f2fs: switch to ->free_inode()
[muen/linux.git] / fs / f2fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "gc.h"
32 #include "trace.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/f2fs.h>
36
37 static struct kmem_cache *f2fs_inode_cachep;
38
39 #ifdef CONFIG_F2FS_FAULT_INJECTION
40
41 const char *f2fs_fault_name[FAULT_MAX] = {
42         [FAULT_KMALLOC]         = "kmalloc",
43         [FAULT_KVMALLOC]        = "kvmalloc",
44         [FAULT_PAGE_ALLOC]      = "page alloc",
45         [FAULT_PAGE_GET]        = "page get",
46         [FAULT_ALLOC_BIO]       = "alloc bio",
47         [FAULT_ALLOC_NID]       = "alloc nid",
48         [FAULT_ORPHAN]          = "orphan",
49         [FAULT_BLOCK]           = "no more block",
50         [FAULT_DIR_DEPTH]       = "too big dir depth",
51         [FAULT_EVICT_INODE]     = "evict_inode fail",
52         [FAULT_TRUNCATE]        = "truncate fail",
53         [FAULT_READ_IO]         = "read IO error",
54         [FAULT_CHECKPOINT]      = "checkpoint error",
55         [FAULT_DISCARD]         = "discard error",
56         [FAULT_WRITE_IO]        = "write IO error",
57 };
58
59 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
60                                                         unsigned int type)
61 {
62         struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
63
64         if (rate) {
65                 atomic_set(&ffi->inject_ops, 0);
66                 ffi->inject_rate = rate;
67         }
68
69         if (type)
70                 ffi->inject_type = type;
71
72         if (!rate && !type)
73                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
74 }
75 #endif
76
77 /* f2fs-wide shrinker description */
78 static struct shrinker f2fs_shrinker_info = {
79         .scan_objects = f2fs_shrink_scan,
80         .count_objects = f2fs_shrink_count,
81         .seeks = DEFAULT_SEEKS,
82 };
83
84 enum {
85         Opt_gc_background,
86         Opt_disable_roll_forward,
87         Opt_norecovery,
88         Opt_discard,
89         Opt_nodiscard,
90         Opt_noheap,
91         Opt_heap,
92         Opt_user_xattr,
93         Opt_nouser_xattr,
94         Opt_acl,
95         Opt_noacl,
96         Opt_active_logs,
97         Opt_disable_ext_identify,
98         Opt_inline_xattr,
99         Opt_noinline_xattr,
100         Opt_inline_xattr_size,
101         Opt_inline_data,
102         Opt_inline_dentry,
103         Opt_noinline_dentry,
104         Opt_flush_merge,
105         Opt_noflush_merge,
106         Opt_nobarrier,
107         Opt_fastboot,
108         Opt_extent_cache,
109         Opt_noextent_cache,
110         Opt_noinline_data,
111         Opt_data_flush,
112         Opt_reserve_root,
113         Opt_resgid,
114         Opt_resuid,
115         Opt_mode,
116         Opt_io_size_bits,
117         Opt_fault_injection,
118         Opt_fault_type,
119         Opt_lazytime,
120         Opt_nolazytime,
121         Opt_quota,
122         Opt_noquota,
123         Opt_usrquota,
124         Opt_grpquota,
125         Opt_prjquota,
126         Opt_usrjquota,
127         Opt_grpjquota,
128         Opt_prjjquota,
129         Opt_offusrjquota,
130         Opt_offgrpjquota,
131         Opt_offprjjquota,
132         Opt_jqfmt_vfsold,
133         Opt_jqfmt_vfsv0,
134         Opt_jqfmt_vfsv1,
135         Opt_whint,
136         Opt_alloc,
137         Opt_fsync,
138         Opt_test_dummy_encryption,
139         Opt_checkpoint,
140         Opt_err,
141 };
142
143 static match_table_t f2fs_tokens = {
144         {Opt_gc_background, "background_gc=%s"},
145         {Opt_disable_roll_forward, "disable_roll_forward"},
146         {Opt_norecovery, "norecovery"},
147         {Opt_discard, "discard"},
148         {Opt_nodiscard, "nodiscard"},
149         {Opt_noheap, "no_heap"},
150         {Opt_heap, "heap"},
151         {Opt_user_xattr, "user_xattr"},
152         {Opt_nouser_xattr, "nouser_xattr"},
153         {Opt_acl, "acl"},
154         {Opt_noacl, "noacl"},
155         {Opt_active_logs, "active_logs=%u"},
156         {Opt_disable_ext_identify, "disable_ext_identify"},
157         {Opt_inline_xattr, "inline_xattr"},
158         {Opt_noinline_xattr, "noinline_xattr"},
159         {Opt_inline_xattr_size, "inline_xattr_size=%u"},
160         {Opt_inline_data, "inline_data"},
161         {Opt_inline_dentry, "inline_dentry"},
162         {Opt_noinline_dentry, "noinline_dentry"},
163         {Opt_flush_merge, "flush_merge"},
164         {Opt_noflush_merge, "noflush_merge"},
165         {Opt_nobarrier, "nobarrier"},
166         {Opt_fastboot, "fastboot"},
167         {Opt_extent_cache, "extent_cache"},
168         {Opt_noextent_cache, "noextent_cache"},
169         {Opt_noinline_data, "noinline_data"},
170         {Opt_data_flush, "data_flush"},
171         {Opt_reserve_root, "reserve_root=%u"},
172         {Opt_resgid, "resgid=%u"},
173         {Opt_resuid, "resuid=%u"},
174         {Opt_mode, "mode=%s"},
175         {Opt_io_size_bits, "io_bits=%u"},
176         {Opt_fault_injection, "fault_injection=%u"},
177         {Opt_fault_type, "fault_type=%u"},
178         {Opt_lazytime, "lazytime"},
179         {Opt_nolazytime, "nolazytime"},
180         {Opt_quota, "quota"},
181         {Opt_noquota, "noquota"},
182         {Opt_usrquota, "usrquota"},
183         {Opt_grpquota, "grpquota"},
184         {Opt_prjquota, "prjquota"},
185         {Opt_usrjquota, "usrjquota=%s"},
186         {Opt_grpjquota, "grpjquota=%s"},
187         {Opt_prjjquota, "prjjquota=%s"},
188         {Opt_offusrjquota, "usrjquota="},
189         {Opt_offgrpjquota, "grpjquota="},
190         {Opt_offprjjquota, "prjjquota="},
191         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
192         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
193         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
194         {Opt_whint, "whint_mode=%s"},
195         {Opt_alloc, "alloc_mode=%s"},
196         {Opt_fsync, "fsync_mode=%s"},
197         {Opt_test_dummy_encryption, "test_dummy_encryption"},
198         {Opt_checkpoint, "checkpoint=%s"},
199         {Opt_err, NULL},
200 };
201
202 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
203 {
204         struct va_format vaf;
205         va_list args;
206
207         va_start(args, fmt);
208         vaf.fmt = fmt;
209         vaf.va = &args;
210         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
211         va_end(args);
212 }
213
214 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
215 {
216         block_t limit = (sbi->user_block_count << 1) / 1000;
217
218         /* limit is 0.2% */
219         if (test_opt(sbi, RESERVE_ROOT) &&
220                         F2FS_OPTION(sbi).root_reserved_blocks > limit) {
221                 F2FS_OPTION(sbi).root_reserved_blocks = limit;
222                 f2fs_msg(sbi->sb, KERN_INFO,
223                         "Reduce reserved blocks for root = %u",
224                         F2FS_OPTION(sbi).root_reserved_blocks);
225         }
226         if (!test_opt(sbi, RESERVE_ROOT) &&
227                 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
228                                 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
229                 !gid_eq(F2FS_OPTION(sbi).s_resgid,
230                                 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
231                 f2fs_msg(sbi->sb, KERN_INFO,
232                         "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
233                                 from_kuid_munged(&init_user_ns,
234                                         F2FS_OPTION(sbi).s_resuid),
235                                 from_kgid_munged(&init_user_ns,
236                                         F2FS_OPTION(sbi).s_resgid));
237 }
238
239 static void init_once(void *foo)
240 {
241         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
242
243         inode_init_once(&fi->vfs_inode);
244 }
245
246 #ifdef CONFIG_QUOTA
247 static const char * const quotatypes[] = INITQFNAMES;
248 #define QTYPE2NAME(t) (quotatypes[t])
249 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
250                                                         substring_t *args)
251 {
252         struct f2fs_sb_info *sbi = F2FS_SB(sb);
253         char *qname;
254         int ret = -EINVAL;
255
256         if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
257                 f2fs_msg(sb, KERN_ERR,
258                         "Cannot change journaled "
259                         "quota options when quota turned on");
260                 return -EINVAL;
261         }
262         if (f2fs_sb_has_quota_ino(sbi)) {
263                 f2fs_msg(sb, KERN_INFO,
264                         "QUOTA feature is enabled, so ignore qf_name");
265                 return 0;
266         }
267
268         qname = match_strdup(args);
269         if (!qname) {
270                 f2fs_msg(sb, KERN_ERR,
271                         "Not enough memory for storing quotafile name");
272                 return -ENOMEM;
273         }
274         if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
275                 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
276                         ret = 0;
277                 else
278                         f2fs_msg(sb, KERN_ERR,
279                                  "%s quota file already specified",
280                                  QTYPE2NAME(qtype));
281                 goto errout;
282         }
283         if (strchr(qname, '/')) {
284                 f2fs_msg(sb, KERN_ERR,
285                         "quotafile must be on filesystem root");
286                 goto errout;
287         }
288         F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
289         set_opt(sbi, QUOTA);
290         return 0;
291 errout:
292         kvfree(qname);
293         return ret;
294 }
295
296 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
297 {
298         struct f2fs_sb_info *sbi = F2FS_SB(sb);
299
300         if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
301                 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
302                         " when quota turned on");
303                 return -EINVAL;
304         }
305         kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
306         F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
307         return 0;
308 }
309
310 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
311 {
312         /*
313          * We do the test below only for project quotas. 'usrquota' and
314          * 'grpquota' mount options are allowed even without quota feature
315          * to support legacy quotas in quota files.
316          */
317         if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
318                 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
319                          "Cannot enable project quota enforcement.");
320                 return -1;
321         }
322         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
323                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
324                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
325                 if (test_opt(sbi, USRQUOTA) &&
326                                 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
327                         clear_opt(sbi, USRQUOTA);
328
329                 if (test_opt(sbi, GRPQUOTA) &&
330                                 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
331                         clear_opt(sbi, GRPQUOTA);
332
333                 if (test_opt(sbi, PRJQUOTA) &&
334                                 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
335                         clear_opt(sbi, PRJQUOTA);
336
337                 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
338                                 test_opt(sbi, PRJQUOTA)) {
339                         f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
340                                         "format mixing");
341                         return -1;
342                 }
343
344                 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
345                         f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
346                                         "not specified");
347                         return -1;
348                 }
349         }
350
351         if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
352                 f2fs_msg(sbi->sb, KERN_INFO,
353                         "QUOTA feature is enabled, so ignore jquota_fmt");
354                 F2FS_OPTION(sbi).s_jquota_fmt = 0;
355         }
356         return 0;
357 }
358 #endif
359
360 static int parse_options(struct super_block *sb, char *options)
361 {
362         struct f2fs_sb_info *sbi = F2FS_SB(sb);
363         substring_t args[MAX_OPT_ARGS];
364         char *p, *name;
365         int arg = 0;
366         kuid_t uid;
367         kgid_t gid;
368 #ifdef CONFIG_QUOTA
369         int ret;
370 #endif
371
372         if (!options)
373                 return 0;
374
375         while ((p = strsep(&options, ",")) != NULL) {
376                 int token;
377                 if (!*p)
378                         continue;
379                 /*
380                  * Initialize args struct so we know whether arg was
381                  * found; some options take optional arguments.
382                  */
383                 args[0].to = args[0].from = NULL;
384                 token = match_token(p, f2fs_tokens, args);
385
386                 switch (token) {
387                 case Opt_gc_background:
388                         name = match_strdup(&args[0]);
389
390                         if (!name)
391                                 return -ENOMEM;
392                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
393                                 set_opt(sbi, BG_GC);
394                                 clear_opt(sbi, FORCE_FG_GC);
395                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
396                                 clear_opt(sbi, BG_GC);
397                                 clear_opt(sbi, FORCE_FG_GC);
398                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
399                                 set_opt(sbi, BG_GC);
400                                 set_opt(sbi, FORCE_FG_GC);
401                         } else {
402                                 kvfree(name);
403                                 return -EINVAL;
404                         }
405                         kvfree(name);
406                         break;
407                 case Opt_disable_roll_forward:
408                         set_opt(sbi, DISABLE_ROLL_FORWARD);
409                         break;
410                 case Opt_norecovery:
411                         /* this option mounts f2fs with ro */
412                         set_opt(sbi, DISABLE_ROLL_FORWARD);
413                         if (!f2fs_readonly(sb))
414                                 return -EINVAL;
415                         break;
416                 case Opt_discard:
417                         set_opt(sbi, DISCARD);
418                         break;
419                 case Opt_nodiscard:
420                         if (f2fs_sb_has_blkzoned(sbi)) {
421                                 f2fs_msg(sb, KERN_WARNING,
422                                         "discard is required for zoned block devices");
423                                 return -EINVAL;
424                         }
425                         clear_opt(sbi, DISCARD);
426                         break;
427                 case Opt_noheap:
428                         set_opt(sbi, NOHEAP);
429                         break;
430                 case Opt_heap:
431                         clear_opt(sbi, NOHEAP);
432                         break;
433 #ifdef CONFIG_F2FS_FS_XATTR
434                 case Opt_user_xattr:
435                         set_opt(sbi, XATTR_USER);
436                         break;
437                 case Opt_nouser_xattr:
438                         clear_opt(sbi, XATTR_USER);
439                         break;
440                 case Opt_inline_xattr:
441                         set_opt(sbi, INLINE_XATTR);
442                         break;
443                 case Opt_noinline_xattr:
444                         clear_opt(sbi, INLINE_XATTR);
445                         break;
446                 case Opt_inline_xattr_size:
447                         if (args->from && match_int(args, &arg))
448                                 return -EINVAL;
449                         set_opt(sbi, INLINE_XATTR_SIZE);
450                         F2FS_OPTION(sbi).inline_xattr_size = arg;
451                         break;
452 #else
453                 case Opt_user_xattr:
454                         f2fs_msg(sb, KERN_INFO,
455                                 "user_xattr options not supported");
456                         break;
457                 case Opt_nouser_xattr:
458                         f2fs_msg(sb, KERN_INFO,
459                                 "nouser_xattr options not supported");
460                         break;
461                 case Opt_inline_xattr:
462                         f2fs_msg(sb, KERN_INFO,
463                                 "inline_xattr options not supported");
464                         break;
465                 case Opt_noinline_xattr:
466                         f2fs_msg(sb, KERN_INFO,
467                                 "noinline_xattr options not supported");
468                         break;
469 #endif
470 #ifdef CONFIG_F2FS_FS_POSIX_ACL
471                 case Opt_acl:
472                         set_opt(sbi, POSIX_ACL);
473                         break;
474                 case Opt_noacl:
475                         clear_opt(sbi, POSIX_ACL);
476                         break;
477 #else
478                 case Opt_acl:
479                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
480                         break;
481                 case Opt_noacl:
482                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
483                         break;
484 #endif
485                 case Opt_active_logs:
486                         if (args->from && match_int(args, &arg))
487                                 return -EINVAL;
488                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
489                                 return -EINVAL;
490                         F2FS_OPTION(sbi).active_logs = arg;
491                         break;
492                 case Opt_disable_ext_identify:
493                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
494                         break;
495                 case Opt_inline_data:
496                         set_opt(sbi, INLINE_DATA);
497                         break;
498                 case Opt_inline_dentry:
499                         set_opt(sbi, INLINE_DENTRY);
500                         break;
501                 case Opt_noinline_dentry:
502                         clear_opt(sbi, INLINE_DENTRY);
503                         break;
504                 case Opt_flush_merge:
505                         set_opt(sbi, FLUSH_MERGE);
506                         break;
507                 case Opt_noflush_merge:
508                         clear_opt(sbi, FLUSH_MERGE);
509                         break;
510                 case Opt_nobarrier:
511                         set_opt(sbi, NOBARRIER);
512                         break;
513                 case Opt_fastboot:
514                         set_opt(sbi, FASTBOOT);
515                         break;
516                 case Opt_extent_cache:
517                         set_opt(sbi, EXTENT_CACHE);
518                         break;
519                 case Opt_noextent_cache:
520                         clear_opt(sbi, EXTENT_CACHE);
521                         break;
522                 case Opt_noinline_data:
523                         clear_opt(sbi, INLINE_DATA);
524                         break;
525                 case Opt_data_flush:
526                         set_opt(sbi, DATA_FLUSH);
527                         break;
528                 case Opt_reserve_root:
529                         if (args->from && match_int(args, &arg))
530                                 return -EINVAL;
531                         if (test_opt(sbi, RESERVE_ROOT)) {
532                                 f2fs_msg(sb, KERN_INFO,
533                                         "Preserve previous reserve_root=%u",
534                                         F2FS_OPTION(sbi).root_reserved_blocks);
535                         } else {
536                                 F2FS_OPTION(sbi).root_reserved_blocks = arg;
537                                 set_opt(sbi, RESERVE_ROOT);
538                         }
539                         break;
540                 case Opt_resuid:
541                         if (args->from && match_int(args, &arg))
542                                 return -EINVAL;
543                         uid = make_kuid(current_user_ns(), arg);
544                         if (!uid_valid(uid)) {
545                                 f2fs_msg(sb, KERN_ERR,
546                                         "Invalid uid value %d", arg);
547                                 return -EINVAL;
548                         }
549                         F2FS_OPTION(sbi).s_resuid = uid;
550                         break;
551                 case Opt_resgid:
552                         if (args->from && match_int(args, &arg))
553                                 return -EINVAL;
554                         gid = make_kgid(current_user_ns(), arg);
555                         if (!gid_valid(gid)) {
556                                 f2fs_msg(sb, KERN_ERR,
557                                         "Invalid gid value %d", arg);
558                                 return -EINVAL;
559                         }
560                         F2FS_OPTION(sbi).s_resgid = gid;
561                         break;
562                 case Opt_mode:
563                         name = match_strdup(&args[0]);
564
565                         if (!name)
566                                 return -ENOMEM;
567                         if (strlen(name) == 8 &&
568                                         !strncmp(name, "adaptive", 8)) {
569                                 if (f2fs_sb_has_blkzoned(sbi)) {
570                                         f2fs_msg(sb, KERN_WARNING,
571                                                  "adaptive mode is not allowed with "
572                                                  "zoned block device feature");
573                                         kvfree(name);
574                                         return -EINVAL;
575                                 }
576                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
577                         } else if (strlen(name) == 3 &&
578                                         !strncmp(name, "lfs", 3)) {
579                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
580                         } else {
581                                 kvfree(name);
582                                 return -EINVAL;
583                         }
584                         kvfree(name);
585                         break;
586                 case Opt_io_size_bits:
587                         if (args->from && match_int(args, &arg))
588                                 return -EINVAL;
589                         if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
590                                 f2fs_msg(sb, KERN_WARNING,
591                                         "Not support %d, larger than %d",
592                                         1 << arg, BIO_MAX_PAGES);
593                                 return -EINVAL;
594                         }
595                         F2FS_OPTION(sbi).write_io_size_bits = arg;
596                         break;
597 #ifdef CONFIG_F2FS_FAULT_INJECTION
598                 case Opt_fault_injection:
599                         if (args->from && match_int(args, &arg))
600                                 return -EINVAL;
601                         f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
602                         set_opt(sbi, FAULT_INJECTION);
603                         break;
604
605                 case Opt_fault_type:
606                         if (args->from && match_int(args, &arg))
607                                 return -EINVAL;
608                         f2fs_build_fault_attr(sbi, 0, arg);
609                         set_opt(sbi, FAULT_INJECTION);
610                         break;
611 #else
612                 case Opt_fault_injection:
613                         f2fs_msg(sb, KERN_INFO,
614                                 "fault_injection options not supported");
615                         break;
616
617                 case Opt_fault_type:
618                         f2fs_msg(sb, KERN_INFO,
619                                 "fault_type options not supported");
620                         break;
621 #endif
622                 case Opt_lazytime:
623                         sb->s_flags |= SB_LAZYTIME;
624                         break;
625                 case Opt_nolazytime:
626                         sb->s_flags &= ~SB_LAZYTIME;
627                         break;
628 #ifdef CONFIG_QUOTA
629                 case Opt_quota:
630                 case Opt_usrquota:
631                         set_opt(sbi, USRQUOTA);
632                         break;
633                 case Opt_grpquota:
634                         set_opt(sbi, GRPQUOTA);
635                         break;
636                 case Opt_prjquota:
637                         set_opt(sbi, PRJQUOTA);
638                         break;
639                 case Opt_usrjquota:
640                         ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
641                         if (ret)
642                                 return ret;
643                         break;
644                 case Opt_grpjquota:
645                         ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
646                         if (ret)
647                                 return ret;
648                         break;
649                 case Opt_prjjquota:
650                         ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
651                         if (ret)
652                                 return ret;
653                         break;
654                 case Opt_offusrjquota:
655                         ret = f2fs_clear_qf_name(sb, USRQUOTA);
656                         if (ret)
657                                 return ret;
658                         break;
659                 case Opt_offgrpjquota:
660                         ret = f2fs_clear_qf_name(sb, GRPQUOTA);
661                         if (ret)
662                                 return ret;
663                         break;
664                 case Opt_offprjjquota:
665                         ret = f2fs_clear_qf_name(sb, PRJQUOTA);
666                         if (ret)
667                                 return ret;
668                         break;
669                 case Opt_jqfmt_vfsold:
670                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
671                         break;
672                 case Opt_jqfmt_vfsv0:
673                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
674                         break;
675                 case Opt_jqfmt_vfsv1:
676                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
677                         break;
678                 case Opt_noquota:
679                         clear_opt(sbi, QUOTA);
680                         clear_opt(sbi, USRQUOTA);
681                         clear_opt(sbi, GRPQUOTA);
682                         clear_opt(sbi, PRJQUOTA);
683                         break;
684 #else
685                 case Opt_quota:
686                 case Opt_usrquota:
687                 case Opt_grpquota:
688                 case Opt_prjquota:
689                 case Opt_usrjquota:
690                 case Opt_grpjquota:
691                 case Opt_prjjquota:
692                 case Opt_offusrjquota:
693                 case Opt_offgrpjquota:
694                 case Opt_offprjjquota:
695                 case Opt_jqfmt_vfsold:
696                 case Opt_jqfmt_vfsv0:
697                 case Opt_jqfmt_vfsv1:
698                 case Opt_noquota:
699                         f2fs_msg(sb, KERN_INFO,
700                                         "quota operations not supported");
701                         break;
702 #endif
703                 case Opt_whint:
704                         name = match_strdup(&args[0]);
705                         if (!name)
706                                 return -ENOMEM;
707                         if (strlen(name) == 10 &&
708                                         !strncmp(name, "user-based", 10)) {
709                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
710                         } else if (strlen(name) == 3 &&
711                                         !strncmp(name, "off", 3)) {
712                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
713                         } else if (strlen(name) == 8 &&
714                                         !strncmp(name, "fs-based", 8)) {
715                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
716                         } else {
717                                 kvfree(name);
718                                 return -EINVAL;
719                         }
720                         kvfree(name);
721                         break;
722                 case Opt_alloc:
723                         name = match_strdup(&args[0]);
724                         if (!name)
725                                 return -ENOMEM;
726
727                         if (strlen(name) == 7 &&
728                                         !strncmp(name, "default", 7)) {
729                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
730                         } else if (strlen(name) == 5 &&
731                                         !strncmp(name, "reuse", 5)) {
732                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
733                         } else {
734                                 kvfree(name);
735                                 return -EINVAL;
736                         }
737                         kvfree(name);
738                         break;
739                 case Opt_fsync:
740                         name = match_strdup(&args[0]);
741                         if (!name)
742                                 return -ENOMEM;
743                         if (strlen(name) == 5 &&
744                                         !strncmp(name, "posix", 5)) {
745                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
746                         } else if (strlen(name) == 6 &&
747                                         !strncmp(name, "strict", 6)) {
748                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
749                         } else if (strlen(name) == 9 &&
750                                         !strncmp(name, "nobarrier", 9)) {
751                                 F2FS_OPTION(sbi).fsync_mode =
752                                                         FSYNC_MODE_NOBARRIER;
753                         } else {
754                                 kvfree(name);
755                                 return -EINVAL;
756                         }
757                         kvfree(name);
758                         break;
759                 case Opt_test_dummy_encryption:
760 #ifdef CONFIG_FS_ENCRYPTION
761                         if (!f2fs_sb_has_encrypt(sbi)) {
762                                 f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
763                                 return -EINVAL;
764                         }
765
766                         F2FS_OPTION(sbi).test_dummy_encryption = true;
767                         f2fs_msg(sb, KERN_INFO,
768                                         "Test dummy encryption mode enabled");
769 #else
770                         f2fs_msg(sb, KERN_INFO,
771                                         "Test dummy encryption mount option ignored");
772 #endif
773                         break;
774                 case Opt_checkpoint:
775                         name = match_strdup(&args[0]);
776                         if (!name)
777                                 return -ENOMEM;
778
779                         if (strlen(name) == 6 &&
780                                         !strncmp(name, "enable", 6)) {
781                                 clear_opt(sbi, DISABLE_CHECKPOINT);
782                         } else if (strlen(name) == 7 &&
783                                         !strncmp(name, "disable", 7)) {
784                                 set_opt(sbi, DISABLE_CHECKPOINT);
785                         } else {
786                                 kvfree(name);
787                                 return -EINVAL;
788                         }
789                         kvfree(name);
790                         break;
791                 default:
792                         f2fs_msg(sb, KERN_ERR,
793                                 "Unrecognized mount option \"%s\" or missing value",
794                                 p);
795                         return -EINVAL;
796                 }
797         }
798 #ifdef CONFIG_QUOTA
799         if (f2fs_check_quota_options(sbi))
800                 return -EINVAL;
801 #else
802         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
803                 f2fs_msg(sbi->sb, KERN_INFO,
804                          "Filesystem with quota feature cannot be mounted RDWR "
805                          "without CONFIG_QUOTA");
806                 return -EINVAL;
807         }
808         if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
809                 f2fs_msg(sb, KERN_ERR,
810                         "Filesystem with project quota feature cannot be "
811                         "mounted RDWR without CONFIG_QUOTA");
812                 return -EINVAL;
813         }
814 #endif
815
816         if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
817                 f2fs_msg(sb, KERN_ERR,
818                                 "Should set mode=lfs with %uKB-sized IO",
819                                 F2FS_IO_SIZE_KB(sbi));
820                 return -EINVAL;
821         }
822
823         if (test_opt(sbi, INLINE_XATTR_SIZE)) {
824                 int min_size, max_size;
825
826                 if (!f2fs_sb_has_extra_attr(sbi) ||
827                         !f2fs_sb_has_flexible_inline_xattr(sbi)) {
828                         f2fs_msg(sb, KERN_ERR,
829                                         "extra_attr or flexible_inline_xattr "
830                                         "feature is off");
831                         return -EINVAL;
832                 }
833                 if (!test_opt(sbi, INLINE_XATTR)) {
834                         f2fs_msg(sb, KERN_ERR,
835                                         "inline_xattr_size option should be "
836                                         "set with inline_xattr option");
837                         return -EINVAL;
838                 }
839
840                 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
841                 max_size = MAX_INLINE_XATTR_SIZE;
842
843                 if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
844                                 F2FS_OPTION(sbi).inline_xattr_size > max_size) {
845                         f2fs_msg(sb, KERN_ERR,
846                                 "inline xattr size is out of range: %d ~ %d",
847                                 min_size, max_size);
848                         return -EINVAL;
849                 }
850         }
851
852         if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) {
853                 f2fs_msg(sb, KERN_ERR,
854                                 "LFS not compatible with checkpoint=disable\n");
855                 return -EINVAL;
856         }
857
858         /* Not pass down write hints if the number of active logs is lesser
859          * than NR_CURSEG_TYPE.
860          */
861         if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
862                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
863         return 0;
864 }
865
866 static struct inode *f2fs_alloc_inode(struct super_block *sb)
867 {
868         struct f2fs_inode_info *fi;
869
870         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
871         if (!fi)
872                 return NULL;
873
874         init_once((void *) fi);
875
876         /* Initialize f2fs-specific inode info */
877         atomic_set(&fi->dirty_pages, 0);
878         init_rwsem(&fi->i_sem);
879         INIT_LIST_HEAD(&fi->dirty_list);
880         INIT_LIST_HEAD(&fi->gdirty_list);
881         INIT_LIST_HEAD(&fi->inmem_ilist);
882         INIT_LIST_HEAD(&fi->inmem_pages);
883         mutex_init(&fi->inmem_lock);
884         init_rwsem(&fi->i_gc_rwsem[READ]);
885         init_rwsem(&fi->i_gc_rwsem[WRITE]);
886         init_rwsem(&fi->i_mmap_sem);
887         init_rwsem(&fi->i_xattr_sem);
888
889         /* Will be used by directory only */
890         fi->i_dir_level = F2FS_SB(sb)->dir_level;
891
892         return &fi->vfs_inode;
893 }
894
895 static int f2fs_drop_inode(struct inode *inode)
896 {
897         int ret;
898         /*
899          * This is to avoid a deadlock condition like below.
900          * writeback_single_inode(inode)
901          *  - f2fs_write_data_page
902          *    - f2fs_gc -> iput -> evict
903          *       - inode_wait_for_writeback(inode)
904          */
905         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
906                 if (!inode->i_nlink && !is_bad_inode(inode)) {
907                         /* to avoid evict_inode call simultaneously */
908                         atomic_inc(&inode->i_count);
909                         spin_unlock(&inode->i_lock);
910
911                         /* some remained atomic pages should discarded */
912                         if (f2fs_is_atomic_file(inode))
913                                 f2fs_drop_inmem_pages(inode);
914
915                         /* should remain fi->extent_tree for writepage */
916                         f2fs_destroy_extent_node(inode);
917
918                         sb_start_intwrite(inode->i_sb);
919                         f2fs_i_size_write(inode, 0);
920
921                         f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
922                                         inode, NULL, 0, DATA);
923                         truncate_inode_pages_final(inode->i_mapping);
924
925                         if (F2FS_HAS_BLOCKS(inode))
926                                 f2fs_truncate(inode);
927
928                         sb_end_intwrite(inode->i_sb);
929
930                         spin_lock(&inode->i_lock);
931                         atomic_dec(&inode->i_count);
932                 }
933                 trace_f2fs_drop_inode(inode, 0);
934                 return 0;
935         }
936         ret = generic_drop_inode(inode);
937         trace_f2fs_drop_inode(inode, ret);
938         return ret;
939 }
940
941 int f2fs_inode_dirtied(struct inode *inode, bool sync)
942 {
943         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
944         int ret = 0;
945
946         spin_lock(&sbi->inode_lock[DIRTY_META]);
947         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
948                 ret = 1;
949         } else {
950                 set_inode_flag(inode, FI_DIRTY_INODE);
951                 stat_inc_dirty_inode(sbi, DIRTY_META);
952         }
953         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
954                 list_add_tail(&F2FS_I(inode)->gdirty_list,
955                                 &sbi->inode_list[DIRTY_META]);
956                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
957         }
958         spin_unlock(&sbi->inode_lock[DIRTY_META]);
959         return ret;
960 }
961
962 void f2fs_inode_synced(struct inode *inode)
963 {
964         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
965
966         spin_lock(&sbi->inode_lock[DIRTY_META]);
967         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
968                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
969                 return;
970         }
971         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
972                 list_del_init(&F2FS_I(inode)->gdirty_list);
973                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
974         }
975         clear_inode_flag(inode, FI_DIRTY_INODE);
976         clear_inode_flag(inode, FI_AUTO_RECOVER);
977         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
978         spin_unlock(&sbi->inode_lock[DIRTY_META]);
979 }
980
981 /*
982  * f2fs_dirty_inode() is called from __mark_inode_dirty()
983  *
984  * We should call set_dirty_inode to write the dirty inode through write_inode.
985  */
986 static void f2fs_dirty_inode(struct inode *inode, int flags)
987 {
988         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
989
990         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
991                         inode->i_ino == F2FS_META_INO(sbi))
992                 return;
993
994         if (flags == I_DIRTY_TIME)
995                 return;
996
997         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
998                 clear_inode_flag(inode, FI_AUTO_RECOVER);
999
1000         f2fs_inode_dirtied(inode, false);
1001 }
1002
1003 static void f2fs_free_inode(struct inode *inode)
1004 {
1005         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1006 }
1007
1008 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1009 {
1010         percpu_counter_destroy(&sbi->alloc_valid_block_count);
1011         percpu_counter_destroy(&sbi->total_valid_inode_count);
1012 }
1013
1014 static void destroy_device_list(struct f2fs_sb_info *sbi)
1015 {
1016         int i;
1017
1018         for (i = 0; i < sbi->s_ndevs; i++) {
1019                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1020 #ifdef CONFIG_BLK_DEV_ZONED
1021                 kvfree(FDEV(i).blkz_type);
1022 #endif
1023         }
1024         kvfree(sbi->devs);
1025 }
1026
1027 static void f2fs_put_super(struct super_block *sb)
1028 {
1029         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1030         int i;
1031         bool dropped;
1032
1033         f2fs_quota_off_umount(sb);
1034
1035         /* prevent remaining shrinker jobs */
1036         mutex_lock(&sbi->umount_mutex);
1037
1038         /*
1039          * We don't need to do checkpoint when superblock is clean.
1040          * But, the previous checkpoint was not done by umount, it needs to do
1041          * clean checkpoint again.
1042          */
1043         if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1044                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1045                 struct cp_control cpc = {
1046                         .reason = CP_UMOUNT,
1047                 };
1048                 f2fs_write_checkpoint(sbi, &cpc);
1049         }
1050
1051         /* be sure to wait for any on-going discard commands */
1052         dropped = f2fs_issue_discard_timeout(sbi);
1053
1054         if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1055                                         !sbi->discard_blks && !dropped) {
1056                 struct cp_control cpc = {
1057                         .reason = CP_UMOUNT | CP_TRIMMED,
1058                 };
1059                 f2fs_write_checkpoint(sbi, &cpc);
1060         }
1061
1062         /*
1063          * normally superblock is clean, so we need to release this.
1064          * In addition, EIO will skip do checkpoint, we need this as well.
1065          */
1066         f2fs_release_ino_entry(sbi, true);
1067
1068         f2fs_leave_shrinker(sbi);
1069         mutex_unlock(&sbi->umount_mutex);
1070
1071         /* our cp_error case, we can wait for any writeback page */
1072         f2fs_flush_merged_writes(sbi);
1073
1074         f2fs_wait_on_all_pages_writeback(sbi);
1075
1076         f2fs_bug_on(sbi, sbi->fsync_node_num);
1077
1078         iput(sbi->node_inode);
1079         sbi->node_inode = NULL;
1080
1081         iput(sbi->meta_inode);
1082         sbi->meta_inode = NULL;
1083
1084         /*
1085          * iput() can update stat information, if f2fs_write_checkpoint()
1086          * above failed with error.
1087          */
1088         f2fs_destroy_stats(sbi);
1089
1090         /* destroy f2fs internal modules */
1091         f2fs_destroy_node_manager(sbi);
1092         f2fs_destroy_segment_manager(sbi);
1093
1094         kvfree(sbi->ckpt);
1095
1096         f2fs_unregister_sysfs(sbi);
1097
1098         sb->s_fs_info = NULL;
1099         if (sbi->s_chksum_driver)
1100                 crypto_free_shash(sbi->s_chksum_driver);
1101         kvfree(sbi->raw_super);
1102
1103         destroy_device_list(sbi);
1104         mempool_destroy(sbi->write_io_dummy);
1105 #ifdef CONFIG_QUOTA
1106         for (i = 0; i < MAXQUOTAS; i++)
1107                 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1108 #endif
1109         destroy_percpu_info(sbi);
1110         for (i = 0; i < NR_PAGE_TYPE; i++)
1111                 kvfree(sbi->write_io[i]);
1112         kvfree(sbi);
1113 }
1114
1115 int f2fs_sync_fs(struct super_block *sb, int sync)
1116 {
1117         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1118         int err = 0;
1119
1120         if (unlikely(f2fs_cp_error(sbi)))
1121                 return 0;
1122         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1123                 return 0;
1124
1125         trace_f2fs_sync_fs(sb, sync);
1126
1127         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1128                 return -EAGAIN;
1129
1130         if (sync) {
1131                 struct cp_control cpc;
1132
1133                 cpc.reason = __get_cp_reason(sbi);
1134
1135                 mutex_lock(&sbi->gc_mutex);
1136                 err = f2fs_write_checkpoint(sbi, &cpc);
1137                 mutex_unlock(&sbi->gc_mutex);
1138         }
1139         f2fs_trace_ios(NULL, 1);
1140
1141         return err;
1142 }
1143
1144 static int f2fs_freeze(struct super_block *sb)
1145 {
1146         if (f2fs_readonly(sb))
1147                 return 0;
1148
1149         /* IO error happened before */
1150         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1151                 return -EIO;
1152
1153         /* must be clean, since sync_filesystem() was already called */
1154         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1155                 return -EINVAL;
1156         return 0;
1157 }
1158
1159 static int f2fs_unfreeze(struct super_block *sb)
1160 {
1161         return 0;
1162 }
1163
1164 #ifdef CONFIG_QUOTA
1165 static int f2fs_statfs_project(struct super_block *sb,
1166                                 kprojid_t projid, struct kstatfs *buf)
1167 {
1168         struct kqid qid;
1169         struct dquot *dquot;
1170         u64 limit;
1171         u64 curblock;
1172
1173         qid = make_kqid_projid(projid);
1174         dquot = dqget(sb, qid);
1175         if (IS_ERR(dquot))
1176                 return PTR_ERR(dquot);
1177         spin_lock(&dquot->dq_dqb_lock);
1178
1179         limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1180                  dquot->dq_dqb.dqb_bsoftlimit :
1181                  dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1182         if (limit && buf->f_blocks > limit) {
1183                 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1184                 buf->f_blocks = limit;
1185                 buf->f_bfree = buf->f_bavail =
1186                         (buf->f_blocks > curblock) ?
1187                          (buf->f_blocks - curblock) : 0;
1188         }
1189
1190         limit = dquot->dq_dqb.dqb_isoftlimit ?
1191                 dquot->dq_dqb.dqb_isoftlimit :
1192                 dquot->dq_dqb.dqb_ihardlimit;
1193         if (limit && buf->f_files > limit) {
1194                 buf->f_files = limit;
1195                 buf->f_ffree =
1196                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1197                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1198         }
1199
1200         spin_unlock(&dquot->dq_dqb_lock);
1201         dqput(dquot);
1202         return 0;
1203 }
1204 #endif
1205
1206 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1207 {
1208         struct super_block *sb = dentry->d_sb;
1209         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1210         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1211         block_t total_count, user_block_count, start_count;
1212         u64 avail_node_count;
1213
1214         total_count = le64_to_cpu(sbi->raw_super->block_count);
1215         user_block_count = sbi->user_block_count;
1216         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1217         buf->f_type = F2FS_SUPER_MAGIC;
1218         buf->f_bsize = sbi->blocksize;
1219
1220         buf->f_blocks = total_count - start_count;
1221         buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1222                                                 sbi->current_reserved_blocks;
1223         if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1224                 buf->f_bfree = 0;
1225         else
1226                 buf->f_bfree -= sbi->unusable_block_count;
1227
1228         if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1229                 buf->f_bavail = buf->f_bfree -
1230                                 F2FS_OPTION(sbi).root_reserved_blocks;
1231         else
1232                 buf->f_bavail = 0;
1233
1234         avail_node_count = sbi->total_node_count - sbi->nquota_files -
1235                                                 F2FS_RESERVED_NODE_NUM;
1236
1237         if (avail_node_count > user_block_count) {
1238                 buf->f_files = user_block_count;
1239                 buf->f_ffree = buf->f_bavail;
1240         } else {
1241                 buf->f_files = avail_node_count;
1242                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1243                                         buf->f_bavail);
1244         }
1245
1246         buf->f_namelen = F2FS_NAME_LEN;
1247         buf->f_fsid.val[0] = (u32)id;
1248         buf->f_fsid.val[1] = (u32)(id >> 32);
1249
1250 #ifdef CONFIG_QUOTA
1251         if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1252                         sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1253                 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1254         }
1255 #endif
1256         return 0;
1257 }
1258
1259 static inline void f2fs_show_quota_options(struct seq_file *seq,
1260                                            struct super_block *sb)
1261 {
1262 #ifdef CONFIG_QUOTA
1263         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1264
1265         if (F2FS_OPTION(sbi).s_jquota_fmt) {
1266                 char *fmtname = "";
1267
1268                 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1269                 case QFMT_VFS_OLD:
1270                         fmtname = "vfsold";
1271                         break;
1272                 case QFMT_VFS_V0:
1273                         fmtname = "vfsv0";
1274                         break;
1275                 case QFMT_VFS_V1:
1276                         fmtname = "vfsv1";
1277                         break;
1278                 }
1279                 seq_printf(seq, ",jqfmt=%s", fmtname);
1280         }
1281
1282         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1283                 seq_show_option(seq, "usrjquota",
1284                         F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1285
1286         if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1287                 seq_show_option(seq, "grpjquota",
1288                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1289
1290         if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1291                 seq_show_option(seq, "prjjquota",
1292                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1293 #endif
1294 }
1295
1296 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1297 {
1298         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1299
1300         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1301                 if (test_opt(sbi, FORCE_FG_GC))
1302                         seq_printf(seq, ",background_gc=%s", "sync");
1303                 else
1304                         seq_printf(seq, ",background_gc=%s", "on");
1305         } else {
1306                 seq_printf(seq, ",background_gc=%s", "off");
1307         }
1308         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1309                 seq_puts(seq, ",disable_roll_forward");
1310         if (test_opt(sbi, DISCARD))
1311                 seq_puts(seq, ",discard");
1312         if (test_opt(sbi, NOHEAP))
1313                 seq_puts(seq, ",no_heap");
1314         else
1315                 seq_puts(seq, ",heap");
1316 #ifdef CONFIG_F2FS_FS_XATTR
1317         if (test_opt(sbi, XATTR_USER))
1318                 seq_puts(seq, ",user_xattr");
1319         else
1320                 seq_puts(seq, ",nouser_xattr");
1321         if (test_opt(sbi, INLINE_XATTR))
1322                 seq_puts(seq, ",inline_xattr");
1323         else
1324                 seq_puts(seq, ",noinline_xattr");
1325         if (test_opt(sbi, INLINE_XATTR_SIZE))
1326                 seq_printf(seq, ",inline_xattr_size=%u",
1327                                         F2FS_OPTION(sbi).inline_xattr_size);
1328 #endif
1329 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1330         if (test_opt(sbi, POSIX_ACL))
1331                 seq_puts(seq, ",acl");
1332         else
1333                 seq_puts(seq, ",noacl");
1334 #endif
1335         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1336                 seq_puts(seq, ",disable_ext_identify");
1337         if (test_opt(sbi, INLINE_DATA))
1338                 seq_puts(seq, ",inline_data");
1339         else
1340                 seq_puts(seq, ",noinline_data");
1341         if (test_opt(sbi, INLINE_DENTRY))
1342                 seq_puts(seq, ",inline_dentry");
1343         else
1344                 seq_puts(seq, ",noinline_dentry");
1345         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1346                 seq_puts(seq, ",flush_merge");
1347         if (test_opt(sbi, NOBARRIER))
1348                 seq_puts(seq, ",nobarrier");
1349         if (test_opt(sbi, FASTBOOT))
1350                 seq_puts(seq, ",fastboot");
1351         if (test_opt(sbi, EXTENT_CACHE))
1352                 seq_puts(seq, ",extent_cache");
1353         else
1354                 seq_puts(seq, ",noextent_cache");
1355         if (test_opt(sbi, DATA_FLUSH))
1356                 seq_puts(seq, ",data_flush");
1357
1358         seq_puts(seq, ",mode=");
1359         if (test_opt(sbi, ADAPTIVE))
1360                 seq_puts(seq, "adaptive");
1361         else if (test_opt(sbi, LFS))
1362                 seq_puts(seq, "lfs");
1363         seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1364         if (test_opt(sbi, RESERVE_ROOT))
1365                 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1366                                 F2FS_OPTION(sbi).root_reserved_blocks,
1367                                 from_kuid_munged(&init_user_ns,
1368                                         F2FS_OPTION(sbi).s_resuid),
1369                                 from_kgid_munged(&init_user_ns,
1370                                         F2FS_OPTION(sbi).s_resgid));
1371         if (F2FS_IO_SIZE_BITS(sbi))
1372                 seq_printf(seq, ",io_bits=%u",
1373                                 F2FS_OPTION(sbi).write_io_size_bits);
1374 #ifdef CONFIG_F2FS_FAULT_INJECTION
1375         if (test_opt(sbi, FAULT_INJECTION)) {
1376                 seq_printf(seq, ",fault_injection=%u",
1377                                 F2FS_OPTION(sbi).fault_info.inject_rate);
1378                 seq_printf(seq, ",fault_type=%u",
1379                                 F2FS_OPTION(sbi).fault_info.inject_type);
1380         }
1381 #endif
1382 #ifdef CONFIG_QUOTA
1383         if (test_opt(sbi, QUOTA))
1384                 seq_puts(seq, ",quota");
1385         if (test_opt(sbi, USRQUOTA))
1386                 seq_puts(seq, ",usrquota");
1387         if (test_opt(sbi, GRPQUOTA))
1388                 seq_puts(seq, ",grpquota");
1389         if (test_opt(sbi, PRJQUOTA))
1390                 seq_puts(seq, ",prjquota");
1391 #endif
1392         f2fs_show_quota_options(seq, sbi->sb);
1393         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1394                 seq_printf(seq, ",whint_mode=%s", "user-based");
1395         else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1396                 seq_printf(seq, ",whint_mode=%s", "fs-based");
1397 #ifdef CONFIG_FS_ENCRYPTION
1398         if (F2FS_OPTION(sbi).test_dummy_encryption)
1399                 seq_puts(seq, ",test_dummy_encryption");
1400 #endif
1401
1402         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1403                 seq_printf(seq, ",alloc_mode=%s", "default");
1404         else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1405                 seq_printf(seq, ",alloc_mode=%s", "reuse");
1406
1407         if (test_opt(sbi, DISABLE_CHECKPOINT))
1408                 seq_puts(seq, ",checkpoint=disable");
1409
1410         if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1411                 seq_printf(seq, ",fsync_mode=%s", "posix");
1412         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1413                 seq_printf(seq, ",fsync_mode=%s", "strict");
1414         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1415                 seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1416         return 0;
1417 }
1418
1419 static void default_options(struct f2fs_sb_info *sbi)
1420 {
1421         /* init some FS parameters */
1422         F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1423         F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1424         F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1425         F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1426         F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1427         F2FS_OPTION(sbi).test_dummy_encryption = false;
1428         F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1429         F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1430
1431         set_opt(sbi, BG_GC);
1432         set_opt(sbi, INLINE_XATTR);
1433         set_opt(sbi, INLINE_DATA);
1434         set_opt(sbi, INLINE_DENTRY);
1435         set_opt(sbi, EXTENT_CACHE);
1436         set_opt(sbi, NOHEAP);
1437         clear_opt(sbi, DISABLE_CHECKPOINT);
1438         sbi->sb->s_flags |= SB_LAZYTIME;
1439         set_opt(sbi, FLUSH_MERGE);
1440         set_opt(sbi, DISCARD);
1441         if (f2fs_sb_has_blkzoned(sbi))
1442                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1443         else
1444                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1445
1446 #ifdef CONFIG_F2FS_FS_XATTR
1447         set_opt(sbi, XATTR_USER);
1448 #endif
1449 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1450         set_opt(sbi, POSIX_ACL);
1451 #endif
1452
1453         f2fs_build_fault_attr(sbi, 0, 0);
1454 }
1455
1456 #ifdef CONFIG_QUOTA
1457 static int f2fs_enable_quotas(struct super_block *sb);
1458 #endif
1459
1460 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1461 {
1462         unsigned int s_flags = sbi->sb->s_flags;
1463         struct cp_control cpc;
1464         int err = 0;
1465         int ret;
1466
1467         if (s_flags & SB_RDONLY) {
1468                 f2fs_msg(sbi->sb, KERN_ERR,
1469                                 "checkpoint=disable on readonly fs");
1470                 return -EINVAL;
1471         }
1472         sbi->sb->s_flags |= SB_ACTIVE;
1473
1474         f2fs_update_time(sbi, DISABLE_TIME);
1475
1476         while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1477                 mutex_lock(&sbi->gc_mutex);
1478                 err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1479                 if (err == -ENODATA) {
1480                         err = 0;
1481                         break;
1482                 }
1483                 if (err && err != -EAGAIN)
1484                         break;
1485         }
1486
1487         ret = sync_filesystem(sbi->sb);
1488         if (ret || err) {
1489                 err = ret ? ret: err;
1490                 goto restore_flag;
1491         }
1492
1493         if (f2fs_disable_cp_again(sbi)) {
1494                 err = -EAGAIN;
1495                 goto restore_flag;
1496         }
1497
1498         mutex_lock(&sbi->gc_mutex);
1499         cpc.reason = CP_PAUSE;
1500         set_sbi_flag(sbi, SBI_CP_DISABLED);
1501         f2fs_write_checkpoint(sbi, &cpc);
1502
1503         sbi->unusable_block_count = 0;
1504         mutex_unlock(&sbi->gc_mutex);
1505 restore_flag:
1506         sbi->sb->s_flags = s_flags;     /* Restore MS_RDONLY status */
1507         return err;
1508 }
1509
1510 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1511 {
1512         mutex_lock(&sbi->gc_mutex);
1513         f2fs_dirty_to_prefree(sbi);
1514
1515         clear_sbi_flag(sbi, SBI_CP_DISABLED);
1516         set_sbi_flag(sbi, SBI_IS_DIRTY);
1517         mutex_unlock(&sbi->gc_mutex);
1518
1519         f2fs_sync_fs(sbi->sb, 1);
1520 }
1521
1522 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1523 {
1524         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1525         struct f2fs_mount_info org_mount_opt;
1526         unsigned long old_sb_flags;
1527         int err;
1528         bool need_restart_gc = false;
1529         bool need_stop_gc = false;
1530         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1531         bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1532         bool checkpoint_changed;
1533 #ifdef CONFIG_QUOTA
1534         int i, j;
1535 #endif
1536
1537         /*
1538          * Save the old mount options in case we
1539          * need to restore them.
1540          */
1541         org_mount_opt = sbi->mount_opt;
1542         old_sb_flags = sb->s_flags;
1543
1544 #ifdef CONFIG_QUOTA
1545         org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1546         for (i = 0; i < MAXQUOTAS; i++) {
1547                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1548                         org_mount_opt.s_qf_names[i] =
1549                                 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1550                                 GFP_KERNEL);
1551                         if (!org_mount_opt.s_qf_names[i]) {
1552                                 for (j = 0; j < i; j++)
1553                                         kvfree(org_mount_opt.s_qf_names[j]);
1554                                 return -ENOMEM;
1555                         }
1556                 } else {
1557                         org_mount_opt.s_qf_names[i] = NULL;
1558                 }
1559         }
1560 #endif
1561
1562         /* recover superblocks we couldn't write due to previous RO mount */
1563         if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1564                 err = f2fs_commit_super(sbi, false);
1565                 f2fs_msg(sb, KERN_INFO,
1566                         "Try to recover all the superblocks, ret: %d", err);
1567                 if (!err)
1568                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1569         }
1570
1571         default_options(sbi);
1572
1573         /* parse mount options */
1574         err = parse_options(sb, data);
1575         if (err)
1576                 goto restore_opts;
1577         checkpoint_changed =
1578                         disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1579
1580         /*
1581          * Previous and new state of filesystem is RO,
1582          * so skip checking GC and FLUSH_MERGE conditions.
1583          */
1584         if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1585                 goto skip;
1586
1587 #ifdef CONFIG_QUOTA
1588         if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1589                 err = dquot_suspend(sb, -1);
1590                 if (err < 0)
1591                         goto restore_opts;
1592         } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1593                 /* dquot_resume needs RW */
1594                 sb->s_flags &= ~SB_RDONLY;
1595                 if (sb_any_quota_suspended(sb)) {
1596                         dquot_resume(sb, -1);
1597                 } else if (f2fs_sb_has_quota_ino(sbi)) {
1598                         err = f2fs_enable_quotas(sb);
1599                         if (err)
1600                                 goto restore_opts;
1601                 }
1602         }
1603 #endif
1604         /* disallow enable/disable extent_cache dynamically */
1605         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1606                 err = -EINVAL;
1607                 f2fs_msg(sbi->sb, KERN_WARNING,
1608                                 "switch extent_cache option is not allowed");
1609                 goto restore_opts;
1610         }
1611
1612         if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1613                 err = -EINVAL;
1614                 f2fs_msg(sbi->sb, KERN_WARNING,
1615                         "disabling checkpoint not compatible with read-only");
1616                 goto restore_opts;
1617         }
1618
1619         /*
1620          * We stop the GC thread if FS is mounted as RO
1621          * or if background_gc = off is passed in mount
1622          * option. Also sync the filesystem.
1623          */
1624         if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1625                 if (sbi->gc_thread) {
1626                         f2fs_stop_gc_thread(sbi);
1627                         need_restart_gc = true;
1628                 }
1629         } else if (!sbi->gc_thread) {
1630                 err = f2fs_start_gc_thread(sbi);
1631                 if (err)
1632                         goto restore_opts;
1633                 need_stop_gc = true;
1634         }
1635
1636         if (*flags & SB_RDONLY ||
1637                 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1638                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1639                 sync_inodes_sb(sb);
1640
1641                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1642                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1643                 f2fs_sync_fs(sb, 1);
1644                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1645         }
1646
1647         if (checkpoint_changed) {
1648                 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1649                         err = f2fs_disable_checkpoint(sbi);
1650                         if (err)
1651                                 goto restore_gc;
1652                 } else {
1653                         f2fs_enable_checkpoint(sbi);
1654                 }
1655         }
1656
1657         /*
1658          * We stop issue flush thread if FS is mounted as RO
1659          * or if flush_merge is not passed in mount option.
1660          */
1661         if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1662                 clear_opt(sbi, FLUSH_MERGE);
1663                 f2fs_destroy_flush_cmd_control(sbi, false);
1664         } else {
1665                 err = f2fs_create_flush_cmd_control(sbi);
1666                 if (err)
1667                         goto restore_gc;
1668         }
1669 skip:
1670 #ifdef CONFIG_QUOTA
1671         /* Release old quota file names */
1672         for (i = 0; i < MAXQUOTAS; i++)
1673                 kvfree(org_mount_opt.s_qf_names[i]);
1674 #endif
1675         /* Update the POSIXACL Flag */
1676         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1677                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1678
1679         limit_reserve_root(sbi);
1680         *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1681         return 0;
1682 restore_gc:
1683         if (need_restart_gc) {
1684                 if (f2fs_start_gc_thread(sbi))
1685                         f2fs_msg(sbi->sb, KERN_WARNING,
1686                                 "background gc thread has stopped");
1687         } else if (need_stop_gc) {
1688                 f2fs_stop_gc_thread(sbi);
1689         }
1690 restore_opts:
1691 #ifdef CONFIG_QUOTA
1692         F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1693         for (i = 0; i < MAXQUOTAS; i++) {
1694                 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1695                 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1696         }
1697 #endif
1698         sbi->mount_opt = org_mount_opt;
1699         sb->s_flags = old_sb_flags;
1700         return err;
1701 }
1702
1703 #ifdef CONFIG_QUOTA
1704 /* Read data from quotafile */
1705 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1706                                size_t len, loff_t off)
1707 {
1708         struct inode *inode = sb_dqopt(sb)->files[type];
1709         struct address_space *mapping = inode->i_mapping;
1710         block_t blkidx = F2FS_BYTES_TO_BLK(off);
1711         int offset = off & (sb->s_blocksize - 1);
1712         int tocopy;
1713         size_t toread;
1714         loff_t i_size = i_size_read(inode);
1715         struct page *page;
1716         char *kaddr;
1717
1718         if (off > i_size)
1719                 return 0;
1720
1721         if (off + len > i_size)
1722                 len = i_size - off;
1723         toread = len;
1724         while (toread > 0) {
1725                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1726 repeat:
1727                 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1728                 if (IS_ERR(page)) {
1729                         if (PTR_ERR(page) == -ENOMEM) {
1730                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1731                                 goto repeat;
1732                         }
1733                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1734                         return PTR_ERR(page);
1735                 }
1736
1737                 lock_page(page);
1738
1739                 if (unlikely(page->mapping != mapping)) {
1740                         f2fs_put_page(page, 1);
1741                         goto repeat;
1742                 }
1743                 if (unlikely(!PageUptodate(page))) {
1744                         f2fs_put_page(page, 1);
1745                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1746                         return -EIO;
1747                 }
1748
1749                 kaddr = kmap_atomic(page);
1750                 memcpy(data, kaddr + offset, tocopy);
1751                 kunmap_atomic(kaddr);
1752                 f2fs_put_page(page, 1);
1753
1754                 offset = 0;
1755                 toread -= tocopy;
1756                 data += tocopy;
1757                 blkidx++;
1758         }
1759         return len;
1760 }
1761
1762 /* Write to quotafile */
1763 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1764                                 const char *data, size_t len, loff_t off)
1765 {
1766         struct inode *inode = sb_dqopt(sb)->files[type];
1767         struct address_space *mapping = inode->i_mapping;
1768         const struct address_space_operations *a_ops = mapping->a_ops;
1769         int offset = off & (sb->s_blocksize - 1);
1770         size_t towrite = len;
1771         struct page *page;
1772         char *kaddr;
1773         int err = 0;
1774         int tocopy;
1775
1776         while (towrite > 0) {
1777                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1778                                                                 towrite);
1779 retry:
1780                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1781                                                         &page, NULL);
1782                 if (unlikely(err)) {
1783                         if (err == -ENOMEM) {
1784                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1785                                 goto retry;
1786                         }
1787                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1788                         break;
1789                 }
1790
1791                 kaddr = kmap_atomic(page);
1792                 memcpy(kaddr + offset, data, tocopy);
1793                 kunmap_atomic(kaddr);
1794                 flush_dcache_page(page);
1795
1796                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1797                                                 page, NULL);
1798                 offset = 0;
1799                 towrite -= tocopy;
1800                 off += tocopy;
1801                 data += tocopy;
1802                 cond_resched();
1803         }
1804
1805         if (len == towrite)
1806                 return err;
1807         inode->i_mtime = inode->i_ctime = current_time(inode);
1808         f2fs_mark_inode_dirty_sync(inode, false);
1809         return len - towrite;
1810 }
1811
1812 static struct dquot **f2fs_get_dquots(struct inode *inode)
1813 {
1814         return F2FS_I(inode)->i_dquot;
1815 }
1816
1817 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1818 {
1819         return &F2FS_I(inode)->i_reserved_quota;
1820 }
1821
1822 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1823 {
1824         if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
1825                 f2fs_msg(sbi->sb, KERN_ERR,
1826                         "quota sysfile may be corrupted, skip loading it");
1827                 return 0;
1828         }
1829
1830         return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1831                                         F2FS_OPTION(sbi).s_jquota_fmt, type);
1832 }
1833
1834 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1835 {
1836         int enabled = 0;
1837         int i, err;
1838
1839         if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
1840                 err = f2fs_enable_quotas(sbi->sb);
1841                 if (err) {
1842                         f2fs_msg(sbi->sb, KERN_ERR,
1843                                         "Cannot turn on quota_ino: %d", err);
1844                         return 0;
1845                 }
1846                 return 1;
1847         }
1848
1849         for (i = 0; i < MAXQUOTAS; i++) {
1850                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1851                         err = f2fs_quota_on_mount(sbi, i);
1852                         if (!err) {
1853                                 enabled = 1;
1854                                 continue;
1855                         }
1856                         f2fs_msg(sbi->sb, KERN_ERR,
1857                                 "Cannot turn on quotas: %d on %d", err, i);
1858                 }
1859         }
1860         return enabled;
1861 }
1862
1863 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1864                              unsigned int flags)
1865 {
1866         struct inode *qf_inode;
1867         unsigned long qf_inum;
1868         int err;
1869
1870         BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
1871
1872         qf_inum = f2fs_qf_ino(sb, type);
1873         if (!qf_inum)
1874                 return -EPERM;
1875
1876         qf_inode = f2fs_iget(sb, qf_inum);
1877         if (IS_ERR(qf_inode)) {
1878                 f2fs_msg(sb, KERN_ERR,
1879                         "Bad quota inode %u:%lu", type, qf_inum);
1880                 return PTR_ERR(qf_inode);
1881         }
1882
1883         /* Don't account quota for quota files to avoid recursion */
1884         qf_inode->i_flags |= S_NOQUOTA;
1885         err = dquot_enable(qf_inode, type, format_id, flags);
1886         iput(qf_inode);
1887         return err;
1888 }
1889
1890 static int f2fs_enable_quotas(struct super_block *sb)
1891 {
1892         int type, err = 0;
1893         unsigned long qf_inum;
1894         bool quota_mopt[MAXQUOTAS] = {
1895                 test_opt(F2FS_SB(sb), USRQUOTA),
1896                 test_opt(F2FS_SB(sb), GRPQUOTA),
1897                 test_opt(F2FS_SB(sb), PRJQUOTA),
1898         };
1899
1900         if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
1901                 f2fs_msg(sb, KERN_ERR,
1902                         "quota file may be corrupted, skip loading it");
1903                 return 0;
1904         }
1905
1906         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
1907
1908         for (type = 0; type < MAXQUOTAS; type++) {
1909                 qf_inum = f2fs_qf_ino(sb, type);
1910                 if (qf_inum) {
1911                         err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1912                                 DQUOT_USAGE_ENABLED |
1913                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1914                         if (err) {
1915                                 f2fs_msg(sb, KERN_ERR,
1916                                         "Failed to enable quota tracking "
1917                                         "(type=%d, err=%d). Please run "
1918                                         "fsck to fix.", type, err);
1919                                 for (type--; type >= 0; type--)
1920                                         dquot_quota_off(sb, type);
1921                                 set_sbi_flag(F2FS_SB(sb),
1922                                                 SBI_QUOTA_NEED_REPAIR);
1923                                 return err;
1924                         }
1925                 }
1926         }
1927         return 0;
1928 }
1929
1930 int f2fs_quota_sync(struct super_block *sb, int type)
1931 {
1932         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1933         struct quota_info *dqopt = sb_dqopt(sb);
1934         int cnt;
1935         int ret;
1936
1937         ret = dquot_writeback_dquots(sb, type);
1938         if (ret)
1939                 goto out;
1940
1941         /*
1942          * Now when everything is written we can discard the pagecache so
1943          * that userspace sees the changes.
1944          */
1945         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1946                 struct address_space *mapping;
1947
1948                 if (type != -1 && cnt != type)
1949                         continue;
1950                 if (!sb_has_quota_active(sb, cnt))
1951                         continue;
1952
1953                 mapping = dqopt->files[cnt]->i_mapping;
1954
1955                 ret = filemap_fdatawrite(mapping);
1956                 if (ret)
1957                         goto out;
1958
1959                 /* if we are using journalled quota */
1960                 if (is_journalled_quota(sbi))
1961                         continue;
1962
1963                 ret = filemap_fdatawait(mapping);
1964                 if (ret)
1965                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1966
1967                 inode_lock(dqopt->files[cnt]);
1968                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1969                 inode_unlock(dqopt->files[cnt]);
1970         }
1971 out:
1972         if (ret)
1973                 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1974         return ret;
1975 }
1976
1977 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1978                                                         const struct path *path)
1979 {
1980         struct inode *inode;
1981         int err;
1982
1983         err = f2fs_quota_sync(sb, type);
1984         if (err)
1985                 return err;
1986
1987         err = dquot_quota_on(sb, type, format_id, path);
1988         if (err)
1989                 return err;
1990
1991         inode = d_inode(path->dentry);
1992
1993         inode_lock(inode);
1994         F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
1995         f2fs_set_inode_flags(inode);
1996         inode_unlock(inode);
1997         f2fs_mark_inode_dirty_sync(inode, false);
1998
1999         return 0;
2000 }
2001
2002 static int f2fs_quota_off(struct super_block *sb, int type)
2003 {
2004         struct inode *inode = sb_dqopt(sb)->files[type];
2005         int err;
2006
2007         if (!inode || !igrab(inode))
2008                 return dquot_quota_off(sb, type);
2009
2010         err = f2fs_quota_sync(sb, type);
2011         if (err)
2012                 goto out_put;
2013
2014         err = dquot_quota_off(sb, type);
2015         if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2016                 goto out_put;
2017
2018         inode_lock(inode);
2019         F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2020         f2fs_set_inode_flags(inode);
2021         inode_unlock(inode);
2022         f2fs_mark_inode_dirty_sync(inode, false);
2023 out_put:
2024         iput(inode);
2025         return err;
2026 }
2027
2028 void f2fs_quota_off_umount(struct super_block *sb)
2029 {
2030         int type;
2031         int err;
2032
2033         for (type = 0; type < MAXQUOTAS; type++) {
2034                 err = f2fs_quota_off(sb, type);
2035                 if (err) {
2036                         int ret = dquot_quota_off(sb, type);
2037
2038                         f2fs_msg(sb, KERN_ERR,
2039                                 "Fail to turn off disk quota "
2040                                 "(type: %d, err: %d, ret:%d), Please "
2041                                 "run fsck to fix it.", type, err, ret);
2042                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2043                 }
2044         }
2045         /*
2046          * In case of checkpoint=disable, we must flush quota blocks.
2047          * This can cause NULL exception for node_inode in end_io, since
2048          * put_super already dropped it.
2049          */
2050         sync_filesystem(sb);
2051 }
2052
2053 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2054 {
2055         struct quota_info *dqopt = sb_dqopt(sb);
2056         int type;
2057
2058         for (type = 0; type < MAXQUOTAS; type++) {
2059                 if (!dqopt->files[type])
2060                         continue;
2061                 f2fs_inode_synced(dqopt->files[type]);
2062         }
2063 }
2064
2065 static int f2fs_dquot_commit(struct dquot *dquot)
2066 {
2067         int ret;
2068
2069         ret = dquot_commit(dquot);
2070         if (ret < 0)
2071                 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
2072         return ret;
2073 }
2074
2075 static int f2fs_dquot_acquire(struct dquot *dquot)
2076 {
2077         int ret;
2078
2079         ret = dquot_acquire(dquot);
2080         if (ret < 0)
2081                 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
2082
2083         return ret;
2084 }
2085
2086 static int f2fs_dquot_release(struct dquot *dquot)
2087 {
2088         int ret;
2089
2090         ret = dquot_release(dquot);
2091         if (ret < 0)
2092                 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
2093         return ret;
2094 }
2095
2096 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2097 {
2098         struct super_block *sb = dquot->dq_sb;
2099         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2100         int ret;
2101
2102         ret = dquot_mark_dquot_dirty(dquot);
2103
2104         /* if we are using journalled quota */
2105         if (is_journalled_quota(sbi))
2106                 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2107
2108         return ret;
2109 }
2110
2111 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2112 {
2113         int ret;
2114
2115         ret = dquot_commit_info(sb, type);
2116         if (ret < 0)
2117                 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2118         return ret;
2119 }
2120
2121 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2122 {
2123         *projid = F2FS_I(inode)->i_projid;
2124         return 0;
2125 }
2126
2127 static const struct dquot_operations f2fs_quota_operations = {
2128         .get_reserved_space = f2fs_get_reserved_space,
2129         .write_dquot    = f2fs_dquot_commit,
2130         .acquire_dquot  = f2fs_dquot_acquire,
2131         .release_dquot  = f2fs_dquot_release,
2132         .mark_dirty     = f2fs_dquot_mark_dquot_dirty,
2133         .write_info     = f2fs_dquot_commit_info,
2134         .alloc_dquot    = dquot_alloc,
2135         .destroy_dquot  = dquot_destroy,
2136         .get_projid     = f2fs_get_projid,
2137         .get_next_id    = dquot_get_next_id,
2138 };
2139
2140 static const struct quotactl_ops f2fs_quotactl_ops = {
2141         .quota_on       = f2fs_quota_on,
2142         .quota_off      = f2fs_quota_off,
2143         .quota_sync     = f2fs_quota_sync,
2144         .get_state      = dquot_get_state,
2145         .set_info       = dquot_set_dqinfo,
2146         .get_dqblk      = dquot_get_dqblk,
2147         .set_dqblk      = dquot_set_dqblk,
2148         .get_nextdqblk  = dquot_get_next_dqblk,
2149 };
2150 #else
2151 int f2fs_quota_sync(struct super_block *sb, int type)
2152 {
2153         return 0;
2154 }
2155
2156 void f2fs_quota_off_umount(struct super_block *sb)
2157 {
2158 }
2159 #endif
2160
2161 static const struct super_operations f2fs_sops = {
2162         .alloc_inode    = f2fs_alloc_inode,
2163         .free_inode     = f2fs_free_inode,
2164         .drop_inode     = f2fs_drop_inode,
2165         .write_inode    = f2fs_write_inode,
2166         .dirty_inode    = f2fs_dirty_inode,
2167         .show_options   = f2fs_show_options,
2168 #ifdef CONFIG_QUOTA
2169         .quota_read     = f2fs_quota_read,
2170         .quota_write    = f2fs_quota_write,
2171         .get_dquots     = f2fs_get_dquots,
2172 #endif
2173         .evict_inode    = f2fs_evict_inode,
2174         .put_super      = f2fs_put_super,
2175         .sync_fs        = f2fs_sync_fs,
2176         .freeze_fs      = f2fs_freeze,
2177         .unfreeze_fs    = f2fs_unfreeze,
2178         .statfs         = f2fs_statfs,
2179         .remount_fs     = f2fs_remount,
2180 };
2181
2182 #ifdef CONFIG_FS_ENCRYPTION
2183 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2184 {
2185         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2186                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2187                                 ctx, len, NULL);
2188 }
2189
2190 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2191                                                         void *fs_data)
2192 {
2193         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2194
2195         /*
2196          * Encrypting the root directory is not allowed because fsck
2197          * expects lost+found directory to exist and remain unencrypted
2198          * if LOST_FOUND feature is enabled.
2199          *
2200          */
2201         if (f2fs_sb_has_lost_found(sbi) &&
2202                         inode->i_ino == F2FS_ROOT_INO(sbi))
2203                 return -EPERM;
2204
2205         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2206                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2207                                 ctx, len, fs_data, XATTR_CREATE);
2208 }
2209
2210 static bool f2fs_dummy_context(struct inode *inode)
2211 {
2212         return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
2213 }
2214
2215 static const struct fscrypt_operations f2fs_cryptops = {
2216         .key_prefix     = "f2fs:",
2217         .get_context    = f2fs_get_context,
2218         .set_context    = f2fs_set_context,
2219         .dummy_context  = f2fs_dummy_context,
2220         .empty_dir      = f2fs_empty_dir,
2221         .max_namelen    = F2FS_NAME_LEN,
2222 };
2223 #endif
2224
2225 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2226                 u64 ino, u32 generation)
2227 {
2228         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2229         struct inode *inode;
2230
2231         if (f2fs_check_nid_range(sbi, ino))
2232                 return ERR_PTR(-ESTALE);
2233
2234         /*
2235          * f2fs_iget isn't quite right if the inode is currently unallocated!
2236          * However f2fs_iget currently does appropriate checks to handle stale
2237          * inodes so everything is OK.
2238          */
2239         inode = f2fs_iget(sb, ino);
2240         if (IS_ERR(inode))
2241                 return ERR_CAST(inode);
2242         if (unlikely(generation && inode->i_generation != generation)) {
2243                 /* we didn't find the right inode.. */
2244                 iput(inode);
2245                 return ERR_PTR(-ESTALE);
2246         }
2247         return inode;
2248 }
2249
2250 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2251                 int fh_len, int fh_type)
2252 {
2253         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2254                                     f2fs_nfs_get_inode);
2255 }
2256
2257 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2258                 int fh_len, int fh_type)
2259 {
2260         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2261                                     f2fs_nfs_get_inode);
2262 }
2263
2264 static const struct export_operations f2fs_export_ops = {
2265         .fh_to_dentry = f2fs_fh_to_dentry,
2266         .fh_to_parent = f2fs_fh_to_parent,
2267         .get_parent = f2fs_get_parent,
2268 };
2269
2270 static loff_t max_file_blocks(void)
2271 {
2272         loff_t result = 0;
2273         loff_t leaf_count = ADDRS_PER_BLOCK;
2274
2275         /*
2276          * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2277          * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2278          * space in inode.i_addr, it will be more safe to reassign
2279          * result as zero.
2280          */
2281
2282         /* two direct node blocks */
2283         result += (leaf_count * 2);
2284
2285         /* two indirect node blocks */
2286         leaf_count *= NIDS_PER_BLOCK;
2287         result += (leaf_count * 2);
2288
2289         /* one double indirect node block */
2290         leaf_count *= NIDS_PER_BLOCK;
2291         result += leaf_count;
2292
2293         return result;
2294 }
2295
2296 static int __f2fs_commit_super(struct buffer_head *bh,
2297                         struct f2fs_super_block *super)
2298 {
2299         lock_buffer(bh);
2300         if (super)
2301                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2302         set_buffer_dirty(bh);
2303         unlock_buffer(bh);
2304
2305         /* it's rare case, we can do fua all the time */
2306         return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2307 }
2308
2309 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2310                                         struct buffer_head *bh)
2311 {
2312         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2313                                         (bh->b_data + F2FS_SUPER_OFFSET);
2314         struct super_block *sb = sbi->sb;
2315         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2316         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2317         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2318         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2319         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2320         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2321         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2322         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2323         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2324         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2325         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2326         u32 segment_count = le32_to_cpu(raw_super->segment_count);
2327         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2328         u64 main_end_blkaddr = main_blkaddr +
2329                                 (segment_count_main << log_blocks_per_seg);
2330         u64 seg_end_blkaddr = segment0_blkaddr +
2331                                 (segment_count << log_blocks_per_seg);
2332
2333         if (segment0_blkaddr != cp_blkaddr) {
2334                 f2fs_msg(sb, KERN_INFO,
2335                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2336                         segment0_blkaddr, cp_blkaddr);
2337                 return true;
2338         }
2339
2340         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2341                                                         sit_blkaddr) {
2342                 f2fs_msg(sb, KERN_INFO,
2343                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2344                         cp_blkaddr, sit_blkaddr,
2345                         segment_count_ckpt << log_blocks_per_seg);
2346                 return true;
2347         }
2348
2349         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2350                                                         nat_blkaddr) {
2351                 f2fs_msg(sb, KERN_INFO,
2352                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2353                         sit_blkaddr, nat_blkaddr,
2354                         segment_count_sit << log_blocks_per_seg);
2355                 return true;
2356         }
2357
2358         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2359                                                         ssa_blkaddr) {
2360                 f2fs_msg(sb, KERN_INFO,
2361                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2362                         nat_blkaddr, ssa_blkaddr,
2363                         segment_count_nat << log_blocks_per_seg);
2364                 return true;
2365         }
2366
2367         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2368                                                         main_blkaddr) {
2369                 f2fs_msg(sb, KERN_INFO,
2370                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2371                         ssa_blkaddr, main_blkaddr,
2372                         segment_count_ssa << log_blocks_per_seg);
2373                 return true;
2374         }
2375
2376         if (main_end_blkaddr > seg_end_blkaddr) {
2377                 f2fs_msg(sb, KERN_INFO,
2378                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2379                         main_blkaddr,
2380                         segment0_blkaddr +
2381                                 (segment_count << log_blocks_per_seg),
2382                         segment_count_main << log_blocks_per_seg);
2383                 return true;
2384         } else if (main_end_blkaddr < seg_end_blkaddr) {
2385                 int err = 0;
2386                 char *res;
2387
2388                 /* fix in-memory information all the time */
2389                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2390                                 segment0_blkaddr) >> log_blocks_per_seg);
2391
2392                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2393                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2394                         res = "internally";
2395                 } else {
2396                         err = __f2fs_commit_super(bh, NULL);
2397                         res = err ? "failed" : "done";
2398                 }
2399                 f2fs_msg(sb, KERN_INFO,
2400                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
2401                         res, main_blkaddr,
2402                         segment0_blkaddr +
2403                                 (segment_count << log_blocks_per_seg),
2404                         segment_count_main << log_blocks_per_seg);
2405                 if (err)
2406                         return true;
2407         }
2408         return false;
2409 }
2410
2411 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2412                                 struct buffer_head *bh)
2413 {
2414         block_t segment_count, segs_per_sec, secs_per_zone;
2415         block_t total_sections, blocks_per_seg;
2416         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2417                                         (bh->b_data + F2FS_SUPER_OFFSET);
2418         struct super_block *sb = sbi->sb;
2419         unsigned int blocksize;
2420         size_t crc_offset = 0;
2421         __u32 crc = 0;
2422
2423         /* Check checksum_offset and crc in superblock */
2424         if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2425                 crc_offset = le32_to_cpu(raw_super->checksum_offset);
2426                 if (crc_offset !=
2427                         offsetof(struct f2fs_super_block, crc)) {
2428                         f2fs_msg(sb, KERN_INFO,
2429                                 "Invalid SB checksum offset: %zu",
2430                                 crc_offset);
2431                         return 1;
2432                 }
2433                 crc = le32_to_cpu(raw_super->crc);
2434                 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2435                         f2fs_msg(sb, KERN_INFO,
2436                                 "Invalid SB checksum value: %u", crc);
2437                         return 1;
2438                 }
2439         }
2440
2441         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
2442                 f2fs_msg(sb, KERN_INFO,
2443                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
2444                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2445                 return 1;
2446         }
2447
2448         /* Currently, support only 4KB page cache size */
2449         if (F2FS_BLKSIZE != PAGE_SIZE) {
2450                 f2fs_msg(sb, KERN_INFO,
2451                         "Invalid page_cache_size (%lu), supports only 4KB\n",
2452                         PAGE_SIZE);
2453                 return 1;
2454         }
2455
2456         /* Currently, support only 4KB block size */
2457         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2458         if (blocksize != F2FS_BLKSIZE) {
2459                 f2fs_msg(sb, KERN_INFO,
2460                         "Invalid blocksize (%u), supports only 4KB\n",
2461                         blocksize);
2462                 return 1;
2463         }
2464
2465         /* check log blocks per segment */
2466         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2467                 f2fs_msg(sb, KERN_INFO,
2468                         "Invalid log blocks per segment (%u)\n",
2469                         le32_to_cpu(raw_super->log_blocks_per_seg));
2470                 return 1;
2471         }
2472
2473         /* Currently, support 512/1024/2048/4096 bytes sector size */
2474         if (le32_to_cpu(raw_super->log_sectorsize) >
2475                                 F2FS_MAX_LOG_SECTOR_SIZE ||
2476                 le32_to_cpu(raw_super->log_sectorsize) <
2477                                 F2FS_MIN_LOG_SECTOR_SIZE) {
2478                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2479                         le32_to_cpu(raw_super->log_sectorsize));
2480                 return 1;
2481         }
2482         if (le32_to_cpu(raw_super->log_sectors_per_block) +
2483                 le32_to_cpu(raw_super->log_sectorsize) !=
2484                         F2FS_MAX_LOG_SECTOR_SIZE) {
2485                 f2fs_msg(sb, KERN_INFO,
2486                         "Invalid log sectors per block(%u) log sectorsize(%u)",
2487                         le32_to_cpu(raw_super->log_sectors_per_block),
2488                         le32_to_cpu(raw_super->log_sectorsize));
2489                 return 1;
2490         }
2491
2492         segment_count = le32_to_cpu(raw_super->segment_count);
2493         segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2494         secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2495         total_sections = le32_to_cpu(raw_super->section_count);
2496
2497         /* blocks_per_seg should be 512, given the above check */
2498         blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2499
2500         if (segment_count > F2FS_MAX_SEGMENT ||
2501                                 segment_count < F2FS_MIN_SEGMENTS) {
2502                 f2fs_msg(sb, KERN_INFO,
2503                         "Invalid segment count (%u)",
2504                         segment_count);
2505                 return 1;
2506         }
2507
2508         if (total_sections > segment_count ||
2509                         total_sections < F2FS_MIN_SEGMENTS ||
2510                         segs_per_sec > segment_count || !segs_per_sec) {
2511                 f2fs_msg(sb, KERN_INFO,
2512                         "Invalid segment/section count (%u, %u x %u)",
2513                         segment_count, total_sections, segs_per_sec);
2514                 return 1;
2515         }
2516
2517         if ((segment_count / segs_per_sec) < total_sections) {
2518                 f2fs_msg(sb, KERN_INFO,
2519                         "Small segment_count (%u < %u * %u)",
2520                         segment_count, segs_per_sec, total_sections);
2521                 return 1;
2522         }
2523
2524         if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2525                 f2fs_msg(sb, KERN_INFO,
2526                         "Wrong segment_count / block_count (%u > %llu)",
2527                         segment_count, le64_to_cpu(raw_super->block_count));
2528                 return 1;
2529         }
2530
2531         if (secs_per_zone > total_sections || !secs_per_zone) {
2532                 f2fs_msg(sb, KERN_INFO,
2533                         "Wrong secs_per_zone / total_sections (%u, %u)",
2534                         secs_per_zone, total_sections);
2535                 return 1;
2536         }
2537         if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2538                         raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2539                         (le32_to_cpu(raw_super->extension_count) +
2540                         raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2541                 f2fs_msg(sb, KERN_INFO,
2542                         "Corrupted extension count (%u + %u > %u)",
2543                         le32_to_cpu(raw_super->extension_count),
2544                         raw_super->hot_ext_count,
2545                         F2FS_MAX_EXTENSION);
2546                 return 1;
2547         }
2548
2549         if (le32_to_cpu(raw_super->cp_payload) >
2550                                 (blocks_per_seg - F2FS_CP_PACKS)) {
2551                 f2fs_msg(sb, KERN_INFO,
2552                         "Insane cp_payload (%u > %u)",
2553                         le32_to_cpu(raw_super->cp_payload),
2554                         blocks_per_seg - F2FS_CP_PACKS);
2555                 return 1;
2556         }
2557
2558         /* check reserved ino info */
2559         if (le32_to_cpu(raw_super->node_ino) != 1 ||
2560                 le32_to_cpu(raw_super->meta_ino) != 2 ||
2561                 le32_to_cpu(raw_super->root_ino) != 3) {
2562                 f2fs_msg(sb, KERN_INFO,
2563                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2564                         le32_to_cpu(raw_super->node_ino),
2565                         le32_to_cpu(raw_super->meta_ino),
2566                         le32_to_cpu(raw_super->root_ino));
2567                 return 1;
2568         }
2569
2570         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2571         if (sanity_check_area_boundary(sbi, bh))
2572                 return 1;
2573
2574         return 0;
2575 }
2576
2577 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2578 {
2579         unsigned int total, fsmeta;
2580         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2581         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2582         unsigned int ovp_segments, reserved_segments;
2583         unsigned int main_segs, blocks_per_seg;
2584         unsigned int sit_segs, nat_segs;
2585         unsigned int sit_bitmap_size, nat_bitmap_size;
2586         unsigned int log_blocks_per_seg;
2587         unsigned int segment_count_main;
2588         unsigned int cp_pack_start_sum, cp_payload;
2589         block_t user_block_count;
2590         int i, j;
2591
2592         total = le32_to_cpu(raw_super->segment_count);
2593         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2594         sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2595         fsmeta += sit_segs;
2596         nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2597         fsmeta += nat_segs;
2598         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2599         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2600
2601         if (unlikely(fsmeta >= total))
2602                 return 1;
2603
2604         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2605         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2606
2607         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2608                         ovp_segments == 0 || reserved_segments == 0)) {
2609                 f2fs_msg(sbi->sb, KERN_ERR,
2610                         "Wrong layout: check mkfs.f2fs version");
2611                 return 1;
2612         }
2613
2614         user_block_count = le64_to_cpu(ckpt->user_block_count);
2615         segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2616         log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2617         if (!user_block_count || user_block_count >=
2618                         segment_count_main << log_blocks_per_seg) {
2619                 f2fs_msg(sbi->sb, KERN_ERR,
2620                         "Wrong user_block_count: %u", user_block_count);
2621                 return 1;
2622         }
2623
2624         main_segs = le32_to_cpu(raw_super->segment_count_main);
2625         blocks_per_seg = sbi->blocks_per_seg;
2626
2627         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2628                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2629                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2630                         return 1;
2631                 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2632                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2633                                 le32_to_cpu(ckpt->cur_node_segno[j])) {
2634                                 f2fs_msg(sbi->sb, KERN_ERR,
2635                                         "Node segment (%u, %u) has the same "
2636                                         "segno: %u", i, j,
2637                                         le32_to_cpu(ckpt->cur_node_segno[i]));
2638                                 return 1;
2639                         }
2640                 }
2641         }
2642         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2643                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2644                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2645                         return 1;
2646                 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2647                         if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2648                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
2649                                 f2fs_msg(sbi->sb, KERN_ERR,
2650                                         "Data segment (%u, %u) has the same "
2651                                         "segno: %u", i, j,
2652                                         le32_to_cpu(ckpt->cur_data_segno[i]));
2653                                 return 1;
2654                         }
2655                 }
2656         }
2657         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2658                 for (j = i; j < NR_CURSEG_DATA_TYPE; j++) {
2659                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2660                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
2661                                 f2fs_msg(sbi->sb, KERN_ERR,
2662                                         "Data segment (%u) and Data segment (%u)"
2663                                         " has the same segno: %u", i, j,
2664                                         le32_to_cpu(ckpt->cur_node_segno[i]));
2665                                 return 1;
2666                         }
2667                 }
2668         }
2669
2670         sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2671         nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2672
2673         if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2674                 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2675                 f2fs_msg(sbi->sb, KERN_ERR,
2676                         "Wrong bitmap size: sit: %u, nat:%u",
2677                         sit_bitmap_size, nat_bitmap_size);
2678                 return 1;
2679         }
2680
2681         cp_pack_start_sum = __start_sum_addr(sbi);
2682         cp_payload = __cp_payload(sbi);
2683         if (cp_pack_start_sum < cp_payload + 1 ||
2684                 cp_pack_start_sum > blocks_per_seg - 1 -
2685                         NR_CURSEG_TYPE) {
2686                 f2fs_msg(sbi->sb, KERN_ERR,
2687                         "Wrong cp_pack_start_sum: %u",
2688                         cp_pack_start_sum);
2689                 return 1;
2690         }
2691
2692         if (unlikely(f2fs_cp_error(sbi))) {
2693                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2694                 return 1;
2695         }
2696         return 0;
2697 }
2698
2699 static void init_sb_info(struct f2fs_sb_info *sbi)
2700 {
2701         struct f2fs_super_block *raw_super = sbi->raw_super;
2702         int i;
2703
2704         sbi->log_sectors_per_block =
2705                 le32_to_cpu(raw_super->log_sectors_per_block);
2706         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2707         sbi->blocksize = 1 << sbi->log_blocksize;
2708         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2709         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2710         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2711         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2712         sbi->total_sections = le32_to_cpu(raw_super->section_count);
2713         sbi->total_node_count =
2714                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2715                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2716         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2717         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2718         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2719         sbi->cur_victim_sec = NULL_SECNO;
2720         sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
2721         sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
2722         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2723         sbi->migration_granularity = sbi->segs_per_sec;
2724
2725         sbi->dir_level = DEF_DIR_LEVEL;
2726         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2727         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2728         sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
2729         sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
2730         sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
2731         sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
2732                                 DEF_UMOUNT_DISCARD_TIMEOUT;
2733         clear_sbi_flag(sbi, SBI_NEED_FSCK);
2734
2735         for (i = 0; i < NR_COUNT_TYPE; i++)
2736                 atomic_set(&sbi->nr_pages[i], 0);
2737
2738         for (i = 0; i < META; i++)
2739                 atomic_set(&sbi->wb_sync_req[i], 0);
2740
2741         INIT_LIST_HEAD(&sbi->s_list);
2742         mutex_init(&sbi->umount_mutex);
2743         init_rwsem(&sbi->io_order_lock);
2744         spin_lock_init(&sbi->cp_lock);
2745
2746         sbi->dirty_device = 0;
2747         spin_lock_init(&sbi->dev_lock);
2748
2749         init_rwsem(&sbi->sb_lock);
2750 }
2751
2752 static int init_percpu_info(struct f2fs_sb_info *sbi)
2753 {
2754         int err;
2755
2756         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2757         if (err)
2758                 return err;
2759
2760         err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
2761                                                                 GFP_KERNEL);
2762         if (err)
2763                 percpu_counter_destroy(&sbi->alloc_valid_block_count);
2764
2765         return err;
2766 }
2767
2768 #ifdef CONFIG_BLK_DEV_ZONED
2769 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2770 {
2771         struct block_device *bdev = FDEV(devi).bdev;
2772         sector_t nr_sectors = bdev->bd_part->nr_sects;
2773         sector_t sector = 0;
2774         struct blk_zone *zones;
2775         unsigned int i, nr_zones;
2776         unsigned int n = 0;
2777         int err = -EIO;
2778
2779         if (!f2fs_sb_has_blkzoned(sbi))
2780                 return 0;
2781
2782         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2783                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2784                 return -EINVAL;
2785         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2786         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2787                                 __ilog2_u32(sbi->blocks_per_blkz))
2788                 return -EINVAL;
2789         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2790         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2791                                         sbi->log_blocks_per_blkz;
2792         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2793                 FDEV(devi).nr_blkz++;
2794
2795         FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2796                                                                 GFP_KERNEL);
2797         if (!FDEV(devi).blkz_type)
2798                 return -ENOMEM;
2799
2800 #define F2FS_REPORT_NR_ZONES   4096
2801
2802         zones = f2fs_kzalloc(sbi,
2803                              array_size(F2FS_REPORT_NR_ZONES,
2804                                         sizeof(struct blk_zone)),
2805                              GFP_KERNEL);
2806         if (!zones)
2807                 return -ENOMEM;
2808
2809         /* Get block zones type */
2810         while (zones && sector < nr_sectors) {
2811
2812                 nr_zones = F2FS_REPORT_NR_ZONES;
2813                 err = blkdev_report_zones(bdev, sector,
2814                                           zones, &nr_zones,
2815                                           GFP_KERNEL);
2816                 if (err)
2817                         break;
2818                 if (!nr_zones) {
2819                         err = -EIO;
2820                         break;
2821                 }
2822
2823                 for (i = 0; i < nr_zones; i++) {
2824                         FDEV(devi).blkz_type[n] = zones[i].type;
2825                         sector += zones[i].len;
2826                         n++;
2827                 }
2828         }
2829
2830         kvfree(zones);
2831
2832         return err;
2833 }
2834 #endif
2835
2836 /*
2837  * Read f2fs raw super block.
2838  * Because we have two copies of super block, so read both of them
2839  * to get the first valid one. If any one of them is broken, we pass
2840  * them recovery flag back to the caller.
2841  */
2842 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2843                         struct f2fs_super_block **raw_super,
2844                         int *valid_super_block, int *recovery)
2845 {
2846         struct super_block *sb = sbi->sb;
2847         int block;
2848         struct buffer_head *bh;
2849         struct f2fs_super_block *super;
2850         int err = 0;
2851
2852         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2853         if (!super)
2854                 return -ENOMEM;
2855
2856         for (block = 0; block < 2; block++) {
2857                 bh = sb_bread(sb, block);
2858                 if (!bh) {
2859                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2860                                 block + 1);
2861                         err = -EIO;
2862                         continue;
2863                 }
2864
2865                 /* sanity checking of raw super */
2866                 if (sanity_check_raw_super(sbi, bh)) {
2867                         f2fs_msg(sb, KERN_ERR,
2868                                 "Can't find valid F2FS filesystem in %dth superblock",
2869                                 block + 1);
2870                         err = -EINVAL;
2871                         brelse(bh);
2872                         continue;
2873                 }
2874
2875                 if (!*raw_super) {
2876                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2877                                                         sizeof(*super));
2878                         *valid_super_block = block;
2879                         *raw_super = super;
2880                 }
2881                 brelse(bh);
2882         }
2883
2884         /* Fail to read any one of the superblocks*/
2885         if (err < 0)
2886                 *recovery = 1;
2887
2888         /* No valid superblock */
2889         if (!*raw_super)
2890                 kvfree(super);
2891         else
2892                 err = 0;
2893
2894         return err;
2895 }
2896
2897 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2898 {
2899         struct buffer_head *bh;
2900         __u32 crc = 0;
2901         int err;
2902
2903         if ((recover && f2fs_readonly(sbi->sb)) ||
2904                                 bdev_read_only(sbi->sb->s_bdev)) {
2905                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2906                 return -EROFS;
2907         }
2908
2909         /* we should update superblock crc here */
2910         if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
2911                 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
2912                                 offsetof(struct f2fs_super_block, crc));
2913                 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
2914         }
2915
2916         /* write back-up superblock first */
2917         bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2918         if (!bh)
2919                 return -EIO;
2920         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2921         brelse(bh);
2922
2923         /* if we are in recovery path, skip writing valid superblock */
2924         if (recover || err)
2925                 return err;
2926
2927         /* write current valid superblock */
2928         bh = sb_bread(sbi->sb, sbi->valid_super_block);
2929         if (!bh)
2930                 return -EIO;
2931         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2932         brelse(bh);
2933         return err;
2934 }
2935
2936 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2937 {
2938         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2939         unsigned int max_devices = MAX_DEVICES;
2940         int i;
2941
2942         /* Initialize single device information */
2943         if (!RDEV(0).path[0]) {
2944                 if (!bdev_is_zoned(sbi->sb->s_bdev))
2945                         return 0;
2946                 max_devices = 1;
2947         }
2948
2949         /*
2950          * Initialize multiple devices information, or single
2951          * zoned block device information.
2952          */
2953         sbi->devs = f2fs_kzalloc(sbi,
2954                                  array_size(max_devices,
2955                                             sizeof(struct f2fs_dev_info)),
2956                                  GFP_KERNEL);
2957         if (!sbi->devs)
2958                 return -ENOMEM;
2959
2960         for (i = 0; i < max_devices; i++) {
2961
2962                 if (i > 0 && !RDEV(i).path[0])
2963                         break;
2964
2965                 if (max_devices == 1) {
2966                         /* Single zoned block device mount */
2967                         FDEV(0).bdev =
2968                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2969                                         sbi->sb->s_mode, sbi->sb->s_type);
2970                 } else {
2971                         /* Multi-device mount */
2972                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2973                         FDEV(i).total_segments =
2974                                 le32_to_cpu(RDEV(i).total_segments);
2975                         if (i == 0) {
2976                                 FDEV(i).start_blk = 0;
2977                                 FDEV(i).end_blk = FDEV(i).start_blk +
2978                                     (FDEV(i).total_segments <<
2979                                     sbi->log_blocks_per_seg) - 1 +
2980                                     le32_to_cpu(raw_super->segment0_blkaddr);
2981                         } else {
2982                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2983                                 FDEV(i).end_blk = FDEV(i).start_blk +
2984                                         (FDEV(i).total_segments <<
2985                                         sbi->log_blocks_per_seg) - 1;
2986                         }
2987                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2988                                         sbi->sb->s_mode, sbi->sb->s_type);
2989                 }
2990                 if (IS_ERR(FDEV(i).bdev))
2991                         return PTR_ERR(FDEV(i).bdev);
2992
2993                 /* to release errored devices */
2994                 sbi->s_ndevs = i + 1;
2995
2996 #ifdef CONFIG_BLK_DEV_ZONED
2997                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2998                                 !f2fs_sb_has_blkzoned(sbi)) {
2999                         f2fs_msg(sbi->sb, KERN_ERR,
3000                                 "Zoned block device feature not enabled\n");
3001                         return -EINVAL;
3002                 }
3003                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3004                         if (init_blkz_info(sbi, i)) {
3005                                 f2fs_msg(sbi->sb, KERN_ERR,
3006                                         "Failed to initialize F2FS blkzone information");
3007                                 return -EINVAL;
3008                         }
3009                         if (max_devices == 1)
3010                                 break;
3011                         f2fs_msg(sbi->sb, KERN_INFO,
3012                                 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3013                                 i, FDEV(i).path,
3014                                 FDEV(i).total_segments,
3015                                 FDEV(i).start_blk, FDEV(i).end_blk,
3016                                 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3017                                 "Host-aware" : "Host-managed");
3018                         continue;
3019                 }
3020 #endif
3021                 f2fs_msg(sbi->sb, KERN_INFO,
3022                         "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3023                                 i, FDEV(i).path,
3024                                 FDEV(i).total_segments,
3025                                 FDEV(i).start_blk, FDEV(i).end_blk);
3026         }
3027         f2fs_msg(sbi->sb, KERN_INFO,
3028                         "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3029         return 0;
3030 }
3031
3032 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3033 {
3034         struct f2fs_sm_info *sm_i = SM_I(sbi);
3035
3036         /* adjust parameters according to the volume size */
3037         if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3038                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3039                 sm_i->dcc_info->discard_granularity = 1;
3040                 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3041         }
3042
3043         sbi->readdir_ra = 1;
3044 }
3045
3046 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3047 {
3048         struct f2fs_sb_info *sbi;
3049         struct f2fs_super_block *raw_super;
3050         struct inode *root;
3051         int err;
3052         bool skip_recovery = false, need_fsck = false;
3053         char *options = NULL;
3054         int recovery, i, valid_super_block;
3055         struct curseg_info *seg_i;
3056         int retry_cnt = 1;
3057
3058 try_onemore:
3059         err = -EINVAL;
3060         raw_super = NULL;
3061         valid_super_block = -1;
3062         recovery = 0;
3063
3064         /* allocate memory for f2fs-specific super block info */
3065         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3066         if (!sbi)
3067                 return -ENOMEM;
3068
3069         sbi->sb = sb;
3070
3071         /* Load the checksum driver */
3072         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3073         if (IS_ERR(sbi->s_chksum_driver)) {
3074                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
3075                 err = PTR_ERR(sbi->s_chksum_driver);
3076                 sbi->s_chksum_driver = NULL;
3077                 goto free_sbi;
3078         }
3079
3080         /* set a block size */
3081         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3082                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
3083                 goto free_sbi;
3084         }
3085
3086         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3087                                                                 &recovery);
3088         if (err)
3089                 goto free_sbi;
3090
3091         sb->s_fs_info = sbi;
3092         sbi->raw_super = raw_super;
3093
3094         /* precompute checksum seed for metadata */
3095         if (f2fs_sb_has_inode_chksum(sbi))
3096                 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3097                                                 sizeof(raw_super->uuid));
3098
3099         /*
3100          * The BLKZONED feature indicates that the drive was formatted with
3101          * zone alignment optimization. This is optional for host-aware
3102          * devices, but mandatory for host-managed zoned block devices.
3103          */
3104 #ifndef CONFIG_BLK_DEV_ZONED
3105         if (f2fs_sb_has_blkzoned(sbi)) {
3106                 f2fs_msg(sb, KERN_ERR,
3107                          "Zoned block device support is not enabled\n");
3108                 err = -EOPNOTSUPP;
3109                 goto free_sb_buf;
3110         }
3111 #endif
3112         default_options(sbi);
3113         /* parse mount options */
3114         options = kstrdup((const char *)data, GFP_KERNEL);
3115         if (data && !options) {
3116                 err = -ENOMEM;
3117                 goto free_sb_buf;
3118         }
3119
3120         err = parse_options(sb, options);
3121         if (err)
3122                 goto free_options;
3123
3124         sbi->max_file_blocks = max_file_blocks();
3125         sb->s_maxbytes = sbi->max_file_blocks <<
3126                                 le32_to_cpu(raw_super->log_blocksize);
3127         sb->s_max_links = F2FS_LINK_MAX;
3128
3129 #ifdef CONFIG_QUOTA
3130         sb->dq_op = &f2fs_quota_operations;
3131         if (f2fs_sb_has_quota_ino(sbi))
3132                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3133         else
3134                 sb->s_qcop = &f2fs_quotactl_ops;
3135         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3136
3137         if (f2fs_sb_has_quota_ino(sbi)) {
3138                 for (i = 0; i < MAXQUOTAS; i++) {
3139                         if (f2fs_qf_ino(sbi->sb, i))
3140                                 sbi->nquota_files++;
3141                 }
3142         }
3143 #endif
3144
3145         sb->s_op = &f2fs_sops;
3146 #ifdef CONFIG_FS_ENCRYPTION
3147         sb->s_cop = &f2fs_cryptops;
3148 #endif
3149         sb->s_xattr = f2fs_xattr_handlers;
3150         sb->s_export_op = &f2fs_export_ops;
3151         sb->s_magic = F2FS_SUPER_MAGIC;
3152         sb->s_time_gran = 1;
3153         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3154                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3155         memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3156         sb->s_iflags |= SB_I_CGROUPWB;
3157
3158         /* init f2fs-specific super block info */
3159         sbi->valid_super_block = valid_super_block;
3160         mutex_init(&sbi->gc_mutex);
3161         mutex_init(&sbi->writepages);
3162         mutex_init(&sbi->cp_mutex);
3163         init_rwsem(&sbi->node_write);
3164         init_rwsem(&sbi->node_change);
3165
3166         /* disallow all the data/node/meta page writes */
3167         set_sbi_flag(sbi, SBI_POR_DOING);
3168         spin_lock_init(&sbi->stat_lock);
3169
3170         /* init iostat info */
3171         spin_lock_init(&sbi->iostat_lock);
3172         sbi->iostat_enable = false;
3173
3174         for (i = 0; i < NR_PAGE_TYPE; i++) {
3175                 int n = (i == META) ? 1: NR_TEMP_TYPE;
3176                 int j;
3177
3178                 sbi->write_io[i] =
3179                         f2fs_kmalloc(sbi,
3180                                      array_size(n,
3181                                                 sizeof(struct f2fs_bio_info)),
3182                                      GFP_KERNEL);
3183                 if (!sbi->write_io[i]) {
3184                         err = -ENOMEM;
3185                         goto free_bio_info;
3186                 }
3187
3188                 for (j = HOT; j < n; j++) {
3189                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
3190                         sbi->write_io[i][j].sbi = sbi;
3191                         sbi->write_io[i][j].bio = NULL;
3192                         spin_lock_init(&sbi->write_io[i][j].io_lock);
3193                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3194                 }
3195         }
3196
3197         init_rwsem(&sbi->cp_rwsem);
3198         init_waitqueue_head(&sbi->cp_wait);
3199         init_sb_info(sbi);
3200
3201         err = init_percpu_info(sbi);
3202         if (err)
3203                 goto free_bio_info;
3204
3205         if (F2FS_IO_SIZE(sbi) > 1) {
3206                 sbi->write_io_dummy =
3207                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3208                 if (!sbi->write_io_dummy) {
3209                         err = -ENOMEM;
3210                         goto free_percpu;
3211                 }
3212         }
3213
3214         /* get an inode for meta space */
3215         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3216         if (IS_ERR(sbi->meta_inode)) {
3217                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
3218                 err = PTR_ERR(sbi->meta_inode);
3219                 goto free_io_dummy;
3220         }
3221
3222         err = f2fs_get_valid_checkpoint(sbi);
3223         if (err) {
3224                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
3225                 goto free_meta_inode;
3226         }
3227
3228         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3229                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3230         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3231                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3232                 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3233         }
3234
3235         /* Initialize device list */
3236         err = f2fs_scan_devices(sbi);
3237         if (err) {
3238                 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
3239                 goto free_devices;
3240         }
3241
3242         sbi->total_valid_node_count =
3243                                 le32_to_cpu(sbi->ckpt->valid_node_count);
3244         percpu_counter_set(&sbi->total_valid_inode_count,
3245                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
3246         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3247         sbi->total_valid_block_count =
3248                                 le64_to_cpu(sbi->ckpt->valid_block_count);
3249         sbi->last_valid_block_count = sbi->total_valid_block_count;
3250         sbi->reserved_blocks = 0;
3251         sbi->current_reserved_blocks = 0;
3252         limit_reserve_root(sbi);
3253
3254         for (i = 0; i < NR_INODE_TYPE; i++) {
3255                 INIT_LIST_HEAD(&sbi->inode_list[i]);
3256                 spin_lock_init(&sbi->inode_lock[i]);
3257         }
3258
3259         f2fs_init_extent_cache_info(sbi);
3260
3261         f2fs_init_ino_entry_info(sbi);
3262
3263         f2fs_init_fsync_node_info(sbi);
3264
3265         /* setup f2fs internal modules */
3266         err = f2fs_build_segment_manager(sbi);
3267         if (err) {
3268                 f2fs_msg(sb, KERN_ERR,
3269                         "Failed to initialize F2FS segment manager");
3270                 goto free_sm;
3271         }
3272         err = f2fs_build_node_manager(sbi);
3273         if (err) {
3274                 f2fs_msg(sb, KERN_ERR,
3275                         "Failed to initialize F2FS node manager");
3276                 goto free_nm;
3277         }
3278
3279         /* For write statistics */
3280         if (sb->s_bdev->bd_part)
3281                 sbi->sectors_written_start =
3282                         (u64)part_stat_read(sb->s_bdev->bd_part,
3283                                             sectors[STAT_WRITE]);
3284
3285         /* Read accumulated write IO statistics if exists */
3286         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3287         if (__exist_node_summaries(sbi))
3288                 sbi->kbytes_written =
3289                         le64_to_cpu(seg_i->journal->info.kbytes_written);
3290
3291         f2fs_build_gc_manager(sbi);
3292
3293         err = f2fs_build_stats(sbi);
3294         if (err)
3295                 goto free_nm;
3296
3297         /* get an inode for node space */
3298         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3299         if (IS_ERR(sbi->node_inode)) {
3300                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
3301                 err = PTR_ERR(sbi->node_inode);
3302                 goto free_stats;
3303         }
3304
3305         /* read root inode and dentry */
3306         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3307         if (IS_ERR(root)) {
3308                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
3309                 err = PTR_ERR(root);
3310                 goto free_node_inode;
3311         }
3312         if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3313                         !root->i_size || !root->i_nlink) {
3314                 iput(root);
3315                 err = -EINVAL;
3316                 goto free_node_inode;
3317         }
3318
3319         sb->s_root = d_make_root(root); /* allocate root dentry */
3320         if (!sb->s_root) {
3321                 err = -ENOMEM;
3322                 goto free_node_inode;
3323 &nbs