b32a57bc5d5d602ffcb8536ef28ae2684317ed7d
[muen/linux.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172                                  int nblocks)
173 {
174         int ret;
175
176         /*
177          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178          * moment, get_block can be called only for blocks inside i_size since
179          * page cache has been already dropped and writes are blocked by
180          * i_mutex. So we can safely drop the i_data_sem here.
181          */
182         BUG_ON(EXT4_JOURNAL(inode) == NULL);
183         jbd_debug(2, "restarting handle %p\n", handle);
184         up_write(&EXT4_I(inode)->i_data_sem);
185         ret = ext4_journal_restart(handle, nblocks);
186         down_write(&EXT4_I(inode)->i_data_sem);
187         ext4_discard_preallocations(inode);
188
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197         handle_t *handle;
198         int err;
199         int extra_credits = 3;
200         struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202         trace_ext4_evict_inode(inode);
203
204         if (inode->i_nlink) {
205                 /*
206                  * When journalling data dirty buffers are tracked only in the
207                  * journal. So although mm thinks everything is clean and
208                  * ready for reaping the inode might still have some pages to
209                  * write in the running transaction or waiting to be
210                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
211                  * (via truncate_inode_pages()) to discard these buffers can
212                  * cause data loss. Also even if we did not discard these
213                  * buffers, we would have no way to find them after the inode
214                  * is reaped and thus user could see stale data if he tries to
215                  * read them before the transaction is checkpointed. So be
216                  * careful and force everything to disk here... We use
217                  * ei->i_datasync_tid to store the newest transaction
218                  * containing inode's data.
219                  *
220                  * Note that directories do not have this problem because they
221                  * don't use page cache.
222                  */
223                 if (inode->i_ino != EXT4_JOURNAL_INO &&
224                     ext4_should_journal_data(inode) &&
225                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226                     inode->i_data.nrpages) {
227                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230                         jbd2_complete_transaction(journal, commit_tid);
231                         filemap_write_and_wait(&inode->i_data);
232                 }
233                 truncate_inode_pages_final(&inode->i_data);
234
235                 goto no_delete;
236         }
237
238         if (is_bad_inode(inode))
239                 goto no_delete;
240         dquot_initialize(inode);
241
242         if (ext4_should_order_data(inode))
243                 ext4_begin_ordered_truncate(inode, 0);
244         truncate_inode_pages_final(&inode->i_data);
245
246         /*
247          * Protect us against freezing - iput() caller didn't have to have any
248          * protection against it
249          */
250         sb_start_intwrite(inode->i_sb);
251
252         if (!IS_NOQUOTA(inode))
253                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256                                  ext4_blocks_for_truncate(inode)+extra_credits);
257         if (IS_ERR(handle)) {
258                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259                 /*
260                  * If we're going to skip the normal cleanup, we still need to
261                  * make sure that the in-core orphan linked list is properly
262                  * cleaned up.
263                  */
264                 ext4_orphan_del(NULL, inode);
265                 sb_end_intwrite(inode->i_sb);
266                 goto no_delete;
267         }
268
269         if (IS_SYNC(inode))
270                 ext4_handle_sync(handle);
271
272         /*
273          * Set inode->i_size to 0 before calling ext4_truncate(). We need
274          * special handling of symlinks here because i_size is used to
275          * determine whether ext4_inode_info->i_data contains symlink data or
276          * block mappings. Setting i_size to 0 will remove its fast symlink
277          * status. Erase i_data so that it becomes a valid empty block map.
278          */
279         if (ext4_inode_is_fast_symlink(inode))
280                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281         inode->i_size = 0;
282         err = ext4_mark_inode_dirty(handle, inode);
283         if (err) {
284                 ext4_warning(inode->i_sb,
285                              "couldn't mark inode dirty (err %d)", err);
286                 goto stop_handle;
287         }
288         if (inode->i_blocks) {
289                 err = ext4_truncate(inode);
290                 if (err) {
291                         ext4_error(inode->i_sb,
292                                    "couldn't truncate inode %lu (err %d)",
293                                    inode->i_ino, err);
294                         goto stop_handle;
295                 }
296         }
297
298         /* Remove xattr references. */
299         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300                                       extra_credits);
301         if (err) {
302                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304                 ext4_journal_stop(handle);
305                 ext4_orphan_del(NULL, inode);
306                 sb_end_intwrite(inode->i_sb);
307                 ext4_xattr_inode_array_free(ea_inode_array);
308                 goto no_delete;
309         }
310
311         /*
312          * Kill off the orphan record which ext4_truncate created.
313          * AKPM: I think this can be inside the above `if'.
314          * Note that ext4_orphan_del() has to be able to cope with the
315          * deletion of a non-existent orphan - this is because we don't
316          * know if ext4_truncate() actually created an orphan record.
317          * (Well, we could do this if we need to, but heck - it works)
318          */
319         ext4_orphan_del(handle, inode);
320         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
321
322         /*
323          * One subtle ordering requirement: if anything has gone wrong
324          * (transaction abort, IO errors, whatever), then we can still
325          * do these next steps (the fs will already have been marked as
326          * having errors), but we can't free the inode if the mark_dirty
327          * fails.
328          */
329         if (ext4_mark_inode_dirty(handle, inode))
330                 /* If that failed, just do the required in-core inode clear. */
331                 ext4_clear_inode(inode);
332         else
333                 ext4_free_inode(handle, inode);
334         ext4_journal_stop(handle);
335         sb_end_intwrite(inode->i_sb);
336         ext4_xattr_inode_array_free(ea_inode_array);
337         return;
338 no_delete:
339         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
340 }
341
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345         return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354                                         int used, int quota_claim)
355 {
356         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357         struct ext4_inode_info *ei = EXT4_I(inode);
358
359         spin_lock(&ei->i_block_reservation_lock);
360         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361         if (unlikely(used > ei->i_reserved_data_blocks)) {
362                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363                          "with only %d reserved data blocks",
364                          __func__, inode->i_ino, used,
365                          ei->i_reserved_data_blocks);
366                 WARN_ON(1);
367                 used = ei->i_reserved_data_blocks;
368         }
369
370         /* Update per-inode reservations */
371         ei->i_reserved_data_blocks -= used;
372         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376         /* Update quota subsystem for data blocks */
377         if (quota_claim)
378                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379         else {
380                 /*
381                  * We did fallocate with an offset that is already delayed
382                  * allocated. So on delayed allocated writeback we should
383                  * not re-claim the quota for fallocated blocks.
384                  */
385                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386         }
387
388         /*
389          * If we have done all the pending block allocations and if
390          * there aren't any writers on the inode, we can discard the
391          * inode's preallocations.
392          */
393         if ((ei->i_reserved_data_blocks == 0) &&
394             !inode_is_open_for_write(inode))
395                 ext4_discard_preallocations(inode);
396 }
397
398 static int __check_block_validity(struct inode *inode, const char *func,
399                                 unsigned int line,
400                                 struct ext4_map_blocks *map)
401 {
402         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403                                    map->m_len)) {
404                 ext4_error_inode(inode, func, line, map->m_pblk,
405                                  "lblock %lu mapped to illegal pblock %llu "
406                                  "(length %d)", (unsigned long) map->m_lblk,
407                                  map->m_pblk, map->m_len);
408                 return -EFSCORRUPTED;
409         }
410         return 0;
411 }
412
413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414                        ext4_lblk_t len)
415 {
416         int ret;
417
418         if (IS_ENCRYPTED(inode))
419                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
420
421         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422         if (ret > 0)
423                 ret = 0;
424
425         return ret;
426 }
427
428 #define check_block_validity(inode, map)        \
429         __check_block_validity((inode), __func__, __LINE__, (map))
430
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
433                                        struct inode *inode,
434                                        struct ext4_map_blocks *es_map,
435                                        struct ext4_map_blocks *map,
436                                        int flags)
437 {
438         int retval;
439
440         map->m_flags = 0;
441         /*
442          * There is a race window that the result is not the same.
443          * e.g. xfstests #223 when dioread_nolock enables.  The reason
444          * is that we lookup a block mapping in extent status tree with
445          * out taking i_data_sem.  So at the time the unwritten extent
446          * could be converted.
447          */
448         down_read(&EXT4_I(inode)->i_data_sem);
449         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         } else {
453                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454                                              EXT4_GET_BLOCKS_KEEP_SIZE);
455         }
456         up_read((&EXT4_I(inode)->i_data_sem));
457
458         /*
459          * We don't check m_len because extent will be collpased in status
460          * tree.  So the m_len might not equal.
461          */
462         if (es_map->m_lblk != map->m_lblk ||
463             es_map->m_flags != map->m_flags ||
464             es_map->m_pblk != map->m_pblk) {
465                 printk("ES cache assertion failed for inode: %lu "
466                        "es_cached ex [%d/%d/%llu/%x] != "
467                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468                        inode->i_ino, es_map->m_lblk, es_map->m_len,
469                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
470                        map->m_len, map->m_pblk, map->m_flags,
471                        retval, flags);
472         }
473 }
474 #endif /* ES_AGGRESSIVE_TEST */
475
476 /*
477  * The ext4_map_blocks() function tries to look up the requested blocks,
478  * and returns if the blocks are already mapped.
479  *
480  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481  * and store the allocated blocks in the result buffer head and mark it
482  * mapped.
483  *
484  * If file type is extents based, it will call ext4_ext_map_blocks(),
485  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486  * based files
487  *
488  * On success, it returns the number of blocks being mapped or allocated.  if
489  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
491  *
492  * It returns 0 if plain look up failed (blocks have not been allocated), in
493  * that case, @map is returned as unmapped but we still do fill map->m_len to
494  * indicate the length of a hole starting at map->m_lblk.
495  *
496  * It returns the error in case of allocation failure.
497  */
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499                     struct ext4_map_blocks *map, int flags)
500 {
501         struct extent_status es;
502         int retval;
503         int ret = 0;
504 #ifdef ES_AGGRESSIVE_TEST
505         struct ext4_map_blocks orig_map;
506
507         memcpy(&orig_map, map, sizeof(*map));
508 #endif
509
510         map->m_flags = 0;
511         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
513                   (unsigned long) map->m_lblk);
514
515         /*
516          * ext4_map_blocks returns an int, and m_len is an unsigned int
517          */
518         if (unlikely(map->m_len > INT_MAX))
519                 map->m_len = INT_MAX;
520
521         /* We can handle the block number less than EXT_MAX_BLOCKS */
522         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523                 return -EFSCORRUPTED;
524
525         /* Lookup extent status tree firstly */
526         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528                         map->m_pblk = ext4_es_pblock(&es) +
529                                         map->m_lblk - es.es_lblk;
530                         map->m_flags |= ext4_es_is_written(&es) ?
531                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532                         retval = es.es_len - (map->m_lblk - es.es_lblk);
533                         if (retval > map->m_len)
534                                 retval = map->m_len;
535                         map->m_len = retval;
536                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537                         map->m_pblk = 0;
538                         retval = es.es_len - (map->m_lblk - es.es_lblk);
539                         if (retval > map->m_len)
540                                 retval = map->m_len;
541                         map->m_len = retval;
542                         retval = 0;
543                 } else {
544                         BUG_ON(1);
545                 }
546 #ifdef ES_AGGRESSIVE_TEST
547                 ext4_map_blocks_es_recheck(handle, inode, map,
548                                            &orig_map, flags);
549 #endif
550                 goto found;
551         }
552
553         /*
554          * Try to see if we can get the block without requesting a new
555          * file system block.
556          */
557         down_read(&EXT4_I(inode)->i_data_sem);
558         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560                                              EXT4_GET_BLOCKS_KEEP_SIZE);
561         } else {
562                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563                                              EXT4_GET_BLOCKS_KEEP_SIZE);
564         }
565         if (retval > 0) {
566                 unsigned int status;
567
568                 if (unlikely(retval != map->m_len)) {
569                         ext4_warning(inode->i_sb,
570                                      "ES len assertion failed for inode "
571                                      "%lu: retval %d != map->m_len %d",
572                                      inode->i_ino, retval, map->m_len);
573                         WARN_ON(1);
574                 }
575
576                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579                     !(status & EXTENT_STATUS_WRITTEN) &&
580                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
581                                        map->m_lblk + map->m_len - 1))
582                         status |= EXTENT_STATUS_DELAYED;
583                 ret = ext4_es_insert_extent(inode, map->m_lblk,
584                                             map->m_len, map->m_pblk, status);
585                 if (ret < 0)
586                         retval = ret;
587         }
588         up_read((&EXT4_I(inode)->i_data_sem));
589
590 found:
591         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592                 ret = check_block_validity(inode, map);
593                 if (ret != 0)
594                         return ret;
595         }
596
597         /* If it is only a block(s) look up */
598         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599                 return retval;
600
601         /*
602          * Returns if the blocks have already allocated
603          *
604          * Note that if blocks have been preallocated
605          * ext4_ext_get_block() returns the create = 0
606          * with buffer head unmapped.
607          */
608         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
609                 /*
610                  * If we need to convert extent to unwritten
611                  * we continue and do the actual work in
612                  * ext4_ext_map_blocks()
613                  */
614                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615                         return retval;
616
617         /*
618          * Here we clear m_flags because after allocating an new extent,
619          * it will be set again.
620          */
621         map->m_flags &= ~EXT4_MAP_FLAGS;
622
623         /*
624          * New blocks allocate and/or writing to unwritten extent
625          * will possibly result in updating i_data, so we take
626          * the write lock of i_data_sem, and call get_block()
627          * with create == 1 flag.
628          */
629         down_write(&EXT4_I(inode)->i_data_sem);
630
631         /*
632          * We need to check for EXT4 here because migrate
633          * could have changed the inode type in between
634          */
635         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
637         } else {
638                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
639
640                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
641                         /*
642                          * We allocated new blocks which will result in
643                          * i_data's format changing.  Force the migrate
644                          * to fail by clearing migrate flags
645                          */
646                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
647                 }
648
649                 /*
650                  * Update reserved blocks/metadata blocks after successful
651                  * block allocation which had been deferred till now. We don't
652                  * support fallocate for non extent files. So we can update
653                  * reserve space here.
654                  */
655                 if ((retval > 0) &&
656                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657                         ext4_da_update_reserve_space(inode, retval, 1);
658         }
659
660         if (retval > 0) {
661                 unsigned int status;
662
663                 if (unlikely(retval != map->m_len)) {
664                         ext4_warning(inode->i_sb,
665                                      "ES len assertion failed for inode "
666                                      "%lu: retval %d != map->m_len %d",
667                                      inode->i_ino, retval, map->m_len);
668                         WARN_ON(1);
669                 }
670
671                 /*
672                  * We have to zeroout blocks before inserting them into extent
673                  * status tree. Otherwise someone could look them up there and
674                  * use them before they are really zeroed. We also have to
675                  * unmap metadata before zeroing as otherwise writeback can
676                  * overwrite zeros with stale data from block device.
677                  */
678                 if (flags & EXT4_GET_BLOCKS_ZERO &&
679                     map->m_flags & EXT4_MAP_MAPPED &&
680                     map->m_flags & EXT4_MAP_NEW) {
681                         ret = ext4_issue_zeroout(inode, map->m_lblk,
682                                                  map->m_pblk, map->m_len);
683                         if (ret) {
684                                 retval = ret;
685                                 goto out_sem;
686                         }
687                 }
688
689                 /*
690                  * If the extent has been zeroed out, we don't need to update
691                  * extent status tree.
692                  */
693                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
694                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
695                         if (ext4_es_is_written(&es))
696                                 goto out_sem;
697                 }
698                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
699                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
700                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
701                     !(status & EXTENT_STATUS_WRITTEN) &&
702                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
703                                        map->m_lblk + map->m_len - 1))
704                         status |= EXTENT_STATUS_DELAYED;
705                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
706                                             map->m_pblk, status);
707                 if (ret < 0) {
708                         retval = ret;
709                         goto out_sem;
710                 }
711         }
712
713 out_sem:
714         up_write((&EXT4_I(inode)->i_data_sem));
715         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
716                 ret = check_block_validity(inode, map);
717                 if (ret != 0)
718                         return ret;
719
720                 /*
721                  * Inodes with freshly allocated blocks where contents will be
722                  * visible after transaction commit must be on transaction's
723                  * ordered data list.
724                  */
725                 if (map->m_flags & EXT4_MAP_NEW &&
726                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
727                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
728                     !ext4_is_quota_file(inode) &&
729                     ext4_should_order_data(inode)) {
730                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
731                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
732                         else
733                                 ret = ext4_jbd2_inode_add_write(handle, inode);
734                         if (ret)
735                                 return ret;
736                 }
737         }
738         return retval;
739 }
740
741 /*
742  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
743  * we have to be careful as someone else may be manipulating b_state as well.
744  */
745 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
746 {
747         unsigned long old_state;
748         unsigned long new_state;
749
750         flags &= EXT4_MAP_FLAGS;
751
752         /* Dummy buffer_head? Set non-atomically. */
753         if (!bh->b_page) {
754                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
755                 return;
756         }
757         /*
758          * Someone else may be modifying b_state. Be careful! This is ugly but
759          * once we get rid of using bh as a container for mapping information
760          * to pass to / from get_block functions, this can go away.
761          */
762         do {
763                 old_state = READ_ONCE(bh->b_state);
764                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
765         } while (unlikely(
766                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
767 }
768
769 static int _ext4_get_block(struct inode *inode, sector_t iblock,
770                            struct buffer_head *bh, int flags)
771 {
772         struct ext4_map_blocks map;
773         int ret = 0;
774
775         if (ext4_has_inline_data(inode))
776                 return -ERANGE;
777
778         map.m_lblk = iblock;
779         map.m_len = bh->b_size >> inode->i_blkbits;
780
781         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
782                               flags);
783         if (ret > 0) {
784                 map_bh(bh, inode->i_sb, map.m_pblk);
785                 ext4_update_bh_state(bh, map.m_flags);
786                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
787                 ret = 0;
788         } else if (ret == 0) {
789                 /* hole case, need to fill in bh->b_size */
790                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791         }
792         return ret;
793 }
794
795 int ext4_get_block(struct inode *inode, sector_t iblock,
796                    struct buffer_head *bh, int create)
797 {
798         return _ext4_get_block(inode, iblock, bh,
799                                create ? EXT4_GET_BLOCKS_CREATE : 0);
800 }
801
802 /*
803  * Get block function used when preparing for buffered write if we require
804  * creating an unwritten extent if blocks haven't been allocated.  The extent
805  * will be converted to written after the IO is complete.
806  */
807 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
808                              struct buffer_head *bh_result, int create)
809 {
810         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
811                    inode->i_ino, create);
812         return _ext4_get_block(inode, iblock, bh_result,
813                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
814 }
815
816 /* Maximum number of blocks we map for direct IO at once. */
817 #define DIO_MAX_BLOCKS 4096
818
819 /*
820  * Get blocks function for the cases that need to start a transaction -
821  * generally difference cases of direct IO and DAX IO. It also handles retries
822  * in case of ENOSPC.
823  */
824 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
825                                 struct buffer_head *bh_result, int flags)
826 {
827         int dio_credits;
828         handle_t *handle;
829         int retries = 0;
830         int ret;
831
832         /* Trim mapping request to maximum we can map at once for DIO */
833         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
834                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
835         dio_credits = ext4_chunk_trans_blocks(inode,
836                                       bh_result->b_size >> inode->i_blkbits);
837 retry:
838         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
839         if (IS_ERR(handle))
840                 return PTR_ERR(handle);
841
842         ret = _ext4_get_block(inode, iblock, bh_result, flags);
843         ext4_journal_stop(handle);
844
845         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
846                 goto retry;
847         return ret;
848 }
849
850 /* Get block function for DIO reads and writes to inodes without extents */
851 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
852                        struct buffer_head *bh, int create)
853 {
854         /* We don't expect handle for direct IO */
855         WARN_ON_ONCE(ext4_journal_current_handle());
856
857         if (!create)
858                 return _ext4_get_block(inode, iblock, bh, 0);
859         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
860 }
861
862 /*
863  * Get block function for AIO DIO writes when we create unwritten extent if
864  * blocks are not allocated yet. The extent will be converted to written
865  * after IO is complete.
866  */
867 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
868                 sector_t iblock, struct buffer_head *bh_result, int create)
869 {
870         int ret;
871
872         /* We don't expect handle for direct IO */
873         WARN_ON_ONCE(ext4_journal_current_handle());
874
875         ret = ext4_get_block_trans(inode, iblock, bh_result,
876                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
877
878         /*
879          * When doing DIO using unwritten extents, we need io_end to convert
880          * unwritten extents to written on IO completion. We allocate io_end
881          * once we spot unwritten extent and store it in b_private. Generic
882          * DIO code keeps b_private set and furthermore passes the value to
883          * our completion callback in 'private' argument.
884          */
885         if (!ret && buffer_unwritten(bh_result)) {
886                 if (!bh_result->b_private) {
887                         ext4_io_end_t *io_end;
888
889                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
890                         if (!io_end)
891                                 return -ENOMEM;
892                         bh_result->b_private = io_end;
893                         ext4_set_io_unwritten_flag(inode, io_end);
894                 }
895                 set_buffer_defer_completion(bh_result);
896         }
897
898         return ret;
899 }
900
901 /*
902  * Get block function for non-AIO DIO writes when we create unwritten extent if
903  * blocks are not allocated yet. The extent will be converted to written
904  * after IO is complete by ext4_direct_IO_write().
905  */
906 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
907                 sector_t iblock, struct buffer_head *bh_result, int create)
908 {
909         int ret;
910
911         /* We don't expect handle for direct IO */
912         WARN_ON_ONCE(ext4_journal_current_handle());
913
914         ret = ext4_get_block_trans(inode, iblock, bh_result,
915                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
916
917         /*
918          * Mark inode as having pending DIO writes to unwritten extents.
919          * ext4_direct_IO_write() checks this flag and converts extents to
920          * written.
921          */
922         if (!ret && buffer_unwritten(bh_result))
923                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
924
925         return ret;
926 }
927
928 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
929                    struct buffer_head *bh_result, int create)
930 {
931         int ret;
932
933         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
934                    inode->i_ino, create);
935         /* We don't expect handle for direct IO */
936         WARN_ON_ONCE(ext4_journal_current_handle());
937
938         ret = _ext4_get_block(inode, iblock, bh_result, 0);
939         /*
940          * Blocks should have been preallocated! ext4_file_write_iter() checks
941          * that.
942          */
943         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
944
945         return ret;
946 }
947
948
949 /*
950  * `handle' can be NULL if create is zero
951  */
952 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
953                                 ext4_lblk_t block, int map_flags)
954 {
955         struct ext4_map_blocks map;
956         struct buffer_head *bh;
957         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
958         int err;
959
960         J_ASSERT(handle != NULL || create == 0);
961
962         map.m_lblk = block;
963         map.m_len = 1;
964         err = ext4_map_blocks(handle, inode, &map, map_flags);
965
966         if (err == 0)
967                 return create ? ERR_PTR(-ENOSPC) : NULL;
968         if (err < 0)
969                 return ERR_PTR(err);
970
971         bh = sb_getblk(inode->i_sb, map.m_pblk);
972         if (unlikely(!bh))
973                 return ERR_PTR(-ENOMEM);
974         if (map.m_flags & EXT4_MAP_NEW) {
975                 J_ASSERT(create != 0);
976                 J_ASSERT(handle != NULL);
977
978                 /*
979                  * Now that we do not always journal data, we should
980                  * keep in mind whether this should always journal the
981                  * new buffer as metadata.  For now, regular file
982                  * writes use ext4_get_block instead, so it's not a
983                  * problem.
984                  */
985                 lock_buffer(bh);
986                 BUFFER_TRACE(bh, "call get_create_access");
987                 err = ext4_journal_get_create_access(handle, bh);
988                 if (unlikely(err)) {
989                         unlock_buffer(bh);
990                         goto errout;
991                 }
992                 if (!buffer_uptodate(bh)) {
993                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
994                         set_buffer_uptodate(bh);
995                 }
996                 unlock_buffer(bh);
997                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
998                 err = ext4_handle_dirty_metadata(handle, inode, bh);
999                 if (unlikely(err))
1000                         goto errout;
1001         } else
1002                 BUFFER_TRACE(bh, "not a new buffer");
1003         return bh;
1004 errout:
1005         brelse(bh);
1006         return ERR_PTR(err);
1007 }
1008
1009 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1010                                ext4_lblk_t block, int map_flags)
1011 {
1012         struct buffer_head *bh;
1013
1014         bh = ext4_getblk(handle, inode, block, map_flags);
1015         if (IS_ERR(bh))
1016                 return bh;
1017         if (!bh || buffer_uptodate(bh))
1018                 return bh;
1019         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1020         wait_on_buffer(bh);
1021         if (buffer_uptodate(bh))
1022                 return bh;
1023         put_bh(bh);
1024         return ERR_PTR(-EIO);
1025 }
1026
1027 /* Read a contiguous batch of blocks. */
1028 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1029                      bool wait, struct buffer_head **bhs)
1030 {
1031         int i, err;
1032
1033         for (i = 0; i < bh_count; i++) {
1034                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1035                 if (IS_ERR(bhs[i])) {
1036                         err = PTR_ERR(bhs[i]);
1037                         bh_count = i;
1038                         goto out_brelse;
1039                 }
1040         }
1041
1042         for (i = 0; i < bh_count; i++)
1043                 /* Note that NULL bhs[i] is valid because of holes. */
1044                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1045                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1046                                     &bhs[i]);
1047
1048         if (!wait)
1049                 return 0;
1050
1051         for (i = 0; i < bh_count; i++)
1052                 if (bhs[i])
1053                         wait_on_buffer(bhs[i]);
1054
1055         for (i = 0; i < bh_count; i++) {
1056                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1057                         err = -EIO;
1058                         goto out_brelse;
1059                 }
1060         }
1061         return 0;
1062
1063 out_brelse:
1064         for (i = 0; i < bh_count; i++) {
1065                 brelse(bhs[i]);
1066                 bhs[i] = NULL;
1067         }
1068         return err;
1069 }
1070
1071 int ext4_walk_page_buffers(handle_t *handle,
1072                            struct buffer_head *head,
1073                            unsigned from,
1074                            unsigned to,
1075                            int *partial,
1076                            int (*fn)(handle_t *handle,
1077                                      struct buffer_head *bh))
1078 {
1079         struct buffer_head *bh;
1080         unsigned block_start, block_end;
1081         unsigned blocksize = head->b_size;
1082         int err, ret = 0;
1083         struct buffer_head *next;
1084
1085         for (bh = head, block_start = 0;
1086              ret == 0 && (bh != head || !block_start);
1087              block_start = block_end, bh = next) {
1088                 next = bh->b_this_page;
1089                 block_end = block_start + blocksize;
1090                 if (block_end <= from || block_start >= to) {
1091                         if (partial && !buffer_uptodate(bh))
1092                                 *partial = 1;
1093                         continue;
1094                 }
1095                 err = (*fn)(handle, bh);
1096                 if (!ret)
1097                         ret = err;
1098         }
1099         return ret;
1100 }
1101
1102 /*
1103  * To preserve ordering, it is essential that the hole instantiation and
1104  * the data write be encapsulated in a single transaction.  We cannot
1105  * close off a transaction and start a new one between the ext4_get_block()
1106  * and the commit_write().  So doing the jbd2_journal_start at the start of
1107  * prepare_write() is the right place.
1108  *
1109  * Also, this function can nest inside ext4_writepage().  In that case, we
1110  * *know* that ext4_writepage() has generated enough buffer credits to do the
1111  * whole page.  So we won't block on the journal in that case, which is good,
1112  * because the caller may be PF_MEMALLOC.
1113  *
1114  * By accident, ext4 can be reentered when a transaction is open via
1115  * quota file writes.  If we were to commit the transaction while thus
1116  * reentered, there can be a deadlock - we would be holding a quota
1117  * lock, and the commit would never complete if another thread had a
1118  * transaction open and was blocking on the quota lock - a ranking
1119  * violation.
1120  *
1121  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1122  * will _not_ run commit under these circumstances because handle->h_ref
1123  * is elevated.  We'll still have enough credits for the tiny quotafile
1124  * write.
1125  */
1126 int do_journal_get_write_access(handle_t *handle,
1127                                 struct buffer_head *bh)
1128 {
1129         int dirty = buffer_dirty(bh);
1130         int ret;
1131
1132         if (!buffer_mapped(bh) || buffer_freed(bh))
1133                 return 0;
1134         /*
1135          * __block_write_begin() could have dirtied some buffers. Clean
1136          * the dirty bit as jbd2_journal_get_write_access() could complain
1137          * otherwise about fs integrity issues. Setting of the dirty bit
1138          * by __block_write_begin() isn't a real problem here as we clear
1139          * the bit before releasing a page lock and thus writeback cannot
1140          * ever write the buffer.
1141          */
1142         if (dirty)
1143                 clear_buffer_dirty(bh);
1144         BUFFER_TRACE(bh, "get write access");
1145         ret = ext4_journal_get_write_access(handle, bh);
1146         if (!ret && dirty)
1147                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1148         return ret;
1149 }
1150
1151 #ifdef CONFIG_FS_ENCRYPTION
1152 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1153                                   get_block_t *get_block)
1154 {
1155         unsigned from = pos & (PAGE_SIZE - 1);
1156         unsigned to = from + len;
1157         struct inode *inode = page->mapping->host;
1158         unsigned block_start, block_end;
1159         sector_t block;
1160         int err = 0;
1161         unsigned blocksize = inode->i_sb->s_blocksize;
1162         unsigned bbits;
1163         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1164         bool decrypt = false;
1165
1166         BUG_ON(!PageLocked(page));
1167         BUG_ON(from > PAGE_SIZE);
1168         BUG_ON(to > PAGE_SIZE);
1169         BUG_ON(from > to);
1170
1171         if (!page_has_buffers(page))
1172                 create_empty_buffers(page, blocksize, 0);
1173         head = page_buffers(page);
1174         bbits = ilog2(blocksize);
1175         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1176
1177         for (bh = head, block_start = 0; bh != head || !block_start;
1178             block++, block_start = block_end, bh = bh->b_this_page) {
1179                 block_end = block_start + blocksize;
1180                 if (block_end <= from || block_start >= to) {
1181                         if (PageUptodate(page)) {
1182                                 if (!buffer_uptodate(bh))
1183                                         set_buffer_uptodate(bh);
1184                         }
1185                         continue;
1186                 }
1187                 if (buffer_new(bh))
1188                         clear_buffer_new(bh);
1189                 if (!buffer_mapped(bh)) {
1190                         WARN_ON(bh->b_size != blocksize);
1191                         err = get_block(inode, block, bh, 1);
1192                         if (err)
1193                                 break;
1194                         if (buffer_new(bh)) {
1195                                 if (PageUptodate(page)) {
1196                                         clear_buffer_new(bh);
1197                                         set_buffer_uptodate(bh);
1198                                         mark_buffer_dirty(bh);
1199                                         continue;
1200                                 }
1201                                 if (block_end > to || block_start < from)
1202                                         zero_user_segments(page, to, block_end,
1203                                                            block_start, from);
1204                                 continue;
1205                         }
1206                 }
1207                 if (PageUptodate(page)) {
1208                         if (!buffer_uptodate(bh))
1209                                 set_buffer_uptodate(bh);
1210                         continue;
1211                 }
1212                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1213                     !buffer_unwritten(bh) &&
1214                     (block_start < from || block_end > to)) {
1215                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1216                         *wait_bh++ = bh;
1217                         decrypt = IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
1218                 }
1219         }
1220         /*
1221          * If we issued read requests, let them complete.
1222          */
1223         while (wait_bh > wait) {
1224                 wait_on_buffer(*--wait_bh);
1225                 if (!buffer_uptodate(*wait_bh))
1226                         err = -EIO;
1227         }
1228         if (unlikely(err))
1229                 page_zero_new_buffers(page, from, to);
1230         else if (decrypt)
1231                 err = fscrypt_decrypt_page(page->mapping->host, page,
1232                                 PAGE_SIZE, 0, page->index);
1233         return err;
1234 }
1235 #endif
1236
1237 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1238                             loff_t pos, unsigned len, unsigned flags,
1239                             struct page **pagep, void **fsdata)
1240 {
1241         struct inode *inode = mapping->host;
1242         int ret, needed_blocks;
1243         handle_t *handle;
1244         int retries = 0;
1245         struct page *page;
1246         pgoff_t index;
1247         unsigned from, to;
1248
1249         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1250                 return -EIO;
1251
1252         trace_ext4_write_begin(inode, pos, len, flags);
1253         /*
1254          * Reserve one block more for addition to orphan list in case
1255          * we allocate blocks but write fails for some reason
1256          */
1257         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1258         index = pos >> PAGE_SHIFT;
1259         from = pos & (PAGE_SIZE - 1);
1260         to = from + len;
1261
1262         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1263                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1264                                                     flags, pagep);
1265                 if (ret < 0)
1266                         return ret;
1267                 if (ret == 1)
1268                         return 0;
1269         }
1270
1271         /*
1272          * grab_cache_page_write_begin() can take a long time if the
1273          * system is thrashing due to memory pressure, or if the page
1274          * is being written back.  So grab it first before we start
1275          * the transaction handle.  This also allows us to allocate
1276          * the page (if needed) without using GFP_NOFS.
1277          */
1278 retry_grab:
1279         page = grab_cache_page_write_begin(mapping, index, flags);
1280         if (!page)
1281                 return -ENOMEM;
1282         unlock_page(page);
1283
1284 retry_journal:
1285         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1286         if (IS_ERR(handle)) {
1287                 put_page(page);
1288                 return PTR_ERR(handle);
1289         }
1290
1291         lock_page(page);
1292         if (page->mapping != mapping) {
1293                 /* The page got truncated from under us */
1294                 unlock_page(page);
1295                 put_page(page);
1296                 ext4_journal_stop(handle);
1297                 goto retry_grab;
1298         }
1299         /* In case writeback began while the page was unlocked */
1300         wait_for_stable_page(page);
1301
1302 #ifdef CONFIG_FS_ENCRYPTION
1303         if (ext4_should_dioread_nolock(inode))
1304                 ret = ext4_block_write_begin(page, pos, len,
1305                                              ext4_get_block_unwritten);
1306         else
1307                 ret = ext4_block_write_begin(page, pos, len,
1308                                              ext4_get_block);
1309 #else
1310         if (ext4_should_dioread_nolock(inode))
1311                 ret = __block_write_begin(page, pos, len,
1312                                           ext4_get_block_unwritten);
1313         else
1314                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1315 #endif
1316         if (!ret && ext4_should_journal_data(inode)) {
1317                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1318                                              from, to, NULL,
1319                                              do_journal_get_write_access);
1320         }
1321
1322         if (ret) {
1323                 unlock_page(page);
1324                 /*
1325                  * __block_write_begin may have instantiated a few blocks
1326                  * outside i_size.  Trim these off again. Don't need
1327                  * i_size_read because we hold i_mutex.
1328                  *
1329                  * Add inode to orphan list in case we crash before
1330                  * truncate finishes
1331                  */
1332                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1333                         ext4_orphan_add(handle, inode);
1334
1335                 ext4_journal_stop(handle);
1336                 if (pos + len > inode->i_size) {
1337                         ext4_truncate_failed_write(inode);
1338                         /*
1339                          * If truncate failed early the inode might
1340                          * still be on the orphan list; we need to
1341                          * make sure the inode is removed from the
1342                          * orphan list in that case.
1343                          */
1344                         if (inode->i_nlink)
1345                                 ext4_orphan_del(NULL, inode);
1346                 }
1347
1348                 if (ret == -ENOSPC &&
1349                     ext4_should_retry_alloc(inode->i_sb, &retries))
1350                         goto retry_journal;
1351                 put_page(page);
1352                 return ret;
1353         }
1354         *pagep = page;
1355         return ret;
1356 }
1357
1358 /* For write_end() in data=journal mode */
1359 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1360 {
1361         int ret;
1362         if (!buffer_mapped(bh) || buffer_freed(bh))
1363                 return 0;
1364         set_buffer_uptodate(bh);
1365         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1366         clear_buffer_meta(bh);
1367         clear_buffer_prio(bh);
1368         return ret;
1369 }
1370
1371 /*
1372  * We need to pick up the new inode size which generic_commit_write gave us
1373  * `file' can be NULL - eg, when called from page_symlink().
1374  *
1375  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1376  * buffers are managed internally.
1377  */
1378 static int ext4_write_end(struct file *file,
1379                           struct address_space *mapping,
1380                           loff_t pos, unsigned len, unsigned copied,
1381                           struct page *page, void *fsdata)
1382 {
1383         handle_t *handle = ext4_journal_current_handle();
1384         struct inode *inode = mapping->host;
1385         loff_t old_size = inode->i_size;
1386         int ret = 0, ret2;
1387         int i_size_changed = 0;
1388         int inline_data = ext4_has_inline_data(inode);
1389
1390         trace_ext4_write_end(inode, pos, len, copied);
1391         if (inline_data) {
1392                 ret = ext4_write_inline_data_end(inode, pos, len,
1393                                                  copied, page);
1394                 if (ret < 0) {
1395                         unlock_page(page);
1396                         put_page(page);
1397                         goto errout;
1398                 }
1399                 copied = ret;
1400         } else
1401                 copied = block_write_end(file, mapping, pos,
1402                                          len, copied, page, fsdata);
1403         /*
1404          * it's important to update i_size while still holding page lock:
1405          * page writeout could otherwise come in and zero beyond i_size.
1406          */
1407         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1408         unlock_page(page);
1409         put_page(page);
1410
1411         if (old_size < pos)
1412                 pagecache_isize_extended(inode, old_size, pos);
1413         /*
1414          * Don't mark the inode dirty under page lock. First, it unnecessarily
1415          * makes the holding time of page lock longer. Second, it forces lock
1416          * ordering of page lock and transaction start for journaling
1417          * filesystems.
1418          */
1419         if (i_size_changed || inline_data)
1420                 ext4_mark_inode_dirty(handle, inode);
1421
1422         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1423                 /* if we have allocated more blocks and copied
1424                  * less. We will have blocks allocated outside
1425                  * inode->i_size. So truncate them
1426                  */
1427                 ext4_orphan_add(handle, inode);
1428 errout:
1429         ret2 = ext4_journal_stop(handle);
1430         if (!ret)
1431                 ret = ret2;
1432
1433         if (pos + len > inode->i_size) {
1434                 ext4_truncate_failed_write(inode);
1435                 /*
1436                  * If truncate failed early the inode might still be
1437                  * on the orphan list; we need to make sure the inode
1438                  * is removed from the orphan list in that case.
1439                  */
1440                 if (inode->i_nlink)
1441                         ext4_orphan_del(NULL, inode);
1442         }
1443
1444         return ret ? ret : copied;
1445 }
1446
1447 /*
1448  * This is a private version of page_zero_new_buffers() which doesn't
1449  * set the buffer to be dirty, since in data=journalled mode we need
1450  * to call ext4_handle_dirty_metadata() instead.
1451  */
1452 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1453                                             struct page *page,
1454                                             unsigned from, unsigned to)
1455 {
1456         unsigned int block_start = 0, block_end;
1457         struct buffer_head *head, *bh;
1458
1459         bh = head = page_buffers(page);
1460         do {
1461                 block_end = block_start + bh->b_size;
1462                 if (buffer_new(bh)) {
1463                         if (block_end > from && block_start < to) {
1464                                 if (!PageUptodate(page)) {
1465                                         unsigned start, size;
1466
1467                                         start = max(from, block_start);
1468                                         size = min(to, block_end) - start;
1469
1470                                         zero_user(page, start, size);
1471                                         write_end_fn(handle, bh);
1472                                 }
1473                                 clear_buffer_new(bh);
1474                         }
1475                 }
1476                 block_start = block_end;
1477                 bh = bh->b_this_page;
1478         } while (bh != head);
1479 }
1480
1481 static int ext4_journalled_write_end(struct file *file,
1482                                      struct address_space *mapping,
1483                                      loff_t pos, unsigned len, unsigned copied,
1484                                      struct page *page, void *fsdata)
1485 {
1486         handle_t *handle = ext4_journal_current_handle();
1487         struct inode *inode = mapping->host;
1488         loff_t old_size = inode->i_size;
1489         int ret = 0, ret2;
1490         int partial = 0;
1491         unsigned from, to;
1492         int size_changed = 0;
1493         int inline_data = ext4_has_inline_data(inode);
1494
1495         trace_ext4_journalled_write_end(inode, pos, len, copied);
1496         from = pos & (PAGE_SIZE - 1);
1497         to = from + len;
1498
1499         BUG_ON(!ext4_handle_valid(handle));
1500
1501         if (inline_data) {
1502                 ret = ext4_write_inline_data_end(inode, pos, len,
1503                                                  copied, page);
1504                 if (ret < 0) {
1505                         unlock_page(page);
1506                         put_page(page);
1507                         goto errout;
1508                 }
1509                 copied = ret;
1510         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1511                 copied = 0;
1512                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1513         } else {
1514                 if (unlikely(copied < len))
1515                         ext4_journalled_zero_new_buffers(handle, page,
1516                                                          from + copied, to);
1517                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1518                                              from + copied, &partial,
1519                                              write_end_fn);
1520                 if (!partial)
1521                         SetPageUptodate(page);
1522         }
1523         size_changed = ext4_update_inode_size(inode, pos + copied);
1524         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1525         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1526         unlock_page(page);
1527         put_page(page);
1528
1529         if (old_size < pos)
1530                 pagecache_isize_extended(inode, old_size, pos);
1531
1532         if (size_changed || inline_data) {
1533                 ret2 = ext4_mark_inode_dirty(handle, inode);
1534                 if (!ret)
1535                         ret = ret2;
1536         }
1537
1538         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1539                 /* if we have allocated more blocks and copied
1540                  * less. We will have blocks allocated outside
1541                  * inode->i_size. So truncate them
1542                  */
1543                 ext4_orphan_add(handle, inode);
1544
1545 errout:
1546         ret2 = ext4_journal_stop(handle);
1547         if (!ret)
1548                 ret = ret2;
1549         if (pos + len > inode->i_size) {
1550                 ext4_truncate_failed_write(inode);
1551                 /*
1552                  * If truncate failed early the inode might still be
1553                  * on the orphan list; we need to make sure the inode
1554                  * is removed from the orphan list in that case.
1555                  */
1556                 if (inode->i_nlink)
1557                         ext4_orphan_del(NULL, inode);
1558         }
1559
1560         return ret ? ret : copied;
1561 }
1562
1563 /*
1564  * Reserve space for a single cluster
1565  */
1566 static int ext4_da_reserve_space(struct inode *inode)
1567 {
1568         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1569         struct ext4_inode_info *ei = EXT4_I(inode);
1570         int ret;
1571
1572         /*
1573          * We will charge metadata quota at writeout time; this saves
1574          * us from metadata over-estimation, though we may go over by
1575          * a small amount in the end.  Here we just reserve for data.
1576          */
1577         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1578         if (ret)
1579                 return ret;
1580
1581         spin_lock(&ei->i_block_reservation_lock);
1582         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1583                 spin_unlock(&ei->i_block_reservation_lock);
1584                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1585                 return -ENOSPC;
1586         }
1587         ei->i_reserved_data_blocks++;
1588         trace_ext4_da_reserve_space(inode);
1589         spin_unlock(&ei->i_block_reservation_lock);
1590
1591         return 0;       /* success */
1592 }
1593
1594 void ext4_da_release_space(struct inode *inode, int to_free)
1595 {
1596         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1597         struct ext4_inode_info *ei = EXT4_I(inode);
1598
1599         if (!to_free)
1600                 return;         /* Nothing to release, exit */
1601
1602         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1603
1604         trace_ext4_da_release_space(inode, to_free);
1605         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1606                 /*
1607                  * if there aren't enough reserved blocks, then the
1608                  * counter is messed up somewhere.  Since this
1609                  * function is called from invalidate page, it's
1610                  * harmless to return without any action.
1611                  */
1612                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1613                          "ino %lu, to_free %d with only %d reserved "
1614                          "data blocks", inode->i_ino, to_free,
1615                          ei->i_reserved_data_blocks);
1616                 WARN_ON(1);
1617                 to_free = ei->i_reserved_data_blocks;
1618         }
1619         ei->i_reserved_data_blocks -= to_free;
1620
1621         /* update fs dirty data blocks counter */
1622         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1623
1624         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1625
1626         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1627 }
1628
1629 static void ext4_da_page_release_reservation(struct page *page,
1630                                              unsigned int offset,
1631                                              unsigned int length)
1632 {
1633         int contiguous_blks = 0;
1634         struct buffer_head *head, *bh;
1635         unsigned int curr_off = 0;
1636         struct inode *inode = page->mapping->host;
1637         unsigned int stop = offset + length;
1638         ext4_fsblk_t lblk;
1639
1640         BUG_ON(stop > PAGE_SIZE || stop < length);
1641
1642         head = page_buffers(page);
1643         bh = head;
1644         do {
1645                 unsigned int next_off = curr_off + bh->b_size;
1646
1647                 if (next_off > stop)
1648                         break;
1649
1650                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1651                         contiguous_blks++;
1652                         clear_buffer_delay(bh);
1653                 } else if (contiguous_blks) {
1654                         lblk = page->index <<
1655                                (PAGE_SHIFT - inode->i_blkbits);
1656                         lblk += (curr_off >> inode->i_blkbits) -
1657                                 contiguous_blks;
1658                         ext4_es_remove_blks(inode, lblk, contiguous_blks);
1659                         contiguous_blks = 0;
1660                 }
1661                 curr_off = next_off;
1662         } while ((bh = bh->b_this_page) != head);
1663
1664         if (contiguous_blks) {
1665                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1666                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1667                 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1668         }
1669
1670 }
1671
1672 /*
1673  * Delayed allocation stuff
1674  */
1675
1676 struct mpage_da_data {
1677         struct inode *inode;
1678         struct writeback_control *wbc;
1679
1680         pgoff_t first_page;     /* The first page to write */
1681         pgoff_t next_page;      /* Current page to examine */
1682         pgoff_t last_page;      /* Last page to examine */
1683         /*
1684          * Extent to map - this can be after first_page because that can be
1685          * fully mapped. We somewhat abuse m_flags to store whether the extent
1686          * is delalloc or unwritten.
1687          */
1688         struct ext4_map_blocks map;
1689         struct ext4_io_submit io_submit;        /* IO submission data */
1690         unsigned int do_map:1;
1691 };
1692
1693 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1694                                        bool invalidate)
1695 {
1696         int nr_pages, i;
1697         pgoff_t index, end;
1698         struct pagevec pvec;
1699         struct inode *inode = mpd->inode;
1700         struct address_space *mapping = inode->i_mapping;
1701
1702         /* This is necessary when next_page == 0. */
1703         if (mpd->first_page >= mpd->next_page)
1704                 return;
1705
1706         index = mpd->first_page;
1707         end   = mpd->next_page - 1;
1708         if (invalidate) {
1709                 ext4_lblk_t start, last;
1710                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1711                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1712                 ext4_es_remove_extent(inode, start, last - start + 1);
1713         }
1714
1715         pagevec_init(&pvec);
1716         while (index <= end) {
1717                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1718                 if (nr_pages == 0)
1719                         break;
1720                 for (i = 0; i < nr_pages; i++) {
1721                         struct page *page = pvec.pages[i];
1722
1723                         BUG_ON(!PageLocked(page));
1724                         BUG_ON(PageWriteback(page));
1725                         if (invalidate) {
1726                                 if (page_mapped(page))
1727                                         clear_page_dirty_for_io(page);
1728                                 block_invalidatepage(page, 0, PAGE_SIZE);
1729                                 ClearPageUptodate(page);
1730                         }
1731                         unlock_page(page);
1732                 }
1733                 pagevec_release(&pvec);
1734         }
1735 }
1736
1737 static void ext4_print_free_blocks(struct inode *inode)
1738 {
1739         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1740         struct super_block *sb = inode->i_sb;
1741         struct ext4_inode_info *ei = EXT4_I(inode);
1742
1743         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1744                EXT4_C2B(EXT4_SB(inode->i_sb),
1745                         ext4_count_free_clusters(sb)));
1746         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1747         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1748                (long long) EXT4_C2B(EXT4_SB(sb),
1749                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1750         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1751                (long long) EXT4_C2B(EXT4_SB(sb),
1752                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1753         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1754         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1755                  ei->i_reserved_data_blocks);
1756         return;
1757 }
1758
1759 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1760 {
1761         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1762 }
1763
1764 /*
1765  * ext4_insert_delayed_block - adds a delayed block to the extents status
1766  *                             tree, incrementing the reserved cluster/block
1767  *                             count or making a pending reservation
1768  *                             where needed
1769  *
1770  * @inode - file containing the newly added block
1771  * @lblk - logical block to be added
1772  *
1773  * Returns 0 on success, negative error code on failure.
1774  */
1775 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1776 {
1777         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1778         int ret;
1779         bool allocated = false;
1780
1781         /*
1782          * If the cluster containing lblk is shared with a delayed,
1783          * written, or unwritten extent in a bigalloc file system, it's
1784          * already been accounted for and does not need to be reserved.
1785          * A pending reservation must be made for the cluster if it's
1786          * shared with a written or unwritten extent and doesn't already
1787          * have one.  Written and unwritten extents can be purged from the
1788          * extents status tree if the system is under memory pressure, so
1789          * it's necessary to examine the extent tree if a search of the
1790          * extents status tree doesn't get a match.
1791          */
1792         if (sbi->s_cluster_ratio == 1) {
1793                 ret = ext4_da_reserve_space(inode);
1794                 if (ret != 0)   /* ENOSPC */
1795                         goto errout;
1796         } else {   /* bigalloc */
1797                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1798                         if (!ext4_es_scan_clu(inode,
1799                                               &ext4_es_is_mapped, lblk)) {
1800                                 ret = ext4_clu_mapped(inode,
1801                                                       EXT4_B2C(sbi, lblk));
1802                                 if (ret < 0)
1803                                         goto errout;
1804                                 if (ret == 0) {
1805                                         ret = ext4_da_reserve_space(inode);
1806                                         if (ret != 0)   /* ENOSPC */
1807                                                 goto errout;
1808                                 } else {
1809                                         allocated = true;
1810                                 }
1811                         } else {
1812                                 allocated = true;
1813                         }
1814                 }
1815         }
1816
1817         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1818
1819 errout:
1820         return ret;
1821 }
1822
1823 /*
1824  * This function is grabs code from the very beginning of
1825  * ext4_map_blocks, but assumes that the caller is from delayed write
1826  * time. This function looks up the requested blocks and sets the
1827  * buffer delay bit under the protection of i_data_sem.
1828  */
1829 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1830                               struct ext4_map_blocks *map,
1831                               struct buffer_head *bh)
1832 {
1833         struct extent_status es;
1834         int retval;
1835         sector_t invalid_block = ~((sector_t) 0xffff);
1836 #ifdef ES_AGGRESSIVE_TEST
1837         struct ext4_map_blocks orig_map;
1838
1839         memcpy(&orig_map, map, sizeof(*map));
1840 #endif
1841
1842         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1843                 invalid_block = ~0;
1844
1845         map->m_flags = 0;
1846         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1847                   "logical block %lu\n", inode->i_ino, map->m_len,
1848                   (unsigned long) map->m_lblk);
1849
1850         /* Lookup extent status tree firstly */
1851         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1852                 if (ext4_es_is_hole(&es)) {
1853                         retval = 0;
1854                         down_read(&EXT4_I(inode)->i_data_sem);
1855                         goto add_delayed;
1856                 }
1857
1858                 /*
1859                  * Delayed extent could be allocated by fallocate.
1860                  * So we need to check it.
1861                  */
1862                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1863                         map_bh(bh, inode->i_sb, invalid_block);
1864                         set_buffer_new(bh);
1865                         set_buffer_delay(bh);
1866                         return 0;
1867                 }
1868
1869                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1870                 retval = es.es_len - (iblock - es.es_lblk);
1871                 if (retval > map->m_len)
1872                         retval = map->m_len;
1873                 map->m_len = retval;
1874                 if (ext4_es_is_written(&es))
1875                         map->m_flags |= EXT4_MAP_MAPPED;
1876                 else if (ext4_es_is_unwritten(&es))
1877                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1878                 else
1879                         BUG_ON(1);
1880
1881 #ifdef ES_AGGRESSIVE_TEST
1882                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1883 #endif
1884                 return retval;
1885         }
1886
1887         /*
1888          * Try to see if we can get the block without requesting a new
1889          * file system block.
1890          */
1891         down_read(&EXT4_I(inode)->i_data_sem);
1892         if (ext4_has_inline_data(inode))
1893                 retval = 0;
1894         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1895                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1896         else
1897                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1898
1899 add_delayed:
1900         if (retval == 0) {
1901                 int ret;
1902
1903                 /*
1904                  * XXX: __block_prepare_write() unmaps passed block,
1905                  * is it OK?
1906                  */
1907
1908                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1909                 if (ret != 0) {
1910                         retval = ret;
1911                         goto out_unlock;
1912                 }
1913
1914                 map_bh(bh, inode->i_sb, invalid_block);
1915                 set_buffer_new(bh);
1916                 set_buffer_delay(bh);
1917         } else if (retval > 0) {
1918                 int ret;
1919                 unsigned int status;
1920
1921                 if (unlikely(retval != map->m_len)) {
1922                         ext4_warning(inode->i_sb,
1923                                      "ES len assertion failed for inode "
1924                                      "%lu: retval %d != map->m_len %d",
1925                                      inode->i_ino, retval, map->m_len);
1926                         WARN_ON(1);
1927                 }
1928
1929                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1930                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1931                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1932                                             map->m_pblk, status);
1933                 if (ret != 0)
1934                         retval = ret;
1935         }
1936
1937 out_unlock:
1938         up_read((&EXT4_I(inode)->i_data_sem));
1939
1940         return retval;
1941 }
1942
1943 /*
1944  * This is a special get_block_t callback which is used by
1945  * ext4_da_write_begin().  It will either return mapped block or
1946  * reserve space for a single block.
1947  *
1948  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1949  * We also have b_blocknr = -1 and b_bdev initialized properly
1950  *
1951  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1952  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1953  * initialized properly.
1954  */
1955 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1956                            struct buffer_head *bh, int create)
1957 {
1958         struct ext4_map_blocks map;
1959         int ret = 0;
1960
1961         BUG_ON(create == 0);
1962         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1963
1964         map.m_lblk = iblock;
1965         map.m_len = 1;
1966
1967         /*
1968          * first, we need to know whether the block is allocated already
1969          * preallocated blocks are unmapped but should treated
1970          * the same as allocated blocks.
1971          */
1972         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1973         if (ret <= 0)
1974                 return ret;
1975
1976         map_bh(bh, inode->i_sb, map.m_pblk);
1977         ext4_update_bh_state(bh, map.m_flags);
1978
1979         if (buffer_unwritten(bh)) {
1980                 /* A delayed write to unwritten bh should be marked
1981                  * new and mapped.  Mapped ensures that we don't do
1982                  * get_block multiple times when we write to the same
1983                  * offset and new ensures that we do proper zero out
1984                  * for partial write.
1985                  */
1986                 set_buffer_new(bh);
1987                 set_buffer_mapped(bh);
1988         }
1989         return 0;
1990 }
1991
1992 static int bget_one(handle_t *handle, struct buffer_head *bh)
1993 {
1994         get_bh(bh);
1995         return 0;
1996 }
1997
1998 static int bput_one(handle_t *handle, struct buffer_head *bh)
1999 {
2000         put_bh(bh);
2001         return 0;
2002 }
2003
2004 static int __ext4_journalled_writepage(struct page *page,
2005                                        unsigned int len)
2006 {
2007         struct address_space *mapping = page->mapping;
2008         struct inode *inode = mapping->host;
2009         struct buffer_head *page_bufs = NULL;
2010         handle_t *handle = NULL;
2011         int ret = 0, err = 0;
2012         int inline_data = ext4_has_inline_data(inode);
2013         struct buffer_head *inode_bh = NULL;
2014
2015         ClearPageChecked(page);
2016
2017         if (inline_data) {
2018                 BUG_ON(page->index != 0);
2019                 BUG_ON(len > ext4_get_max_inline_size(inode));
2020                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2021                 if (inode_bh == NULL)
2022                         goto out;
2023         } else {
2024                 page_bufs = page_buffers(page);
2025                 if (!page_bufs) {
2026                         BUG();
2027                         goto out;
2028                 }
2029                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2030                                        NULL, bget_one);
2031         }
2032         /*
2033          * We need to release the page lock before we start the
2034          * journal, so grab a reference so the page won't disappear
2035          * out from under us.
2036          */
2037         get_page(page);
2038         unlock_page(page);
2039
2040         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2041                                     ext4_writepage_trans_blocks(inode));
2042         if (IS_ERR(handle)) {
2043                 ret = PTR_ERR(handle);
2044                 put_page(page);
2045                 goto out_no_pagelock;
2046         }
2047         BUG_ON(!ext4_handle_valid(handle));
2048
2049         lock_page(page);
2050         put_page(page);
2051         if (page->mapping != mapping) {
2052                 /* The page got truncated from under us */
2053                 ext4_journal_stop(handle);
2054                 ret = 0;
2055                 goto out;
2056         }
2057
2058         if (inline_data) {
2059                 ret = ext4_mark_inode_dirty(handle, inode);
2060         } else {
2061                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2062                                              do_journal_get_write_access);
2063
2064                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2065                                              write_end_fn);
2066         }
2067         if (ret == 0)
2068                 ret = err;
2069         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2070         err = ext4_journal_stop(handle);
2071         if (!ret)
2072                 ret = err;
2073
2074         if (!ext4_has_inline_data(inode))
2075                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2076                                        NULL, bput_one);
2077         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2078 out:
2079         unlock_page(page);
2080 out_no_pagelock:
2081         brelse(inode_bh);
2082         return ret;
2083 }
2084
2085 /*
2086  * Note that we don't need to start a transaction unless we're journaling data
2087  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2088  * need to file the inode to the transaction's list in ordered mode because if
2089  * we are writing back data added by write(), the inode is already there and if
2090  * we are writing back data modified via mmap(), no one guarantees in which
2091  * transaction the data will hit the disk. In case we are journaling data, we
2092  * cannot start transaction directly because transaction start ranks above page
2093  * lock so we have to do some magic.
2094  *
2095  * This function can get called via...
2096  *   - ext4_writepages after taking page lock (have journal handle)
2097  *   - journal_submit_inode_data_buffers (no journal handle)
2098  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2099  *   - grab_page_cache when doing write_begin (have journal handle)
2100  *
2101  * We don't do any block allocation in this function. If we have page with
2102  * multiple blocks we need to write those buffer_heads that are mapped. This
2103  * is important for mmaped based write. So if we do with blocksize 1K
2104  * truncate(f, 1024);
2105  * a = mmap(f, 0, 4096);
2106  * a[0] = 'a';
2107  * truncate(f, 4096);
2108  * we have in the page first buffer_head mapped via page_mkwrite call back
2109  * but other buffer_heads would be unmapped but dirty (dirty done via the
2110  * do_wp_page). So writepage should write the first block. If we modify
2111  * the mmap area beyond 1024 we will again get a page_fault and the
2112  * page_mkwrite callback will do the block allocation and mark the
2113  * buffer_heads mapped.
2114  *
2115  * We redirty the page if we have any buffer_heads that is either delay or
2116  * unwritten in the page.
2117  *
2118  * We can get recursively called as show below.
2119  *
2120  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2121  *              ext4_writepage()
2122  *
2123  * But since we don't do any block allocation we should not deadlock.
2124  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2125  */
2126 static int ext4_writepage(struct page *page,
2127                           struct writeback_control *wbc)
2128 {
2129         int ret = 0;
2130         loff_t size;
2131         unsigned int len;
2132         struct buffer_head *page_bufs = NULL;
2133         struct inode *inode = page->mapping->host;
2134         struct ext4_io_submit io_submit;
2135         bool keep_towrite = false;
2136
2137         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2138                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2139                 unlock_page(page);
2140                 return -EIO;
2141         }
2142
2143         trace_ext4_writepage(page);
2144         size = i_size_read(inode);
2145         if (page->index == size >> PAGE_SHIFT)
2146                 len = size & ~PAGE_MASK;
2147         else
2148                 len = PAGE_SIZE;
2149
2150         page_bufs = page_buffers(page);
2151         /*
2152          * We cannot do block allocation or other extent handling in this
2153          * function. If there are buffers needing that, we have to redirty
2154          * the page. But we may reach here when we do a journal commit via
2155          * journal_submit_inode_data_buffers() and in that case we must write
2156          * allocated buffers to achieve data=ordered mode guarantees.
2157          *
2158          * Also, if there is only one buffer per page (the fs block
2159          * size == the page size), if one buffer needs block
2160          * allocation or needs to modify the extent tree to clear the
2161          * unwritten flag, we know that the page can't be written at
2162          * all, so we might as well refuse the write immediately.
2163          * Unfortunately if the block size != page size, we can't as
2164          * easily detect this case using ext4_walk_page_buffers(), but
2165          * for the extremely common case, this is an optimization that
2166          * skips a useless round trip through ext4_bio_write_page().
2167          */
2168         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2169                                    ext4_bh_delay_or_unwritten)) {
2170                 redirty_page_for_writepage(wbc, page);
2171                 if ((current->flags & PF_MEMALLOC) ||
2172                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2173                         /*
2174                          * For memory cleaning there's no point in writing only
2175                          * some buffers. So just bail out. Warn if we came here
2176                          * from direct reclaim.
2177                          */
2178                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2179                                                         == PF_MEMALLOC);
2180                         unlock_page(page);
2181                         return 0;
2182                 }
2183                 keep_towrite = true;
2184         }
2185
2186         if (PageChecked(page) && ext4_should_journal_data(inode))
2187                 /*
2188                  * It's mmapped pagecache.  Add buffers and journal it.  There
2189                  * doesn't seem much point in redirtying the page here.
2190                  */
2191                 return __ext4_journalled_writepage(page, len);
2192
2193         ext4_io_submit_init(&io_submit, wbc);
2194         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2195         if (!io_submit.io_end) {
2196                 redirty_page_for_writepage(wbc, page);
2197                 unlock_page(page);
2198                 return -ENOMEM;
2199         }
2200         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2201         ext4_io_submit(&io_submit);
2202         /* Drop io_end reference we got from init */
2203         ext4_put_io_end_defer(io_submit.io_end);
2204         return ret;
2205 }
2206
2207 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2208 {
2209         int len;
2210         loff_t size;
2211         int err;
2212
2213         BUG_ON(page->index != mpd->first_page);
2214         clear_page_dirty_for_io(page);
2215         /*
2216          * We have to be very careful here!  Nothing protects writeback path
2217          * against i_size changes and the page can be writeably mapped into
2218          * page tables. So an application can be growing i_size and writing
2219          * data through mmap while writeback runs. clear_page_dirty_for_io()
2220          * write-protects our page in page tables and the page cannot get
2221          * written to again until we release page lock. So only after
2222          * clear_page_dirty_for_io() we are safe to sample i_size for
2223          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2224          * on the barrier provided by TestClearPageDirty in
2225          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2226          * after page tables are updated.
2227          */
2228         size = i_size_read(mpd->inode);
2229         if (page->index == size >> PAGE_SHIFT)
2230                 len = size & ~PAGE_MASK;
2231         else
2232                 len = PAGE_SIZE;
2233         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2234         if (!err)
2235                 mpd->wbc->nr_to_write--;
2236         mpd->first_page++;
2237
2238         return err;
2239 }
2240
2241 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2242
2243 /*
2244  * mballoc gives us at most this number of blocks...
2245  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2246  * The rest of mballoc seems to handle chunks up to full group size.
2247  */
2248 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2249
2250 /*
2251  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2252  *
2253  * @mpd - extent of blocks
2254  * @lblk - logical number of the block in the file
2255  * @bh - buffer head we want to add to the extent
2256  *
2257  * The function is used to collect contig. blocks in the same state. If the
2258  * buffer doesn't require mapping for writeback and we haven't started the
2259  * extent of buffers to map yet, the function returns 'true' immediately - the
2260  * caller can write the buffer right away. Otherwise the function returns true
2261  * if the block has been added to the extent, false if the block couldn't be
2262  * added.
2263  */
2264 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2265                                    struct buffer_head *bh)
2266 {
2267         struct ext4_map_blocks *map = &mpd->map;
2268
2269         /* Buffer that doesn't need mapping for writeback? */
2270         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2271             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2272                 /* So far no extent to map => we write the buffer right away */
2273                 if (map->m_len == 0)
2274                         return true;
2275                 return false;
2276         }
2277
2278         /* First block in the extent? */
2279         if (map->m_len == 0) {
2280                 /* We cannot map unless handle is started... */
2281                 if (!mpd->do_map)
2282                         return false;
2283                 map->m_lblk = lblk;
2284                 map->m_len = 1;
2285                 map->m_flags = bh->b_state & BH_FLAGS;
2286                 return true;
2287         }
2288
2289         /* Don't go larger than mballoc is willing to allocate */
2290         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2291                 return false;
2292
2293         /* Can we merge the block to our big extent? */
2294         if (lblk == map->m_lblk + map->m_len &&
2295             (bh->b_state & BH_FLAGS) == map->m_flags) {
2296                 map->m_len++;
2297                 return true;
2298         }
2299         return false;
2300 }
2301
2302 /*
2303  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2304  *
2305  * @mpd - extent of blocks for mapping
2306  * @head - the first buffer in the page
2307  * @bh - buffer we should start processing from
2308  * @lblk - logical number of the block in the file corresponding to @bh
2309  *
2310  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2311  * the page for IO if all buffers in this page were mapped and there's no
2312  * accumulated extent of buffers to map or add buffers in the page to the
2313  * extent of buffers to map. The function returns 1 if the caller can continue
2314  * by processing the next page, 0 if it should stop adding buffers to the
2315  * extent to map because we cannot extend it anymore. It can also return value
2316  * < 0 in case of error during IO submission.
2317  */
2318 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2319                                    struct buffer_head *head,
2320                                    struct buffer_head *bh,
2321                                    ext4_lblk_t lblk)
2322 {
2323         struct inode *inode = mpd->inode;
2324         int err;
2325         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2326                                                         >> inode->i_blkbits;
2327
2328         do {
2329                 BUG_ON(buffer_locked(bh));
2330
2331                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2332                         /* Found extent to map? */
2333                         if (mpd->map.m_len)
2334                                 return 0;
2335                         /* Buffer needs mapping and handle is not started? */
2336                         if (!mpd->do_map)
2337                                 return 0;
2338                         /* Everything mapped so far and we hit EOF */
2339                         break;
2340                 }
2341         } while (lblk++, (bh = bh->b_this_page) != head);
2342         /* So far everything mapped? Submit the page for IO. */
2343         if (mpd->map.m_len == 0) {
2344                 err = mpage_submit_page(mpd, head->b_page);
2345                 if (err < 0)
2346                         return err;
2347         }
2348         return lblk < blocks;
2349 }
2350
2351 /*
2352  * mpage_map_buffers - update buffers corresponding to changed extent and
2353  *                     submit fully mapped pages for IO
2354  *
2355  * @mpd - description of extent to map, on return next extent to map
2356  *
2357  * Scan buffers corresponding to changed extent (we expect corresponding pages
2358  * to be already locked) and update buffer state according to new extent state.
2359  * We map delalloc buffers to their physical location, clear unwritten bits,
2360  * and mark buffers as uninit when we perform writes to unwritten extents
2361  * and do extent conversion after IO is finished. If the last page is not fully
2362  * mapped, we update @map to the next extent in the last page that needs
2363  * mapping. Otherwise we submit the page for IO.
2364  */
2365 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2366 {
2367         struct pagevec pvec;
2368         int nr_pages, i;
2369         struct inode *inode = mpd->inode;
2370         struct buffer_head *head, *bh;
2371         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2372         pgoff_t start, end;
2373         ext4_lblk_t lblk;
2374         sector_t pblock;
2375         int err;
2376
2377         start = mpd->map.m_lblk >> bpp_bits;
2378         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2379         lblk = start << bpp_bits;
2380         pblock = mpd->map.m_pblk;
2381
2382         pagevec_init(&pvec);
2383         while (start <= end) {
2384                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2385                                                 &start, end);
2386                 if (nr_pages == 0)
2387                         break;
2388                 for (i = 0; i < nr_pages; i++) {
2389                         struct page *page = pvec.pages[i];
2390
2391                         bh = head = page_buffers(page);
2392                         do {
2393                                 if (lblk < mpd->map.m_lblk)
2394                                         continue;
2395                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2396                                         /*
2397                                          * Buffer after end of mapped extent.
2398                                          * Find next buffer in the page to map.
2399                                          */
2400                                         mpd->map.m_len = 0;
2401                                         mpd->map.m_flags = 0;
2402                                         /*
2403                                          * FIXME: If dioread_nolock supports
2404                                          * blocksize < pagesize, we need to make
2405                                          * sure we add size mapped so far to
2406                                          * io_end->size as the following call
2407                                          * can submit the page for IO.
2408                                          */
2409                                         err = mpage_process_page_bufs(mpd, head,
2410                                                                       bh, lblk);
2411                                         pagevec_release(&pvec);
2412                                         if (err > 0)
2413                                                 err = 0;
2414                                         return err;
2415                                 }
2416                                 if (buffer_delay(bh)) {
2417                                         clear_buffer_delay(bh);
2418                                         bh->b_blocknr = pblock++;
2419                                 }
2420                                 clear_buffer_unwritten(bh);
2421                         } while (lblk++, (bh = bh->b_this_page) != head);
2422
2423                         /*
2424                          * FIXME: This is going to break if dioread_nolock
2425                          * supports blocksize < pagesize as we will try to
2426                          * convert potentially unmapped parts of inode.
2427                          */
2428                         mpd->io_submit.io_end->size += PAGE_SIZE;
2429                         /* Page fully mapped - let IO run! */
2430                         err = mpage_submit_page(mpd, page);
2431                         if (err < 0) {
2432                                 pagevec_release(&pvec);
2433                                 return err;
2434                         }
2435                 }
2436                 pagevec_release(&pvec);
2437         }
2438         /* Extent fully mapped and matches with page boundary. We are done. */
2439         mpd->map.m_len = 0;
2440         mpd->map.m_flags = 0;
2441         return 0;
2442 }
2443
2444 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2445 {
2446         struct inode *inode = mpd->inode;
2447         struct ext4_map_blocks *map = &mpd->map;
2448         int get_blocks_flags;
2449         int err, dioread_nolock;
2450
2451         trace_ext4_da_write_pages_extent(inode, map);
2452         /*
2453          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2454          * to convert an unwritten extent to be initialized (in the case
2455          * where we have written into one or more preallocated blocks).  It is
2456          * possible that we're going to need more metadata blocks than
2457          * previously reserved. However we must not fail because we're in
2458          * writeback and there is nothing we can do about it so it might result
2459          * in data loss.  So use reserved blocks to allocate metadata if
2460          * possible.
2461          *
2462          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2463          * the blocks in question are delalloc blocks.  This indicates
2464          * that the blocks and quotas has already been checked when
2465          * the data was copied into the page cache.
2466          */
2467         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2468                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2469                            EXT4_GET_BLOCKS_IO_SUBMIT;
2470         dioread_nolock = ext4_should_dioread_nolock(inode);
2471         if (dioread_nolock)
2472                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2473         if (map->m_flags & (1 << BH_Delay))
2474                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2475
2476         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2477         if (err < 0)
2478                 return err;
2479         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2480                 if (!mpd->io_submit.io_end->handle &&
2481                     ext4_handle_valid(handle)) {
2482                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2483                         handle->h_rsv_handle = NULL;
2484                 }
2485                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2486         }
2487
2488         BUG_ON(map->m_len == 0);
2489         return 0;
2490 }
2491
2492 /*
2493  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2494  *                               mpd->len and submit pages underlying it for IO
2495  *
2496  * @handle - handle for journal operations
2497  * @mpd - extent to map
2498  * @give_up_on_write - we set this to true iff there is a fatal error and there
2499  *                     is no hope of writing the data. The caller should discard
2500  *                     dirty pages to avoid infinite loops.
2501  *
2502  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2503  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2504  * them to initialized or split the described range from larger unwritten
2505  * extent. Note that we need not map all the described range since allocation
2506  * can return less blocks or the range is covered by more unwritten extents. We
2507  * cannot map more because we are limited by reserved transaction credits. On
2508  * the other hand we always make sure that the last touched page is fully
2509  * mapped so that it can be written out (and thus forward progress is
2510  * guaranteed). After mapping we submit all mapped pages for IO.
2511  */
2512 static int mpage_map_and_submit_extent(handle_t *handle,
2513                                        struct mpage_da_data *mpd,
2514                                        bool *give_up_on_write)
2515 {
2516         struct inode *inode = mpd->inode;
2517         struct ext4_map_blocks *map = &mpd->map;
2518         int err;
2519         loff_t disksize;
2520         int progress = 0;
2521
2522         mpd->io_submit.io_end->offset =
2523                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2524         do {
2525                 err = mpage_map_one_extent(handle, mpd);
2526                 if (err < 0) {
2527                         struct super_block *sb = inode->i_sb;
2528
2529                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2530                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2531                                 goto invalidate_dirty_pages;
2532                         /*
2533                          * Let the uper layers retry transient errors.
2534                          * In the case of ENOSPC, if ext4_count_free_blocks()
2535                          * is non-zero, a commit should free up blocks.
2536                          */
2537                         if ((err == -ENOMEM) ||
2538                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2539                                 if (progress)
2540                                         goto update_disksize;
2541                                 return err;
2542                         }
2543                         ext4_msg(sb, KERN_CRIT,
2544                                  "Delayed block allocation failed for "
2545                                  "inode %lu at logical offset %llu with"
2546                                  " max blocks %u with error %d",
2547                                  inode->i_ino,
2548                                  (unsigned long long)map->m_lblk,
2549                                  (unsigned)map->m_len, -err);
2550                         ext4_msg(sb, KERN_CRIT,
2551                                  "This should not happen!! Data will "
2552                                  "be lost\n");
2553                         if (err == -ENOSPC)
2554                                 ext4_print_free_blocks(inode);
2555                 invalidate_dirty_pages:
2556                         *give_up_on_write = true;
2557                         return err;
2558                 }
2559                 progress = 1;
2560                 /*
2561                  * Update buffer state, submit mapped pages, and get us new
2562                  * extent to map
2563                  */
2564                 err = mpage_map_and_submit_buffers(mpd);
2565                 if (err < 0)
2566                         goto update_disksize;
2567         } while (map->m_len);
2568
2569 update_disksize:
2570         /*
2571          * Update on-disk size after IO is submitted.  Races with
2572          * truncate are avoided by checking i_size under i_data_sem.
2573          */
2574         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2575         if (disksize > EXT4_I(inode)->i_disksize) {
2576                 int err2;
2577                 loff_t i_size;
2578
2579                 down_write(&EXT4_I(inode)->i_data_sem);
2580                 i_size = i_size_read(inode);
2581                 if (disksize > i_size)
2582                         disksize = i_size;
2583                 if (disksize > EXT4_I(inode)->i_disksize)
2584                         EXT4_I(inode)->i_disksize = disksize;
2585                 up_write(&EXT4_I(inode)->i_data_sem);
2586                 err2 = ext4_mark_inode_dirty(handle, inode);
2587                 if (err2)
2588                         ext4_error(inode->i_sb,
2589                                    "Failed to mark inode %lu dirty",
2590                                    inode->i_ino);
2591                 if (!err)
2592                         err = err2;
2593         }
2594         return err;
2595 }
2596
2597 /*
2598  * Calculate the total number of credits to reserve for one writepages
2599  * iteration. This is called from ext4_writepages(). We map an extent of
2600  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2601  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2602  * bpp - 1 blocks in bpp different extents.
2603  */
2604 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2605 {
2606         int bpp = ext4_journal_blocks_per_page(inode);
2607
2608         return ext4_meta_trans_blocks(inode,
2609                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2610 }
2611
2612 /*
2613  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2614  *                               and underlying extent to map
2615  *
2616  * @mpd - where to look for pages
2617  *
2618  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2619  * IO immediately. When we find a page which isn't mapped we start accumulating
2620  * extent of buffers underlying these pages that needs mapping (formed by
2621  * either delayed or unwritten buffers). We also lock the pages containing
2622  * these buffers. The extent found is returned in @mpd structure (starting at
2623  * mpd->lblk with length mpd->len blocks).
2624  *
2625  * Note that this function can attach bios to one io_end structure which are
2626  * neither logically nor physically contiguous. Although it may seem as an
2627  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2628  * case as we need to track IO to all buffers underlying a page in one io_end.
2629  */
2630 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2631 {
2632         struct address_space *mapping = mpd->inode->i_mapping;
2633         struct pagevec pvec;
2634         unsigned int nr_pages;
2635         long left = mpd->wbc->nr_to_write;
2636         pgoff_t index = mpd->first_page;
2637         pgoff_t end = mpd->last_page;
2638         xa_mark_t tag;
2639         int i, err = 0;
2640         int blkbits = mpd->inode->i_blkbits;
2641         ext4_lblk_t lblk;
2642         struct buffer_head *head;
2643
2644         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2645                 tag = PAGECACHE_TAG_TOWRITE;
2646         else
2647                 tag = PAGECACHE_TAG_DIRTY;
2648
2649         pagevec_init(&pvec);
2650         mpd->map.m_len = 0;
2651         mpd->next_page = index;
2652         while (index <= end) {
2653                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2654                                 tag);
2655                 if (nr_pages == 0)
2656                         goto out;
2657
2658                 for (i = 0; i < nr_pages; i++) {
2659                         struct page *page = pvec.pages[i];
2660
2661                         /*
2662                          * Accumulated enough dirty pages? This doesn't apply
2663                          * to WB_SYNC_ALL mode. For integrity sync we have to
2664                          * keep going because someone may be concurrently
2665                          * dirtying pages, and we might have synced a lot of
2666                          * newly appeared dirty pages, but have not synced all
2667                          * of the old dirty pages.
2668                          */
2669                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2670                                 goto out;
2671
2672                         /* If we can't merge this page, we are done. */
2673                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2674                                 goto out;
2675
2676                         lock_page(page);
2677                         /*
2678                          * If the page is no longer dirty, or its mapping no
2679                          * longer corresponds to inode we are writing (which
2680                          * means it has been truncated or invalidated), or the
2681                          * page is already under writeback and we are not doing
2682                          * a data integrity writeback, skip the page
2683                          */
2684                         if (!PageDirty(page) ||
2685                             (PageWriteback(page) &&
2686                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2687                             unlikely(page->mapping != mapping)) {
2688                                 unlock_page(page);
2689                                 continue;
2690                         }
2691
2692                         wait_on_page_writeback(page);
2693                         BUG_ON(PageWriteback(page));
2694
2695                         if (mpd->map.m_len == 0)
2696                                 mpd->first_page = page->index;
2697                         mpd->next_page = page->index + 1;
2698                         /* Add all dirty buffers to mpd */
2699                         lblk = ((ext4_lblk_t)page->index) <<
2700                                 (PAGE_SHIFT - blkbits);
2701                         head = page_buffers(page);
2702                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2703                         if (err <= 0)
2704                                 goto out;
2705                         err = 0;
2706                         left--;
2707                 }
2708                 pagevec_release(&pvec);
2709                 cond_resched();
2710         }
2711         return 0;
2712 out:
2713         pagevec_release(&pvec);
2714         return err;
2715 }
2716
2717 static int ext4_writepages(struct address_space *mapping,
2718                            struct writeback_control *wbc)
2719 {
2720         pgoff_t writeback_index = 0;
2721         long nr_to_write = wbc->nr_to_write;
2722         int range_whole = 0;
2723         int cycled = 1;
2724         handle_t *handle = NULL;
2725         struct mpage_da_data mpd;
2726         struct inode *inode = mapping->host;
2727         int needed_blocks, rsv_blocks = 0, ret = 0;
2728         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2729         bool done;
2730         struct blk_plug plug;
2731         bool give_up_on_write = false;
2732
2733         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2734                 return -EIO;
2735
2736         percpu_down_read(&sbi->s_journal_flag_rwsem);
2737         trace_ext4_writepages(inode, wbc);
2738
2739         /*
2740          * No pages to write? This is mainly a kludge to avoid starting
2741          * a transaction for special inodes like journal inode on last iput()
2742          * because that could violate lock ordering on umount
2743          */
2744         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2745                 goto out_writepages;
2746
2747         if (ext4_should_journal_data(inode)) {
2748                 ret = generic_writepages(mapping, wbc);
2749                 goto out_writepages;
2750         }
2751
2752         /*
2753          * If the filesystem has aborted, it is read-only, so return
2754          * right away instead of dumping stack traces later on that
2755          * will obscure the real source of the problem.  We test
2756          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2757          * the latter could be true if the filesystem is mounted
2758          * read-only, and in that case, ext4_writepages should
2759          * *never* be called, so if that ever happens, we would want
2760          * the stack trace.
2761          */
2762         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2763                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2764                 ret = -EROFS;
2765                 goto out_writepages;
2766         }
2767
2768         if (ext4_should_dioread_nolock(inode)) {
2769                 /*
2770                  * We may need to convert up to one extent per block in
2771                  * the page and we may dirty the inode.
2772                  */
2773                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2774                                                 PAGE_SIZE >> inode->i_blkbits);
2775         }
2776
2777         /*
2778          * If we have inline data and arrive here, it means that
2779          * we will soon create the block for the 1st page, so
2780          * we'd better clear the inline data here.
2781          */
2782         if (ext4_has_inline_data(inode)) {
2783                 /* Just inode will be modified... */
2784                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2785                 if (IS_ERR(handle)) {
2786                         ret = PTR_ERR(handle);
2787                         goto out_writepages;
2788                 }
2789                 BUG_ON(ext4_test_inode_state(inode,
2790                                 EXT4_STATE_MAY_INLINE_DATA));
2791                 ext4_destroy_inline_data(handle, inode);
2792                 ext4_journal_stop(handle);
2793         }
2794
2795         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2796                 range_whole = 1;
2797
2798         if (wbc->range_cyclic) {
2799                 writeback_index = mapping->writeback_index;
2800                 if (writeback_index)
2801                         cycled = 0;
2802                 mpd.first_page = writeback_index;
2803                 mpd.last_page = -1;
2804         } else {
2805                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2806                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2807         }
2808
2809         mpd.inode = inode;
2810         mpd.wbc = wbc;
2811         ext4_io_submit_init(&mpd.io_submit, wbc);
2812 retry:
2813         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2814                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2815         done = false;
2816         blk_start_plug(&plug);
2817
2818         /*
2819          * First writeback pages that don't need mapping - we can avoid
2820          * starting a transaction unnecessarily and also avoid being blocked
2821          * in the block layer on device congestion while having transaction
2822          * started.
2823          */
2824         mpd.do_map = 0;
2825         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2826         if (!mpd.io_submit.io_end) {
2827                 ret = -ENOMEM;
2828                 goto unplug;
2829         }
2830         ret = mpage_prepare_extent_to_map(&mpd);
2831         /* Unlock pages we didn't use */
2832         mpage_release_unused_pages(&mpd, false);
2833         /* Submit prepared bio */
2834         ext4_io_submit(&mpd.io_submit);
2835         ext4_put_io_end_defer(mpd.io_submit.io_end);
2836         mpd.io_submit.io_end = NULL;
2837         if (ret < 0)
2838                 goto unplug;
2839
2840         while (!done && mpd.first_page <= mpd.last_page) {
2841                 /* For each extent of pages we use new io_end */
2842                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2843                 if (!mpd.io_submit.io_end) {
2844                         ret = -ENOMEM;
2845                         break;
2846                 }
2847
2848                 /*
2849                  * We have two constraints: We find one extent to map and we
2850                  * must always write out whole page (makes a difference when
2851                  * blocksize < pagesize) so that we don't block on IO when we
2852                  * try to write out the rest of the page. Journalled mode is
2853                  * not supported by delalloc.
2854                  */
2855                 BUG_ON(ext4_should_journal_data(inode));
2856                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2857
2858                 /* start a new transaction */
2859                 handle = ext4_journal_start_with_reserve(inode,
2860                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2861                 if (IS_ERR(handle)) {
2862                         ret = PTR_ERR(handle);
2863                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2864                                "%ld pages, ino %lu; err %d", __func__,
2865                                 wbc->nr_to_write, inode->i_ino, ret);
2866                         /* Release allocated io_end */
2867                         ext4_put_io_end(mpd.io_submit.io_end);
2868                         mpd.io_submit.io_end = NULL;
2869                         break;
2870                 }
2871                 mpd.do_map = 1;
2872
2873                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2874                 ret = mpage_prepare_extent_to_map(&mpd);
2875                 if (!ret) {
2876                         if (mpd.map.m_len)
2877                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2878                                         &give_up_on_write);
2879                         else {
2880                                 /*
2881                                  * We scanned the whole range (or exhausted
2882                                  * nr_to_write), submitted what was mapped and
2883                                  * didn't find anything needing mapping. We are
2884                                  * done.
2885                                  */
2886                                 done = true;
2887                         }
2888                 }
2889                 /*
2890                  * Caution: If the handle is synchronous,
2891                  * ext4_journal_stop() can wait for transaction commit
2892                  * to finish which may depend on writeback of pages to
2893                  * complete or on page lock to be released.  In that
2894                  * case, we have to wait until after after we have
2895                  * submitted all the IO, released page locks we hold,
2896                  * and dropped io_end reference (for extent conversion
2897                  * to be able to complete) before stopping the handle.
2898                  */
2899                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2900                         ext4_journal_stop(handle);
2901                         handle = NULL;
2902                         mpd.do_map = 0;
2903                 }
2904                 /* Unlock pages we didn't use */
2905                 mpage_release_unused_pages(&mpd, give_up_on_write);
2906                 /* Submit prepared bio */
2907                 ext4_io_submit(&mpd.io_submit);
2908
2909                 /*
2910                  * Drop our io_end reference we got from init. We have
2911                  * to be careful and use deferred io_end finishing if
2912                  * we are still holding the transaction as we can
2913                  * release the last reference to io_end which may end
2914                  * up doing unwritten extent conversion.
2915                  */
2916                 if (handle) {
2917                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2918                         ext4_journal_stop(handle);
2919                 } else
2920                         ext4_put_io_end(mpd.io_submit.io_end);
2921                 mpd.io_submit.io_end = NULL;
2922
2923                 if (ret == -ENOSPC && sbi->s_journal) {
2924                         /*
2925                          * Commit the transaction which would
2926                          * free blocks released in the transaction
2927                          * and try again
2928                          */
2929                         jbd2_journal_force_commit_nested(sbi->s_journal);
2930                         ret = 0;
2931                         continue;
2932                 }
2933                 /* Fatal error - ENOMEM, EIO... */
2934                 if (ret)
2935                         break;
2936         }
2937 unplug:
2938         blk_finish_plug(&plug);
2939         if (!ret && !cycled && wbc->nr_to_write > 0) {
2940                 cycled = 1;
2941                 mpd.last_page = writeback_index - 1;
2942                 mpd.first_page = 0;
2943                 goto retry;
2944         }
2945
2946         /* Update index */
2947         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2948                 /*
2949                  * Set the writeback_index so that range_cyclic
2950                  * mode will write it back later
2951                  */
2952                 mapping->writeback_index = mpd.first_page;
2953
2954 out_writepages:
2955         trace_ext4_writepages_result(inode, wbc, ret,
2956                                      nr_to_write - wbc->nr_to_write);
2957         percpu_up_read(&sbi->s_journal_flag_rwsem);
2958         return ret;
2959 }
2960
2961 static int ext4_dax_writepages(struct address_space *mapping,
2962                                struct writeback_control *wbc)
2963 {
2964         int ret;
2965         long nr_to_write = wbc->nr_to_write;
2966         struct inode *inode = mapping->host;
2967         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2968
2969         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2970                 return -EIO;
2971
2972         percpu_down_read(&sbi->s_journal_flag_rwsem);
2973         trace_ext4_writepages(inode, wbc);
2974
2975         ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2976         trace_ext4_writepages_result(inode, wbc, ret,
2977                                      nr_to_write - wbc->nr_to_write);
2978         percpu_up_read(&sbi->s_journal_flag_rwsem);
2979         return ret;
2980 }
2981
2982 static int ext4_nonda_switch(struct super_block *sb)
2983 {
2984         s64 free_clusters, dirty_clusters;
2985         struct ext4_sb_info *sbi = EXT4_SB(sb);
2986
2987         /*
2988          * switch to non delalloc mode if we are running low
2989          * on free block. The free block accounting via percpu
2990          * counters can get slightly wrong with percpu_counter_batch getting
2991          * accumulated on each CPU without updating global counters
2992          * Delalloc need an accurate free block accounting. So switch
2993          * to non delalloc when we are near to error range.
2994          */
2995         free_clusters =
2996                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2997         dirty_clusters =
2998                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2999         /*
3000          * Start pushing delalloc when 1/2 of free blocks are dirty.
3001          */
3002         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3003                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3004
3005         if (2 * free_clusters < 3 * dirty_clusters ||
3006             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3007                 /*
3008                  * free block count is less than 150% of dirty blocks
3009                  * or free blocks is less than watermark
3010                  */
3011                 return 1;
3012         }
3013         return 0;
3014 }
3015
3016 /* We always reserve for an inode update; the superblock could be there too */
3017 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3018 {
3019         if (likely(ext4_has_feature_large_file(inode->i_sb)))
3020                 return 1;
3021
3022         if (pos + len <= 0x7fffffffULL)
3023                 return 1;
3024
3025         /* We might need to update the superblock to set LARGE_FILE */
3026         return 2;
3027 }
3028
3029 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3030                                loff_t pos, unsigned len, unsigned flags,
3031                                struct page **pagep, void **fsdata)
3032 {
3033         int ret, retries = 0;
3034         struct page *page;
3035         pgoff_t index;
3036         struct inode *inode = mapping->host;
3037         handle_t *handle;
3038
3039         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3040                 return -EIO;
3041
3042         index = pos >> PAGE_SHIFT;
3043
3044         if (ext4_nonda_switch(inode->i_sb) ||
3045             S_ISLNK(inode->i_mode)) {
3046                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3047                 return ext4_write_begin(file, mapping, pos,
3048                                         len, flags, pagep, fsdata);
3049         }
3050         *fsdata = (void *)0;
3051         trace_ext4_da_write_begin(inode, pos, len, flags);
3052
3053         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3054                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3055                                                       pos, len, flags,
3056                                                       pagep, fsdata);
3057                 if (ret < 0)
3058                         return ret;
3059                 if (ret == 1)
3060                         return 0;
3061         }
3062
3063         /*
3064          * grab_cache_page_write_begin() can take a long time if the
3065          * system is thrashing due to memory pressure, or if the page
3066          * is being written back.  So grab it first before we start
3067          * the transaction handle.  This also allows us to allocate
3068          * the page (if needed) without using GFP_NOFS.
3069          */
3070 retry_grab:
3071         page = grab_cache_page_write_begin(mapping, index, flags);
3072         if (!page)
3073                 return -ENOMEM;
3074         unlock_page(page);
3075
3076         /*
3077          * With delayed allocation, we don't log the i_disksize update
3078          * if there is delayed block allocation. But we still need
3079          * to journalling the i_disksize update if writes to the end
3080          * of file which has an already mapped buffer.
3081          */
3082 retry_journal:
3083         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3084                                 ext4_da_write_credits(inode, pos, len));
3085         if (IS_ERR(handle)) {
3086                 put_page(page);
3087                 return PTR_ERR(handle);
3088         }
3089
3090         lock_page(page);
3091         if (page->mapping != mapping) {
3092                 /* The page got truncated from under us */
3093                 unlock_page(page);
3094                 put_page(page);
3095                 ext4_journal_stop(handle);
3096                 goto retry_grab;
3097         }
3098         /* In case writeback began while the page was unlocked */
3099         wait_for_stable_page(page);
3100
3101 #ifdef CONFIG_FS_ENCRYPTION
3102         ret = ext4_block_write_begin(page, pos, len,
3103                                      ext4_da_get_block_prep);
3104 #else
3105         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3106 #endif
3107         if (ret < 0) {
3108                 unlock_page(page);
3109                 ext4_journal_stop(handle);
3110                 /*
3111                  * block_write_begin may have instantiated a few blocks
3112                  * outside i_size.  Trim these off again. Don't need
3113                  * i_size_read because we hold i_mutex.
3114                  */
3115                 if (pos + len > inode->i_size)
3116                         ext4_truncate_failed_write(inode);
3117
3118                 if (ret == -ENOSPC &&
3119                     ext4_should_retry_alloc(inode->i_sb, &retries))
3120                         goto retry_journal;
3121
3122                 put_page(page);
3123                 return ret;
3124         }
3125
3126         *pagep = page;
3127         return ret;
3128 }
3129
3130 /*
3131  * Check if we should update i_disksize
3132  * when write to the end of file but not require block allocation
3133  */
3134 static int ext4_da_should_update_i_disksize(struct page *page,
3135                                             unsigned long offset)
3136 {
3137         struct buffer_head *bh;
3138         struct inode *inode = page->mapping->host;
3139         unsigned int idx;
3140         int i;
3141
3142         bh = page_buffers(page);
3143         idx = offset >> inode->i_blkbits;
3144
3145         for (i = 0; i < idx; i++)
3146                 bh = bh->b_this_page;
3147
3148         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3149                 return 0;
3150         return 1;
3151 }
3152
3153 static int ext4_da_write_end(struct file *file,
3154                              struct address_space *mapping,
3155                              loff_t pos, unsigned len, unsigned copied,
3156                              struct page *page, void *fsdata)
3157 {
3158         struct inode *inode = mapping->host;
3159         int ret = 0, ret2;
3160         handle_t *handle = ext4_journal_current_handle();
3161         loff_t new_i_size;
3162         unsigned long start, end;
3163         int write_mode = (int)(unsigned long)fsdata;
3164
3165         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3166                 return ext4_write_end(file, mapping, pos,
3167                                       len, copied, page, fsdata);
3168
3169         trace_ext4_da_write_end(inode, pos, len, copied);
3170         start = pos & (PAGE_SIZE - 1);
3171         end = start + copied - 1;
3172
3173         /*
3174          * generic_write_end() will run mark_inode_dirty() if i_size
3175          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3176          * into that.
3177          */
3178         new_i_size = pos + copied;
3179         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3180                 if (ext4_has_inline_data(inode) ||
3181                     ext4_da_should_update_i_disksize(page, end)) {
3182                         ext4_update_i_disksize(inode, new_i_size);
3183                         /* We need to mark inode dirty even if
3184                          * new_i_size is less that inode->i_size
3185                          * bu greater than i_disksize.(hint delalloc)
3186                          */
3187                         ext4_mark_inode_dirty(handle, inode);
3188                 }
3189         }
3190
3191         if (write_mode != CONVERT_INLINE_DATA &&
3192             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3193             ext4_has_inline_data(inode))
3194                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3195                                                      page);
3196         else
3197                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3198                                                         page, fsdata);
3199
3200         copied = ret2;
3201         if (ret2 < 0)
3202                 ret = ret2;
3203         ret2 = ext4_journal_stop(handle);
3204         if (!ret)
3205                 ret = ret2;
3206
3207         return ret ? ret : copied;
3208 }
3209
3210 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3211                                    unsigned int length)
3212 {
3213         /*
3214          * Drop reserved blocks
3215          */
3216         BUG_ON(!PageLocked(page));
3217         if (!page_has_buffers(page))
3218                 goto out;
3219
3220         ext4_da_page_release_reservation(page, offset, length);
3221
3222 out:
3223         ext4_invalidatepage(page, offset, length);
3224
3225         return;
3226 }
3227
3228 /*
3229  * Force all delayed allocation blocks to be allocated for a given inode.
3230  */
3231 int ext4_alloc_da_blocks(struct inode *inode)
3232 {
3233         trace_ext4_alloc_da_blocks(inode);
3234
3235         if (!EXT4_I(inode)->i_reserved_data_blocks)
3236                 return 0;
3237
3238         /*
3239          * We do something simple for now.  The filemap_flush() will
3240          * also start triggering a write of the data blocks, which is
3241          * not strictly speaking necessary (and for users of
3242          * laptop_mode, not even desirable).  However, to do otherwise
3243          * would require replicating code paths in:
3244          *
3245          * ext4_writepages() ->
3246          *    write_cache_pages() ---> (via passed in callback function)
3247          *        __mpage_da_writepage() -->
3248          *           mpage_add_bh_to_extent()
3249          *           mpage_da_map_blocks()
3250          *
3251          * The problem is that write_cache_pages(), located in
3252          * mm/page-writeback.c, marks pages clean in preparation for
3253          * doing I/O, which is not desirable if we're not planning on
3254          * doing I/O at all.
3255          *
3256          * We could call write_cache_pages(), and then redirty all of
3257          * the pages by calling redirty_page_for_writepage() but that
3258          * would be ugly in the extreme.  So instead we would need to
3259          * replicate parts of the code in the above functions,
3260          * simplifying them because we wouldn't actually intend to
3261          * write out the pages, but rather only collect contiguous
3262          * logical block extents, call the multi-block allocator, and
3263          * then update the buffer heads with the block allocations.
3264          *
3265          * For now, though, we'll cheat by calling filemap_flush(),
3266          * which will map the blocks, and start the I/O, but not
3267          * actually wait for the I/O to complete.
3268          */
3269         return filemap_flush(inode->i_mapping);
3270 }
3271
3272 /*
3273  * bmap() is special.  It gets used by applications such as lilo and by
3274  * the swapper to find the on-disk block of a specific piece of data.
3275  *
3276  * Naturally, this is dangerous if the block concerned is still in the
3277  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3278  * filesystem and enables swap, then they may get a nasty shock when the
3279  * data getting swapped to that swapfile suddenly gets overwritten by
3280  * the original zero's written out previously to the journal and
3281  * awaiting writeback in the kernel's buffer cache.
3282  *
3283  * So, if we see any bmap calls here on a modified, data-journaled file,
3284  * take extra steps to flush any blocks which might be in the cache.
3285  */
3286 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3287 {
3288         struct inode *inode = mapping->host;
3289         journal_t *journal;
3290         int err;
3291
3292         /*
3293          * We can get here for an inline file via the FIBMAP ioctl
3294          */
3295         if (ext4_has_inline_data(inode))
3296                 return 0;
3297
3298         i