i_data_sem, and call get_block()
627 * with create == 1 flag.
629 down_write(&EXT4_I(inode)->i_data_sem);
632 * We need to check for EXT4 here because migrate
633 * could have changed the inode type in between
635 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636 retval = ext4_ext_map_blocks(handle, inode, map, flags);
638 retval = ext4_ind_map_blocks(handle, inode, map, flags);
640 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
642 * We allocated new blocks which will result in
643 * i_data's format changing. Force the migrate
644 * to fail by clearing migrate flags
646 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
650 * Update reserved blocks/metadata blocks after successful
651 * block allocation which had been deferred till now. We don't
652 * support fallocate for non extent files. So we can update
653 * reserve space here.
656 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657 ext4_da_update_reserve_space(inode, retval, 1);
663 if (unlikely(retval != map->m_len)) {
664 ext4_warning(inode->i_sb,
665 "ES len assertion failed for inode "
666 "%lu: retval %d != map->m_len %d",
667 inode->i_ino, retval, map->m_len);
672 * We have to zeroout blocks before inserting them into extent
673 * status tree. Otherwise someone could look them up there and
674 * use them before they are really zeroed. We also have to
675 * unmap metadata before zeroing as otherwise writeback can
676 * overwrite zeros with stale data from block device.
678 if (flags & EXT4_GET_BLOCKS_ZERO &&
679 map->m_flags & EXT4_MAP_MAPPED &&
680 map->m_flags & EXT4_MAP_NEW) {
681 ret = ext4_issue_zeroout(inode, map->m_lblk,
682 map->m_pblk, map->m_len);
690 * If the extent has been zeroed out, we don't need to update
691 * extent status tree.
693 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
694 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
695 if (ext4_es_is_written(&es))
698 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
699 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
700 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
701 !(status & EXTENT_STATUS_WRITTEN) &&
702 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
703 map->m_lblk + map->m_len - 1))
704 status |= EXTENT_STATUS_DELAYED;
705 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
706 map->m_pblk, status);
714 up_write((&EXT4_I(inode)->i_data_sem));
715 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
716 ret = check_block_validity(inode, map);
721 * Inodes with freshly allocated blocks where contents will be
722 * visible after transaction commit must be on transaction's
725 if (map->m_flags & EXT4_MAP_NEW &&
726 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
727 !(flags & EXT4_GET_BLOCKS_ZERO) &&
728 !ext4_is_quota_file(inode) &&
729 ext4_should_order_data(inode)) {
730 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
731 ret = ext4_jbd2_inode_add_wait(handle, inode);
733 ret = ext4_jbd2_inode_add_write(handle, inode);
742 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
743 * we have to be careful as someone else may be manipulating b_state as well.
745 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
747 unsigned long old_state;
748 unsigned long new_state;
750 flags &= EXT4_MAP_FLAGS;
752 /* Dummy buffer_head? Set non-atomically. */
754 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
758 * Someone else may be modifying b_state. Be careful! This is ugly but
759 * once we get rid of using bh as a container for mapping information
760 * to pass to / from get_block functions, this can go away.
763 old_state = READ_ONCE(bh->b_state);
764 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
766 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
769 static int _ext4_get_block(struct inode *inode, sector_t iblock,
770 struct buffer_head *bh, int flags)
772 struct ext4_map_blocks map;
775 if (ext4_has_inline_data(inode))
779 map.m_len = bh->b_size >> inode->i_blkbits;
781 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
784 map_bh(bh, inode->i_sb, map.m_pblk);
785 ext4_update_bh_state(bh, map.m_flags);
786 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
788 } else if (ret == 0) {
789 /* hole case, need to fill in bh->b_size */
790 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
795 int ext4_get_block(struct inode *inode, sector_t iblock,
796 struct buffer_head *bh, int create)
798 return _ext4_get_block(inode, iblock, bh,
799 create ? EXT4_GET_BLOCKS_CREATE : 0);
803 * Get block function used when preparing for buffered write if we require
804 * creating an unwritten extent if blocks haven't been allocated. The extent
805 * will be converted to written after the IO is complete.
807 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
808 struct buffer_head *bh_result, int create)
810 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
811 inode->i_ino, create);
812 return _ext4_get_block(inode, iblock, bh_result,
813 EXT4_GET_BLOCKS_IO_CREATE_EXT);
816 /* Maximum number of blocks we map for direct IO at once. */
817 #define DIO_MAX_BLOCKS 4096
820 * Get blocks function for the cases that need to start a transaction -
821 * generally difference cases of direct IO and DAX IO. It also handles retries
824 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
825 struct buffer_head *bh_result, int flags)
832 /* Trim mapping request to maximum we can map at once for DIO */
833 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
834 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
835 dio_credits = ext4_chunk_trans_blocks(inode,
836 bh_result->b_size >> inode->i_blkbits);
838 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
840 return PTR_ERR(handle);
842 ret = _ext4_get_block(inode, iblock, bh_result, flags);
843 ext4_journal_stop(handle);
845 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
850 /* Get block function for DIO reads and writes to inodes without extents */
851 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
852 struct buffer_head *bh, int create)
854 /* We don't expect handle for direct IO */
855 WARN_ON_ONCE(ext4_journal_current_handle());
858 return _ext4_get_block(inode, iblock, bh, 0);
859 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
863 * Get block function for AIO DIO writes when we create unwritten extent if
864 * blocks are not allocated yet. The extent will be converted to written
865 * after IO is complete.
867 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
868 sector_t iblock, struct buffer_head *bh_result, int create)
872 /* We don't expect handle for direct IO */
873 WARN_ON_ONCE(ext4_journal_current_handle());
875 ret = ext4_get_block_trans(inode, iblock, bh_result,
876 EXT4_GET_BLOCKS_IO_CREATE_EXT);
879 * When doing DIO using unwritten extents, we need io_end to convert
880 * unwritten extents to written on IO completion. We allocate io_end
881 * once we spot unwritten extent and store it in b_private. Generic
882 * DIO code keeps b_private set and furthermore passes the value to
883 * our completion callback in 'private' argument.
885 if (!ret && buffer_unwritten(bh_result)) {
886 if (!bh_result->b_private) {
887 ext4_io_end_t *io_end;
889 io_end = ext4_init_io_end(inode, GFP_KERNEL);
892 bh_result->b_private = io_end;
893 ext4_set_io_unwritten_flag(inode, io_end);
895 set_buffer_defer_completion(bh_result);
902 * Get block function for non-AIO DIO writes when we create unwritten extent if
903 * blocks are not allocated yet. The extent will be converted to written
904 * after IO is complete by ext4_direct_IO_write().
906 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
907 sector_t iblock, struct buffer_head *bh_result, int create)
911 /* We don't expect handle for direct IO */
912 WARN_ON_ONCE(ext4_journal_current_handle());
914 ret = ext4_get_block_trans(inode, iblock, bh_result,
915 EXT4_GET_BLOCKS_IO_CREATE_EXT);
918 * Mark inode as having pending DIO writes to unwritten extents.
919 * ext4_direct_IO_write() checks this flag and converts extents to
922 if (!ret && buffer_unwritten(bh_result))
923 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
928 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
929 struct buffer_head *bh_result, int create)
933 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
934 inode->i_ino, create);
935 /* We don't expect handle for direct IO */
936 WARN_ON_ONCE(ext4_journal_current_handle());
938 ret = _ext4_get_block(inode, iblock, bh_result, 0);
940 * Blocks should have been preallocated! ext4_file_write_iter() checks
943 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
950 * `handle' can be NULL if create is zero
952 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
953 ext4_lblk_t block, int map_flags)
955 struct ext4_map_blocks map;
956 struct buffer_head *bh;
957 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
960 J_ASSERT(handle != NULL || create == 0);
964 err = ext4_map_blocks(handle, inode, &map, map_flags);
967 return create ? ERR_PTR(-ENOSPC) : NULL;
971 bh = sb_getblk(inode->i_sb, map.m_pblk);
973 return ERR_PTR(-ENOMEM);
974 if (map.m_flags & EXT4_MAP_NEW) {
975 J_ASSERT(create != 0);
976 J_ASSERT(handle != NULL);
979 * Now that we do not always journal data, we should
980 * keep in mind whether this should always journal the
981 * new buffer as metadata. For now, regular file
982 * writes use ext4_get_block instead, so it's not a
986 BUFFER_TRACE(bh, "call get_create_access");
987 err = ext4_journal_get_create_access(handle, bh);
992 if (!buffer_uptodate(bh)) {
993 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
994 set_buffer_uptodate(bh);
997 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
998 err = ext4_handle_dirty_metadata(handle, inode, bh);
1002 BUFFER_TRACE(bh, "not a new buffer");
1006 return ERR_PTR(err);
1009 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1010 ext4_lblk_t block, int map_flags)
1012 struct buffer_head *bh;
1014 bh = ext4_getblk(handle, inode, block, map_flags);
1017 if (!bh || buffer_uptodate(bh))
1019 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1021 if (buffer_uptodate(bh))
1024 return ERR_PTR(-EIO);
1027 /* Read a contiguous batch of blocks. */
1028 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1029 bool wait, struct buffer_head **bhs)
1033 for (i = 0; i < bh_count; i++) {
1034 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1035 if (IS_ERR(bhs[i])) {
1036 err = PTR_ERR(bhs[i]);
1042 for (i = 0; i < bh_count; i++)
1043 /* Note that NULL bhs[i] is valid because of holes. */
1044 if (bhs[i] && !buffer_uptodate(bhs[i]))
1045 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1051 for (i = 0; i < bh_count; i++)
1053 wait_on_buffer(bhs[i]);
1055 for (i = 0; i < bh_count; i++) {
1056 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1064 for (i = 0; i < bh_count; i++) {
1071 int ext4_walk_page_buffers(handle_t *handle,
1072 struct buffer_head *head,
1076 int (*fn)(handle_t *handle,
1077 struct buffer_head *bh))
1079 struct buffer_head *bh;
1080 unsigned block_start, block_end;
1081 unsigned blocksize = head->b_size;
1083 struct buffer_head *next;
1085 for (bh = head, block_start = 0;
1086 ret == 0 && (bh != head || !block_start);
1087 block_start = block_end, bh = next) {
1088 next = bh->b_this_page;
1089 block_end = block_start + blocksize;
1090 if (block_end <= from || block_start >= to) {
1091 if (partial && !buffer_uptodate(bh))
1095 err = (*fn)(handle, bh);
1103 * To preserve ordering, it is essential that the hole instantiation and
1104 * the data write be encapsulated in a single transaction. We cannot
1105 * close off a transaction and start a new one between the ext4_get_block()
1106 * and the commit_write(). So doing the jbd2_journal_start at the start of
1107 * prepare_write() is the right place.
1109 * Also, this function can nest inside ext4_writepage(). In that case, we
1110 * *know* that ext4_writepage() has generated enough buffer credits to do the
1111 * whole page. So we won't block on the journal in that case, which is good,
1112 * because the caller may be PF_MEMALLOC.
1114 * By accident, ext4 can be reentered when a transaction is open via
1115 * quota file writes. If we were to commit the transaction while thus
1116 * reentered, there can be a deadlock - we would be holding a quota
1117 * lock, and the commit would never complete if another thread had a
1118 * transaction open and was blocking on the quota lock - a ranking
1121 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1122 * will _not_ run commit under these circumstances because handle->h_ref
1123 * is elevated. We'll still have enough credits for the tiny quotafile
1126 int do_journal_get_write_access(handle_t *handle,
1127 struct buffer_head *bh)
1129 int dirty = buffer_dirty(bh);
1132 if (!buffer_mapped(bh) || buffer_freed(bh))
1135 * __block_write_begin() could have dirtied some buffers. Clean
1136 * the dirty bit as jbd2_journal_get_write_access() could complain
1137 * otherwise about fs integrity issues. Setting of the dirty bit
1138 * by __block_write_begin() isn't a real problem here as we clear
1139 * the bit before releasing a page lock and thus writeback cannot
1140 * ever write the buffer.
1143 clear_buffer_dirty(bh);
1144 BUFFER_TRACE(bh, "get write access");
1145 ret = ext4_journal_get_write_access(handle, bh);
1147 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1151 #ifdef CONFIG_FS_ENCRYPTION
1152 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1153 get_block_t *get_block)
1155 unsigned from = pos & (PAGE_SIZE - 1);
1156 unsigned to = from + len;
1157 struct inode *inode = page->mapping->host;
1158 unsigned block_start, block_end;
1161 unsigned blocksize = inode->i_sb->s_blocksize;
1163 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1164 bool decrypt = false;
1166 BUG_ON(!PageLocked(page));
1167 BUG_ON(from > PAGE_SIZE);
1168 BUG_ON(to > PAGE_SIZE);
1171 if (!page_has_buffers(page))
1172 create_empty_buffers(page, blocksize, 0);
1173 head = page_buffers(page);
1174 bbits = ilog2(blocksize);
1175 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1177 for (bh = head, block_start = 0; bh != head || !block_start;
1178 block++, block_start = block_end, bh = bh->b_this_page) {
1179 block_end = block_start + blocksize;
1180 if (block_end <= from || block_start >= to) {
1181 if (PageUptodate(page)) {
1182 if (!buffer_uptodate(bh))
1183 set_buffer_uptodate(bh);
1188 clear_buffer_new(bh);
1189 if (!buffer_mapped(bh)) {
1190 WARN_ON(bh->b_size != blocksize);
1191 err = get_block(inode, block, bh, 1);
1194 if (buffer_new(bh)) {
1195 if (PageUptodate(page)) {
1196 clear_buffer_new(bh);
1197 set_buffer_uptodate(bh);
1198 mark_buffer_dirty(bh);
1201 if (block_end > to || block_start < from)
1202 zero_user_segments(page, to, block_end,
1207 if (PageUptodate(page)) {
1208 if (!buffer_uptodate(bh))
1209 set_buffer_uptodate(bh);
1212 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1213 !buffer_unwritten(bh) &&
1214 (block_start < from || block_end > to)) {
1215 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1217 decrypt = IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
1221 * If we issued read requests, let them complete.
1223 while (wait_bh > wait) {
1224 wait_on_buffer(*--wait_bh);
1225 if (!buffer_uptodate(*wait_bh))
1229 page_zero_new_buffers(page, from, to);
1231 err = fscrypt_decrypt_page(page->mapping->host, page,
1232 PAGE_SIZE, 0, page->index);
1237 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1238 loff_t pos, unsigned len, unsigned flags,
1239 struct page **pagep, void **fsdata)
1241 struct inode *inode = mapping->host;
1242 int ret, needed_blocks;
1249 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1252 trace_ext4_write_begin(inode, pos, len, flags);
1254 * Reserve one block more for addition to orphan list in case
1255 * we allocate blocks but write fails for some reason
1257 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1258 index = pos >> PAGE_SHIFT;
1259 from = pos & (PAGE_SIZE - 1);
1262 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1263 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1272 * grab_cache_page_write_begin() can take a long time if the
1273 * system is thrashing due to memory pressure, or if the page
1274 * is being written back. So grab it first before we start
1275 * the transaction handle. This also allows us to allocate
1276 * the page (if needed) without using GFP_NOFS.
1279 page = grab_cache_page_write_begin(mapping, index, flags);
1285 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1286 if (IS_ERR(handle)) {
1288 return PTR_ERR(handle);
1292 if (page->mapping != mapping) {
1293 /* The page got truncated from under us */
1296 ext4_journal_stop(handle);
1299 /* In case writeback began while the page was unlocked */
1300 wait_for_stable_page(page);
1302 #ifdef CONFIG_FS_ENCRYPTION
1303 if (ext4_should_dioread_nolock(inode))
1304 ret = ext4_block_write_begin(page, pos, len,
1305 ext4_get_block_unwritten);
1307 ret = ext4_block_write_begin(page, pos, len,
1310 if (ext4_should_dioread_nolock(inode))
1311 ret = __block_write_begin(page, pos, len,
1312 ext4_get_block_unwritten);
1314 ret = __block_write_begin(page, pos, len, ext4_get_block);
1316 if (!ret && ext4_should_journal_data(inode)) {
1317 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1319 do_journal_get_write_access);
1325 * __block_write_begin may have instantiated a few blocks
1326 * outside i_size. Trim these off again. Don't need
1327 * i_size_read because we hold i_mutex.
1329 * Add inode to orphan list in case we crash before
1332 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1333 ext4_orphan_add(handle, inode);
1335 ext4_journal_stop(handle);
1336 if (pos + len > inode->i_size) {
1337 ext4_truncate_failed_write(inode);
1339 * If truncate failed early the inode might
1340 * still be on the orphan list; we need to
1341 * make sure the inode is removed from the
1342 * orphan list in that case.
1345 ext4_orphan_del(NULL, inode);
1348 if (ret == -ENOSPC &&
1349 ext4_should_retry_alloc(inode->i_sb, &retries))
1358 /* For write_end() in data=journal mode */
1359 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1362 if (!buffer_mapped(bh) || buffer_freed(bh))
1364 set_buffer_uptodate(bh);
1365 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1366 clear_buffer_meta(bh);
1367 clear_buffer_prio(bh);
1372 * We need to pick up the new inode size which generic_commit_write gave us
1373 * `file' can be NULL - eg, when called from page_symlink().
1375 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1376 * buffers are managed internally.
1378 static int ext4_write_end(struct file *file,
1379 struct address_space *mapping,
1380 loff_t pos, unsigned len, unsigned copied,
1381 struct page *page, void *fsdata)
1383 handle_t *handle = ext4_journal_current_handle();
1384 struct inode *inode = mapping->host;
1385 loff_t old_size = inode->i_size;
1387 int i_size_changed = 0;
1388 int inline_data = ext4_has_inline_data(inode);
1390 trace_ext4_write_end(inode, pos, len, copied);
1392 ret = ext4_write_inline_data_end(inode, pos, len,
1401 copied = block_write_end(file, mapping, pos,
1402 len, copied, page, fsdata);
1404 * it's important to update i_size while still holding page lock:
1405 * page writeout could otherwise come in and zero beyond i_size.
1407 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1412 pagecache_isize_extended(inode, old_size, pos);
1414 * Don't mark the inode dirty under page lock. First, it unnecessarily
1415 * makes the holding time of page lock longer. Second, it forces lock
1416 * ordering of page lock and transaction start for journaling
1419 if (i_size_changed || inline_data)
1420 ext4_mark_inode_dirty(handle, inode);
1422 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1423 /* if we have allocated more blocks and copied
1424 * less. We will have blocks allocated outside
1425 * inode->i_size. So truncate them
1427 ext4_orphan_add(handle, inode);
1429 ret2 = ext4_journal_stop(handle);
1433 if (pos + len > inode->i_size) {
1434 ext4_truncate_failed_write(inode);
1436 * If truncate failed early the inode might still be
1437 * on the orphan list; we need to make sure the inode
1438 * is removed from the orphan list in that case.
1441 ext4_orphan_del(NULL, inode);
1444 return ret ? ret : copied;
1448 * This is a private version of page_zero_new_buffers() which doesn't
1449 * set the buffer to be dirty, since in data=journalled mode we need
1450 * to call ext4_handle_dirty_metadata() instead.
1452 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1454 unsigned from, unsigned to)
1456 unsigned int block_start = 0, block_end;
1457 struct buffer_head *head, *bh;
1459 bh = head = page_buffers(page);
1461 block_end = block_start + bh->b_size;
1462 if (buffer_new(bh)) {
1463 if (block_end > from && block_start < to) {
1464 if (!PageUptodate(page)) {
1465 unsigned start, size;
1467 start = max(from, block_start);
1468 size = min(to, block_end) - start;
1470 zero_user(page, start, size);
1471 write_end_fn(handle, bh);
1473 clear_buffer_new(bh);
1476 block_start = block_end;
1477 bh = bh->b_this_page;
1478 } while (bh != head);
1481 static int ext4_journalled_write_end(struct file *file,
1482 struct address_space *mapping,
1483 loff_t pos, unsigned len, unsigned copied,
1484 struct page *page, void *fsdata)
1486 handle_t *handle = ext4_journal_current_handle();
1487 struct inode *inode = mapping->host;
1488 loff_t old_size = inode->i_size;
1492 int size_changed = 0;
1493 int inline_data = ext4_has_inline_data(inode);
1495 trace_ext4_journalled_write_end(inode, pos, len, copied);
1496 from = pos & (PAGE_SIZE - 1);
1499 BUG_ON(!ext4_handle_valid(handle));
1502 ret = ext4_write_inline_data_end(inode, pos, len,
1510 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1512 ext4_journalled_zero_new_buffers(handle, page, from, to);
1514 if (unlikely(copied < len))
1515 ext4_journalled_zero_new_buffers(handle, page,
1517 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1518 from + copied, &partial,
1521 SetPageUptodate(page);
1523 size_changed = ext4_update_inode_size(inode, pos + copied);
1524 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1525 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1530 pagecache_isize_extended(inode, old_size, pos);
1532 if (size_changed || inline_data) {
1533 ret2 = ext4_mark_inode_dirty(handle, inode);
1538 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1539 /* if we have allocated more blocks and copied
1540 * less. We will have blocks allocated outside
1541 * inode->i_size. So truncate them
1543 ext4_orphan_add(handle, inode);
1546 ret2 = ext4_journal_stop(handle);
1549 if (pos + len > inode->i_size) {
1550 ext4_truncate_failed_write(inode);
1552 * If truncate failed early the inode might still be
1553 * on the orphan list; we need to make sure the inode
1554 * is removed from the orphan list in that case.
1557 ext4_orphan_del(NULL, inode);
1560 return ret ? ret : copied;
1564 * Reserve space for a single cluster
1566 static int ext4_da_reserve_space(struct inode *inode)
1568 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1569 struct ext4_inode_info *ei = EXT4_I(inode);
1573 * We will charge metadata quota at writeout time; this saves
1574 * us from metadata over-estimation, though we may go over by
1575 * a small amount in the end. Here we just reserve for data.
1577 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1581 spin_lock(&ei->i_block_reservation_lock);
1582 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1583 spin_unlock(&ei->i_block_reservation_lock);
1584 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1587 ei->i_reserved_data_blocks++;
1588 trace_ext4_da_reserve_space(inode);
1589 spin_unlock(&ei->i_block_reservation_lock);
1591 return 0; /* success */
1594 void ext4_da_release_space(struct inode *inode, int to_free)
1596 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1597 struct ext4_inode_info *ei = EXT4_I(inode);
1600 return; /* Nothing to release, exit */
1602 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1604 trace_ext4_da_release_space(inode, to_free);
1605 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1607 * if there aren't enough reserved blocks, then the
1608 * counter is messed up somewhere. Since this
1609 * function is called from invalidate page, it's
1610 * harmless to return without any action.
1612 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1613 "ino %lu, to_free %d with only %d reserved "
1614 "data blocks", inode->i_ino, to_free,
1615 ei->i_reserved_data_blocks);
1617 to_free = ei->i_reserved_data_blocks;
1619 ei->i_reserved_data_blocks -= to_free;
1621 /* update fs dirty data blocks counter */
1622 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1624 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1626 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1629 static void ext4_da_page_release_reservation(struct page *page,
1630 unsigned int offset,
1631 unsigned int length)
1633 int contiguous_blks = 0;
1634 struct buffer_head *head, *bh;
1635 unsigned int curr_off = 0;
1636 struct inode *inode = page->mapping->host;
1637 unsigned int stop = offset + length;
1640 BUG_ON(stop > PAGE_SIZE || stop < length);
1642 head = page_buffers(page);
1645 unsigned int next_off = curr_off + bh->b_size;
1647 if (next_off > stop)
1650 if ((offset <= curr_off) && (buffer_delay(bh))) {
1652 clear_buffer_delay(bh);
1653 } else if (contiguous_blks) {
1654 lblk = page->index <<
1655 (PAGE_SHIFT - inode->i_blkbits);
1656 lblk += (curr_off >> inode->i_blkbits) -
1658 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1659 contiguous_blks = 0;
1661 curr_off = next_off;
1662 } while ((bh = bh->b_this_page) != head);
1664 if (contiguous_blks) {
1665 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1666 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1667 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1673 * Delayed allocation stuff
1676 struct mpage_da_data {
1677 struct inode *inode;
1678 struct writeback_control *wbc;
1680 pgoff_t first_page; /* The first page to write */
1681 pgoff_t next_page; /* Current page to examine */
1682 pgoff_t last_page; /* Last page to examine */
1684 * Extent to map - this can be after first_page because that can be
1685 * fully mapped. We somewhat abuse m_flags to store whether the extent
1686 * is delalloc or unwritten.
1688 struct ext4_map_blocks map;
1689 struct ext4_io_submit io_submit; /* IO submission data */
1690 unsigned int do_map:1;
1693 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1698 struct pagevec pvec;
1699 struct inode *inode = mpd->inode;
1700 struct address_space *mapping = inode->i_mapping;
1702 /* This is necessary when next_page == 0. */
1703 if (mpd->first_page >= mpd->next_page)
1706 index = mpd->first_page;
1707 end = mpd->next_page - 1;
1709 ext4_lblk_t start, last;
1710 start = index << (PAGE_SHIFT - inode->i_blkbits);
1711 last = end << (PAGE_SHIFT - inode->i_blkbits);
1712 ext4_es_remove_extent(inode, start, last - start + 1);
1715 pagevec_init(&pvec);
1716 while (index <= end) {
1717 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1720 for (i = 0; i < nr_pages; i++) {
1721 struct page *page = pvec.pages[i];
1723 BUG_ON(!PageLocked(page));
1724 BUG_ON(PageWriteback(page));
1726 if (page_mapped(page))
1727 clear_page_dirty_for_io(page);
1728 block_invalidatepage(page, 0, PAGE_SIZE);
1729 ClearPageUptodate(page);
1733 pagevec_release(&pvec);
1737 static void ext4_print_free_blocks(struct inode *inode)
1739 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1740 struct super_block *sb = inode->i_sb;
1741 struct ext4_inode_info *ei = EXT4_I(inode);
1743 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1744 EXT4_C2B(EXT4_SB(inode->i_sb),
1745 ext4_count_free_clusters(sb)));
1746 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1747 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1748 (long long) EXT4_C2B(EXT4_SB(sb),
1749 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1750 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1751 (long long) EXT4_C2B(EXT4_SB(sb),
1752 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1753 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1754 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1755 ei->i_reserved_data_blocks);
1759 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1761 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1765 * ext4_insert_delayed_block - adds a delayed block to the extents status
1766 * tree, incrementing the reserved cluster/block
1767 * count or making a pending reservation
1770 * @inode - file containing the newly added block
1771 * @lblk - logical block to be added
1773 * Returns 0 on success, negative error code on failure.
1775 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1777 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1779 bool allocated = false;
1782 * If the cluster containing lblk is shared with a delayed,
1783 * written, or unwritten extent in a bigalloc file system, it's
1784 * already been accounted for and does not need to be reserved.
1785 * A pending reservation must be made for the cluster if it's
1786 * shared with a written or unwritten extent and doesn't already
1787 * have one. Written and unwritten extents can be purged from the
1788 * extents status tree if the system is under memory pressure, so
1789 * it's necessary to examine the extent tree if a search of the
1790 * extents status tree doesn't get a match.
1792 if (sbi->s_cluster_ratio == 1) {
1793 ret = ext4_da_reserve_space(inode);
1794 if (ret != 0) /* ENOSPC */
1796 } else { /* bigalloc */
1797 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1798 if (!ext4_es_scan_clu(inode,
1799 &ext4_es_is_mapped, lblk)) {
1800 ret = ext4_clu_mapped(inode,
1801 EXT4_B2C(sbi, lblk));
1805 ret = ext4_da_reserve_space(inode);
1806 if (ret != 0) /* ENOSPC */
1817 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1824 * This function is grabs code from the very beginning of
1825 * ext4_map_blocks, but assumes that the caller is from delayed write
1826 * time. This function looks up the requested blocks and sets the
1827 * buffer delay bit under the protection of i_data_sem.
1829 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1830 struct ext4_map_blocks *map,
1831 struct buffer_head *bh)
1833 struct extent_status es;
1835 sector_t invalid_block = ~((sector_t) 0xffff);
1836 #ifdef ES_AGGRESSIVE_TEST
1837 struct ext4_map_blocks orig_map;
1839 memcpy(&orig_map, map, sizeof(*map));
1842 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1846 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1847 "logical block %lu\n", inode->i_ino, map->m_len,
1848 (unsigned long) map->m_lblk);
1850 /* Lookup extent status tree firstly */
1851 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1852 if (ext4_es_is_hole(&es)) {
1854 down_read(&EXT4_I(inode)->i_data_sem);
1859 * Delayed extent could be allocated by fallocate.
1860 * So we need to check it.
1862 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1863 map_bh(bh, inode->i_sb, invalid_block);
1865 set_buffer_delay(bh);
1869 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1870 retval = es.es_len - (iblock - es.es_lblk);
1871 if (retval > map->m_len)
1872 retval = map->m_len;
1873 map->m_len = retval;
1874 if (ext4_es_is_written(&es))
1875 map->m_flags |= EXT4_MAP_MAPPED;
1876 else if (ext4_es_is_unwritten(&es))
1877 map->m_flags |= EXT4_MAP_UNWRITTEN;
1881 #ifdef ES_AGGRESSIVE_TEST
1882 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1888 * Try to see if we can get the block without requesting a new
1889 * file system block.
1891 down_read(&EXT4_I(inode)->i_data_sem);
1892 if (ext4_has_inline_data(inode))
1894 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1895 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1897 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1904 * XXX: __block_prepare_write() unmaps passed block,
1908 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1914 map_bh(bh, inode->i_sb, invalid_block);
1916 set_buffer_delay(bh);
1917 } else if (retval > 0) {
1919 unsigned int status;
1921 if (unlikely(retval != map->m_len)) {
1922 ext4_warning(inode->i_sb,
1923 "ES len assertion failed for inode "
1924 "%lu: retval %d != map->m_len %d",
1925 inode->i_ino, retval, map->m_len);
1929 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1930 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1931 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1932 map->m_pblk, status);
1938 up_read((&EXT4_I(inode)->i_data_sem));
1944 * This is a special get_block_t callback which is used by
1945 * ext4_da_write_begin(). It will either return mapped block or
1946 * reserve space for a single block.
1948 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1949 * We also have b_blocknr = -1 and b_bdev initialized properly
1951 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1952 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1953 * initialized properly.
1955 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1956 struct buffer_head *bh, int create)
1958 struct ext4_map_blocks map;
1961 BUG_ON(create == 0);
1962 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1964 map.m_lblk = iblock;
1968 * first, we need to know whether the block is allocated already
1969 * preallocated blocks are unmapped but should treated
1970 * the same as allocated blocks.
1972 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1976 map_bh(bh, inode->i_sb, map.m_pblk);
1977 ext4_update_bh_state(bh, map.m_flags);
1979 if (buffer_unwritten(bh)) {
1980 /* A delayed write to unwritten bh should be marked
1981 * new and mapped. Mapped ensures that we don't do
1982 * get_block multiple times when we write to the same
1983 * offset and new ensures that we do proper zero out
1984 * for partial write.
1987 set_buffer_mapped(bh);
1992 static int bget_one(handle_t *handle, struct buffer_head *bh)
1998 static int bput_one(handle_t *handle, struct buffer_head *bh)
2004 static int __ext4_journalled_writepage(struct page *page,
2007 struct address_space *mapping = page->mapping;
2008 struct inode *inode = mapping->host;
2009 struct buffer_head *page_bufs = NULL;
2010 handle_t *handle = NULL;
2011 int ret = 0, err = 0;
2012 int inline_data = ext4_has_inline_data(inode);
2013 struct buffer_head *inode_bh = NULL;
2015 ClearPageChecked(page);
2018 BUG_ON(page->index != 0);
2019 BUG_ON(len > ext4_get_max_inline_size(inode));
2020 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2021 if (inode_bh == NULL)
2024 page_bufs = page_buffers(page);
2029 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2033 * We need to release the page lock before we start the
2034 * journal, so grab a reference so the page won't disappear
2035 * out from under us.
2040 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2041 ext4_writepage_trans_blocks(inode));
2042 if (IS_ERR(handle)) {
2043 ret = PTR_ERR(handle);
2045 goto out_no_pagelock;
2047 BUG_ON(!ext4_handle_valid(handle));
2051 if (page->mapping != mapping) {
2052 /* The page got truncated from under us */
2053 ext4_journal_stop(handle);
2059 ret = ext4_mark_inode_dirty(handle, inode);
2061 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2062 do_journal_get_write_access);
2064 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2069 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2070 err = ext4_journal_stop(handle);
2074 if (!ext4_has_inline_data(inode))
2075 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2077 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2086 * Note that we don't need to start a transaction unless we're journaling data
2087 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2088 * need to file the inode to the transaction's list in ordered mode because if
2089 * we are writing back data added by write(), the inode is already there and if
2090 * we are writing back data modified via mmap(), no one guarantees in which
2091 * transaction the data will hit the disk. In case we are journaling data, we
2092 * cannot start transaction directly because transaction start ranks above page
2093 * lock so we have to do some magic.
2095 * This function can get called via...
2096 * - ext4_writepages after taking page lock (have journal handle)
2097 * - journal_submit_inode_data_buffers (no journal handle)
2098 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2099 * - grab_page_cache when doing write_begin (have journal handle)
2101 * We don't do any block allocation in this function. If we have page with
2102 * multiple blocks we need to write those buffer_heads that are mapped. This
2103 * is important for mmaped based write. So if we do with blocksize 1K
2104 * truncate(f, 1024);
2105 * a = mmap(f, 0, 4096);
2107 * truncate(f, 4096);
2108 * we have in the page first buffer_head mapped via page_mkwrite call back
2109 * but other buffer_heads would be unmapped but dirty (dirty done via the
2110 * do_wp_page). So writepage should write the first block. If we modify
2111 * the mmap area beyond 1024 we will again get a page_fault and the
2112 * page_mkwrite callback will do the block allocation and mark the
2113 * buffer_heads mapped.
2115 * We redirty the page if we have any buffer_heads that is either delay or
2116 * unwritten in the page.
2118 * We can get recursively called as show below.
2120 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2123 * But since we don't do any block allocation we should not deadlock.
2124 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2126 static int ext4_writepage(struct page *page,
2127 struct writeback_control *wbc)
2132 struct buffer_head *page_bufs = NULL;
2133 struct inode *inode = page->mapping->host;
2134 struct ext4_io_submit io_submit;
2135 bool keep_towrite = false;
2137 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2138 ext4_invalidatepage(page, 0, PAGE_SIZE);
2143 trace_ext4_writepage(page);
2144 size = i_size_read(inode);
2145 if (page->index == size >> PAGE_SHIFT)
2146 len = size & ~PAGE_MASK;
2150 page_bufs = page_buffers(page);
2152 * We cannot do block allocation or other extent handling in this
2153 * function. If there are buffers needing that, we have to redirty
2154 * the page. But we may reach here when we do a journal commit via
2155 * journal_submit_inode_data_buffers() and in that case we must write
2156 * allocated buffers to achieve data=ordered mode guarantees.
2158 * Also, if there is only one buffer per page (the fs block
2159 * size == the page size), if one buffer needs block
2160 * allocation or needs to modify the extent tree to clear the
2161 * unwritten flag, we know that the page can't be written at
2162 * all, so we might as well refuse the write immediately.
2163 * Unfortunately if the block size != page size, we can't as
2164 * easily detect this case using ext4_walk_page_buffers(), but
2165 * for the extremely common case, this is an optimization that
2166 * skips a useless round trip through ext4_bio_write_page().
2168 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2169 ext4_bh_delay_or_unwritten)) {
2170 redirty_page_for_writepage(wbc, page);
2171 if ((current->flags & PF_MEMALLOC) ||
2172 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2174 * For memory cleaning there's no point in writing only
2175 * some buffers. So just bail out. Warn if we came here
2176 * from direct reclaim.
2178 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2183 keep_towrite = true;
2186 if (PageChecked(page) && ext4_should_journal_data(inode))
2188 * It's mmapped pagecache. Add buffers and journal it. There
2189 * doesn't seem much point in redirtying the page here.
2191 return __ext4_journalled_writepage(page, len);
2193 ext4_io_submit_init(&io_submit, wbc);
2194 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2195 if (!io_submit.io_end) {
2196 redirty_page_for_writepage(wbc, page);
2200 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2201 ext4_io_submit(&io_submit);
2202 /* Drop io_end reference we got from init */
2203 ext4_put_io_end_defer(io_submit.io_end);
2207 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2213 BUG_ON(page->index != mpd->first_page);
2214 clear_page_dirty_for_io(page);
2216 * We have to be very careful here! Nothing protects writeback path
2217 * against i_size changes and the page can be writeably mapped into
2218 * page tables. So an application can be growing i_size and writing
2219 * data through mmap while writeback runs. clear_page_dirty_for_io()
2220 * write-protects our page in page tables and the page cannot get
2221 * written to again until we release page lock. So only after
2222 * clear_page_dirty_for_io() we are safe to sample i_size for
2223 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2224 * on the barrier provided by TestClearPageDirty in
2225 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2226 * after page tables are updated.
2228 size = i_size_read(mpd->inode);
2229 if (page->index == size >> PAGE_SHIFT)
2230 len = size & ~PAGE_MASK;
2233 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2235 mpd->wbc->nr_to_write--;
2241 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2244 * mballoc gives us at most this number of blocks...
2245 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2246 * The rest of mballoc seems to handle chunks up to full group size.
2248 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2251 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2253 * @mpd - extent of blocks
2254 * @lblk - logical number of the block in the file
2255 * @bh - buffer head we want to add to the extent
2257 * The function is used to collect contig. blocks in the same state. If the
2258 * buffer doesn't require mapping for writeback and we haven't started the
2259 * extent of buffers to map yet, the function returns 'true' immediately - the
2260 * caller can write the buffer right away. Otherwise the function returns true
2261 * if the block has been added to the extent, false if the block couldn't be
2264 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2265 struct buffer_head *bh)
2267 struct ext4_map_blocks *map = &mpd->map;
2269 /* Buffer that doesn't need mapping for writeback? */
2270 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2271 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2272 /* So far no extent to map => we write the buffer right away */
2273 if (map->m_len == 0)
2278 /* First block in the extent? */
2279 if (map->m_len == 0) {
2280 /* We cannot map unless handle is started... */
2285 map->m_flags = bh->b_state & BH_FLAGS;
2289 /* Don't go larger than mballoc is willing to allocate */
2290 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2293 /* Can we merge the block to our big extent? */
2294 if (lblk == map->m_lblk + map->m_len &&
2295 (bh->b_state & BH_FLAGS) == map->m_flags) {
2303 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2305 * @mpd - extent of blocks for mapping
2306 * @head - the first buffer in the page
2307 * @bh - buffer we should start processing from
2308 * @lblk - logical number of the block in the file corresponding to @bh
2310 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2311 * the page for IO if all buffers in this page were mapped and there's no
2312 * accumulated extent of buffers to map or add buffers in the page to the
2313 * extent of buffers to map. The function returns 1 if the caller can continue
2314 * by processing the next page, 0 if it should stop adding buffers to the
2315 * extent to map because we cannot extend it anymore. It can also return value
2316 * < 0 in case of error during IO submission.
2318 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2319 struct buffer_head *head,
2320 struct buffer_head *bh,
2323 struct inode *inode = mpd->inode;
2325 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2326 >> inode->i_blkbits;
2329 BUG_ON(buffer_locked(bh));
2331 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2332 /* Found extent to map? */
2335 /* Buffer needs mapping and handle is not started? */
2338 /* Everything mapped so far and we hit EOF */
2341 } while (lblk++, (bh = bh->b_this_page) != head);
2342 /* So far everything mapped? Submit the page for IO. */
2343 if (mpd->map.m_len == 0) {
2344 err = mpage_submit_page(mpd, head->b_page);
2348 return lblk < blocks;
2352 * mpage_map_buffers - update buffers corresponding to changed extent and
2353 * submit fully mapped pages for IO
2355 * @mpd - description of extent to map, on return next extent to map
2357 * Scan buffers corresponding to changed extent (we expect corresponding pages
2358 * to be already locked) and update buffer state according to new extent state.
2359 * We map delalloc buffers to their physical location, clear unwritten bits,
2360 * and mark buffers as uninit when we perform writes to unwritten extents
2361 * and do extent conversion after IO is finished. If the last page is not fully
2362 * mapped, we update @map to the next extent in the last page that needs
2363 * mapping. Otherwise we submit the page for IO.
2365 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2367 struct pagevec pvec;
2369 struct inode *inode = mpd->inode;
2370 struct buffer_head *head, *bh;
2371 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2377 start = mpd->map.m_lblk >> bpp_bits;
2378 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2379 lblk = start << bpp_bits;
2380 pblock = mpd->map.m_pblk;
2382 pagevec_init(&pvec);
2383 while (start <= end) {
2384 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2388 for (i = 0; i < nr_pages; i++) {
2389 struct page *page = pvec.pages[i];
2391 bh = head = page_buffers(page);
2393 if (lblk < mpd->map.m_lblk)
2395 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2397 * Buffer after end of mapped extent.
2398 * Find next buffer in the page to map.
2401 mpd->map.m_flags = 0;
2403 * FIXME: If dioread_nolock supports
2404 * blocksize < pagesize, we need to make
2405 * sure we add size mapped so far to
2406 * io_end->size as the following call
2407 * can submit the page for IO.
2409 err = mpage_process_page_bufs(mpd, head,
2411 pagevec_release(&pvec);
2416 if (buffer_delay(bh)) {
2417 clear_buffer_delay(bh);
2418 bh->b_blocknr = pblock++;
2420 clear_buffer_unwritten(bh);
2421 } while (lblk++, (bh = bh->b_this_page) != head);
2424 * FIXME: This is going to break if dioread_nolock
2425 * supports blocksize < pagesize as we will try to
2426 * convert potentially unmapped parts of inode.
2428 mpd->io_submit.io_end->size += PAGE_SIZE;
2429 /* Page fully mapped - let IO run! */
2430 err = mpage_submit_page(mpd, page);
2432 pagevec_release(&pvec);
2436 pagevec_release(&pvec);
2438 /* Extent fully mapped and matches with page boundary. We are done. */
2440 mpd->map.m_flags = 0;
2444 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2446 struct inode *inode = mpd->inode;
2447 struct ext4_map_blocks *map = &mpd->map;
2448 int get_blocks_flags;
2449 int err, dioread_nolock;
2451 trace_ext4_da_write_pages_extent(inode, map);
2453 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2454 * to convert an unwritten extent to be initialized (in the case
2455 * where we have written into one or more preallocated blocks). It is
2456 * possible that we're going to need more metadata blocks than
2457 * previously reserved. However we must not fail because we're in
2458 * writeback and there is nothing we can do about it so it might result
2459 * in data loss. So use reserved blocks to allocate metadata if
2462 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2463 * the blocks in question are delalloc blocks. This indicates
2464 * that the blocks and quotas has already been checked when
2465 * the data was copied into the page cache.
2467 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2468 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2469 EXT4_GET_BLOCKS_IO_SUBMIT;
2470 dioread_nolock = ext4_should_dioread_nolock(inode);
2472 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2473 if (map->m_flags & (1 << BH_Delay))
2474 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2476 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2479 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2480 if (!mpd->io_submit.io_end->handle &&
2481 ext4_handle_valid(handle)) {
2482 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2483 handle->h_rsv_handle = NULL;
2485 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2488 BUG_ON(map->m_len == 0);
2493 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2494 * mpd->len and submit pages underlying it for IO
2496 * @handle - handle for journal operations
2497 * @mpd - extent to map
2498 * @give_up_on_write - we set this to true iff there is a fatal error and there
2499 * is no hope of writing the data. The caller should discard
2500 * dirty pages to avoid infinite loops.
2502 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2503 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2504 * them to initialized or split the described range from larger unwritten
2505 * extent. Note that we need not map all the described range since allocation
2506 * can return less blocks or the range is covered by more unwritten extents. We
2507 * cannot map more because we are limited by reserved transaction credits. On
2508 * the other hand we always make sure that the last touched page is fully
2509 * mapped so that it can be written out (and thus forward progress is
2510 * guaranteed). After mapping we submit all mapped pages for IO.
2512 static int mpage_map_and_submit_extent(handle_t *handle,
2513 struct mpage_da_data *mpd,
2514 bool *give_up_on_write)
2516 struct inode *inode = mpd->inode;
2517 struct ext4_map_blocks *map = &mpd->map;
2522 mpd->io_submit.io_end->offset =
2523 ((loff_t)map->m_lblk) << inode->i_blkbits;
2525 err = mpage_map_one_extent(handle, mpd);
2527 struct super_block *sb = inode->i_sb;
2529 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2530 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2531 goto invalidate_dirty_pages;
2533 * Let the uper layers retry transient errors.
2534 * In the case of ENOSPC, if ext4_count_free_blocks()
2535 * is non-zero, a commit should free up blocks.
2537 if ((err == -ENOMEM) ||
2538 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2540 goto update_disksize;
2543 ext4_msg(sb, KERN_CRIT,
2544 "Delayed block allocation failed for "
2545 "inode %lu at logical offset %llu with"
2546 " max blocks %u with error %d",
2548 (unsigned long long)map->m_lblk,
2549 (unsigned)map->m_len, -err);
2550 ext4_msg(sb, KERN_CRIT,
2551 "This should not happen!! Data will "
2554 ext4_print_free_blocks(inode);
2555 invalidate_dirty_pages:
2556 *give_up_on_write = true;
2561 * Update buffer state, submit mapped pages, and get us new
2564 err = mpage_map_and_submit_buffers(mpd);
2566 goto update_disksize;
2567 } while (map->m_len);
2571 * Update on-disk size after IO is submitted. Races with
2572 * truncate are avoided by checking i_size under i_data_sem.
2574 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2575 if (disksize > EXT4_I(inode)->i_disksize) {
2579 down_write(&EXT4_I(inode)->i_data_sem);
2580 i_size = i_size_read(inode);
2581 if (disksize > i_size)
2583 if (disksize > EXT4_I(inode)->i_disksize)
2584 EXT4_I(inode)->i_disksize = disksize;
2585 up_write(&EXT4_I(inode)->i_data_sem);
2586 err2 = ext4_mark_inode_dirty(handle, inode);
2588 ext4_error(inode->i_sb,
2589 "Failed to mark inode %lu dirty",
2598 * Calculate the total number of credits to reserve for one writepages
2599 * iteration. This is called from ext4_writepages(). We map an extent of
2600 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2601 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2602 * bpp - 1 blocks in bpp different extents.
2604 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2606 int bpp = ext4_journal_blocks_per_page(inode);
2608 return ext4_meta_trans_blocks(inode,
2609 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2613 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2614 * and underlying extent to map
2616 * @mpd - where to look for pages
2618 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2619 * IO immediately. When we find a page which isn't mapped we start accumulating
2620 * extent of buffers underlying these pages that needs mapping (formed by
2621 * either delayed or unwritten buffers). We also lock the pages containing
2622 * these buffers. The extent found is returned in @mpd structure (starting at
2623 * mpd->lblk with length mpd->len blocks).
2625 * Note that this function can attach bios to one io_end structure which are
2626 * neither logically nor physically contiguous. Although it may seem as an
2627 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2628 * case as we need to track IO to all buffers underlying a page in one io_end.
2630 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2632 struct address_space *mapping = mpd->inode->i_mapping;
2633 struct pagevec pvec;
2634 unsigned int nr_pages;
2635 long left = mpd->wbc->nr_to_write;
2636 pgoff_t index = mpd->first_page;
2637 pgoff_t end = mpd->last_page;
2640 int blkbits = mpd->inode->i_blkbits;
2642 struct buffer_head *head;
2644 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2645 tag = PAGECACHE_TAG_TOWRITE;
2647 tag = PAGECACHE_TAG_DIRTY;
2649 pagevec_init(&pvec);
2651 mpd->next_page = index;
2652 while (index <= end) {
2653 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2658 for (i = 0; i < nr_pages; i++) {
2659 struct page *page = pvec.pages[i];
2662 * Accumulated enough dirty pages? This doesn't apply
2663 * to WB_SYNC_ALL mode. For integrity sync we have to
2664 * keep going because someone may be concurrently
2665 * dirtying pages, and we might have synced a lot of
2666 * newly appeared dirty pages, but have not synced all
2667 * of the old dirty pages.
2669 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2672 /* If we can't merge this page, we are done. */
2673 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2678 * If the page is no longer dirty, or its mapping no
2679 * longer corresponds to inode we are writing (which
2680 * means it has been truncated or invalidated), or the
2681 * page is already under writeback and we are not doing
2682 * a data integrity writeback, skip the page
2684 if (!PageDirty(page) ||
2685 (PageWriteback(page) &&
2686 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2687 unlikely(page->mapping != mapping)) {
2692 wait_on_page_writeback(page);
2693 BUG_ON(PageWriteback(page));
2695 if (mpd->map.m_len == 0)
2696 mpd->first_page = page->index;
2697 mpd->next_page = page->index + 1;
2698 /* Add all dirty buffers to mpd */
2699 lblk = ((ext4_lblk_t)page->index) <<
2700 (PAGE_SHIFT - blkbits);
2701 head = page_buffers(page);
2702 err = mpage_process_page_bufs(mpd, head, head, lblk);
2708 pagevec_release(&pvec);
2713 pagevec_release(&pvec);
2717 static int ext4_writepages(struct address_space *mapping,
2718 struct writeback_control *wbc)
2720 pgoff_t writeback_index = 0;
2721 long nr_to_write = wbc->nr_to_write;
2722 int range_whole = 0;
2724 handle_t *handle = NULL;
2725 struct mpage_da_data mpd;
2726 struct inode *inode = mapping->host;
2727 int needed_blocks, rsv_blocks = 0, ret = 0;
2728 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2730 struct blk_plug plug;
2731 bool give_up_on_write = false;
2733 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2736 percpu_down_read(&sbi->s_journal_flag_rwsem);
2737 trace_ext4_writepages(inode, wbc);
2740 * No pages to write? This is mainly a kludge to avoid starting
2741 * a transaction for special inodes like journal inode on last iput()
2742 * because that could violate lock ordering on umount
2744 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2745 goto out_writepages;
2747 if (ext4_should_journal_data(inode)) {
2748 ret = generic_writepages(mapping, wbc);
2749 goto out_writepages;
2753 * If the filesystem has aborted, it is read-only, so return
2754 * right away instead of dumping stack traces later on that
2755 * will obscure the real source of the problem. We test
2756 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2757 * the latter could be true if the filesystem is mounted
2758 * read-only, and in that case, ext4_writepages should
2759 * *never* be called, so if that ever happens, we would want
2762 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2763 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2765 goto out_writepages;
2768 if (ext4_should_dioread_nolock(inode)) {
2770 * We may need to convert up to one extent per block in
2771 * the page and we may dirty the inode.
2773 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2774 PAGE_SIZE >> inode->i_blkbits);
2778 * If we have inline data and arrive here, it means that
2779 * we will soon create the block for the 1st page, so
2780 * we'd better clear the inline data here.
2782 if (ext4_has_inline_data(inode)) {
2783 /* Just inode will be modified... */
2784 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2785 if (IS_ERR(handle)) {
2786 ret = PTR_ERR(handle);
2787 goto out_writepages;
2789 BUG_ON(ext4_test_inode_state(inode,
2790 EXT4_STATE_MAY_INLINE_DATA));
2791 ext4_destroy_inline_data(handle, inode);
2792 ext4_journal_stop(handle);
2795 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2798 if (wbc->range_cyclic) {
2799 writeback_index = mapping->writeback_index;
2800 if (writeback_index)
2802 mpd.first_page = writeback_index;
2805 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2806 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2811 ext4_io_submit_init(&mpd.io_submit, wbc);
2813 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2814 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2816 blk_start_plug(&plug);
2819 * First writeback pages that don't need mapping - we can avoid
2820 * starting a transaction unnecessarily and also avoid being blocked
2821 * in the block layer on device congestion while having transaction
2825 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2826 if (!mpd.io_submit.io_end) {
2830 ret = mpage_prepare_extent_to_map(&mpd);
2831 /* Unlock pages we didn't use */
2832 mpage_release_unused_pages(&mpd, false);
2833 /* Submit prepared bio */
2834 ext4_io_submit(&mpd.io_submit);
2835 ext4_put_io_end_defer(mpd.io_submit.io_end);
2836 mpd.io_submit.io_end = NULL;
2840 while (!done && mpd.first_page <= mpd.last_page) {
2841 /* For each extent of pages we use new io_end */
2842 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2843 if (!mpd.io_submit.io_end) {
2849 * We have two constraints: We find one extent to map and we
2850 * must always write out whole page (makes a difference when
2851 * blocksize < pagesize) so that we don't block on IO when we
2852 * try to write out the rest of the page. Journalled mode is
2853 * not supported by delalloc.
2855 BUG_ON(ext4_should_journal_data(inode));
2856 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2858 /* start a new transaction */
2859 handle = ext4_journal_start_with_reserve(inode,
2860 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2861 if (IS_ERR(handle)) {
2862 ret = PTR_ERR(handle);
2863 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2864 "%ld pages, ino %lu; err %d", __func__,
2865 wbc->nr_to_write, inode->i_ino, ret);
2866 /* Release allocated io_end */
2867 ext4_put_io_end(mpd.io_submit.io_end);
2868 mpd.io_submit.io_end = NULL;
2873 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2874 ret = mpage_prepare_extent_to_map(&mpd);
2877 ret = mpage_map_and_submit_extent(handle, &mpd,
2881 * We scanned the whole range (or exhausted
2882 * nr_to_write), submitted what was mapped and
2883 * didn't find anything needing mapping. We are
2890 * Caution: If the handle is synchronous,
2891 * ext4_journal_stop() can wait for transaction commit
2892 * to finish which may depend on writeback of pages to
2893 * complete or on page lock to be released. In that
2894 * case, we have to wait until after after we have
2895 * submitted all the IO, released page locks we hold,
2896 * and dropped io_end reference (for extent conversion
2897 * to be able to complete) before stopping the handle.
2899 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2900 ext4_journal_stop(handle);
2904 /* Unlock pages we didn't use */
2905 mpage_release_unused_pages(&mpd, give_up_on_write);
2906 /* Submit prepared bio */
2907 ext4_io_submit(&mpd.io_submit);
2910 * Drop our io_end reference we got from init. We have
2911 * to be careful and use deferred io_end finishing if
2912 * we are still holding the transaction as we can
2913 * release the last reference to io_end which may end
2914 * up doing unwritten extent conversion.
2917 ext4_put_io_end_defer(mpd.io_submit.io_end);
2918 ext4_journal_stop(handle);
2920 ext4_put_io_end(mpd.io_submit.io_end);
2921 mpd.io_submit.io_end = NULL;
2923 if (ret == -ENOSPC && sbi->s_journal) {
2925 * Commit the transaction which would
2926 * free blocks released in the transaction
2929 jbd2_journal_force_commit_nested(sbi->s_journal);
2933 /* Fatal error - ENOMEM, EIO... */
2938 blk_finish_plug(&plug);
2939 if (!ret && !cycled && wbc->nr_to_write > 0) {
2941 mpd.last_page = writeback_index - 1;
2947 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2949 * Set the writeback_index so that range_cyclic
2950 * mode will write it back later
2952 mapping->writeback_index = mpd.first_page;
2955 trace_ext4_writepages_result(inode, wbc, ret,
2956 nr_to_write - wbc->nr_to_write);
2957 percpu_up_read(&sbi->s_journal_flag_rwsem);
2961 static int ext4_dax_writepages(struct address_space *mapping,
2962 struct writeback_control *wbc)
2965 long nr_to_write = wbc->nr_to_write;
2966 struct inode *inode = mapping->host;
2967 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2969 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2972 percpu_down_read(&sbi->s_journal_flag_rwsem);
2973 trace_ext4_writepages(inode, wbc);
2975 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2976 trace_ext4_writepages_result(inode, wbc, ret,
2977 nr_to_write - wbc->nr_to_write);
2978 percpu_up_read(&sbi->s_journal_flag_rwsem);
2982 static int ext4_nonda_switch(struct super_block *sb)
2984 s64 free_clusters, dirty_clusters;
2985 struct ext4_sb_info *sbi = EXT4_SB(sb);
2988 * switch to non delalloc mode if we are running low
2989 * on free block. The free block accounting via percpu
2990 * counters can get slightly wrong with percpu_counter_batch getting
2991 * accumulated on each CPU without updating global counters
2992 * Delalloc need an accurate free block accounting. So switch
2993 * to non delalloc when we are near to error range.
2996 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2998 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3000 * Start pushing delalloc when 1/2 of free blocks are dirty.
3002 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3003 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3005 if (2 * free_clusters < 3 * dirty_clusters ||
3006 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3008 * free block count is less than 150% of dirty blocks
3009 * or free blocks is less than watermark
3016 /* We always reserve for an inode update; the superblock could be there too */
3017 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3019 if (likely(ext4_has_feature_large_file(inode->i_sb)))
3022 if (pos + len <= 0x7fffffffULL)
3025 /* We might need to update the superblock to set LARGE_FILE */
3029 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3030 loff_t pos, unsigned len, unsigned flags,
3031 struct page **pagep, void **fsdata)
3033 int ret, retries = 0;
3036 struct inode *inode = mapping->host;
3039 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3042 index = pos >> PAGE_SHIFT;
3044 if (ext4_nonda_switch(inode->i_sb) ||
3045 S_ISLNK(inode->i_mode)) {
3046 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3047 return ext4_write_begin(file, mapping, pos,
3048 len, flags, pagep, fsdata);
3050 *fsdata = (void *)0;
3051 trace_ext4_da_write_begin(inode, pos, len, flags);
3053 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3054 ret = ext4_da_write_inline_data_begin(mapping, inode,
3064 * grab_cache_page_write_begin() can take a long time if the
3065 * system is thrashing due to memory pressure, or if the page
3066 * is being written back. So grab it first before we start
3067 * the transaction handle. This also allows us to allocate
3068 * the page (if needed) without using GFP_NOFS.
3071 page = grab_cache_page_write_begin(mapping, index, flags);
3077 * With delayed allocation, we don't log the i_disksize update
3078 * if there is delayed block allocation. But we still need
3079 * to journalling the i_disksize update if writes to the end
3080 * of file which has an already mapped buffer.
3083 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3084 ext4_da_write_credits(inode, pos, len));
3085 if (IS_ERR(handle)) {
3087 return PTR_ERR(handle);
3091 if (page->mapping != mapping) {
3092 /* The page got truncated from under us */
3095 ext4_journal_stop(handle);
3098 /* In case writeback began while the page was unlocked */
3099 wait_for_stable_page(page);
3101 #ifdef CONFIG_FS_ENCRYPTION
3102 ret = ext4_block_write_begin(page, pos, len,
3103 ext4_da_get_block_prep);
3105 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3109 ext4_journal_stop(handle);
3111 * block_write_begin may have instantiated a few blocks
3112 * outside i_size. Trim these off again. Don't need
3113 * i_size_read because we hold i_mutex.
3115 if (pos + len > inode->i_size)
3116 ext4_truncate_failed_write(inode);
3118 if (ret == -ENOSPC &&
3119 ext4_should_retry_alloc(inode->i_sb, &retries))
3131 * Check if we should update i_disksize
3132 * when write to the end of file but not require block allocation
3134 static int ext4_da_should_update_i_disksize(struct page *page,
3135 unsigned long offset)
3137 struct buffer_head *bh;
3138 struct inode *inode = page->mapping->host;
3142 bh = page_buffers(page);
3143 idx = offset >> inode->i_blkbits;
3145 for (i = 0; i < idx; i++)
3146 bh = bh->b_this_page;
3148 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3153 static int ext4_da_write_end(struct file *file,
3154 struct address_space *mapping,
3155 loff_t pos, unsigned len, unsigned copied,
3156 struct page *page, void *fsdata)
3158 struct inode *inode = mapping->host;
3160 handle_t *handle = ext4_journal_current_handle();
3162 unsigned long start, end;
3163 int write_mode = (int)(unsigned long)fsdata;
3165 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3166 return ext4_write_end(file, mapping, pos,
3167 len, copied, page, fsdata);
3169 trace_ext4_da_write_end(inode, pos, len, copied);
3170 start = pos & (PAGE_SIZE - 1);
3171 end = start + copied - 1;
3174 * generic_write_end() will run mark_inode_dirty() if i_size
3175 * changes. So let's piggyback the i_disksize mark_inode_dirty
3178 new_i_size = pos + copied;
3179 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3180 if (ext4_has_inline_data(inode) ||
3181 ext4_da_should_update_i_disksize(page, end)) {
3182 ext4_update_i_disksize(inode, new_i_size);
3183 /* We need to mark inode dirty even if
3184 * new_i_size is less that inode->i_size
3185 * bu greater than i_disksize.(hint delalloc)
3187 ext4_mark_inode_dirty(handle, inode);
3191 if (write_mode != CONVERT_INLINE_DATA &&
3192 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3193 ext4_has_inline_data(inode))
3194 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3197 ret2 = generic_write_end(file, mapping, pos, len, copied,
3203 ret2 = ext4_journal_stop(handle);
3207 return ret ? ret : copied;
3210 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3211 unsigned int length)
3214 * Drop reserved blocks
3216 BUG_ON(!PageLocked(page));
3217 if (!page_has_buffers(page))
3220 ext4_da_page_release_reservation(page, offset, length);
3223 ext4_invalidatepage(page, offset, length);
3229 * Force all delayed allocation blocks to be allocated for a given inode.
3231 int ext4_alloc_da_blocks(struct inode *inode)
3233 trace_ext4_alloc_da_blocks(inode);
3235 if (!EXT4_I(inode)->i_reserved_data_blocks)
3239 * We do something simple for now. The filemap_flush() will
3240 * also start triggering a write of the data blocks, which is
3241 * not strictly speaking necessary (and for users of
3242 * laptop_mode, not even desirable). However, to do otherwise
3243 * would require replicating code paths in:
3245 * ext4_writepages() ->
3246 * write_cache_pages() ---> (via passed in callback function)
3247 * __mpage_da_writepage() -->
3248 * mpage_add_bh_to_extent()
3249 * mpage_da_map_blocks()
3251 * The problem is that write_cache_pages(), located in
3252 * mm/page-writeback.c, marks pages clean in preparation for
3253 * doing I/O, which is not desirable if we're not planning on
3256 * We could call write_cache_pages(), and then redirty all of
3257 * the pages by calling redirty_page_for_writepage() but that
3258 * would be ugly in the extreme. So instead we would need to
3259 * replicate parts of the code in the above functions,
3260 * simplifying them because we wouldn't actually intend to
3261 * write out the pages, but rather only collect contiguous
3262 * logical block extents, call the multi-block allocator, and
3263 * then update the buffer heads with the block allocations.
3265 * For now, though, we'll cheat by calling filemap_flush(),
3266 * which will map the blocks, and start the I/O, but not
3267 * actually wait for the I/O to complete.
3269 return filemap_flush(inode->i_mapping);
3273 * bmap() is special. It gets used by applications such as lilo and by
3274 * the swapper to find the on-disk block of a specific piece of data.
3276 * Naturally, this is dangerous if the block concerned is still in the
3277 * journal. If somebody makes a swapfile on an ext4 data-journaling
3278 * filesystem and enables swap, then they may get a nasty shock when the
3279 * data getting swapped to that swapfile suddenly gets overwritten by
3280 * the original zero's written out previously to the journal and
3281 * awaiting writeback in the kernel's buffer cache.
3283 * So, if we see any bmap calls here on a modified, data-journaled file,
3284 * take extra steps to flush any blocks which might be in the cache.
3286 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3288 struct inode *inode = mapping->host;
3293 * We can get here for an inline file via the FIBMAP ioctl
3295 if (ext4_has_inline_data(inode))