e5014a6f76e2ae42f697b400db558660df2961ad
[muen/linux.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172                                  int nblocks)
173 {
174         int ret;
175
176         /*
177          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178          * moment, get_block can be called only for blocks inside i_size since
179          * page cache has been already dropped and writes are blocked by
180          * i_mutex. So we can safely drop the i_data_sem here.
181          */
182         BUG_ON(EXT4_JOURNAL(inode) == NULL);
183         jbd_debug(2, "restarting handle %p\n", handle);
184         up_write(&EXT4_I(inode)->i_data_sem);
185         ret = ext4_journal_restart(handle, nblocks);
186         down_write(&EXT4_I(inode)->i_data_sem);
187         ext4_discard_preallocations(inode);
188
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197         handle_t *handle;
198         int err;
199         int extra_credits = 3;
200         struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202         trace_ext4_evict_inode(inode);
203
204         if (inode->i_nlink) {
205                 /*
206                  * When journalling data dirty buffers are tracked only in the
207                  * journal. So although mm thinks everything is clean and
208                  * ready for reaping the inode might still have some pages to
209                  * write in the running transaction or waiting to be
210                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
211                  * (via truncate_inode_pages()) to discard these buffers can
212                  * cause data loss. Also even if we did not discard these
213                  * buffers, we would have no way to find them after the inode
214                  * is reaped and thus user could see stale data if he tries to
215                  * read them before the transaction is checkpointed. So be
216                  * careful and force everything to disk here... We use
217                  * ei->i_datasync_tid to store the newest transaction
218                  * containing inode's data.
219                  *
220                  * Note that directories do not have this problem because they
221                  * don't use page cache.
222                  */
223                 if (inode->i_ino != EXT4_JOURNAL_INO &&
224                     ext4_should_journal_data(inode) &&
225                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226                     inode->i_data.nrpages) {
227                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230                         jbd2_complete_transaction(journal, commit_tid);
231                         filemap_write_and_wait(&inode->i_data);
232                 }
233                 truncate_inode_pages_final(&inode->i_data);
234
235                 goto no_delete;
236         }
237
238         if (is_bad_inode(inode))
239                 goto no_delete;
240         dquot_initialize(inode);
241
242         if (ext4_should_order_data(inode))
243                 ext4_begin_ordered_truncate(inode, 0);
244         truncate_inode_pages_final(&inode->i_data);
245
246         /*
247          * Protect us against freezing - iput() caller didn't have to have any
248          * protection against it
249          */
250         sb_start_intwrite(inode->i_sb);
251
252         if (!IS_NOQUOTA(inode))
253                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256                                  ext4_blocks_for_truncate(inode)+extra_credits);
257         if (IS_ERR(handle)) {
258                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259                 /*
260                  * If we're going to skip the normal cleanup, we still need to
261                  * make sure that the in-core orphan linked list is properly
262                  * cleaned up.
263                  */
264                 ext4_orphan_del(NULL, inode);
265                 sb_end_intwrite(inode->i_sb);
266                 goto no_delete;
267         }
268
269         if (IS_SYNC(inode))
270                 ext4_handle_sync(handle);
271
272         /*
273          * Set inode->i_size to 0 before calling ext4_truncate(). We need
274          * special handling of symlinks here because i_size is used to
275          * determine whether ext4_inode_info->i_data contains symlink data or
276          * block mappings. Setting i_size to 0 will remove its fast symlink
277          * status. Erase i_data so that it becomes a valid empty block map.
278          */
279         if (ext4_inode_is_fast_symlink(inode))
280                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281         inode->i_size = 0;
282         err = ext4_mark_inode_dirty(handle, inode);
283         if (err) {
284                 ext4_warning(inode->i_sb,
285                              "couldn't mark inode dirty (err %d)", err);
286                 goto stop_handle;
287         }
288         if (inode->i_blocks) {
289                 err = ext4_truncate(inode);
290                 if (err) {
291                         ext4_error(inode->i_sb,
292                                    "couldn't truncate inode %lu (err %d)",
293                                    inode->i_ino, err);
294                         goto stop_handle;
295                 }
296         }
297
298         /* Remove xattr references. */
299         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300                                       extra_credits);
301         if (err) {
302                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304                 ext4_journal_stop(handle);
305                 ext4_orphan_del(NULL, inode);
306                 sb_end_intwrite(inode->i_sb);
307                 ext4_xattr_inode_array_free(ea_inode_array);
308                 goto no_delete;
309         }
310
311         /*
312          * Kill off the orphan record which ext4_truncate created.
313          * AKPM: I think this can be inside the above `if'.
314          * Note that ext4_orphan_del() has to be able to cope with the
315          * deletion of a non-existent orphan - this is because we don't
316          * know if ext4_truncate() actually created an orphan record.
317          * (Well, we could do this if we need to, but heck - it works)
318          */
319         ext4_orphan_del(handle, inode);
320         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
321
322         /*
323          * One subtle ordering requirement: if anything has gone wrong
324          * (transaction abort, IO errors, whatever), then we can still
325          * do these next steps (the fs will already have been marked as
326          * having errors), but we can't free the inode if the mark_dirty
327          * fails.
328          */
329         if (ext4_mark_inode_dirty(handle, inode))
330                 /* If that failed, just do the required in-core inode clear. */
331                 ext4_clear_inode(inode);
332         else
333                 ext4_free_inode(handle, inode);
334         ext4_journal_stop(handle);
335         sb_end_intwrite(inode->i_sb);
336         ext4_xattr_inode_array_free(ea_inode_array);
337         return;
338 no_delete:
339         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
340 }
341
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345         return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354                                         int used, int quota_claim)
355 {
356         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357         struct ext4_inode_info *ei = EXT4_I(inode);
358
359         spin_lock(&ei->i_block_reservation_lock);
360         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361         if (unlikely(used > ei->i_reserved_data_blocks)) {
362                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363                          "with only %d reserved data blocks",
364                          __func__, inode->i_ino, used,
365                          ei->i_reserved_data_blocks);
366                 WARN_ON(1);
367                 used = ei->i_reserved_data_blocks;
368         }
369
370         /* Update per-inode reservations */
371         ei->i_reserved_data_blocks -= used;
372         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376         /* Update quota subsystem for data blocks */
377         if (quota_claim)
378                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379         else {
380                 /*
381                  * We did fallocate with an offset that is already delayed
382                  * allocated. So on delayed allocated writeback we should
383                  * not re-claim the quota for fallocated blocks.
384                  */
385                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386         }
387
388         /*
389          * If we have done all the pending block allocations and if
390          * there aren't any writers on the inode, we can discard the
391          * inode's preallocations.
392          */
393         if ((ei->i_reserved_data_blocks == 0) &&
394             !inode_is_open_for_write(inode))
395                 ext4_discard_preallocations(inode);
396 }
397
398 static int __check_block_validity(struct inode *inode, const char *func,
399                                 unsigned int line,
400                                 struct ext4_map_blocks *map)
401 {
402         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
403                                    map->m_len)) {
404                 ext4_error_inode(inode, func, line, map->m_pblk,
405                                  "lblock %lu mapped to illegal pblock %llu "
406                                  "(length %d)", (unsigned long) map->m_lblk,
407                                  map->m_pblk, map->m_len);
408                 return -EFSCORRUPTED;
409         }
410         return 0;
411 }
412
413 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
414                        ext4_lblk_t len)
415 {
416         int ret;
417
418         if (ext4_encrypted_inode(inode))
419                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
420
421         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
422         if (ret > 0)
423                 ret = 0;
424
425         return ret;
426 }
427
428 #define check_block_validity(inode, map)        \
429         __check_block_validity((inode), __func__, __LINE__, (map))
430
431 #ifdef ES_AGGRESSIVE_TEST
432 static void ext4_map_blocks_es_recheck(handle_t *handle,
433                                        struct inode *inode,
434                                        struct ext4_map_blocks *es_map,
435                                        struct ext4_map_blocks *map,
436                                        int flags)
437 {
438         int retval;
439
440         map->m_flags = 0;
441         /*
442          * There is a race window that the result is not the same.
443          * e.g. xfstests #223 when dioread_nolock enables.  The reason
444          * is that we lookup a block mapping in extent status tree with
445          * out taking i_data_sem.  So at the time the unwritten extent
446          * could be converted.
447          */
448         down_read(&EXT4_I(inode)->i_data_sem);
449         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
450                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         } else {
453                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
454                                              EXT4_GET_BLOCKS_KEEP_SIZE);
455         }
456         up_read((&EXT4_I(inode)->i_data_sem));
457
458         /*
459          * We don't check m_len because extent will be collpased in status
460          * tree.  So the m_len might not equal.
461          */
462         if (es_map->m_lblk != map->m_lblk ||
463             es_map->m_flags != map->m_flags ||
464             es_map->m_pblk != map->m_pblk) {
465                 printk("ES cache assertion failed for inode: %lu "
466                        "es_cached ex [%d/%d/%llu/%x] != "
467                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468                        inode->i_ino, es_map->m_lblk, es_map->m_len,
469                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
470                        map->m_len, map->m_pblk, map->m_flags,
471                        retval, flags);
472         }
473 }
474 #endif /* ES_AGGRESSIVE_TEST */
475
476 /*
477  * The ext4_map_blocks() function tries to look up the requested blocks,
478  * and returns if the blocks are already mapped.
479  *
480  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481  * and store the allocated blocks in the result buffer head and mark it
482  * mapped.
483  *
484  * If file type is extents based, it will call ext4_ext_map_blocks(),
485  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486  * based files
487  *
488  * On success, it returns the number of blocks being mapped or allocated.  if
489  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
491  *
492  * It returns 0 if plain look up failed (blocks have not been allocated), in
493  * that case, @map is returned as unmapped but we still do fill map->m_len to
494  * indicate the length of a hole starting at map->m_lblk.
495  *
496  * It returns the error in case of allocation failure.
497  */
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499                     struct ext4_map_blocks *map, int flags)
500 {
501         struct extent_status es;
502         int retval;
503         int ret = 0;
504 #ifdef ES_AGGRESSIVE_TEST
505         struct ext4_map_blocks orig_map;
506
507         memcpy(&orig_map, map, sizeof(*map));
508 #endif
509
510         map->m_flags = 0;
511         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
512                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
513                   (unsigned long) map->m_lblk);
514
515         /*
516          * ext4_map_blocks returns an int, and m_len is an unsigned int
517          */
518         if (unlikely(map->m_len > INT_MAX))
519                 map->m_len = INT_MAX;
520
521         /* We can handle the block number less than EXT_MAX_BLOCKS */
522         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
523                 return -EFSCORRUPTED;
524
525         /* Lookup extent status tree firstly */
526         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
527                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528                         map->m_pblk = ext4_es_pblock(&es) +
529                                         map->m_lblk - es.es_lblk;
530                         map->m_flags |= ext4_es_is_written(&es) ?
531                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532                         retval = es.es_len - (map->m_lblk - es.es_lblk);
533                         if (retval > map->m_len)
534                                 retval = map->m_len;
535                         map->m_len = retval;
536                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537                         map->m_pblk = 0;
538                         retval = es.es_len - (map->m_lblk - es.es_lblk);
539                         if (retval > map->m_len)
540                                 retval = map->m_len;
541                         map->m_len = retval;
542                         retval = 0;
543                 } else {
544                         BUG_ON(1);
545                 }
546 #ifdef ES_AGGRESSIVE_TEST
547                 ext4_map_blocks_es_recheck(handle, inode, map,
548                                            &orig_map, flags);
549 #endif
550                 goto found;
551         }
552
553         /*
554          * Try to see if we can get the block without requesting a new
555          * file system block.
556          */
557         down_read(&EXT4_I(inode)->i_data_sem);
558         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
559                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
560                                              EXT4_GET_BLOCKS_KEEP_SIZE);
561         } else {
562                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
563                                              EXT4_GET_BLOCKS_KEEP_SIZE);
564         }
565         if (retval > 0) {
566                 unsigned int status;
567
568                 if (unlikely(retval != map->m_len)) {
569                         ext4_warning(inode->i_sb,
570                                      "ES len assertion failed for inode "
571                                      "%lu: retval %d != map->m_len %d",
572                                      inode->i_ino, retval, map->m_len);
573                         WARN_ON(1);
574                 }
575
576                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
577                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
578                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
579                     !(status & EXTENT_STATUS_WRITTEN) &&
580                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
581                                        map->m_lblk + map->m_len - 1))
582                         status |= EXTENT_STATUS_DELAYED;
583                 ret = ext4_es_insert_extent(inode, map->m_lblk,
584                                             map->m_len, map->m_pblk, status);
585                 if (ret < 0)
586                         retval = ret;
587         }
588         up_read((&EXT4_I(inode)->i_data_sem));
589
590 found:
591         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
592                 ret = check_block_validity(inode, map);
593                 if (ret != 0)
594                         return ret;
595         }
596
597         /* If it is only a block(s) look up */
598         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
599                 return retval;
600
601         /*
602          * Returns if the blocks have already allocated
603          *
604          * Note that if blocks have been preallocated
605          * ext4_ext_get_block() returns the create = 0
606          * with buffer head unmapped.
607          */
608         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
609                 /*
610                  * If we need to convert extent to unwritten
611                  * we continue and do the actual work in
612                  * ext4_ext_map_blocks()
613                  */
614                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
615                         return retval;
616
617         /*
618          * Here we clear m_flags because after allocating an new extent,
619          * it will be set again.
620          */
621         map->m_flags &= ~EXT4_MAP_FLAGS;
622
623         /*
624          * New blocks allocate and/or writing to unwritten extent
625          * will possibly result in updating i_data, so we take
626          * the write lock of i_data_sem, and call get_block()
627          * with create == 1 flag.
628          */
629         down_write(&EXT4_I(inode)->i_data_sem);
630
631         /*
632          * We need to check for EXT4 here because migrate
633          * could have changed the inode type in between
634          */
635         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
636                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
637         } else {
638                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
639
640                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
641                         /*
642                          * We allocated new blocks which will result in
643                          * i_data's format changing.  Force the migrate
644                          * to fail by clearing migrate flags
645                          */
646                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
647                 }
648
649                 /*
650                  * Update reserved blocks/metadata blocks after successful
651                  * block allocation which had been deferred till now. We don't
652                  * support fallocate for non extent files. So we can update
653                  * reserve space here.
654                  */
655                 if ((retval > 0) &&
656                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
657                         ext4_da_update_reserve_space(inode, retval, 1);
658         }
659
660         if (retval > 0) {
661                 unsigned int status;
662
663                 if (unlikely(retval != map->m_len)) {
664                         ext4_warning(inode->i_sb,
665                                      "ES len assertion failed for inode "
666                                      "%lu: retval %d != map->m_len %d",
667                                      inode->i_ino, retval, map->m_len);
668                         WARN_ON(1);
669                 }
670
671                 /*
672                  * We have to zeroout blocks before inserting them into extent
673                  * status tree. Otherwise someone could look them up there and
674                  * use them before they are really zeroed. We also have to
675                  * unmap metadata before zeroing as otherwise writeback can
676                  * overwrite zeros with stale data from block device.
677                  */
678                 if (flags & EXT4_GET_BLOCKS_ZERO &&
679                     map->m_flags & EXT4_MAP_MAPPED &&
680                     map->m_flags & EXT4_MAP_NEW) {
681                         ret = ext4_issue_zeroout(inode, map->m_lblk,
682                                                  map->m_pblk, map->m_len);
683                         if (ret) {
684                                 retval = ret;
685                                 goto out_sem;
686                         }
687                 }
688
689                 /*
690                  * If the extent has been zeroed out, we don't need to update
691                  * extent status tree.
692                  */
693                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
694                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
695                         if (ext4_es_is_written(&es))
696                                 goto out_sem;
697                 }
698                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
699                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
700                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
701                     !(status & EXTENT_STATUS_WRITTEN) &&
702                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
703                                        map->m_lblk + map->m_len - 1))
704                         status |= EXTENT_STATUS_DELAYED;
705                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
706                                             map->m_pblk, status);
707                 if (ret < 0) {
708                         retval = ret;
709                         goto out_sem;
710                 }
711         }
712
713 out_sem:
714         up_write((&EXT4_I(inode)->i_data_sem));
715         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
716                 ret = check_block_validity(inode, map);
717                 if (ret != 0)
718                         return ret;
719
720                 /*
721                  * Inodes with freshly allocated blocks where contents will be
722                  * visible after transaction commit must be on transaction's
723                  * ordered data list.
724                  */
725                 if (map->m_flags & EXT4_MAP_NEW &&
726                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
727                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
728                     !ext4_is_quota_file(inode) &&
729                     ext4_should_order_data(inode)) {
730                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
731                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
732                         else
733                                 ret = ext4_jbd2_inode_add_write(handle, inode);
734                         if (ret)
735                                 return ret;
736                 }
737         }
738         return retval;
739 }
740
741 /*
742  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
743  * we have to be careful as someone else may be manipulating b_state as well.
744  */
745 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
746 {
747         unsigned long old_state;
748         unsigned long new_state;
749
750         flags &= EXT4_MAP_FLAGS;
751
752         /* Dummy buffer_head? Set non-atomically. */
753         if (!bh->b_page) {
754                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
755                 return;
756         }
757         /*
758          * Someone else may be modifying b_state. Be careful! This is ugly but
759          * once we get rid of using bh as a container for mapping information
760          * to pass to / from get_block functions, this can go away.
761          */
762         do {
763                 old_state = READ_ONCE(bh->b_state);
764                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
765         } while (unlikely(
766                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
767 }
768
769 static int _ext4_get_block(struct inode *inode, sector_t iblock,
770                            struct buffer_head *bh, int flags)
771 {
772         struct ext4_map_blocks map;
773         int ret = 0;
774
775         if (ext4_has_inline_data(inode))
776                 return -ERANGE;
777
778         map.m_lblk = iblock;
779         map.m_len = bh->b_size >> inode->i_blkbits;
780
781         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
782                               flags);
783         if (ret > 0) {
784                 map_bh(bh, inode->i_sb, map.m_pblk);
785                 ext4_update_bh_state(bh, map.m_flags);
786                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
787                 ret = 0;
788         } else if (ret == 0) {
789                 /* hole case, need to fill in bh->b_size */
790                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791         }
792         return ret;
793 }
794
795 int ext4_get_block(struct inode *inode, sector_t iblock,
796                    struct buffer_head *bh, int create)
797 {
798         return _ext4_get_block(inode, iblock, bh,
799                                create ? EXT4_GET_BLOCKS_CREATE : 0);
800 }
801
802 /*
803  * Get block function used when preparing for buffered write if we require
804  * creating an unwritten extent if blocks haven't been allocated.  The extent
805  * will be converted to written after the IO is complete.
806  */
807 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
808                              struct buffer_head *bh_result, int create)
809 {
810         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
811                    inode->i_ino, create);
812         return _ext4_get_block(inode, iblock, bh_result,
813                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
814 }
815
816 /* Maximum number of blocks we map for direct IO at once. */
817 #define DIO_MAX_BLOCKS 4096
818
819 /*
820  * Get blocks function for the cases that need to start a transaction -
821  * generally difference cases of direct IO and DAX IO. It also handles retries
822  * in case of ENOSPC.
823  */
824 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
825                                 struct buffer_head *bh_result, int flags)
826 {
827         int dio_credits;
828         handle_t *handle;
829         int retries = 0;
830         int ret;
831
832         /* Trim mapping request to maximum we can map at once for DIO */
833         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
834                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
835         dio_credits = ext4_chunk_trans_blocks(inode,
836                                       bh_result->b_size >> inode->i_blkbits);
837 retry:
838         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
839         if (IS_ERR(handle))
840                 return PTR_ERR(handle);
841
842         ret = _ext4_get_block(inode, iblock, bh_result, flags);
843         ext4_journal_stop(handle);
844
845         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
846                 goto retry;
847         return ret;
848 }
849
850 /* Get block function for DIO reads and writes to inodes without extents */
851 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
852                        struct buffer_head *bh, int create)
853 {
854         /* We don't expect handle for direct IO */
855         WARN_ON_ONCE(ext4_journal_current_handle());
856
857         if (!create)
858                 return _ext4_get_block(inode, iblock, bh, 0);
859         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
860 }
861
862 /*
863  * Get block function for AIO DIO writes when we create unwritten extent if
864  * blocks are not allocated yet. The extent will be converted to written
865  * after IO is complete.
866  */
867 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
868                 sector_t iblock, struct buffer_head *bh_result, int create)
869 {
870         int ret;
871
872         /* We don't expect handle for direct IO */
873         WARN_ON_ONCE(ext4_journal_current_handle());
874
875         ret = ext4_get_block_trans(inode, iblock, bh_result,
876                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
877
878         /*
879          * When doing DIO using unwritten extents, we need io_end to convert
880          * unwritten extents to written on IO completion. We allocate io_end
881          * once we spot unwritten extent and store it in b_private. Generic
882          * DIO code keeps b_private set and furthermore passes the value to
883          * our completion callback in 'private' argument.
884          */
885         if (!ret && buffer_unwritten(bh_result)) {
886                 if (!bh_result->b_private) {
887                         ext4_io_end_t *io_end;
888
889                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
890                         if (!io_end)
891                                 return -ENOMEM;
892                         bh_result->b_private = io_end;
893                         ext4_set_io_unwritten_flag(inode, io_end);
894                 }
895                 set_buffer_defer_completion(bh_result);
896         }
897
898         return ret;
899 }
900
901 /*
902  * Get block function for non-AIO DIO writes when we create unwritten extent if
903  * blocks are not allocated yet. The extent will be converted to written
904  * after IO is complete by ext4_direct_IO_write().
905  */
906 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
907                 sector_t iblock, struct buffer_head *bh_result, int create)
908 {
909         int ret;
910
911         /* We don't expect handle for direct IO */
912         WARN_ON_ONCE(ext4_journal_current_handle());
913
914         ret = ext4_get_block_trans(inode, iblock, bh_result,
915                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
916
917         /*
918          * Mark inode as having pending DIO writes to unwritten extents.
919          * ext4_direct_IO_write() checks this flag and converts extents to
920          * written.
921          */
922         if (!ret && buffer_unwritten(bh_result))
923                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
924
925         return ret;
926 }
927
928 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
929                    struct buffer_head *bh_result, int create)
930 {
931         int ret;
932
933         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
934                    inode->i_ino, create);
935         /* We don't expect handle for direct IO */
936         WARN_ON_ONCE(ext4_journal_current_handle());
937
938         ret = _ext4_get_block(inode, iblock, bh_result, 0);
939         /*
940          * Blocks should have been preallocated! ext4_file_write_iter() checks
941          * that.
942          */
943         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
944
945         return ret;
946 }
947
948
949 /*
950  * `handle' can be NULL if create is zero
951  */
952 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
953                                 ext4_lblk_t block, int map_flags)
954 {
955         struct ext4_map_blocks map;
956         struct buffer_head *bh;
957         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
958         int err;
959
960         J_ASSERT(handle != NULL || create == 0);
961
962         map.m_lblk = block;
963         map.m_len = 1;
964         err = ext4_map_blocks(handle, inode, &map, map_flags);
965
966         if (err == 0)
967                 return create ? ERR_PTR(-ENOSPC) : NULL;
968         if (err < 0)
969                 return ERR_PTR(err);
970
971         bh = sb_getblk(inode->i_sb, map.m_pblk);
972         if (unlikely(!bh))
973                 return ERR_PTR(-ENOMEM);
974         if (map.m_flags & EXT4_MAP_NEW) {
975                 J_ASSERT(create != 0);
976                 J_ASSERT(handle != NULL);
977
978                 /*
979                  * Now that we do not always journal data, we should
980                  * keep in mind whether this should always journal the
981                  * new buffer as metadata.  For now, regular file
982                  * writes use ext4_get_block instead, so it's not a
983                  * problem.
984                  */
985                 lock_buffer(bh);
986                 BUFFER_TRACE(bh, "call get_create_access");
987                 err = ext4_journal_get_create_access(handle, bh);
988                 if (unlikely(err)) {
989                         unlock_buffer(bh);
990                         goto errout;
991                 }
992                 if (!buffer_uptodate(bh)) {
993                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
994                         set_buffer_uptodate(bh);
995                 }
996                 unlock_buffer(bh);
997                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
998                 err = ext4_handle_dirty_metadata(handle, inode, bh);
999                 if (unlikely(err))
1000                         goto errout;
1001         } else
1002                 BUFFER_TRACE(bh, "not a new buffer");
1003         return bh;
1004 errout:
1005         brelse(bh);
1006         return ERR_PTR(err);
1007 }
1008
1009 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1010                                ext4_lblk_t block, int map_flags)
1011 {
1012         struct buffer_head *bh;
1013
1014         bh = ext4_getblk(handle, inode, block, map_flags);
1015         if (IS_ERR(bh))
1016                 return bh;
1017         if (!bh || buffer_uptodate(bh))
1018                 return bh;
1019         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1020         wait_on_buffer(bh);
1021         if (buffer_uptodate(bh))
1022                 return bh;
1023         put_bh(bh);
1024         return ERR_PTR(-EIO);
1025 }
1026
1027 /* Read a contiguous batch of blocks. */
1028 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1029                      bool wait, struct buffer_head **bhs)
1030 {
1031         int i, err;
1032
1033         for (i = 0; i < bh_count; i++) {
1034                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1035                 if (IS_ERR(bhs[i])) {
1036                         err = PTR_ERR(bhs[i]);
1037                         bh_count = i;
1038                         goto out_brelse;
1039                 }
1040         }
1041
1042         for (i = 0; i < bh_count; i++)
1043                 /* Note that NULL bhs[i] is valid because of holes. */
1044                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1045                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1046                                     &bhs[i]);
1047
1048         if (!wait)
1049                 return 0;
1050
1051         for (i = 0; i < bh_count; i++)
1052                 if (bhs[i])
1053                         wait_on_buffer(bhs[i]);
1054
1055         for (i = 0; i < bh_count; i++) {
1056                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1057                         err = -EIO;
1058                         goto out_brelse;
1059                 }
1060         }
1061         return 0;
1062
1063 out_brelse:
1064         for (i = 0; i < bh_count; i++) {
1065                 brelse(bhs[i]);
1066                 bhs[i] = NULL;
1067         }
1068         return err;
1069 }
1070
1071 int ext4_walk_page_buffers(handle_t *handle,
1072                            struct buffer_head *head,
1073                            unsigned from,
1074                            unsigned to,
1075                            int *partial,
1076                            int (*fn)(handle_t *handle,
1077                                      struct buffer_head *bh))
1078 {
1079         struct buffer_head *bh;
1080         unsigned block_start, block_end;
1081         unsigned blocksize = head->b_size;
1082         int err, ret = 0;
1083         struct buffer_head *next;
1084
1085         for (bh = head, block_start = 0;
1086              ret == 0 && (bh != head || !block_start);
1087              block_start = block_end, bh = next) {
1088                 next = bh->b_this_page;
1089                 block_end = block_start + blocksize;
1090                 if (block_end <= from || block_start >= to) {
1091                         if (partial && !buffer_uptodate(bh))
1092                                 *partial = 1;
1093                         continue;
1094                 }
1095                 err = (*fn)(handle, bh);
1096                 if (!ret)
1097                         ret = err;
1098         }
1099         return ret;
1100 }
1101
1102 /*
1103  * To preserve ordering, it is essential that the hole instantiation and
1104  * the data write be encapsulated in a single transaction.  We cannot
1105  * close off a transaction and start a new one between the ext4_get_block()
1106  * and the commit_write().  So doing the jbd2_journal_start at the start of
1107  * prepare_write() is the right place.
1108  *
1109  * Also, this function can nest inside ext4_writepage().  In that case, we
1110  * *know* that ext4_writepage() has generated enough buffer credits to do the
1111  * whole page.  So we won't block on the journal in that case, which is good,
1112  * because the caller may be PF_MEMALLOC.
1113  *
1114  * By accident, ext4 can be reentered when a transaction is open via
1115  * quota file writes.  If we were to commit the transaction while thus
1116  * reentered, there can be a deadlock - we would be holding a quota
1117  * lock, and the commit would never complete if another thread had a
1118  * transaction open and was blocking on the quota lock - a ranking
1119  * violation.
1120  *
1121  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1122  * will _not_ run commit under these circumstances because handle->h_ref
1123  * is elevated.  We'll still have enough credits for the tiny quotafile
1124  * write.
1125  */
1126 int do_journal_get_write_access(handle_t *handle,
1127                                 struct buffer_head *bh)
1128 {
1129         int dirty = buffer_dirty(bh);
1130         int ret;
1131
1132         if (!buffer_mapped(bh) || buffer_freed(bh))
1133                 return 0;
1134         /*
1135          * __block_write_begin() could have dirtied some buffers. Clean
1136          * the dirty bit as jbd2_journal_get_write_access() could complain
1137          * otherwise about fs integrity issues. Setting of the dirty bit
1138          * by __block_write_begin() isn't a real problem here as we clear
1139          * the bit before releasing a page lock and thus writeback cannot
1140          * ever write the buffer.
1141          */
1142         if (dirty)
1143                 clear_buffer_dirty(bh);
1144         BUFFER_TRACE(bh, "get write access");
1145         ret = ext4_journal_get_write_access(handle, bh);
1146         if (!ret && dirty)
1147                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1148         return ret;
1149 }
1150
1151 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1152 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1153                                   get_block_t *get_block)
1154 {
1155         unsigned from = pos & (PAGE_SIZE - 1);
1156         unsigned to = from + len;
1157         struct inode *inode = page->mapping->host;
1158         unsigned block_start, block_end;
1159         sector_t block;
1160         int err = 0;
1161         unsigned blocksize = inode->i_sb->s_blocksize;
1162         unsigned bbits;
1163         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1164         bool decrypt = false;
1165
1166         BUG_ON(!PageLocked(page));
1167         BUG_ON(from > PAGE_SIZE);
1168         BUG_ON(to > PAGE_SIZE);
1169         BUG_ON(from > to);
1170
1171         if (!page_has_buffers(page))
1172                 create_empty_buffers(page, blocksize, 0);
1173         head = page_buffers(page);
1174         bbits = ilog2(blocksize);
1175         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1176
1177         for (bh = head, block_start = 0; bh != head || !block_start;
1178             block++, block_start = block_end, bh = bh->b_this_page) {
1179                 block_end = block_start + blocksize;
1180                 if (block_end <= from || block_start >= to) {
1181                         if (PageUptodate(page)) {
1182                                 if (!buffer_uptodate(bh))
1183                                         set_buffer_uptodate(bh);
1184                         }
1185                         continue;
1186                 }
1187                 if (buffer_new(bh))
1188                         clear_buffer_new(bh);
1189                 if (!buffer_mapped(bh)) {
1190                         WARN_ON(bh->b_size != blocksize);
1191                         err = get_block(inode, block, bh, 1);
1192                         if (err)
1193                                 break;
1194                         if (buffer_new(bh)) {
1195                                 if (PageUptodate(page)) {
1196                                         clear_buffer_new(bh);
1197                                         set_buffer_uptodate(bh);
1198                                         mark_buffer_dirty(bh);
1199                                         continue;
1200                                 }
1201                                 if (block_end > to || block_start < from)
1202                                         zero_user_segments(page, to, block_end,
1203                                                            block_start, from);
1204                                 continue;
1205                         }
1206                 }
1207                 if (PageUptodate(page)) {
1208                         if (!buffer_uptodate(bh))
1209                                 set_buffer_uptodate(bh);
1210                         continue;
1211                 }
1212                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1213                     !buffer_unwritten(bh) &&
1214                     (block_start < from || block_end > to)) {
1215                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1216                         *wait_bh++ = bh;
1217                         decrypt = ext4_encrypted_inode(inode) &&
1218                                 S_ISREG(inode->i_mode);
1219                 }
1220         }
1221         /*
1222          * If we issued read requests, let them complete.
1223          */
1224         while (wait_bh > wait) {
1225                 wait_on_buffer(*--wait_bh);
1226                 if (!buffer_uptodate(*wait_bh))
1227                         err = -EIO;
1228         }
1229         if (unlikely(err))
1230                 page_zero_new_buffers(page, from, to);
1231         else if (decrypt)
1232                 err = fscrypt_decrypt_page(page->mapping->host, page,
1233                                 PAGE_SIZE, 0, page->index);
1234         return err;
1235 }
1236 #endif
1237
1238 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1239                             loff_t pos, unsigned len, unsigned flags,
1240                             struct page **pagep, void **fsdata)
1241 {
1242         struct inode *inode = mapping->host;
1243         int ret, needed_blocks;
1244         handle_t *handle;
1245         int retries = 0;
1246         struct page *page;
1247         pgoff_t index;
1248         unsigned from, to;
1249
1250         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1251                 return -EIO;
1252
1253         trace_ext4_write_begin(inode, pos, len, flags);
1254         /*
1255          * Reserve one block more for addition to orphan list in case
1256          * we allocate blocks but write fails for some reason
1257          */
1258         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1259         index = pos >> PAGE_SHIFT;
1260         from = pos & (PAGE_SIZE - 1);
1261         to = from + len;
1262
1263         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1264                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1265                                                     flags, pagep);
1266                 if (ret < 0)
1267                         return ret;
1268                 if (ret == 1)
1269                         return 0;
1270         }
1271
1272         /*
1273          * grab_cache_page_write_begin() can take a long time if the
1274          * system is thrashing due to memory pressure, or if the page
1275          * is being written back.  So grab it first before we start
1276          * the transaction handle.  This also allows us to allocate
1277          * the page (if needed) without using GFP_NOFS.
1278          */
1279 retry_grab:
1280         page = grab_cache_page_write_begin(mapping, index, flags);
1281         if (!page)
1282                 return -ENOMEM;
1283         unlock_page(page);
1284
1285 retry_journal:
1286         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1287         if (IS_ERR(handle)) {
1288                 put_page(page);
1289                 return PTR_ERR(handle);
1290         }
1291
1292         lock_page(page);
1293         if (page->mapping != mapping) {
1294                 /* The page got truncated from under us */
1295                 unlock_page(page);
1296                 put_page(page);
1297                 ext4_journal_stop(handle);
1298                 goto retry_grab;
1299         }
1300         /* In case writeback began while the page was unlocked */
1301         wait_for_stable_page(page);
1302
1303 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1304         if (ext4_should_dioread_nolock(inode))
1305                 ret = ext4_block_write_begin(page, pos, len,
1306                                              ext4_get_block_unwritten);
1307         else
1308                 ret = ext4_block_write_begin(page, pos, len,
1309                                              ext4_get_block);
1310 #else
1311         if (ext4_should_dioread_nolock(inode))
1312                 ret = __block_write_begin(page, pos, len,
1313                                           ext4_get_block_unwritten);
1314         else
1315                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1316 #endif
1317         if (!ret && ext4_should_journal_data(inode)) {
1318                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1319                                              from, to, NULL,
1320                                              do_journal_get_write_access);
1321         }
1322
1323         if (ret) {
1324                 unlock_page(page);
1325                 /*
1326                  * __block_write_begin may have instantiated a few blocks
1327                  * outside i_size.  Trim these off again. Don't need
1328                  * i_size_read because we hold i_mutex.
1329                  *
1330                  * Add inode to orphan list in case we crash before
1331                  * truncate finishes
1332                  */
1333                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1334                         ext4_orphan_add(handle, inode);
1335
1336                 ext4_journal_stop(handle);
1337                 if (pos + len > inode->i_size) {
1338                         ext4_truncate_failed_write(inode);
1339                         /*
1340                          * If truncate failed early the inode might
1341                          * still be on the orphan list; we need to
1342                          * make sure the inode is removed from the
1343                          * orphan list in that case.
1344                          */
1345                         if (inode->i_nlink)
1346                                 ext4_orphan_del(NULL, inode);
1347                 }
1348
1349                 if (ret == -ENOSPC &&
1350                     ext4_should_retry_alloc(inode->i_sb, &retries))
1351                         goto retry_journal;
1352                 put_page(page);
1353                 return ret;
1354         }
1355         *pagep = page;
1356         return ret;
1357 }
1358
1359 /* For write_end() in data=journal mode */
1360 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1361 {
1362         int ret;
1363         if (!buffer_mapped(bh) || buffer_freed(bh))
1364                 return 0;
1365         set_buffer_uptodate(bh);
1366         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1367         clear_buffer_meta(bh);
1368         clear_buffer_prio(bh);
1369         return ret;
1370 }
1371
1372 /*
1373  * We need to pick up the new inode size which generic_commit_write gave us
1374  * `file' can be NULL - eg, when called from page_symlink().
1375  *
1376  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1377  * buffers are managed internally.
1378  */
1379 static int ext4_write_end(struct file *file,
1380                           struct address_space *mapping,
1381                           loff_t pos, unsigned len, unsigned copied,
1382                           struct page *page, void *fsdata)
1383 {
1384         handle_t *handle = ext4_journal_current_handle();
1385         struct inode *inode = mapping->host;
1386         loff_t old_size = inode->i_size;
1387         int ret = 0, ret2;
1388         int i_size_changed = 0;
1389         int inline_data = ext4_has_inline_data(inode);
1390
1391         trace_ext4_write_end(inode, pos, len, copied);
1392         if (inline_data) {
1393                 ret = ext4_write_inline_data_end(inode, pos, len,
1394                                                  copied, page);
1395                 if (ret < 0) {
1396                         unlock_page(page);
1397                         put_page(page);
1398                         goto errout;
1399                 }
1400                 copied = ret;
1401         } else
1402                 copied = block_write_end(file, mapping, pos,
1403                                          len, copied, page, fsdata);
1404         /*
1405          * it's important to update i_size while still holding page lock:
1406          * page writeout could otherwise come in and zero beyond i_size.
1407          */
1408         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1409         unlock_page(page);
1410         put_page(page);
1411
1412         if (old_size < pos)
1413                 pagecache_isize_extended(inode, old_size, pos);
1414         /*
1415          * Don't mark the inode dirty under page lock. First, it unnecessarily
1416          * makes the holding time of page lock longer. Second, it forces lock
1417          * ordering of page lock and transaction start for journaling
1418          * filesystems.
1419          */
1420         if (i_size_changed || inline_data)
1421                 ext4_mark_inode_dirty(handle, inode);
1422
1423         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1424                 /* if we have allocated more blocks and copied
1425                  * less. We will have blocks allocated outside
1426                  * inode->i_size. So truncate them
1427                  */
1428                 ext4_orphan_add(handle, inode);
1429 errout:
1430         ret2 = ext4_journal_stop(handle);
1431         if (!ret)
1432                 ret = ret2;
1433
1434         if (pos + len > inode->i_size) {
1435                 ext4_truncate_failed_write(inode);
1436                 /*
1437                  * If truncate failed early the inode might still be
1438                  * on the orphan list; we need to make sure the inode
1439                  * is removed from the orphan list in that case.
1440                  */
1441                 if (inode->i_nlink)
1442                         ext4_orphan_del(NULL, inode);
1443         }
1444
1445         return ret ? ret : copied;
1446 }
1447
1448 /*
1449  * This is a private version of page_zero_new_buffers() which doesn't
1450  * set the buffer to be dirty, since in data=journalled mode we need
1451  * to call ext4_handle_dirty_metadata() instead.
1452  */
1453 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1454                                             struct page *page,
1455                                             unsigned from, unsigned to)
1456 {
1457         unsigned int block_start = 0, block_end;
1458         struct buffer_head *head, *bh;
1459
1460         bh = head = page_buffers(page);
1461         do {
1462                 block_end = block_start + bh->b_size;
1463                 if (buffer_new(bh)) {
1464                         if (block_end > from && block_start < to) {
1465                                 if (!PageUptodate(page)) {
1466                                         unsigned start, size;
1467
1468                                         start = max(from, block_start);
1469                                         size = min(to, block_end) - start;
1470
1471                                         zero_user(page, start, size);
1472                                         write_end_fn(handle, bh);
1473                                 }
1474                                 clear_buffer_new(bh);
1475                         }
1476                 }
1477                 block_start = block_end;
1478                 bh = bh->b_this_page;
1479         } while (bh != head);
1480 }
1481
1482 static int ext4_journalled_write_end(struct file *file,
1483                                      struct address_space *mapping,
1484                                      loff_t pos, unsigned len, unsigned copied,
1485                                      struct page *page, void *fsdata)
1486 {
1487         handle_t *handle = ext4_journal_current_handle();
1488         struct inode *inode = mapping->host;
1489         loff_t old_size = inode->i_size;
1490         int ret = 0, ret2;
1491         int partial = 0;
1492         unsigned from, to;
1493         int size_changed = 0;
1494         int inline_data = ext4_has_inline_data(inode);
1495
1496         trace_ext4_journalled_write_end(inode, pos, len, copied);
1497         from = pos & (PAGE_SIZE - 1);
1498         to = from + len;
1499
1500         BUG_ON(!ext4_handle_valid(handle));
1501
1502         if (inline_data) {
1503                 ret = ext4_write_inline_data_end(inode, pos, len,
1504                                                  copied, page);
1505                 if (ret < 0) {
1506                         unlock_page(page);
1507                         put_page(page);
1508                         goto errout;
1509                 }
1510                 copied = ret;
1511         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1512                 copied = 0;
1513                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1514         } else {
1515                 if (unlikely(copied < len))
1516                         ext4_journalled_zero_new_buffers(handle, page,
1517                                                          from + copied, to);
1518                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1519                                              from + copied, &partial,
1520                                              write_end_fn);
1521                 if (!partial)
1522                         SetPageUptodate(page);
1523         }
1524         size_changed = ext4_update_inode_size(inode, pos + copied);
1525         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1526         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1527         unlock_page(page);
1528         put_page(page);
1529
1530         if (old_size < pos)
1531                 pagecache_isize_extended(inode, old_size, pos);
1532
1533         if (size_changed || inline_data) {
1534                 ret2 = ext4_mark_inode_dirty(handle, inode);
1535                 if (!ret)
1536                         ret = ret2;
1537         }
1538
1539         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1540                 /* if we have allocated more blocks and copied
1541                  * less. We will have blocks allocated outside
1542                  * inode->i_size. So truncate them
1543                  */
1544                 ext4_orphan_add(handle, inode);
1545
1546 errout:
1547         ret2 = ext4_journal_stop(handle);
1548         if (!ret)
1549                 ret = ret2;
1550         if (pos + len > inode->i_size) {
1551                 ext4_truncate_failed_write(inode);
1552                 /*
1553                  * If truncate failed early the inode might still be
1554                  * on the orphan list; we need to make sure the inode
1555                  * is removed from the orphan list in that case.
1556                  */
1557                 if (inode->i_nlink)
1558                         ext4_orphan_del(NULL, inode);
1559         }
1560
1561         return ret ? ret : copied;
1562 }
1563
1564 /*
1565  * Reserve space for a single cluster
1566  */
1567 static int ext4_da_reserve_space(struct inode *inode)
1568 {
1569         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1570         struct ext4_inode_info *ei = EXT4_I(inode);
1571         int ret;
1572
1573         /*
1574          * We will charge metadata quota at writeout time; this saves
1575          * us from metadata over-estimation, though we may go over by
1576          * a small amount in the end.  Here we just reserve for data.
1577          */
1578         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1579         if (ret)
1580                 return ret;
1581
1582         spin_lock(&ei->i_block_reservation_lock);
1583         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1584                 spin_unlock(&ei->i_block_reservation_lock);
1585                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1586                 return -ENOSPC;
1587         }
1588         ei->i_reserved_data_blocks++;
1589         trace_ext4_da_reserve_space(inode);
1590         spin_unlock(&ei->i_block_reservation_lock);
1591
1592         return 0;       /* success */
1593 }
1594
1595 void ext4_da_release_space(struct inode *inode, int to_free)
1596 {
1597         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1598         struct ext4_inode_info *ei = EXT4_I(inode);
1599
1600         if (!to_free)
1601                 return;         /* Nothing to release, exit */
1602
1603         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1604
1605         trace_ext4_da_release_space(inode, to_free);
1606         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1607                 /*
1608                  * if there aren't enough reserved blocks, then the
1609                  * counter is messed up somewhere.  Since this
1610                  * function is called from invalidate page, it's
1611                  * harmless to return without any action.
1612                  */
1613                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1614                          "ino %lu, to_free %d with only %d reserved "
1615                          "data blocks", inode->i_ino, to_free,
1616                          ei->i_reserved_data_blocks);
1617                 WARN_ON(1);
1618                 to_free = ei->i_reserved_data_blocks;
1619         }
1620         ei->i_reserved_data_blocks -= to_free;
1621
1622         /* update fs dirty data blocks counter */
1623         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1624
1625         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1626
1627         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1628 }
1629
1630 static void ext4_da_page_release_reservation(struct page *page,
1631                                              unsigned int offset,
1632                                              unsigned int length)
1633 {
1634         int contiguous_blks = 0;
1635         struct buffer_head *head, *bh;
1636         unsigned int curr_off = 0;
1637         struct inode *inode = page->mapping->host;
1638         unsigned int stop = offset + length;
1639         ext4_fsblk_t lblk;
1640
1641         BUG_ON(stop > PAGE_SIZE || stop < length);
1642
1643         head = page_buffers(page);
1644         bh = head;
1645         do {
1646                 unsigned int next_off = curr_off + bh->b_size;
1647
1648                 if (next_off > stop)
1649                         break;
1650
1651                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1652                         contiguous_blks++;
1653                         clear_buffer_delay(bh);
1654                 } else if (contiguous_blks) {
1655                         lblk = page->index <<
1656                                (PAGE_SHIFT - inode->i_blkbits);
1657                         lblk += (curr_off >> inode->i_blkbits) -
1658                                 contiguous_blks;
1659                         ext4_es_remove_blks(inode, lblk, contiguous_blks);
1660                         contiguous_blks = 0;
1661                 }
1662                 curr_off = next_off;
1663         } while ((bh = bh->b_this_page) != head);
1664
1665         if (contiguous_blks) {
1666                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1667                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1668                 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1669         }
1670
1671 }
1672
1673 /*
1674  * Delayed allocation stuff
1675  */
1676
1677 struct mpage_da_data {
1678         struct inode *inode;
1679         struct writeback_control *wbc;
1680
1681         pgoff_t first_page;     /* The first page to write */
1682         pgoff_t next_page;      /* Current page to examine */
1683         pgoff_t last_page;      /* Last page to examine */
1684         /*
1685          * Extent to map - this can be after first_page because that can be
1686          * fully mapped. We somewhat abuse m_flags to store whether the extent
1687          * is delalloc or unwritten.
1688          */
1689         struct ext4_map_blocks map;
1690         struct ext4_io_submit io_submit;        /* IO submission data */
1691         unsigned int do_map:1;
1692 };
1693
1694 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1695                                        bool invalidate)
1696 {
1697         int nr_pages, i;
1698         pgoff_t index, end;
1699         struct pagevec pvec;
1700         struct inode *inode = mpd->inode;
1701         struct address_space *mapping = inode->i_mapping;
1702
1703         /* This is necessary when next_page == 0. */
1704         if (mpd->first_page >= mpd->next_page)
1705                 return;
1706
1707         index = mpd->first_page;
1708         end   = mpd->next_page - 1;
1709         if (invalidate) {
1710                 ext4_lblk_t start, last;
1711                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1712                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1713                 ext4_es_remove_extent(inode, start, last - start + 1);
1714         }
1715
1716         pagevec_init(&pvec);
1717         while (index <= end) {
1718                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1719                 if (nr_pages == 0)
1720                         break;
1721                 for (i = 0; i < nr_pages; i++) {
1722                         struct page *page = pvec.pages[i];
1723
1724                         BUG_ON(!PageLocked(page));
1725                         BUG_ON(PageWriteback(page));
1726                         if (invalidate) {
1727                                 if (page_mapped(page))
1728                                         clear_page_dirty_for_io(page);
1729                                 block_invalidatepage(page, 0, PAGE_SIZE);
1730                                 ClearPageUptodate(page);
1731                         }
1732                         unlock_page(page);
1733                 }
1734                 pagevec_release(&pvec);
1735         }
1736 }
1737
1738 static void ext4_print_free_blocks(struct inode *inode)
1739 {
1740         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1741         struct super_block *sb = inode->i_sb;
1742         struct ext4_inode_info *ei = EXT4_I(inode);
1743
1744         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1745                EXT4_C2B(EXT4_SB(inode->i_sb),
1746                         ext4_count_free_clusters(sb)));
1747         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1748         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1749                (long long) EXT4_C2B(EXT4_SB(sb),
1750                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1751         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1752                (long long) EXT4_C2B(EXT4_SB(sb),
1753                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1754         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1755         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1756                  ei->i_reserved_data_blocks);
1757         return;
1758 }
1759
1760 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1761 {
1762         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1763 }
1764
1765 /*
1766  * ext4_insert_delayed_block - adds a delayed block to the extents status
1767  *                             tree, incrementing the reserved cluster/block
1768  *                             count or making a pending reservation
1769  *                             where needed
1770  *
1771  * @inode - file containing the newly added block
1772  * @lblk - logical block to be added
1773  *
1774  * Returns 0 on success, negative error code on failure.
1775  */
1776 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1777 {
1778         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1779         int ret;
1780         bool allocated = false;
1781
1782         /*
1783          * If the cluster containing lblk is shared with a delayed,
1784          * written, or unwritten extent in a bigalloc file system, it's
1785          * already been accounted for and does not need to be reserved.
1786          * A pending reservation must be made for the cluster if it's
1787          * shared with a written or unwritten extent and doesn't already
1788          * have one.  Written and unwritten extents can be purged from the
1789          * extents status tree if the system is under memory pressure, so
1790          * it's necessary to examine the extent tree if a search of the
1791          * extents status tree doesn't get a match.
1792          */
1793         if (sbi->s_cluster_ratio == 1) {
1794                 ret = ext4_da_reserve_space(inode);
1795                 if (ret != 0)   /* ENOSPC */
1796                         goto errout;
1797         } else {   /* bigalloc */
1798                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1799                         if (!ext4_es_scan_clu(inode,
1800                                               &ext4_es_is_mapped, lblk)) {
1801                                 ret = ext4_clu_mapped(inode,
1802                                                       EXT4_B2C(sbi, lblk));
1803                                 if (ret < 0)
1804                                         goto errout;
1805                                 if (ret == 0) {
1806                                         ret = ext4_da_reserve_space(inode);
1807                                         if (ret != 0)   /* ENOSPC */
1808                                                 goto errout;
1809                                 } else {
1810                                         allocated = true;
1811                                 }
1812                         } else {
1813                                 allocated = true;
1814                         }
1815                 }
1816         }
1817
1818         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1819
1820 errout:
1821         return ret;
1822 }
1823
1824 /*
1825  * This function is grabs code from the very beginning of
1826  * ext4_map_blocks, but assumes that the caller is from delayed write
1827  * time. This function looks up the requested blocks and sets the
1828  * buffer delay bit under the protection of i_data_sem.
1829  */
1830 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1831                               struct ext4_map_blocks *map,
1832                               struct buffer_head *bh)
1833 {
1834         struct extent_status es;
1835         int retval;
1836         sector_t invalid_block = ~((sector_t) 0xffff);
1837 #ifdef ES_AGGRESSIVE_TEST
1838         struct ext4_map_blocks orig_map;
1839
1840         memcpy(&orig_map, map, sizeof(*map));
1841 #endif
1842
1843         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1844                 invalid_block = ~0;
1845
1846         map->m_flags = 0;
1847         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1848                   "logical block %lu\n", inode->i_ino, map->m_len,
1849                   (unsigned long) map->m_lblk);
1850
1851         /* Lookup extent status tree firstly */
1852         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1853                 if (ext4_es_is_hole(&es)) {
1854                         retval = 0;
1855                         down_read(&EXT4_I(inode)->i_data_sem);
1856                         goto add_delayed;
1857                 }
1858
1859                 /*
1860                  * Delayed extent could be allocated by fallocate.
1861                  * So we need to check it.
1862                  */
1863                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1864                         map_bh(bh, inode->i_sb, invalid_block);
1865                         set_buffer_new(bh);
1866                         set_buffer_delay(bh);
1867                         return 0;
1868                 }
1869
1870                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1871                 retval = es.es_len - (iblock - es.es_lblk);
1872                 if (retval > map->m_len)
1873                         retval = map->m_len;
1874                 map->m_len = retval;
1875                 if (ext4_es_is_written(&es))
1876                         map->m_flags |= EXT4_MAP_MAPPED;
1877                 else if (ext4_es_is_unwritten(&es))
1878                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1879                 else
1880                         BUG_ON(1);
1881
1882 #ifdef ES_AGGRESSIVE_TEST
1883                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1884 #endif
1885                 return retval;
1886         }
1887
1888         /*
1889          * Try to see if we can get the block without requesting a new
1890          * file system block.
1891          */
1892         down_read(&EXT4_I(inode)->i_data_sem);
1893         if (ext4_has_inline_data(inode))
1894                 retval = 0;
1895         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1896                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1897         else
1898                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1899
1900 add_delayed:
1901         if (retval == 0) {
1902                 int ret;
1903
1904                 /*
1905                  * XXX: __block_prepare_write() unmaps passed block,
1906                  * is it OK?
1907                  */
1908
1909                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1910                 if (ret != 0) {
1911                         retval = ret;
1912                         goto out_unlock;
1913                 }
1914
1915                 map_bh(bh, inode->i_sb, invalid_block);
1916                 set_buffer_new(bh);
1917                 set_buffer_delay(bh);
1918         } else if (retval > 0) {
1919                 int ret;
1920                 unsigned int status;
1921
1922                 if (unlikely(retval != map->m_len)) {
1923                         ext4_warning(inode->i_sb,
1924                                      "ES len assertion failed for inode "
1925                                      "%lu: retval %d != map->m_len %d",
1926                                      inode->i_ino, retval, map->m_len);
1927                         WARN_ON(1);
1928                 }
1929
1930                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1931                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1932                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1933                                             map->m_pblk, status);
1934                 if (ret != 0)
1935                         retval = ret;
1936         }
1937
1938 out_unlock:
1939         up_read((&EXT4_I(inode)->i_data_sem));
1940
1941         return retval;
1942 }
1943
1944 /*
1945  * This is a special get_block_t callback which is used by
1946  * ext4_da_write_begin().  It will either return mapped block or
1947  * reserve space for a single block.
1948  *
1949  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1950  * We also have b_blocknr = -1 and b_bdev initialized properly
1951  *
1952  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1953  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1954  * initialized properly.
1955  */
1956 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1957                            struct buffer_head *bh, int create)
1958 {
1959         struct ext4_map_blocks map;
1960         int ret = 0;
1961
1962         BUG_ON(create == 0);
1963         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1964
1965         map.m_lblk = iblock;
1966         map.m_len = 1;
1967
1968         /*
1969          * first, we need to know whether the block is allocated already
1970          * preallocated blocks are unmapped but should treated
1971          * the same as allocated blocks.
1972          */
1973         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1974         if (ret <= 0)
1975                 return ret;
1976
1977         map_bh(bh, inode->i_sb, map.m_pblk);
1978         ext4_update_bh_state(bh, map.m_flags);
1979
1980         if (buffer_unwritten(bh)) {
1981                 /* A delayed write to unwritten bh should be marked
1982                  * new and mapped.  Mapped ensures that we don't do
1983                  * get_block multiple times when we write to the same
1984                  * offset and new ensures that we do proper zero out
1985                  * for partial write.
1986                  */
1987                 set_buffer_new(bh);
1988                 set_buffer_mapped(bh);
1989         }
1990         return 0;
1991 }
1992
1993 static int bget_one(handle_t *handle, struct buffer_head *bh)
1994 {
1995         get_bh(bh);
1996         return 0;
1997 }
1998
1999 static int bput_one(handle_t *handle, struct buffer_head *bh)
2000 {
2001         put_bh(bh);
2002         return 0;
2003 }
2004
2005 static int __ext4_journalled_writepage(struct page *page,
2006                                        unsigned int len)
2007 {
2008         struct address_space *mapping = page->mapping;
2009         struct inode *inode = mapping->host;
2010         struct buffer_head *page_bufs = NULL;
2011         handle_t *handle = NULL;
2012         int ret = 0, err = 0;
2013         int inline_data = ext4_has_inline_data(inode);
2014         struct buffer_head *inode_bh = NULL;
2015
2016         ClearPageChecked(page);
2017
2018         if (inline_data) {
2019                 BUG_ON(page->index != 0);
2020                 BUG_ON(len > ext4_get_max_inline_size(inode));
2021                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2022                 if (inode_bh == NULL)
2023                         goto out;
2024         } else {
2025                 page_bufs = page_buffers(page);
2026                 if (!page_bufs) {
2027                         BUG();
2028                         goto out;
2029                 }
2030                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2031                                        NULL, bget_one);
2032         }
2033         /*
2034          * We need to release the page lock before we start the
2035          * journal, so grab a reference so the page won't disappear
2036          * out from under us.
2037          */
2038         get_page(page);
2039         unlock_page(page);
2040
2041         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2042                                     ext4_writepage_trans_blocks(inode));
2043         if (IS_ERR(handle)) {
2044                 ret = PTR_ERR(handle);
2045                 put_page(page);
2046                 goto out_no_pagelock;
2047         }
2048         BUG_ON(!ext4_handle_valid(handle));
2049
2050         lock_page(page);
2051         put_page(page);
2052         if (page->mapping != mapping) {
2053                 /* The page got truncated from under us */
2054                 ext4_journal_stop(handle);
2055                 ret = 0;
2056                 goto out;
2057         }
2058
2059         if (inline_data) {
2060                 ret = ext4_mark_inode_dirty(handle, inode);
2061         } else {
2062                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2063                                              do_journal_get_write_access);
2064
2065                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2066                                              write_end_fn);
2067         }
2068         if (ret == 0)
2069                 ret = err;
2070         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2071         err = ext4_journal_stop(handle);
2072         if (!ret)
2073                 ret = err;
2074
2075         if (!ext4_has_inline_data(inode))
2076                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2077                                        NULL, bput_one);
2078         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2079 out:
2080         unlock_page(page);
2081 out_no_pagelock:
2082         brelse(inode_bh);
2083         return ret;
2084 }
2085
2086 /*
2087  * Note that we don't need to start a transaction unless we're journaling data
2088  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2089  * need to file the inode to the transaction's list in ordered mode because if
2090  * we are writing back data added by write(), the inode is already there and if
2091  * we are writing back data modified via mmap(), no one guarantees in which
2092  * transaction the data will hit the disk. In case we are journaling data, we
2093  * cannot start transaction directly because transaction start ranks above page
2094  * lock so we have to do some magic.
2095  *
2096  * This function can get called via...
2097  *   - ext4_writepages after taking page lock (have journal handle)
2098  *   - journal_submit_inode_data_buffers (no journal handle)
2099  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2100  *   - grab_page_cache when doing write_begin (have journal handle)
2101  *
2102  * We don't do any block allocation in this function. If we have page with
2103  * multiple blocks we need to write those buffer_heads that are mapped. This
2104  * is important for mmaped based write. So if we do with blocksize 1K
2105  * truncate(f, 1024);
2106  * a = mmap(f, 0, 4096);
2107  * a[0] = 'a';
2108  * truncate(f, 4096);
2109  * we have in the page first buffer_head mapped via page_mkwrite call back
2110  * but other buffer_heads would be unmapped but dirty (dirty done via the
2111  * do_wp_page). So writepage should write the first block. If we modify
2112  * the mmap area beyond 1024 we will again get a page_fault and the
2113  * page_mkwrite callback will do the block allocation and mark the
2114  * buffer_heads mapped.
2115  *
2116  * We redirty the page if we have any buffer_heads that is either delay or
2117  * unwritten in the page.
2118  *
2119  * We can get recursively called as show below.
2120  *
2121  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2122  *              ext4_writepage()
2123  *
2124  * But since we don't do any block allocation we should not deadlock.
2125  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2126  */
2127 static int ext4_writepage(struct page *page,
2128                           struct writeback_control *wbc)
2129 {
2130         int ret = 0;
2131         loff_t size;
2132         unsigned int len;
2133         struct buffer_head *page_bufs = NULL;
2134         struct inode *inode = page->mapping->host;
2135         struct ext4_io_submit io_submit;
2136         bool keep_towrite = false;
2137
2138         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2139                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2140                 unlock_page(page);
2141                 return -EIO;
2142         }
2143
2144         trace_ext4_writepage(page);
2145         size = i_size_read(inode);
2146         if (page->index == size >> PAGE_SHIFT)
2147                 len = size & ~PAGE_MASK;
2148         else
2149                 len = PAGE_SIZE;
2150
2151         page_bufs = page_buffers(page);
2152         /*
2153          * We cannot do block allocation or other extent handling in this
2154          * function. If there are buffers needing that, we have to redirty
2155          * the page. But we may reach here when we do a journal commit via
2156          * journal_submit_inode_data_buffers() and in that case we must write
2157          * allocated buffers to achieve data=ordered mode guarantees.
2158          *
2159          * Also, if there is only one buffer per page (the fs block
2160          * size == the page size), if one buffer needs block
2161          * allocation or needs to modify the extent tree to clear the
2162          * unwritten flag, we know that the page can't be written at
2163          * all, so we might as well refuse the write immediately.
2164          * Unfortunately if the block size != page size, we can't as
2165          * easily detect this case using ext4_walk_page_buffers(), but
2166          * for the extremely common case, this is an optimization that
2167          * skips a useless round trip through ext4_bio_write_page().
2168          */
2169         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2170                                    ext4_bh_delay_or_unwritten)) {
2171                 redirty_page_for_writepage(wbc, page);
2172                 if ((current->flags & PF_MEMALLOC) ||
2173                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2174                         /*
2175                          * For memory cleaning there's no point in writing only
2176                          * some buffers. So just bail out. Warn if we came here
2177                          * from direct reclaim.
2178                          */
2179                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2180                                                         == PF_MEMALLOC);
2181                         unlock_page(page);
2182                         return 0;
2183                 }
2184                 keep_towrite = true;
2185         }
2186
2187         if (PageChecked(page) && ext4_should_journal_data(inode))
2188                 /*
2189                  * It's mmapped pagecache.  Add buffers and journal it.  There
2190                  * doesn't seem much point in redirtying the page here.
2191                  */
2192                 return __ext4_journalled_writepage(page, len);
2193
2194         ext4_io_submit_init(&io_submit, wbc);
2195         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2196         if (!io_submit.io_end) {
2197                 redirty_page_for_writepage(wbc, page);
2198                 unlock_page(page);
2199                 return -ENOMEM;
2200         }
2201         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2202         ext4_io_submit(&io_submit);
2203         /* Drop io_end reference we got from init */
2204         ext4_put_io_end_defer(io_submit.io_end);
2205         return ret;
2206 }
2207
2208 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2209 {
2210         int len;
2211         loff_t size;
2212         int err;
2213
2214         BUG_ON(page->index != mpd->first_page);
2215         clear_page_dirty_for_io(page);
2216         /*
2217          * We have to be very careful here!  Nothing protects writeback path
2218          * against i_size changes and the page can be writeably mapped into
2219          * page tables. So an application can be growing i_size and writing
2220          * data through mmap while writeback runs. clear_page_dirty_for_io()
2221          * write-protects our page in page tables and the page cannot get
2222          * written to again until we release page lock. So only after
2223          * clear_page_dirty_for_io() we are safe to sample i_size for
2224          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2225          * on the barrier provided by TestClearPageDirty in
2226          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2227          * after page tables are updated.
2228          */
2229         size = i_size_read(mpd->inode);
2230         if (page->index == size >> PAGE_SHIFT)
2231                 len = size & ~PAGE_MASK;
2232         else
2233                 len = PAGE_SIZE;
2234         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2235         if (!err)
2236                 mpd->wbc->nr_to_write--;
2237         mpd->first_page++;
2238
2239         return err;
2240 }
2241
2242 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2243
2244 /*
2245  * mballoc gives us at most this number of blocks...
2246  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2247  * The rest of mballoc seems to handle chunks up to full group size.
2248  */
2249 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2250
2251 /*
2252  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2253  *
2254  * @mpd - extent of blocks
2255  * @lblk - logical number of the block in the file
2256  * @bh - buffer head we want to add to the extent
2257  *
2258  * The function is used to collect contig. blocks in the same state. If the
2259  * buffer doesn't require mapping for writeback and we haven't started the
2260  * extent of buffers to map yet, the function returns 'true' immediately - the
2261  * caller can write the buffer right away. Otherwise the function returns true
2262  * if the block has been added to the extent, false if the block couldn't be
2263  * added.
2264  */
2265 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2266                                    struct buffer_head *bh)
2267 {
2268         struct ext4_map_blocks *map = &mpd->map;
2269
2270         /* Buffer that doesn't need mapping for writeback? */
2271         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2272             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2273                 /* So far no extent to map => we write the buffer right away */
2274                 if (map->m_len == 0)
2275                         return true;
2276                 return false;
2277         }
2278
2279         /* First block in the extent? */
2280         if (map->m_len == 0) {
2281                 /* We cannot map unless handle is started... */
2282                 if (!mpd->do_map)
2283                         return false;
2284                 map->m_lblk = lblk;
2285                 map->m_len = 1;
2286                 map->m_flags = bh->b_state & BH_FLAGS;
2287                 return true;
2288         }
2289
2290         /* Don't go larger than mballoc is willing to allocate */
2291         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2292                 return false;
2293
2294         /* Can we merge the block to our big extent? */
2295         if (lblk == map->m_lblk + map->m_len &&
2296             (bh->b_state & BH_FLAGS) == map->m_flags) {
2297                 map->m_len++;
2298                 return true;
2299         }
2300         return false;
2301 }
2302
2303 /*
2304  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2305  *
2306  * @mpd - extent of blocks for mapping
2307  * @head - the first buffer in the page
2308  * @bh - buffer we should start processing from
2309  * @lblk - logical number of the block in the file corresponding to @bh
2310  *
2311  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2312  * the page for IO if all buffers in this page were mapped and there's no
2313  * accumulated extent of buffers to map or add buffers in the page to the
2314  * extent of buffers to map. The function returns 1 if the caller can continue
2315  * by processing the next page, 0 if it should stop adding buffers to the
2316  * extent to map because we cannot extend it anymore. It can also return value
2317  * < 0 in case of error during IO submission.
2318  */
2319 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2320                                    struct buffer_head *head,
2321                                    struct buffer_head *bh,
2322                                    ext4_lblk_t lblk)
2323 {
2324         struct inode *inode = mpd->inode;
2325         int err;
2326         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2327                                                         >> inode->i_blkbits;
2328
2329         do {
2330                 BUG_ON(buffer_locked(bh));
2331
2332                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2333                         /* Found extent to map? */
2334                         if (mpd->map.m_len)
2335                                 return 0;
2336                         /* Buffer needs mapping and handle is not started? */
2337                         if (!mpd->do_map)
2338                                 return 0;
2339                         /* Everything mapped so far and we hit EOF */
2340                         break;
2341                 }
2342         } while (lblk++, (bh = bh->b_this_page) != head);
2343         /* So far everything mapped? Submit the page for IO. */
2344         if (mpd->map.m_len == 0) {
2345                 err = mpage_submit_page(mpd, head->b_page);
2346                 if (err < 0)
2347                         return err;
2348         }
2349         return lblk < blocks;
2350 }
2351
2352 /*
2353  * mpage_map_buffers - update buffers corresponding to changed extent and
2354  *                     submit fully mapped pages for IO
2355  *
2356  * @mpd - description of extent to map, on return next extent to map
2357  *
2358  * Scan buffers corresponding to changed extent (we expect corresponding pages
2359  * to be already locked) and update buffer state according to new extent state.
2360  * We map delalloc buffers to their physical location, clear unwritten bits,
2361  * and mark buffers as uninit when we perform writes to unwritten extents
2362  * and do extent conversion after IO is finished. If the last page is not fully
2363  * mapped, we update @map to the next extent in the last page that needs
2364  * mapping. Otherwise we submit the page for IO.
2365  */
2366 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2367 {
2368         struct pagevec pvec;
2369         int nr_pages, i;
2370         struct inode *inode = mpd->inode;
2371         struct buffer_head *head, *bh;
2372         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2373         pgoff_t start, end;
2374         ext4_lblk_t lblk;
2375         sector_t pblock;
2376         int err;
2377
2378         start = mpd->map.m_lblk >> bpp_bits;
2379         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2380         lblk = start << bpp_bits;
2381         pblock = mpd->map.m_pblk;
2382
2383         pagevec_init(&pvec);
2384         while (start <= end) {
2385                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2386                                                 &start, end);
2387                 if (nr_pages == 0)
2388                         break;
2389                 for (i = 0; i < nr_pages; i++) {
2390                         struct page *page = pvec.pages[i];
2391
2392                         bh = head = page_buffers(page);
2393                         do {
2394                                 if (lblk < mpd->map.m_lblk)
2395                                         continue;
2396                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2397                                         /*
2398                                          * Buffer after end of mapped extent.
2399                                          * Find next buffer in the page to map.
2400                                          */
2401                                         mpd->map.m_len = 0;
2402                                         mpd->map.m_flags = 0;
2403                                         /*
2404                                          * FIXME: If dioread_nolock supports
2405                                          * blocksize < pagesize, we need to make
2406                                          * sure we add size mapped so far to
2407                                          * io_end->size as the following call
2408                                          * can submit the page for IO.
2409                                          */
2410                                         err = mpage_process_page_bufs(mpd, head,
2411                                                                       bh, lblk);
2412                                         pagevec_release(&pvec);
2413                                         if (err > 0)
2414                                                 err = 0;
2415                                         return err;
2416                                 }
2417                                 if (buffer_delay(bh)) {
2418                                         clear_buffer_delay(bh);
2419                                         bh->b_blocknr = pblock++;
2420                                 }
2421                                 clear_buffer_unwritten(bh);
2422                         } while (lblk++, (bh = bh->b_this_page) != head);
2423
2424                         /*
2425                          * FIXME: This is going to break if dioread_nolock
2426                          * supports blocksize < pagesize as we will try to
2427                          * convert potentially unmapped parts of inode.
2428                          */
2429                         mpd->io_submit.io_end->size += PAGE_SIZE;
2430                         /* Page fully mapped - let IO run! */
2431                         err = mpage_submit_page(mpd, page);
2432                         if (err < 0) {
2433                                 pagevec_release(&pvec);
2434                                 return err;
2435                         }
2436                 }
2437                 pagevec_release(&pvec);
2438         }
2439         /* Extent fully mapped and matches with page boundary. We are done. */
2440         mpd->map.m_len = 0;
2441         mpd->map.m_flags = 0;
2442         return 0;
2443 }
2444
2445 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2446 {
2447         struct inode *inode = mpd->inode;
2448         struct ext4_map_blocks *map = &mpd->map;
2449         int get_blocks_flags;
2450         int err, dioread_nolock;
2451
2452         trace_ext4_da_write_pages_extent(inode, map);
2453         /*
2454          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2455          * to convert an unwritten extent to be initialized (in the case
2456          * where we have written into one or more preallocated blocks).  It is
2457          * possible that we're going to need more metadata blocks than
2458          * previously reserved. However we must not fail because we're in
2459          * writeback and there is nothing we can do about it so it might result
2460          * in data loss.  So use reserved blocks to allocate metadata if
2461          * possible.
2462          *
2463          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2464          * the blocks in question are delalloc blocks.  This indicates
2465          * that the blocks and quotas has already been checked when
2466          * the data was copied into the page cache.
2467          */
2468         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2469                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2470                            EXT4_GET_BLOCKS_IO_SUBMIT;
2471         dioread_nolock = ext4_should_dioread_nolock(inode);
2472         if (dioread_nolock)
2473                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2474         if (map->m_flags & (1 << BH_Delay))
2475                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2476
2477         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2478         if (err < 0)
2479                 return err;
2480         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2481                 if (!mpd->io_submit.io_end->handle &&
2482                     ext4_handle_valid(handle)) {
2483                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2484                         handle->h_rsv_handle = NULL;
2485                 }
2486                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2487         }
2488
2489         BUG_ON(map->m_len == 0);
2490         return 0;
2491 }
2492
2493 /*
2494  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2495  *                               mpd->len and submit pages underlying it for IO
2496  *
2497  * @handle - handle for journal operations
2498  * @mpd - extent to map
2499  * @give_up_on_write - we set this to true iff there is a fatal error and there
2500  *                     is no hope of writing the data. The caller should discard
2501  *                     dirty pages to avoid infinite loops.
2502  *
2503  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2504  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2505  * them to initialized or split the described range from larger unwritten
2506  * extent. Note that we need not map all the described range since allocation
2507  * can return less blocks or the range is covered by more unwritten extents. We
2508  * cannot map more because we are limited by reserved transaction credits. On
2509  * the other hand we always make sure that the last touched page is fully
2510  * mapped so that it can be written out (and thus forward progress is
2511  * guaranteed). After mapping we submit all mapped pages for IO.
2512  */
2513 static int mpage_map_and_submit_extent(handle_t *handle,
2514                                        struct mpage_da_data *mpd,
2515                                        bool *give_up_on_write)
2516 {
2517         struct inode *inode = mpd->inode;
2518         struct ext4_map_blocks *map = &mpd->map;
2519         int err;
2520         loff_t disksize;
2521         int progress = 0;
2522
2523         mpd->io_submit.io_end->offset =
2524                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2525         do {
2526                 err = mpage_map_one_extent(handle, mpd);
2527                 if (err < 0) {
2528                         struct super_block *sb = inode->i_sb;
2529
2530                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2531                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2532                                 goto invalidate_dirty_pages;
2533                         /*
2534                          * Let the uper layers retry transient errors.
2535                          * In the case of ENOSPC, if ext4_count_free_blocks()
2536                          * is non-zero, a commit should free up blocks.
2537                          */
2538                         if ((err == -ENOMEM) ||
2539                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2540                                 if (progress)
2541                                         goto update_disksize;
2542                                 return err;
2543                         }
2544                         ext4_msg(sb, KERN_CRIT,
2545                                  "Delayed block allocation failed for "
2546                                  "inode %lu at logical offset %llu with"
2547                                  " max blocks %u with error %d",
2548                                  inode->i_ino,
2549                                  (unsigned long long)map->m_lblk,
2550                                  (unsigned)map->m_len, -err);
2551                         ext4_msg(sb, KERN_CRIT,
2552                                  "This should not happen!! Data will "
2553                                  "be lost\n");
2554                         if (err == -ENOSPC)
2555                                 ext4_print_free_blocks(inode);
2556                 invalidate_dirty_pages:
2557                         *give_up_on_write = true;
2558                         return err;
2559                 }
2560                 progress = 1;
2561                 /*
2562                  * Update buffer state, submit mapped pages, and get us new
2563                  * extent to map
2564                  */
2565                 err = mpage_map_and_submit_buffers(mpd);
2566                 if (err < 0)
2567                         goto update_disksize;
2568         } while (map->m_len);
2569
2570 update_disksize:
2571         /*
2572          * Update on-disk size after IO is submitted.  Races with
2573          * truncate are avoided by checking i_size under i_data_sem.
2574          */
2575         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2576         if (disksize > EXT4_I(inode)->i_disksize) {
2577                 int err2;
2578                 loff_t i_size;
2579
2580                 down_write(&EXT4_I(inode)->i_data_sem);
2581                 i_size = i_size_read(inode);
2582                 if (disksize > i_size)
2583                         disksize = i_size;
2584                 if (disksize > EXT4_I(inode)->i_disksize)
2585                         EXT4_I(inode)->i_disksize = disksize;
2586                 up_write(&EXT4_I(inode)->i_data_sem);
2587                 err2 = ext4_mark_inode_dirty(handle, inode);
2588                 if (err2)
2589                         ext4_error(inode->i_sb,
2590                                    "Failed to mark inode %lu dirty",
2591                                    inode->i_ino);
2592                 if (!err)
2593                         err = err2;
2594         }
2595         return err;
2596 }
2597
2598 /*
2599  * Calculate the total number of credits to reserve for one writepages
2600  * iteration. This is called from ext4_writepages(). We map an extent of
2601  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2602  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2603  * bpp - 1 blocks in bpp different extents.
2604  */
2605 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2606 {
2607         int bpp = ext4_journal_blocks_per_page(inode);
2608
2609         return ext4_meta_trans_blocks(inode,
2610                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2611 }
2612
2613 /*
2614  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2615  *                               and underlying extent to map
2616  *
2617  * @mpd - where to look for pages
2618  *
2619  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2620  * IO immediately. When we find a page which isn't mapped we start accumulating
2621  * extent of buffers underlying these pages that needs mapping (formed by
2622  * either delayed or unwritten buffers). We also lock the pages containing
2623  * these buffers. The extent found is returned in @mpd structure (starting at
2624  * mpd->lblk with length mpd->len blocks).
2625  *
2626  * Note that this function can attach bios to one io_end structure which are
2627  * neither logically nor physically contiguous. Although it may seem as an
2628  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2629  * case as we need to track IO to all buffers underlying a page in one io_end.
2630  */
2631 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2632 {
2633         struct address_space *mapping = mpd->inode->i_mapping;
2634         struct pagevec pvec;
2635         unsigned int nr_pages;
2636         long left = mpd->wbc->nr_to_write;
2637         pgoff_t index = mpd->first_page;
2638         pgoff_t end = mpd->last_page;
2639         xa_mark_t tag;
2640         int i, err = 0;
2641         int blkbits = mpd->inode->i_blkbits;
2642         ext4_lblk_t lblk;
2643         struct buffer_head *head;
2644
2645         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2646                 tag = PAGECACHE_TAG_TOWRITE;
2647         else
2648                 tag = PAGECACHE_TAG_DIRTY;
2649
2650         pagevec_init(&pvec);
2651         mpd->map.m_len = 0;
2652         mpd->next_page = index;
2653         while (index <= end) {
2654                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2655                                 tag);
2656                 if (nr_pages == 0)
2657                         goto out;
2658
2659                 for (i = 0; i < nr_pages; i++) {
2660                         struct page *page = pvec.pages[i];
2661
2662                         /*
2663                          * Accumulated enough dirty pages? This doesn't apply
2664                          * to WB_SYNC_ALL mode. For integrity sync we have to
2665                          * keep going because someone may be concurrently
2666                          * dirtying pages, and we might have synced a lot of
2667                          * newly appeared dirty pages, but have not synced all
2668                          * of the old dirty pages.
2669                          */
2670                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2671                                 goto out;
2672
2673                         /* If we can't merge this page, we are done. */
2674                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2675                                 goto out;
2676
2677                         lock_page(page);
2678                         /*
2679                          * If the page is no longer dirty, or its mapping no
2680                          * longer corresponds to inode we are writing (which
2681                          * means it has been truncated or invalidated), or the
2682                          * page is already under writeback and we are not doing
2683                          * a data integrity writeback, skip the page
2684                          */
2685                         if (!PageDirty(page) ||
2686                             (PageWriteback(page) &&
2687                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2688                             unlikely(page->mapping != mapping)) {
2689                                 unlock_page(page);
2690                                 continue;
2691                         }
2692
2693                         wait_on_page_writeback(page);
2694                         BUG_ON(PageWriteback(page));
2695
2696                         if (mpd->map.m_len == 0)
2697                                 mpd->first_page = page->index;
2698                         mpd->next_page = page->index + 1;
2699                         /* Add all dirty buffers to mpd */
2700                         lblk = ((ext4_lblk_t)page->index) <<
2701                                 (PAGE_SHIFT - blkbits);
2702                         head = page_buffers(page);
2703                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2704                         if (err <= 0)
2705                                 goto out;
2706                         err = 0;
2707                         left--;
2708                 }
2709                 pagevec_release(&pvec);
2710                 cond_resched();
2711         }
2712         return 0;
2713 out:
2714         pagevec_release(&pvec);
2715         return err;
2716 }
2717
2718 static int ext4_writepages(struct address_space *mapping,
2719                            struct writeback_control *wbc)
2720 {
2721         pgoff_t writeback_index = 0;
2722         long nr_to_write = wbc->nr_to_write;
2723         int range_whole = 0;
2724         int cycled = 1;
2725         handle_t *handle = NULL;
2726         struct mpage_da_data mpd;
2727         struct inode *inode = mapping->host;
2728         int needed_blocks, rsv_blocks = 0, ret = 0;
2729         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2730         bool done;
2731         struct blk_plug plug;
2732         bool give_up_on_write = false;
2733
2734         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2735                 return -EIO;
2736
2737         percpu_down_read(&sbi->s_journal_flag_rwsem);
2738         trace_ext4_writepages(inode, wbc);
2739
2740         /*
2741          * No pages to write? This is mainly a kludge to avoid starting
2742          * a transaction for special inodes like journal inode on last iput()
2743          * because that could violate lock ordering on umount
2744          */
2745         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2746                 goto out_writepages;
2747
2748         if (ext4_should_journal_data(inode)) {
2749                 ret = generic_writepages(mapping, wbc);
2750                 goto out_writepages;
2751         }
2752
2753         /*
2754          * If the filesystem has aborted, it is read-only, so return
2755          * right away instead of dumping stack traces later on that
2756          * will obscure the real source of the problem.  We test
2757          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2758          * the latter could be true if the filesystem is mounted
2759          * read-only, and in that case, ext4_writepages should
2760          * *never* be called, so if that ever happens, we would want
2761          * the stack trace.
2762          */
2763         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2764                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2765                 ret = -EROFS;
2766                 goto out_writepages;
2767         }
2768
2769         if (ext4_should_dioread_nolock(inode)) {
2770                 /*
2771                  * We may need to convert up to one extent per block in
2772                  * the page and we may dirty the inode.
2773                  */
2774                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2775                                                 PAGE_SIZE >> inode->i_blkbits);
2776         }
2777
2778         /*
2779          * If we have inline data and arrive here, it means that
2780          * we will soon create the block for the 1st page, so
2781          * we'd better clear the inline data here.
2782          */
2783         if (ext4_has_inline_data(inode)) {
2784                 /* Just inode will be modified... */
2785                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2786                 if (IS_ERR(handle)) {
2787                         ret = PTR_ERR(handle);
2788                         goto out_writepages;
2789                 }
2790                 BUG_ON(ext4_test_inode_state(inode,
2791                                 EXT4_STATE_MAY_INLINE_DATA));
2792                 ext4_destroy_inline_data(handle, inode);
2793                 ext4_journal_stop(handle);
2794         }
2795
2796         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2797                 range_whole = 1;
2798
2799         if (wbc->range_cyclic) {
2800                 writeback_index = mapping->writeback_index;
2801                 if (writeback_index)
2802                         cycled = 0;
2803                 mpd.first_page = writeback_index;
2804                 mpd.last_page = -1;
2805         } else {
2806                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2807                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2808         }
2809
2810         mpd.inode = inode;
2811         mpd.wbc = wbc;
2812         ext4_io_submit_init(&mpd.io_submit, wbc);
2813 retry:
2814         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2815                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2816         done = false;
2817         blk_start_plug(&plug);
2818
2819         /*
2820          * First writeback pages that don't need mapping - we can avoid
2821          * starting a transaction unnecessarily and also avoid being blocked
2822          * in the block layer on device congestion while having transaction
2823          * started.
2824          */
2825         mpd.do_map = 0;
2826         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2827         if (!mpd.io_submit.io_end) {
2828                 ret = -ENOMEM;
2829                 goto unplug;
2830         }
2831         ret = mpage_prepare_extent_to_map(&mpd);
2832         /* Unlock pages we didn't use */
2833         mpage_release_unused_pages(&mpd, false);
2834         /* Submit prepared bio */
2835         ext4_io_submit(&mpd.io_submit);
2836         ext4_put_io_end_defer(mpd.io_submit.io_end);
2837         mpd.io_submit.io_end = NULL;
2838         if (ret < 0)
2839                 goto unplug;
2840
2841         while (!done && mpd.first_page <= mpd.last_page) {
2842                 /* For each extent of pages we use new io_end */
2843                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2844                 if (!mpd.io_submit.io_end) {
2845                         ret = -ENOMEM;
2846                         break;
2847                 }
2848
2849                 /*
2850                  * We have two constraints: We find one extent to map and we
2851                  * must always write out whole page (makes a difference when
2852                  * blocksize < pagesize) so that we don't block on IO when we
2853                  * try to write out the rest of the page. Journalled mode is
2854                  * not supported by delalloc.
2855                  */
2856                 BUG_ON(ext4_should_journal_data(inode));
2857                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2858
2859                 /* start a new transaction */
2860                 handle = ext4_journal_start_with_reserve(inode,
2861                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2862                 if (IS_ERR(handle)) {
2863                         ret = PTR_ERR(handle);
2864                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2865                                "%ld pages, ino %lu; err %d", __func__,
2866                                 wbc->nr_to_write, inode->i_ino, ret);
2867                         /* Release allocated io_end */
2868                         ext4_put_io_end(mpd.io_submit.io_end);
2869                         mpd.io_submit.io_end = NULL;
2870                         break;
2871                 }
2872                 mpd.do_map = 1;
2873
2874                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2875                 ret = mpage_prepare_extent_to_map(&mpd);
2876                 if (!ret) {
2877                         if (mpd.map.m_len)
2878                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2879                                         &give_up_on_write);
2880                         else {
2881                                 /*
2882                                  * We scanned the whole range (or exhausted
2883                                  * nr_to_write), submitted what was mapped and
2884                                  * didn't find anything needing mapping. We are
2885                                  * done.
2886                                  */
2887                                 done = true;
2888                         }
2889                 }
2890                 /*
2891                  * Caution: If the handle is synchronous,
2892                  * ext4_journal_stop() can wait for transaction commit
2893                  * to finish which may depend on writeback of pages to
2894                  * complete or on page lock to be released.  In that
2895                  * case, we have to wait until after after we have
2896                  * submitted all the IO, released page locks we hold,
2897                  * and dropped io_end reference (for extent conversion
2898                  * to be able to complete) before stopping the handle.
2899                  */
2900                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2901                         ext4_journal_stop(handle);
2902                         handle = NULL;
2903                         mpd.do_map = 0;
2904                 }
2905                 /* Unlock pages we didn't use */
2906                 mpage_release_unused_pages(&mpd, give_up_on_write);
2907                 /* Submit prepared bio */
2908                 ext4_io_submit(&mpd.io_submit);
2909
2910                 /*
2911                  * Drop our io_end reference we got from init. We have
2912                  * to be careful and use deferred io_end finishing if
2913                  * we are still holding the transaction as we can
2914                  * release the last reference to io_end which may end
2915                  * up doing unwritten extent conversion.
2916                  */
2917                 if (handle) {
2918                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2919                         ext4_journal_stop(handle);
2920                 } else
2921                         ext4_put_io_end(mpd.io_submit.io_end);
2922                 mpd.io_submit.io_end = NULL;
2923
2924                 if (ret == -ENOSPC && sbi->s_journal) {
2925                         /*
2926                          * Commit the transaction which would
2927                          * free blocks released in the transaction
2928                          * and try again
2929                          */
2930                         jbd2_journal_force_commit_nested(sbi->s_journal);
2931                         ret = 0;
2932                         continue;
2933                 }
2934                 /* Fatal error - ENOMEM, EIO... */
2935                 if (ret)
2936                         break;
2937         }
2938 unplug:
2939         blk_finish_plug(&plug);
2940         if (!ret && !cycled && wbc->nr_to_write > 0) {
2941                 cycled = 1;
2942                 mpd.last_page = writeback_index - 1;
2943                 mpd.first_page = 0;
2944                 goto retry;
2945         }
2946
2947         /* Update index */
2948         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2949                 /*
2950                  * Set the writeback_index so that range_cyclic
2951                  * mode will write it back later
2952                  */
2953                 mapping->writeback_index = mpd.first_page;
2954
2955 out_writepages:
2956         trace_ext4_writepages_result(inode, wbc, ret,
2957                                      nr_to_write - wbc->nr_to_write);
2958         percpu_up_read(&sbi->s_journal_flag_rwsem);
2959         return ret;
2960 }
2961
2962 static int ext4_dax_writepages(struct address_space *mapping,
2963                                struct writeback_control *wbc)
2964 {
2965         int ret;
2966         long nr_to_write = wbc->nr_to_write;
2967         struct inode *inode = mapping->host;
2968         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2969
2970         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2971                 return -EIO;
2972
2973         percpu_down_read(&sbi->s_journal_flag_rwsem);
2974         trace_ext4_writepages(inode, wbc);
2975
2976         ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2977         trace_ext4_writepages_result(inode, wbc, ret,
2978                                      nr_to_write - wbc->nr_to_write);
2979         percpu_up_read(&sbi->s_journal_flag_rwsem);
2980         return ret;
2981 }
2982
2983 static int ext4_nonda_switch(struct super_block *sb)
2984 {
2985         s64 free_clusters, dirty_clusters;
2986         struct ext4_sb_info *sbi = EXT4_SB(sb);
2987
2988         /*
2989          * switch to non delalloc mode if we are running low
2990          * on free block. The free block accounting via percpu
2991          * counters can get slightly wrong with percpu_counter_batch getting
2992          * accumulated on each CPU without updating global counters
2993          * Delalloc need an accurate free block accounting. So switch
2994          * to non delalloc when we are near to error range.
2995          */
2996         free_clusters =
2997                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2998         dirty_clusters =
2999                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3000         /*
3001          * Start pushing delalloc when 1/2 of free blocks are dirty.
3002          */
3003         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3004                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3005
3006         if (2 * free_clusters < 3 * dirty_clusters ||
3007             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3008                 /*
3009                  * free block count is less than 150% of dirty blocks
3010                  * or free blocks is less than watermark
3011                  */
3012                 return 1;
3013         }
3014         return 0;
3015 }
3016
3017 /* We always reserve for an inode update; the superblock could be there too */
3018 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3019 {
3020         if (likely(ext4_has_feature_large_file(inode->i_sb)))
3021                 return 1;
3022
3023         if (pos + len <= 0x7fffffffULL)
3024                 return 1;
3025
3026         /* We might need to update the superblock to set LARGE_FILE */
3027         return 2;
3028 }
3029
3030 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3031                                loff_t pos, unsigned len, unsigned flags,
3032                                struct page **pagep, void **fsdata)
3033 {
3034         int ret, retries = 0;
3035         struct page *page;
3036         pgoff_t index;
3037         struct inode *inode = mapping->host;
3038         handle_t *handle;
3039
3040         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3041                 return -EIO;
3042
3043         index = pos >> PAGE_SHIFT;
3044
3045         if (ext4_nonda_switch(inode->i_sb) ||
3046             S_ISLNK(inode->i_mode)) {
3047                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3048                 return ext4_write_begin(file, mapping, pos,
3049                                         len, flags, pagep, fsdata);
3050         }
3051         *fsdata = (void *)0;
3052         trace_ext4_da_write_begin(inode, pos, len, flags);
3053
3054         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3055                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3056                                                       pos, len, flags,
3057                                                       pagep, fsdata);
3058                 if (ret < 0)
3059                         return ret;
3060                 if (ret == 1)
3061                         return 0;
3062         }
3063
3064         /*
3065          * grab_cache_page_write_begin() can take a long time if the
3066          * system is thrashing due to memory pressure, or if the page
3067          * is being written back.  So grab it first before we start
3068          * the transaction handle.  This also allows us to allocate
3069          * the page (if needed) without using GFP_NOFS.
3070          */
3071 retry_grab:
3072         page = grab_cache_page_write_begin(mapping, index, flags);
3073         if (!page)
3074                 return -ENOMEM;
3075         unlock_page(page);
3076
3077         /*
3078          * With delayed allocation, we don't log the i_disksize update
3079          * if there is delayed block allocation. But we still need
3080          * to journalling the i_disksize update if writes to the end
3081          * of file which has an already mapped buffer.
3082          */
3083 retry_journal:
3084         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3085                                 ext4_da_write_credits(inode, pos, len));
3086         if (IS_ERR(handle)) {
3087                 put_page(page);
3088                 return PTR_ERR(handle);
3089         }
3090
3091         lock_page(page);
3092         if (page->mapping != mapping) {
3093                 /* The page got truncated from under us */
3094                 unlock_page(page);
3095                 put_page(page);
3096                 ext4_journal_stop(handle);
3097                 goto retry_grab;
3098         }
3099         /* In case writeback began while the page was unlocked */
3100         wait_for_stable_page(page);
3101
3102 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3103         ret = ext4_block_write_begin(page, pos, len,
3104                                      ext4_da_get_block_prep);
3105 #else
3106         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3107 #endif
3108         if (ret < 0) {
3109                 unlock_page(page);
3110                 ext4_journal_stop(handle);
3111                 /*
3112                  * block_write_begin may have instantiated a few blocks
3113                  * outside i_size.  Trim these off again. Don't need
3114                  * i_size_read because we hold i_mutex.
3115                  */
3116                 if (pos + len > inode->i_size)
3117                         ext4_truncate_failed_write(inode);
3118
3119                 if (ret == -ENOSPC &&
3120                     ext4_should_retry_alloc(inode->i_sb, &retries))
3121                         goto retry_journal;
3122
3123                 put_page(page);
3124                 return ret;
3125         }
3126
3127         *pagep = page;
3128         return ret;
3129 }
3130
3131 /*
3132  * Check if we should update i_disksize
3133  * when write to the end of file but not require block allocation
3134  */
3135 static int ext4_da_should_update_i_disksize(struct page *page,
3136                                             unsigned long offset)
3137 {
3138         struct buffer_head *bh;
3139         struct inode *inode = page->mapping->host;
3140         unsigned int idx;
3141         int i;
3142
3143         bh = page_buffers(page);
3144         idx = offset >> inode->i_blkbits;
3145
3146         for (i = 0; i < idx; i++)
3147                 bh = bh->b_this_page;
3148
3149         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3150                 return 0;
3151         return 1;
3152 }
3153
3154 static int ext4_da_write_end(struct file *file,
3155                              struct address_space *mapping,
3156                              loff_t pos, unsigned len, unsigned copied,
3157                              struct page *page, void *fsdata)
3158 {
3159         struct inode *inode = mapping->host;
3160         int ret = 0, ret2;
3161         handle_t *handle = ext4_journal_current_handle();
3162         loff_t new_i_size;
3163         unsigned long start, end;
3164         int write_mode = (int)(unsigned long)fsdata;
3165
3166         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3167                 return ext4_write_end(file, mapping, pos,
3168                                       len, copied, page, fsdata);
3169
3170         trace_ext4_da_write_end(inode, pos, len, copied);
3171         start = pos & (PAGE_SIZE - 1);
3172         end = start + copied - 1;
3173
3174         /*
3175          * generic_write_end() will run mark_inode_dirty() if i_size
3176          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3177          * into that.
3178          */
3179         new_i_size = pos + copied;
3180         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3181                 if (ext4_has_inline_data(inode) ||
3182                     ext4_da_should_update_i_disksize(page, end)) {
3183                         ext4_update_i_disksize(inode, new_i_size);
3184                         /* We need to mark inode dirty even if
3185                          * new_i_size is less that inode->i_size
3186                          * bu greater than i_disksize.(hint delalloc)
3187                          */
3188                         ext4_mark_inode_dirty(handle, inode);
3189                 }
3190         }
3191
3192         if (write_mode != CONVERT_INLINE_DATA &&
3193             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3194             ext4_has_inline_data(inode))
3195                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3196                                                      page);
3197         else
3198                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3199                                                         page, fsdata);
3200
3201         copied = ret2;
3202         if (ret2 < 0)
3203                 ret = ret2;
3204         ret2 = ext4_journal_stop(handle);
3205         if (!ret)
3206                 ret = ret2;
3207
3208         return ret ? ret : copied;
3209 }
3210
3211 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3212                                    unsigned int length)
3213 {
3214         /*
3215          * Drop reserved blocks
3216          */
3217         BUG_ON(!PageLocked(page));
3218         if (!page_has_buffers(page))
3219                 goto out;
3220
3221         ext4_da_page_release_reservation(page, offset, length);
3222
3223 out:
3224         ext4_invalidatepage(page, offset, length);
3225
3226         return;
3227 }
3228
3229 /*
3230  * Force all delayed allocation blocks to be allocated for a given inode.
3231  */
3232 int ext4_alloc_da_blocks(struct inode *inode)
3233 {
3234         trace_ext4_alloc_da_blocks(inode);
3235
3236         if (!EXT4_I(inode)->i_reserved_data_blocks)
3237                 return 0;
3238
3239         /*
3240          * We do something simple for now.  The filemap_flush() will
3241          * also start triggering a write of the data blocks, which is
3242          * not strictly speaking necessary (and for users of
3243          * laptop_mode, not even desirable).  However, to do otherwise
3244          * would require replicating code paths in:
3245          *
3246          * ext4_writepages() ->
3247          *    write_cache_pages() ---> (via passed in callback function)
3248          *        __mpage_da_writepage() -->
3249          *           mpage_add_bh_to_extent()
3250          *           mpage_da_map_blocks()
3251          *
3252          * The problem is that write_cache_pages(), located in
3253          * mm/page-writeback.c, marks pages clean in preparation for
3254          * doing I/O, which is not desirable if we're not planning on
3255          * doing I/O at all.
3256          *
3257          * We could call write_cache_pages(), and then redirty all of
3258          * the pages by calling redirty_page_for_writepage() but that
3259          * would be ugly in the extreme.  So instead we would need to
3260          * replicate parts of the code in the above functions,
3261          * simplifying them because we wouldn't actually intend to
3262          * write out the pages, but rather only collect contiguous
3263          * logical block extents, call the multi-block allocator, and
3264          * then update the buffer heads with the block allocations.
3265          *
3266          * For now, though, we'll cheat by calling filemap_flush(),
3267          * which will map the blocks, and start the I/O, but not
3268          * actually wait for the I/O to complete.
3269          */
3270         return filemap_flush(inode->i_mapping);
3271 }
3272
3273 /*
3274  * bmap() is special.  It gets used by applications such as lilo and by
3275  * the swapper to find the on-disk block of a specific piece of data.
3276  *
3277  * Naturally, this is dangerous if the block concerned is still in the
3278  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3279  * filesystem and enables swap, then they may get a nasty shock when the
3280  * data getting swapped to that swapfile suddenly gets overwritten by
3281  * the original zero's written out previously to the journal and
3282  * awaiting writeback in the kernel's buffer cache.
3283  *
3284  * So, if we see any bmap calls here on a modified, data-journaled file,
3285  * take extra steps to flush any blocks which might be in the cache.
3286  */
3287 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3288 {
3289         struct inode *inode = mapping->host;
3290         journal_t *journal;
3291         int err;
3292
3293         /*
3294          * We can get here for an inline file via the FIBMAP ioctl
3295          */
3296         if (ext4_has_inline_data(inode))
3297                 return 0;