6e19265ee8f86e50852a73f8e8d1488b376c5309
[muen/linux.git] / include / linux / mm.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28
29 struct mempolicy;
30 struct anon_vma;
31 struct anon_vma_chain;
32 struct file_ra_state;
33 struct user_struct;
34 struct writeback_control;
35 struct bdi_writeback;
36
37 void init_mm_internals(void);
38
39 #ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
40 extern unsigned long max_mapnr;
41
42 static inline void set_max_mapnr(unsigned long limit)
43 {
44         max_mapnr = limit;
45 }
46 #else
47 static inline void set_max_mapnr(unsigned long limit) { }
48 #endif
49
50 extern unsigned long totalram_pages;
51 extern void * high_memory;
52 extern int page_cluster;
53
54 #ifdef CONFIG_SYSCTL
55 extern int sysctl_legacy_va_layout;
56 #else
57 #define sysctl_legacy_va_layout 0
58 #endif
59
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 extern const int mmap_rnd_bits_min;
62 extern const int mmap_rnd_bits_max;
63 extern int mmap_rnd_bits __read_mostly;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 extern const int mmap_rnd_compat_bits_min;
67 extern const int mmap_rnd_compat_bits_max;
68 extern int mmap_rnd_compat_bits __read_mostly;
69 #endif
70
71 #include <asm/page.h>
72 #include <asm/pgtable.h>
73 #include <asm/processor.h>
74
75 #ifndef __pa_symbol
76 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
77 #endif
78
79 #ifndef page_to_virt
80 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
81 #endif
82
83 #ifndef lm_alias
84 #define lm_alias(x)     __va(__pa_symbol(x))
85 #endif
86
87 /*
88  * To prevent common memory management code establishing
89  * a zero page mapping on a read fault.
90  * This macro should be defined within <asm/pgtable.h>.
91  * s390 does this to prevent multiplexing of hardware bits
92  * related to the physical page in case of virtualization.
93  */
94 #ifndef mm_forbids_zeropage
95 #define mm_forbids_zeropage(X)  (0)
96 #endif
97
98 /*
99  * On some architectures it is expensive to call memset() for small sizes.
100  * Those architectures should provide their own implementation of "struct page"
101  * zeroing by defining this macro in <asm/pgtable.h>.
102  */
103 #ifndef mm_zero_struct_page
104 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
105 #endif
106
107 /*
108  * Default maximum number of active map areas, this limits the number of vmas
109  * per mm struct. Users can overwrite this number by sysctl but there is a
110  * problem.
111  *
112  * When a program's coredump is generated as ELF format, a section is created
113  * per a vma. In ELF, the number of sections is represented in unsigned short.
114  * This means the number of sections should be smaller than 65535 at coredump.
115  * Because the kernel adds some informative sections to a image of program at
116  * generating coredump, we need some margin. The number of extra sections is
117  * 1-3 now and depends on arch. We use "5" as safe margin, here.
118  *
119  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
120  * not a hard limit any more. Although some userspace tools can be surprised by
121  * that.
122  */
123 #define MAPCOUNT_ELF_CORE_MARGIN        (5)
124 #define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
125
126 extern int sysctl_max_map_count;
127
128 extern unsigned long sysctl_user_reserve_kbytes;
129 extern unsigned long sysctl_admin_reserve_kbytes;
130
131 extern int sysctl_overcommit_memory;
132 extern int sysctl_overcommit_ratio;
133 extern unsigned long sysctl_overcommit_kbytes;
134
135 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
136                                     size_t *, loff_t *);
137 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
138                                     size_t *, loff_t *);
139
140 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
141
142 /* to align the pointer to the (next) page boundary */
143 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
144
145 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
146 #define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
147
148 /*
149  * Linux kernel virtual memory manager primitives.
150  * The idea being to have a "virtual" mm in the same way
151  * we have a virtual fs - giving a cleaner interface to the
152  * mm details, and allowing different kinds of memory mappings
153  * (from shared memory to executable loading to arbitrary
154  * mmap() functions).
155  */
156
157 extern struct kmem_cache *vm_area_cachep;
158
159 #ifndef CONFIG_MMU
160 extern struct rb_root nommu_region_tree;
161 extern struct rw_semaphore nommu_region_sem;
162
163 extern unsigned int kobjsize(const void *objp);
164 #endif
165
166 /*
167  * vm_flags in vm_area_struct, see mm_types.h.
168  * When changing, update also include/trace/events/mmflags.h
169  */
170 #define VM_NONE         0x00000000
171
172 #define VM_READ         0x00000001      /* currently active flags */
173 #define VM_WRITE        0x00000002
174 #define VM_EXEC         0x00000004
175 #define VM_SHARED       0x00000008
176
177 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
178 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
179 #define VM_MAYWRITE     0x00000020
180 #define VM_MAYEXEC      0x00000040
181 #define VM_MAYSHARE     0x00000080
182
183 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
184 #define VM_UFFD_MISSING 0x00000200      /* missing pages tracking */
185 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
186 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
187 #define VM_UFFD_WP      0x00001000      /* wrprotect pages tracking */
188
189 #define VM_LOCKED       0x00002000
190 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
191
192                                         /* Used by sys_madvise() */
193 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
194 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
195
196 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
197 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
198 #define VM_LOCKONFAULT  0x00080000      /* Lock the pages covered when they are faulted in */
199 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
200 #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
201 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
202 #define VM_SYNC         0x00800000      /* Synchronous page faults */
203 #define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
204 #define VM_WIPEONFORK   0x02000000      /* Wipe VMA contents in child. */
205 #define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
206
207 #ifdef CONFIG_MEM_SOFT_DIRTY
208 # define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
209 #else
210 # define VM_SOFTDIRTY   0
211 #endif
212
213 #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
214 #define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
215 #define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
216 #define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
217
218 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
219 #define VM_HIGH_ARCH_BIT_0      32      /* bit only usable on 64-bit architectures */
220 #define VM_HIGH_ARCH_BIT_1      33      /* bit only usable on 64-bit architectures */
221 #define VM_HIGH_ARCH_BIT_2      34      /* bit only usable on 64-bit architectures */
222 #define VM_HIGH_ARCH_BIT_3      35      /* bit only usable on 64-bit architectures */
223 #define VM_HIGH_ARCH_BIT_4      36      /* bit only usable on 64-bit architectures */
224 #define VM_HIGH_ARCH_0  BIT(VM_HIGH_ARCH_BIT_0)
225 #define VM_HIGH_ARCH_1  BIT(VM_HIGH_ARCH_BIT_1)
226 #define VM_HIGH_ARCH_2  BIT(VM_HIGH_ARCH_BIT_2)
227 #define VM_HIGH_ARCH_3  BIT(VM_HIGH_ARCH_BIT_3)
228 #define VM_HIGH_ARCH_4  BIT(VM_HIGH_ARCH_BIT_4)
229 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
230
231 #if defined(CONFIG_X86)
232 # define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
233 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
234 # define VM_PKEY_SHIFT  VM_HIGH_ARCH_BIT_0
235 # define VM_PKEY_BIT0   VM_HIGH_ARCH_0  /* A protection key is a 4-bit value */
236 # define VM_PKEY_BIT1   VM_HIGH_ARCH_1
237 # define VM_PKEY_BIT2   VM_HIGH_ARCH_2
238 # define VM_PKEY_BIT3   VM_HIGH_ARCH_3
239 #endif
240 #elif defined(CONFIG_PPC)
241 # define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
242 #elif defined(CONFIG_PARISC)
243 # define VM_GROWSUP     VM_ARCH_1
244 #elif defined(CONFIG_IA64)
245 # define VM_GROWSUP     VM_ARCH_1
246 #elif defined(CONFIG_SPARC64)
247 # define VM_SPARC_ADI   VM_ARCH_1       /* Uses ADI tag for access control */
248 # define VM_ARCH_CLEAR  VM_SPARC_ADI
249 #elif !defined(CONFIG_MMU)
250 # define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
251 #endif
252
253 #if defined(CONFIG_X86_INTEL_MPX)
254 /* MPX specific bounds table or bounds directory */
255 # define VM_MPX         VM_HIGH_ARCH_4
256 #else
257 # define VM_MPX         VM_NONE
258 #endif
259
260 #ifndef VM_GROWSUP
261 # define VM_GROWSUP     VM_NONE
262 #endif
263
264 /* Bits set in the VMA until the stack is in its final location */
265 #define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
266
267 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
268 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
269 #endif
270
271 #ifdef CONFIG_STACK_GROWSUP
272 #define VM_STACK        VM_GROWSUP
273 #else
274 #define VM_STACK        VM_GROWSDOWN
275 #endif
276
277 #define VM_STACK_FLAGS  (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
278
279 /*
280  * Special vmas that are non-mergable, non-mlock()able.
281  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
282  */
283 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
284
285 /* This mask defines which mm->def_flags a process can inherit its parent */
286 #define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
287
288 /* This mask is used to clear all the VMA flags used by mlock */
289 #define VM_LOCKED_CLEAR_MASK    (~(VM_LOCKED | VM_LOCKONFAULT))
290
291 /* Arch-specific flags to clear when updating VM flags on protection change */
292 #ifndef VM_ARCH_CLEAR
293 # define VM_ARCH_CLEAR  VM_NONE
294 #endif
295 #define VM_FLAGS_CLEAR  (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
296
297 /*
298  * mapping from the currently active vm_flags protection bits (the
299  * low four bits) to a page protection mask..
300  */
301 extern pgprot_t protection_map[16];
302
303 #define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
304 #define FAULT_FLAG_MKWRITE      0x02    /* Fault was mkwrite of existing pte */
305 #define FAULT_FLAG_ALLOW_RETRY  0x04    /* Retry fault if blocking */
306 #define FAULT_FLAG_RETRY_NOWAIT 0x08    /* Don't drop mmap_sem and wait when retrying */
307 #define FAULT_FLAG_KILLABLE     0x10    /* The fault task is in SIGKILL killable region */
308 #define FAULT_FLAG_TRIED        0x20    /* Second try */
309 #define FAULT_FLAG_USER         0x40    /* The fault originated in userspace */
310 #define FAULT_FLAG_REMOTE       0x80    /* faulting for non current tsk/mm */
311 #define FAULT_FLAG_INSTRUCTION  0x100   /* The fault was during an instruction fetch */
312
313 #define FAULT_FLAG_TRACE \
314         { FAULT_FLAG_WRITE,             "WRITE" }, \
315         { FAULT_FLAG_MKWRITE,           "MKWRITE" }, \
316         { FAULT_FLAG_ALLOW_RETRY,       "ALLOW_RETRY" }, \
317         { FAULT_FLAG_RETRY_NOWAIT,      "RETRY_NOWAIT" }, \
318         { FAULT_FLAG_KILLABLE,          "KILLABLE" }, \
319         { FAULT_FLAG_TRIED,             "TRIED" }, \
320         { FAULT_FLAG_USER,              "USER" }, \
321         { FAULT_FLAG_REMOTE,            "REMOTE" }, \
322         { FAULT_FLAG_INSTRUCTION,       "INSTRUCTION" }
323
324 /*
325  * vm_fault is filled by the the pagefault handler and passed to the vma's
326  * ->fault function. The vma's ->fault is responsible for returning a bitmask
327  * of VM_FAULT_xxx flags that give details about how the fault was handled.
328  *
329  * MM layer fills up gfp_mask for page allocations but fault handler might
330  * alter it if its implementation requires a different allocation context.
331  *
332  * pgoff should be used in favour of virtual_address, if possible.
333  */
334 struct vm_fault {
335         struct vm_area_struct *vma;     /* Target VMA */
336         unsigned int flags;             /* FAULT_FLAG_xxx flags */
337         gfp_t gfp_mask;                 /* gfp mask to be used for allocations */
338         pgoff_t pgoff;                  /* Logical page offset based on vma */
339         unsigned long address;          /* Faulting virtual address */
340         pmd_t *pmd;                     /* Pointer to pmd entry matching
341                                          * the 'address' */
342         pud_t *pud;                     /* Pointer to pud entry matching
343                                          * the 'address'
344                                          */
345         pte_t orig_pte;                 /* Value of PTE at the time of fault */
346
347         struct page *cow_page;          /* Page handler may use for COW fault */
348         struct mem_cgroup *memcg;       /* Cgroup cow_page belongs to */
349         struct page *page;              /* ->fault handlers should return a
350                                          * page here, unless VM_FAULT_NOPAGE
351                                          * is set (which is also implied by
352                                          * VM_FAULT_ERROR).
353                                          */
354         /* These three entries are valid only while holding ptl lock */
355         pte_t *pte;                     /* Pointer to pte entry matching
356                                          * the 'address'. NULL if the page
357                                          * table hasn't been allocated.
358                                          */
359         spinlock_t *ptl;                /* Page table lock.
360                                          * Protects pte page table if 'pte'
361                                          * is not NULL, otherwise pmd.
362                                          */
363         pgtable_t prealloc_pte;         /* Pre-allocated pte page table.
364                                          * vm_ops->map_pages() calls
365                                          * alloc_set_pte() from atomic context.
366                                          * do_fault_around() pre-allocates
367                                          * page table to avoid allocation from
368                                          * atomic context.
369                                          */
370 };
371
372 /* page entry size for vm->huge_fault() */
373 enum page_entry_size {
374         PE_SIZE_PTE = 0,
375         PE_SIZE_PMD,
376         PE_SIZE_PUD,
377 };
378
379 /*
380  * These are the virtual MM functions - opening of an area, closing and
381  * unmapping it (needed to keep files on disk up-to-date etc), pointer
382  * to the functions called when a no-page or a wp-page exception occurs. 
383  */
384 struct vm_operations_struct {
385         void (*open)(struct vm_area_struct * area);
386         void (*close)(struct vm_area_struct * area);
387         int (*split)(struct vm_area_struct * area, unsigned long addr);
388         int (*mremap)(struct vm_area_struct * area);
389         vm_fault_t (*fault)(struct vm_fault *vmf);
390         vm_fault_t (*huge_fault)(struct vm_fault *vmf,
391                         enum page_entry_size pe_size);
392         void (*map_pages)(struct vm_fault *vmf,
393                         pgoff_t start_pgoff, pgoff_t end_pgoff);
394         unsigned long (*pagesize)(struct vm_area_struct * area);
395
396         /* notification that a previously read-only page is about to become
397          * writable, if an error is returned it will cause a SIGBUS */
398         vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
399
400         /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
401         vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
402
403         /* called by access_process_vm when get_user_pages() fails, typically
404          * for use by special VMAs that can switch between memory and hardware
405          */
406         int (*access)(struct vm_area_struct *vma, unsigned long addr,
407                       void *buf, int len, int write);
408
409         /* Called by the /proc/PID/maps code to ask the vma whether it
410          * has a special name.  Returning non-NULL will also cause this
411          * vma to be dumped unconditionally. */
412         const char *(*name)(struct vm_area_struct *vma);
413
414 #ifdef CONFIG_NUMA
415         /*
416          * set_policy() op must add a reference to any non-NULL @new mempolicy
417          * to hold the policy upon return.  Caller should pass NULL @new to
418          * remove a policy and fall back to surrounding context--i.e. do not
419          * install a MPOL_DEFAULT policy, nor the task or system default
420          * mempolicy.
421          */
422         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
423
424         /*
425          * get_policy() op must add reference [mpol_get()] to any policy at
426          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
427          * in mm/mempolicy.c will do this automatically.
428          * get_policy() must NOT add a ref if the policy at (vma,addr) is not
429          * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
430          * If no [shared/vma] mempolicy exists at the addr, get_policy() op
431          * must return NULL--i.e., do not "fallback" to task or system default
432          * policy.
433          */
434         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
435                                         unsigned long addr);
436 #endif
437         /*
438          * Called by vm_normal_page() for special PTEs to find the
439          * page for @addr.  This is useful if the default behavior
440          * (using pte_page()) would not find the correct page.
441          */
442         struct page *(*find_special_page)(struct vm_area_struct *vma,
443                                           unsigned long addr);
444 };
445
446 struct mmu_gather;
447 struct inode;
448
449 #define page_private(page)              ((page)->private)
450 #define set_page_private(page, v)       ((page)->private = (v))
451
452 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
453 static inline int pmd_devmap(pmd_t pmd)
454 {
455         return 0;
456 }
457 static inline int pud_devmap(pud_t pud)
458 {
459         return 0;
460 }
461 static inline int pgd_devmap(pgd_t pgd)
462 {
463         return 0;
464 }
465 #endif
466
467 /*
468  * FIXME: take this include out, include page-flags.h in
469  * files which need it (119 of them)
470  */
471 #include <linux/page-flags.h>
472 #include <linux/huge_mm.h>
473
474 /*
475  * Methods to modify the page usage count.
476  *
477  * What counts for a page usage:
478  * - cache mapping   (page->mapping)
479  * - private data    (page->private)
480  * - page mapped in a task's page tables, each mapping
481  *   is counted separately
482  *
483  * Also, many kernel routines increase the page count before a critical
484  * routine so they can be sure the page doesn't go away from under them.
485  */
486
487 /*
488  * Drop a ref, return true if the refcount fell to zero (the page has no users)
489  */
490 static inline int put_page_testzero(struct page *page)
491 {
492         VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
493         return page_ref_dec_and_test(page);
494 }
495
496 /*
497  * Try to grab a ref unless the page has a refcount of zero, return false if
498  * that is the case.
499  * This can be called when MMU is off so it must not access
500  * any of the virtual mappings.
501  */
502 static inline int get_page_unless_zero(struct page *page)
503 {
504         return page_ref_add_unless(page, 1, 0);
505 }
506
507 extern int page_is_ram(unsigned long pfn);
508
509 enum {
510         REGION_INTERSECTS,
511         REGION_DISJOINT,
512         REGION_MIXED,
513 };
514
515 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
516                       unsigned long desc);
517
518 /* Support for virtually mapped pages */
519 struct page *vmalloc_to_page(const void *addr);
520 unsigned long vmalloc_to_pfn(const void *addr);
521
522 /*
523  * Determine if an address is within the vmalloc range
524  *
525  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
526  * is no special casing required.
527  */
528 static inline bool is_vmalloc_addr(const void *x)
529 {
530 #ifdef CONFIG_MMU
531         unsigned long addr = (unsigned long)x;
532
533         return addr >= VMALLOC_START && addr < VMALLOC_END;
534 #else
535         return false;
536 #endif
537 }
538 #ifdef CONFIG_MMU
539 extern int is_vmalloc_or_module_addr(const void *x);
540 #else
541 static inline int is_vmalloc_or_module_addr(const void *x)
542 {
543         return 0;
544 }
545 #endif
546
547 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
548 static inline void *kvmalloc(size_t size, gfp_t flags)
549 {
550         return kvmalloc_node(size, flags, NUMA_NO_NODE);
551 }
552 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
553 {
554         return kvmalloc_node(size, flags | __GFP_ZERO, node);
555 }
556 static inline void *kvzalloc(size_t size, gfp_t flags)
557 {
558         return kvmalloc(size, flags | __GFP_ZERO);
559 }
560
561 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
562 {
563         if (size != 0 && n > SIZE_MAX / size)
564                 return NULL;
565
566         return kvmalloc(n * size, flags);
567 }
568
569 extern void kvfree(const void *addr);
570
571 static inline atomic_t *compound_mapcount_ptr(struct page *page)
572 {
573         return &page[1].compound_mapcount;
574 }
575
576 static inline int compound_mapcount(struct page *page)
577 {
578         VM_BUG_ON_PAGE(!PageCompound(page), page);
579         page = compound_head(page);
580         return atomic_read(compound_mapcount_ptr(page)) + 1;
581 }
582
583 /*
584  * The atomic page->_mapcount, starts from -1: so that transitions
585  * both from it and to it can be tracked, using atomic_inc_and_test
586  * and atomic_add_negative(-1).
587  */
588 static inline void page_mapcount_reset(struct page *page)
589 {
590         atomic_set(&(page)->_mapcount, -1);
591 }
592
593 int __page_mapcount(struct page *page);
594
595 static inline int page_mapcount(struct page *page)
596 {
597         VM_BUG_ON_PAGE(PageSlab(page), page);
598
599         if (unlikely(PageCompound(page)))
600                 return __page_mapcount(page);
601         return atomic_read(&page->_mapcount) + 1;
602 }
603
604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
605 int total_mapcount(struct page *page);
606 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
607 #else
608 static inline int total_mapcount(struct page *page)
609 {
610         return page_mapcount(page);
611 }
612 static inline int page_trans_huge_mapcount(struct page *page,
613                                            int *total_mapcount)
614 {
615         int mapcount = page_mapcount(page);
616         if (total_mapcount)
617                 *total_mapcount = mapcount;
618         return mapcount;
619 }
620 #endif
621
622 static inline struct page *virt_to_head_page(const void *x)
623 {
624         struct page *page = virt_to_page(x);
625
626         return compound_head(page);
627 }
628
629 void __put_page(struct page *page);
630
631 void put_pages_list(struct list_head *pages);
632
633 void split_page(struct page *page, unsigned int order);
634
635 /*
636  * Compound pages have a destructor function.  Provide a
637  * prototype for that function and accessor functions.
638  * These are _only_ valid on the head of a compound page.
639  */
640 typedef void compound_page_dtor(struct page *);
641
642 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
643 enum compound_dtor_id {
644         NULL_COMPOUND_DTOR,
645         COMPOUND_PAGE_DTOR,
646 #ifdef CONFIG_HUGETLB_PAGE
647         HUGETLB_PAGE_DTOR,
648 #endif
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
650         TRANSHUGE_PAGE_DTOR,
651 #endif
652         NR_COMPOUND_DTORS,
653 };
654 extern compound_page_dtor * const compound_page_dtors[];
655
656 static inline void set_compound_page_dtor(struct page *page,
657                 enum compound_dtor_id compound_dtor)
658 {
659         VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
660         page[1].compound_dtor = compound_dtor;
661 }
662
663 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
664 {
665         VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
666         return compound_page_dtors[page[1].compound_dtor];
667 }
668
669 static inline unsigned int compound_order(struct page *page)
670 {
671         if (!PageHead(page))
672                 return 0;
673         return page[1].compound_order;
674 }
675
676 static inline void set_compound_order(struct page *page, unsigned int order)
677 {
678         page[1].compound_order = order;
679 }
680
681 void free_compound_page(struct page *page);
682
683 #ifdef CONFIG_MMU
684 /*
685  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
686  * servicing faults for write access.  In the normal case, do always want
687  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
688  * that do not have writing enabled, when used by access_process_vm.
689  */
690 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
691 {
692         if (likely(vma->vm_flags & VM_WRITE))
693                 pte = pte_mkwrite(pte);
694         return pte;
695 }
696
697 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
698                 struct page *page);
699 int finish_fault(struct vm_fault *vmf);
700 int finish_mkwrite_fault(struct vm_fault *vmf);
701 #endif
702
703 /*
704  * Multiple processes may "see" the same page. E.g. for untouched
705  * mappings of /dev/null, all processes see the same page full of
706  * zeroes, and text pages of executables and shared libraries have
707  * only one copy in memory, at most, normally.
708  *
709  * For the non-reserved pages, page_count(page) denotes a reference count.
710  *   page_count() == 0 means the page is free. page->lru is then used for
711  *   freelist management in the buddy allocator.
712  *   page_count() > 0  means the page has been allocated.
713  *
714  * Pages are allocated by the slab allocator in order to provide memory
715  * to kmalloc and kmem_cache_alloc. In this case, the management of the
716  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
717  * unless a particular usage is carefully commented. (the responsibility of
718  * freeing the kmalloc memory is the caller's, of course).
719  *
720  * A page may be used by anyone else who does a __get_free_page().
721  * In this case, page_count still tracks the references, and should only
722  * be used through the normal accessor functions. The top bits of page->flags
723  * and page->virtual store page management information, but all other fields
724  * are unused and could be used privately, carefully. The management of this
725  * page is the responsibility of the one who allocated it, and those who have
726  * subsequently been given references to it.
727  *
728  * The other pages (we may call them "pagecache pages") are completely
729  * managed by the Linux memory manager: I/O, buffers, swapping etc.
730  * The following discussion applies only to them.
731  *
732  * A pagecache page contains an opaque `private' member, which belongs to the
733  * page's address_space. Usually, this is the address of a circular list of
734  * the page's disk buffers. PG_private must be set to tell the VM to call
735  * into the filesystem to release these pages.
736  *
737  * A page may belong to an inode's memory mapping. In this case, page->mapping
738  * is the pointer to the inode, and page->index is the file offset of the page,
739  * in units of PAGE_SIZE.
740  *
741  * If pagecache pages are not associated with an inode, they are said to be
742  * anonymous pages. These may become associated with the swapcache, and in that
743  * case PG_swapcache is set, and page->private is an offset into the swapcache.
744  *
745  * In either case (swapcache or inode backed), the pagecache itself holds one
746  * reference to the page. Setting PG_private should also increment the
747  * refcount. The each user mapping also has a reference to the page.
748  *
749  * The pagecache pages are stored in a per-mapping radix tree, which is
750  * rooted at mapping->i_pages, and indexed by offset.
751  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
752  * lists, we instead now tag pages as dirty/writeback in the radix tree.
753  *
754  * All pagecache pages may be subject to I/O:
755  * - inode pages may need to be read from disk,
756  * - inode pages which have been modified and are MAP_SHARED may need
757  *   to be written back to the inode on disk,
758  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
759  *   modified may need to be swapped out to swap space and (later) to be read
760  *   back into memory.
761  */
762
763 /*
764  * The zone field is never updated after free_area_init_core()
765  * sets it, so none of the operations on it need to be atomic.
766  */
767
768 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
769 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
770 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
771 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
772 #define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
773
774 /*
775  * Define the bit shifts to access each section.  For non-existent
776  * sections we define the shift as 0; that plus a 0 mask ensures
777  * the compiler will optimise away reference to them.
778  */
779 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
780 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
781 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
782 #define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
783
784 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
785 #ifdef NODE_NOT_IN_PAGE_FLAGS
786 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
787 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
788                                                 SECTIONS_PGOFF : ZONES_PGOFF)
789 #else
790 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
791 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
792                                                 NODES_PGOFF : ZONES_PGOFF)
793 #endif
794
795 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
796
797 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
798 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
799 #endif
800
801 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
802 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
803 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
804 #define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
805 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
806
807 static inline enum zone_type page_zonenum(const struct page *page)
808 {
809         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
810 }
811
812 #ifdef CONFIG_ZONE_DEVICE
813 static inline bool is_zone_device_page(const struct page *page)
814 {
815         return page_zonenum(page) == ZONE_DEVICE;
816 }
817 #else
818 static inline bool is_zone_device_page(const struct page *page)
819 {
820         return false;
821 }
822 #endif
823
824 #ifdef CONFIG_DEV_PAGEMAP_OPS
825 void dev_pagemap_get_ops(void);
826 void dev_pagemap_put_ops(void);
827 void __put_devmap_managed_page(struct page *page);
828 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
829 static inline bool put_devmap_managed_page(struct page *page)
830 {
831         if (!static_branch_unlikely(&devmap_managed_key))
832                 return false;
833         if (!is_zone_device_page(page))
834                 return false;
835         switch (page->pgmap->type) {
836         case MEMORY_DEVICE_PRIVATE:
837         case MEMORY_DEVICE_PUBLIC:
838         case MEMORY_DEVICE_FS_DAX:
839                 __put_devmap_managed_page(page);
840                 return true;
841         default:
842                 break;
843         }
844         return false;
845 }
846
847 static inline bool is_device_private_page(const struct page *page)
848 {
849         return is_zone_device_page(page) &&
850                 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
851 }
852
853 static inline bool is_device_public_page(const struct page *page)
854 {
855         return is_zone_device_page(page) &&
856                 page->pgmap->type == MEMORY_DEVICE_PUBLIC;
857 }
858
859 #else /* CONFIG_DEV_PAGEMAP_OPS */
860 static inline void dev_pagemap_get_ops(void)
861 {
862 }
863
864 static inline void dev_pagemap_put_ops(void)
865 {
866 }
867
868 static inline bool put_devmap_managed_page(struct page *page)
869 {
870         return false;
871 }
872
873 static inline bool is_device_private_page(const struct page *page)
874 {
875         return false;
876 }
877
878 static inline bool is_device_public_page(const struct page *page)
879 {
880         return false;
881 }
882 #endif /* CONFIG_DEV_PAGEMAP_OPS */
883
884 static inline void get_page(struct page *page)
885 {
886         page = compound_head(page);
887         /*
888          * Getting a normal page or the head of a compound page
889          * requires to already have an elevated page->_refcount.
890          */
891         VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
892         page_ref_inc(page);
893 }
894
895 static inline void put_page(struct page *page)
896 {
897         page = compound_head(page);
898
899         /*
900          * For devmap managed pages we need to catch refcount transition from
901          * 2 to 1, when refcount reach one it means the page is free and we
902          * need to inform the device driver through callback. See
903          * include/linux/memremap.h and HMM for details.
904          */
905         if (put_devmap_managed_page(page))
906                 return;
907
908         if (put_page_testzero(page))
909                 __put_page(page);
910 }
911
912 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
913 #define SECTION_IN_PAGE_FLAGS
914 #endif
915
916 /*
917  * The identification function is mainly used by the buddy allocator for
918  * determining if two pages could be buddies. We are not really identifying
919  * the zone since we could be using the section number id if we do not have
920  * node id available in page flags.
921  * We only guarantee that it will return the same value for two combinable
922  * pages in a zone.
923  */
924 static inline int page_zone_id(struct page *page)
925 {
926         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
927 }
928
929 static inline int zone_to_nid(struct zone *zone)
930 {
931 #ifdef CONFIG_NUMA
932         return zone->node;
933 #else
934         return 0;
935 #endif
936 }
937
938 #ifdef NODE_NOT_IN_PAGE_FLAGS
939 extern int page_to_nid(const struct page *page);
940 #else
941 static inline int page_to_nid(const struct page *page)
942 {
943         struct page *p = (struct page *)page;
944
945         return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
946 }
947 #endif
948
949 #ifdef CONFIG_NUMA_BALANCING
950 static inline int cpu_pid_to_cpupid(int cpu, int pid)
951 {
952         return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
953 }
954
955 static inline int cpupid_to_pid(int cpupid)
956 {
957         return cpupid & LAST__PID_MASK;
958 }
959
960 static inline int cpupid_to_cpu(int cpupid)
961 {
962         return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
963 }
964
965 static inline int cpupid_to_nid(int cpupid)
966 {
967         return cpu_to_node(cpupid_to_cpu(cpupid));
968 }
969
970 static inline bool cpupid_pid_unset(int cpupid)
971 {
972         return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
973 }
974
975 static inline bool cpupid_cpu_unset(int cpupid)
976 {
977         return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
978 }
979
980 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
981 {
982         return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
983 }
984
985 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
986 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
987 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
988 {
989         return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
990 }
991
992 static inline int page_cpupid_last(struct page *page)
993 {
994         return page->_last_cpupid;
995 }
996 static inline void page_cpupid_reset_last(struct page *page)
997 {
998         page->_last_cpupid = -1 & LAST_CPUPID_MASK;
999 }
1000 #else
1001 static inline int page_cpupid_last(struct page *page)
1002 {
1003         return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1004 }
1005
1006 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1007
1008 static inline void page_cpupid_reset_last(struct page *page)
1009 {
1010         page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1011 }
1012 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1013 #else /* !CONFIG_NUMA_BALANCING */
1014 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1015 {
1016         return page_to_nid(page); /* XXX */
1017 }
1018
1019 static inline int page_cpupid_last(struct page *page)
1020 {
1021         return page_to_nid(page); /* XXX */
1022 }
1023
1024 static inline int cpupid_to_nid(int cpupid)
1025 {
1026         return -1;
1027 }
1028
1029 static inline int cpupid_to_pid(int cpupid)
1030 {
1031         return -1;
1032 }
1033
1034 static inline int cpupid_to_cpu(int cpupid)
1035 {
1036         return -1;
1037 }
1038
1039 static inline int cpu_pid_to_cpupid(int nid, int pid)
1040 {
1041         return -1;
1042 }
1043
1044 static inline bool cpupid_pid_unset(int cpupid)
1045 {
1046         return 1;
1047 }
1048
1049 static inline void page_cpupid_reset_last(struct page *page)
1050 {
1051 }
1052
1053 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1054 {
1055         return false;
1056 }
1057 #endif /* CONFIG_NUMA_BALANCING */
1058
1059 static inline struct zone *page_zone(const struct page *page)
1060 {
1061         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1062 }
1063
1064 static inline pg_data_t *page_pgdat(const struct page *page)
1065 {
1066         return NODE_DATA(page_to_nid(page));
1067 }
1068
1069 #ifdef SECTION_IN_PAGE_FLAGS
1070 static inline void set_page_section(struct page *page, unsigned long section)
1071 {
1072         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1073         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1074 }
1075
1076 static inline unsigned long page_to_section(const struct page *page)
1077 {
1078         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1079 }
1080 #endif
1081
1082 static inline void set_page_zone(struct page *page, enum zone_type zone)
1083 {
1084         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1085         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1086 }
1087
1088 static inline void set_page_node(struct page *page, unsigned long node)
1089 {
1090         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1091         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1092 }
1093
1094 static inline void set_page_links(struct page *page, enum zone_type zone,
1095         unsigned long node, unsigned long pfn)
1096 {
1097         set_page_zone(page, zone);
1098         set_page_node(page, node);
1099 #ifdef SECTION_IN_PAGE_FLAGS
1100         set_page_section(page, pfn_to_section_nr(pfn));
1101 #endif
1102 }
1103
1104 #ifdef CONFIG_MEMCG
1105 static inline struct mem_cgroup *page_memcg(struct page *page)
1106 {
1107         return page->mem_cgroup;
1108 }
1109 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1110 {
1111         WARN_ON_ONCE(!rcu_read_lock_held());
1112         return READ_ONCE(page->mem_cgroup);
1113 }
1114 #else
1115 static inline struct mem_cgroup *page_memcg(struct page *page)
1116 {
1117         return NULL;
1118 }
1119 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1120 {
1121         WARN_ON_ONCE(!rcu_read_lock_held());
1122         return NULL;
1123 }
1124 #endif
1125
1126 /*
1127  * Some inline functions in vmstat.h depend on page_zone()
1128  */
1129 #include <linux/vmstat.h>
1130
1131 static __always_inline void *lowmem_page_address(const struct page *page)
1132 {
1133         return page_to_virt(page);
1134 }
1135
1136 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1137 #define HASHED_PAGE_VIRTUAL
1138 #endif
1139
1140 #if defined(WANT_PAGE_VIRTUAL)
1141 static inline void *page_address(const struct page *page)
1142 {
1143         return page->virtual;
1144 }
1145 static inline void set_page_address(struct page *page, void *address)
1146 {
1147         page->virtual = address;
1148 }
1149 #define page_address_init()  do { } while(0)
1150 #endif
1151
1152 #if defined(HASHED_PAGE_VIRTUAL)
1153 void *page_address(const struct page *page);
1154 void set_page_address(struct page *page, void *virtual);
1155 void page_address_init(void);
1156 #endif
1157
1158 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1159 #define page_address(page) lowmem_page_address(page)
1160 #define set_page_address(page, address)  do { } while(0)
1161 #define page_address_init()  do { } while(0)
1162 #endif
1163
1164 extern void *page_rmapping(struct page *page);
1165 extern struct anon_vma *page_anon_vma(struct page *page);
1166 extern struct address_space *page_mapping(struct page *page);
1167
1168 extern struct address_space *__page_file_mapping(struct page *);
1169
1170 static inline
1171 struct address_space *page_file_mapping(struct page *page)
1172 {
1173         if (unlikely(PageSwapCache(page)))
1174                 return __page_file_mapping(page);
1175
1176         return page->mapping;
1177 }
1178
1179 extern pgoff_t __page_file_index(struct page *page);
1180
1181 /*
1182  * Return the pagecache index of the passed page.  Regular pagecache pages
1183  * use ->index whereas swapcache pages use swp_offset(->private)
1184  */
1185 static inline pgoff_t page_index(struct page *page)
1186 {
1187         if (unlikely(PageSwapCache(page)))
1188                 return __page_file_index(page);
1189         return page->index;
1190 }
1191
1192 bool page_mapped(struct page *page);
1193 struct address_space *page_mapping(struct page *page);
1194 struct address_space *page_mapping_file(struct page *page);
1195
1196 /*
1197  * Return true only if the page has been allocated with
1198  * ALLOC_NO_WATERMARKS and the low watermark was not
1199  * met implying that the system is under some pressure.
1200  */
1201 static inline bool page_is_pfmemalloc(struct page *page)
1202 {
1203         /*
1204          * Page index cannot be this large so this must be
1205          * a pfmemalloc page.
1206          */
1207         return page->index == -1UL;
1208 }
1209
1210 /*
1211  * Only to be called by the page allocator on a freshly allocated
1212  * page.
1213  */
1214 static inline void set_page_pfmemalloc(struct page *page)
1215 {
1216         page->index = -1UL;
1217 }
1218
1219 static inline void clear_page_pfmemalloc(struct page *page)
1220 {
1221         page->index = 0;
1222 }
1223
1224 /*
1225  * Different kinds of faults, as returned by handle_mm_fault().
1226  * Used to decide whether a process gets delivered SIGBUS or
1227  * just gets major/minor fault counters bumped up.
1228  */
1229
1230 #define VM_FAULT_OOM    0x0001
1231 #define VM_FAULT_SIGBUS 0x0002
1232 #define VM_FAULT_MAJOR  0x0004
1233 #define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
1234 #define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
1235 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1236 #define VM_FAULT_SIGSEGV 0x0040
1237
1238 #define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
1239 #define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
1240 #define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
1241 #define VM_FAULT_FALLBACK 0x0800        /* huge page fault failed, fall back to small */
1242 #define VM_FAULT_DONE_COW   0x1000      /* ->fault has fully handled COW */
1243 #define VM_FAULT_NEEDDSYNC  0x2000      /* ->fault did not modify page tables
1244                                          * and needs fsync() to complete (for
1245                                          * synchronous page faults in DAX) */
1246
1247 #define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1248                          VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1249                          VM_FAULT_FALLBACK)
1250
1251 #define VM_FAULT_RESULT_TRACE \
1252         { VM_FAULT_OOM,                 "OOM" }, \
1253         { VM_FAULT_SIGBUS,              "SIGBUS" }, \
1254         { VM_FAULT_MAJOR,               "MAJOR" }, \
1255         { VM_FAULT_WRITE,               "WRITE" }, \
1256         { VM_FAULT_HWPOISON,            "HWPOISON" }, \
1257         { VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" }, \
1258         { VM_FAULT_SIGSEGV,             "SIGSEGV" }, \
1259         { VM_FAULT_NOPAGE,              "NOPAGE" }, \
1260         { VM_FAULT_LOCKED,              "LOCKED" }, \
1261         { VM_FAULT_RETRY,               "RETRY" }, \
1262         { VM_FAULT_FALLBACK,            "FALLBACK" }, \
1263         { VM_FAULT_DONE_COW,            "DONE_COW" }, \
1264         { VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
1265
1266 /* Encode hstate index for a hwpoisoned large page */
1267 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1268 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1269
1270 /*
1271  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1272  */
1273 extern void pagefault_out_of_memory(void);
1274
1275 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1276
1277 /*
1278  * Flags passed to show_mem() and show_free_areas() to suppress output in
1279  * various contexts.
1280  */
1281 #define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1282
1283 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1284
1285 extern bool can_do_mlock(void);
1286 extern int user_shm_lock(size_t, struct user_struct *);
1287 extern void user_shm_unlock(size_t, struct user_struct *);
1288
1289 /*
1290  * Parameter block passed down to zap_pte_range in exceptional cases.
1291  */
1292 struct zap_details {
1293         struct address_space *check_mapping;    /* Check page->mapping if set */
1294         pgoff_t first_index;                    /* Lowest page->index to unmap */
1295         pgoff_t last_index;                     /* Highest page->index to unmap */
1296 };
1297
1298 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1299                              pte_t pte, bool with_public_device);
1300 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1301
1302 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1303                                 pmd_t pmd);
1304
1305 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1306                 unsigned long size);
1307 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1308                 unsigned long size);
1309 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1310                 unsigned long start, unsigned long end);
1311
1312 /**
1313  * mm_walk - callbacks for walk_page_range
1314  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1315  *             this handler should only handle pud_trans_huge() puds.
1316  *             the pmd_entry or pte_entry callbacks will be used for
1317  *             regular PUDs.
1318  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1319  *             this handler is required to be able to handle
1320  *             pmd_trans_huge() pmds.  They may simply choose to
1321  *             split_huge_page() instead of handling it explicitly.
1322  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1323  * @pte_hole: if set, called for each hole at all levels
1324  * @hugetlb_entry: if set, called for each hugetlb entry
1325  * @test_walk: caller specific callback function to determine whether
1326  *             we walk over the current vma or not. Returning 0
1327  *             value means "do page table walk over the current vma,"
1328  *             and a negative one means "abort current page table walk
1329  *             right now." 1 means "skip the current vma."
1330  * @mm:        mm_struct representing the target process of page table walk
1331  * @vma:       vma currently walked (NULL if walking outside vmas)
1332  * @private:   private data for callbacks' usage
1333  *
1334  * (see the comment on walk_page_range() for more details)
1335  */
1336 struct mm_walk {
1337         int (*pud_entry)(pud_t *pud, unsigned long addr,
1338                          unsigned long next, struct mm_walk *walk);
1339         int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1340                          unsigned long next, struct mm_walk *walk);
1341         int (*pte_entry)(pte_t *pte, unsigned long addr,
1342                          unsigned long next, struct mm_walk *walk);
1343         int (*pte_hole)(unsigned long addr, unsigned long next,
1344                         struct mm_walk *walk);
1345         int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1346                              unsigned long addr, unsigned long next,
1347                              struct mm_walk *walk);
1348         int (*test_walk)(unsigned long addr, unsigned long next,
1349                         struct mm_walk *walk);
1350         struct mm_struct *mm;
1351         struct vm_area_struct *vma;
1352         void *private;
1353 };
1354
1355 int walk_page_range(unsigned long addr, unsigned long end,
1356                 struct mm_walk *walk);
1357 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1358 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1359                 unsigned long end, unsigned long floor, unsigned long ceiling);
1360 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1361                         struct vm_area_struct *vma);
1362 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1363                              unsigned long *start, unsigned long *end,
1364                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1365 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1366         unsigned long *pfn);
1367 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1368                 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1369 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1370                         void *buf, int len, int write);
1371
1372 extern void truncate_pagecache(struct inode *inode, loff_t new);
1373 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1374 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1375 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1376 int truncate_inode_page(struct address_space *mapping, struct page *page);
1377 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1378 int invalidate_inode_page(struct page *page);
1379
1380 #ifdef CONFIG_MMU
1381 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1382                 unsigned int flags);
1383 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1384                             unsigned long address, unsigned int fault_flags,
1385                             bool *unlocked);
1386 void unmap_mapping_pages(struct address_space *mapping,
1387                 pgoff_t start, pgoff_t nr, bool even_cows);
1388 void unmap_mapping_range(struct address_space *mapping,
1389                 loff_t const holebegin, loff_t const holelen, int even_cows);
1390 #else
1391 static inline int handle_mm_fault(struct vm_area_struct *vma,
1392                 unsigned long address, unsigned int flags)
1393 {
1394         /* should never happen if there's no MMU */
1395         BUG();
1396         return VM_FAULT_SIGBUS;
1397 }
1398 static inline int fixup_user_fault(struct task_struct *tsk,
1399                 struct mm_struct *mm, unsigned long address,
1400                 unsigned int fault_flags, bool *unlocked)
1401 {
1402         /* should never happen if there's no MMU */
1403         BUG();
1404         return -EFAULT;
1405 }
1406 static inline void unmap_mapping_pages(struct address_space *mapping,
1407                 pgoff_t start, pgoff_t nr, bool even_cows) { }
1408 static inline void unmap_mapping_range(struct address_space *mapping,
1409                 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1410 #endif
1411
1412 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1413                 loff_t const holebegin, loff_t const holelen)
1414 {
1415         unmap_mapping_range(mapping, holebegin, holelen, 0);
1416 }
1417
1418 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1419                 void *buf, int len, unsigned int gup_flags);
1420 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1421                 void *buf, int len, unsigned int gup_flags);
1422 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1423                 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1424
1425 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1426                             unsigned long start, unsigned long nr_pages,
1427                             unsigned int gup_flags, struct page **pages,
1428                             struct vm_area_struct **vmas, int *locked);
1429 long get_user_pages(unsigned long start, unsigned long nr_pages,
1430                             unsigned int gup_flags, struct page **pages,
1431                             struct vm_area_struct **vmas);
1432 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1433                     unsigned int gup_flags, struct page **pages, int *locked);
1434 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1435                     struct page **pages, unsigned int gup_flags);
1436 #ifdef CONFIG_FS_DAX
1437 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1438                             unsigned int gup_flags, struct page **pages,
1439                             struct vm_area_struct **vmas);
1440 #else
1441 static inline long get_user_pages_longterm(unsigned long start,
1442                 unsigned long nr_pages, unsigned int gup_flags,
1443                 struct page **pages, struct vm_area_struct **vmas)
1444 {
1445         return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1446 }
1447 #endif /* CONFIG_FS_DAX */
1448
1449 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1450                         struct page **pages);
1451
1452 /* Container for pinned pfns / pages */
1453 struct frame_vector {
1454         unsigned int nr_allocated;      /* Number of frames we have space for */
1455         unsigned int nr_frames; /* Number of frames stored in ptrs array */
1456         bool got_ref;           /* Did we pin pages by getting page ref? */
1457         bool is_pfns;           /* Does array contain pages or pfns? */
1458         void *ptrs[0];          /* Array of pinned pfns / pages. Use
1459                                  * pfns_vector_pages() or pfns_vector_pfns()
1460                                  * for access */
1461 };
1462
1463 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1464 void frame_vector_destroy(struct frame_vector *vec);
1465 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1466                      unsigned int gup_flags, struct frame_vector *vec);
1467 void put_vaddr_frames(struct frame_vector *vec);
1468 int frame_vector_to_pages(struct frame_vector *vec);
1469 void frame_vector_to_pfns(struct frame_vector *vec);
1470
1471 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1472 {
1473         return vec->nr_frames;
1474 }
1475
1476 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1477 {
1478         if (vec->is_pfns) {
1479                 int err = frame_vector_to_pages(vec);
1480
1481                 if (err)
1482                         return ERR_PTR(err);
1483         }
1484         return (struct page **)(vec->ptrs);
1485 }
1486
1487 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1488 {
1489         if (!vec->is_pfns)
1490                 frame_vector_to_pfns(vec);
1491         return (unsigned long *)(vec->ptrs);
1492 }
1493
1494 struct kvec;
1495 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1496                         struct page **pages);
1497 int get_kernel_page(unsigned long start, int write, struct page **pages);
1498 struct page *get_dump_page(unsigned long addr);
1499
1500 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1501 extern void do_invalidatepage(struct page *page, unsigned int offset,
1502                               unsigned int length);
1503
1504 void __set_page_dirty(struct page *, struct address_space *, int warn);
1505 int __set_page_dirty_nobuffers(struct page *page);
1506 int __set_page_dirty_no_writeback(struct page *page);
1507 int redirty_page_for_writepage(struct writeback_control *wbc,
1508                                 struct page *page);
1509 void account_page_dirtied(struct page *page, struct address_space *mapping);
1510 void account_page_cleaned(struct page *page, struct address_space *mapping,
1511                           struct bdi_writeback *wb);
1512 int set_page_dirty(struct page *page);
1513 int set_page_dirty_lock(struct page *page);
1514 void __cancel_dirty_page(struct page *page);
1515 static inline void cancel_dirty_page(struct page *page)
1516 {
1517         /* Avoid atomic ops, locking, etc. when not actually needed. */
1518         if (PageDirty(page))
1519                 __cancel_dirty_page(page);
1520 }
1521 int clear_page_dirty_for_io(struct page *page);
1522
1523 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1524
1525 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1526 {
1527         return !vma->vm_ops;
1528 }
1529
1530 #ifdef CONFIG_SHMEM
1531 /*
1532  * The vma_is_shmem is not inline because it is used only by slow
1533  * paths in userfault.
1534  */
1535 bool vma_is_shmem(struct vm_area_struct *vma);
1536 #else
1537 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1538 #endif
1539
1540 int vma_is_stack_for_current(struct vm_area_struct *vma);
1541
1542 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1543                 unsigned long old_addr, struct vm_area_struct *new_vma,
1544                 unsigned long new_addr, unsigned long len,
1545                 bool need_rmap_locks);
1546 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1547                               unsigned long end, pgprot_t newprot,
1548                               int dirty_accountable, int prot_numa);
1549 extern int mprotect_fixup(struct vm_area_struct *vma,
1550                           struct vm_area_struct **pprev, unsigned long start,
1551                           unsigned long end, unsigned long newflags);
1552
1553 /*
1554  * doesn't attempt to fault and will return short.
1555  */
1556 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1557                           struct page **pages);
1558 /*
1559  * per-process(per-mm_struct) statistics.
1560  */
1561 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1562 {
1563         long val = atomic_long_read(&mm->rss_stat.count[member]);
1564
1565 #ifdef SPLIT_RSS_COUNTING
1566         /*
1567          * counter is updated in asynchronous manner and may go to minus.
1568          * But it's never be expected number for users.
1569          */
1570         if (val < 0)
1571                 val = 0;
1572 #endif
1573         return (unsigned long)val;
1574 }
1575
1576 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1577 {
1578         atomic_long_add(value, &mm->rss_stat.count[member]);
1579 }
1580
1581 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1582 {
1583         atomic_long_inc(&mm->rss_stat.count[member]);
1584 }
1585
1586 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1587 {
1588         atomic_long_dec(&mm->rss_stat.count[member]);
1589 }
1590
1591 /* Optimized variant when page is already known not to be PageAnon */
1592 static inline int mm_counter_file(struct page *page)
1593 {
1594         if (PageSwapBacked(page))
1595                 return MM_SHMEMPAGES;
1596         return MM_FILEPAGES;
1597 }
1598
1599 static inline int mm_counter(struct page *page)
1600 {
1601         if (PageAnon(page))
1602                 return MM_ANONPAGES;
1603         return mm_counter_file(page);
1604 }
1605
1606 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1607 {
1608         return get_mm_counter(mm, MM_FILEPAGES) +
1609                 get_mm_counter(mm, MM_ANONPAGES) +
1610                 get_mm_counter(mm, MM_SHMEMPAGES);
1611 }
1612
1613 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1614 {
1615         return max(mm->hiwater_rss, get_mm_rss(mm));
1616 }
1617
1618 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1619 {
1620         return max(mm->hiwater_vm, mm->total_vm);
1621 }
1622
1623 static inline void update_hiwater_rss(struct mm_struct *mm)
1624 {
1625         unsigned long _rss = get_mm_rss(mm);
1626
1627         if ((mm)->hiwater_rss < _rss)
1628                 (mm)->hiwater_rss = _rss;
1629 }
1630
1631 static inline void update_hiwater_vm(struct mm_struct *mm)
1632 {
1633         if (mm->hiwater_vm < mm->total_vm)
1634                 mm->hiwater_vm = mm->total_vm;
1635 }
1636
1637 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1638 {
1639         mm->hiwater_rss = get_mm_rss(mm);
1640 }
1641
1642 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1643                                          struct mm_struct *mm)
1644 {
1645         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1646
1647         if (*maxrss < hiwater_rss)
1648                 *maxrss = hiwater_rss;
1649 }
1650
1651 #if defined(SPLIT_RSS_COUNTING)
1652 void sync_mm_rss(struct mm_struct *mm);
1653 #else
1654 static inline void sync_mm_rss(struct mm_struct *mm)
1655 {
1656 }
1657 #endif
1658
1659 #ifndef __HAVE_ARCH_PTE_DEVMAP
1660 static inline int pte_devmap(pte_t pte)
1661 {
1662         return 0;
1663 }
1664 #endif
1665
1666 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1667
1668 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1669                                spinlock_t **ptl);
1670 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1671                                     spinlock_t **ptl)
1672 {
1673         pte_t *ptep;
1674         __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1675         return ptep;
1676 }
1677
1678 #ifdef __PAGETABLE_P4D_FOLDED
1679 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1680                                                 unsigned long address)
1681 {
1682         return 0;
1683 }
1684 #else
1685 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1686 #endif
1687
1688 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1689 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1690                                                 unsigned long address)
1691 {
1692         return 0;
1693 }
1694 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1695 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1696
1697 #else
1698 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1699
1700 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1701 {
1702         atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1703 }
1704
1705 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1706 {
1707         atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1708 }
1709 #endif
1710
1711 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1712 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1713                                                 unsigned long address)
1714 {
1715         return 0;
1716 }
1717
1718 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1719 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1720
1721 #else
1722 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1723
1724 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1725 {
1726         atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1727 }
1728
1729 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1730 {
1731         atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1732 }
1733 #endif
1734
1735 #ifdef CONFIG_MMU
1736 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1737 {
1738         atomic_long_set(&mm->pgtables_bytes, 0);
1739 }
1740
1741 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1742 {
1743         return atomic_long_read(&mm->pgtables_bytes);
1744 }
1745
1746 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1747 {
1748         atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1749 }
1750
1751 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1752 {
1753         atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1754 }
1755 #else
1756
1757 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1758 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1759 {
1760         return 0;
1761 }
1762
1763 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1764 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1765 #endif
1766
1767 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1768 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1769
1770 /*
1771  * The following ifdef needed to get the 4level-fixup.h header to work.
1772  * Remove it when 4level-fixup.h has been removed.
1773  */
1774 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1775
1776 #ifndef __ARCH_HAS_5LEVEL_HACK
1777 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1778                 unsigned long address)
1779 {
1780         return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1781                 NULL : p4d_offset(pgd, address);
1782 }
1783
1784 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1785                 unsigned long address)
1786 {
1787         return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1788                 NULL : pud_offset(p4d, address);
1789 }
1790 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1791
1792 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1793 {
1794         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1795                 NULL: pmd_offset(pud, address);
1796 }
1797 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1798
1799 #if USE_SPLIT_PTE_PTLOCKS
1800 #if ALLOC_SPLIT_PTLOCKS
1801 void __init ptlock_cache_init(void);
1802 extern bool ptlock_alloc(struct page *page);
1803 extern void ptlock_free(struct page *page);
1804
1805 static inline spinlock_t *ptlock_ptr(struct page *page)
1806 {
1807         return page->ptl;
1808 }
1809 #else /* ALLOC_SPLIT_PTLOCKS */
1810 static inline void ptlock_cache_init(void)
1811 {
1812 }
1813
1814 static inline bool ptlock_alloc(struct page *page)
1815 {
1816         return true;
1817 }
1818
1819 static inline void ptlock_free(struct page *page)
1820 {
1821 }
1822
1823 static inline spinlock_t *ptlock_ptr(struct page *page)
1824 {
1825         return &page->ptl;
1826 }
1827 #endif /* ALLOC_SPLIT_PTLOCKS */
1828
1829 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1830 {
1831         return ptlock_ptr(pmd_page(*pmd));
1832 }
1833
1834 static inline bool ptlock_init(struct page *page)
1835 {
1836         /*
1837          * prep_new_page() initialize page->private (and therefore page->ptl)
1838          * with 0. Make sure nobody took it in use in between.
1839          *
1840          * It can happen if arch try to use slab for page table allocation:
1841          * slab code uses page->slab_cache, which share storage with page->ptl.
1842          */
1843         VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1844         if (!ptlock_alloc(page))
1845                 return false;
1846         spin_lock_init(ptlock_ptr(page));
1847         return true;
1848 }
1849
1850 /* Reset page->mapping so free_pages_check won't complain. */
1851 static inline void pte_lock_deinit(struct page *page)
1852 {
1853         page->mapping = NULL;
1854         ptlock_free(page);
1855 }
1856
1857 #else   /* !USE_SPLIT_PTE_PTLOCKS */
1858 /*
1859  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1860  */
1861 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1862 {
1863         return &mm->page_table_lock;
1864 }
1865 static inline void ptlock_cache_init(void) {}
1866 static inline bool ptlock_init(struct page *page) { return true; }
1867 static inline void pte_lock_deinit(struct page *page) {}
1868 #endif /* USE_SPLIT_PTE_PTLOCKS */
1869
1870 static inline void pgtable_init(void)
1871 {
1872         ptlock_cache_init();
1873         pgtable_cache_init();
1874 }
1875
1876 static inline bool pgtable_page_ctor(struct page *page)
1877 {
1878         if (!ptlock_init(page))
1879                 return false;
1880         inc_zone_page_state(page, NR_PAGETABLE);
1881         return true;
1882 }
1883
1884 static inline void pgtable_page_dtor(struct page *page)
1885 {
1886         pte_lock_deinit(page);
1887         dec_zone_page_state(page, NR_PAGETABLE);
1888 }
1889
1890 #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1891 ({                                                      \
1892         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1893         pte_t *__pte = pte_offset_map(pmd, address);    \
1894         *(ptlp) = __ptl;                                \
1895         spin_lock(__ptl);                               \
1896         __pte;                                          \
1897 })
1898
1899 #define pte_unmap_unlock(pte, ptl)      do {            \
1900         spin_unlock(ptl);                               \
1901         pte_unmap(pte);                                 \
1902 } while (0)
1903
1904 #define pte_alloc(mm, pmd, address)                     \
1905         (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1906
1907 #define pte_alloc_map(mm, pmd, address)                 \
1908         (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1909
1910 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1911         (pte_alloc(mm, pmd, address) ?                  \
1912                  NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1913
1914 #define pte_alloc_kernel(pmd, address)                  \
1915         ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1916                 NULL: pte_offset_kernel(pmd, address))
1917
1918 #if USE_SPLIT_PMD_PTLOCKS
1919
1920 static struct page *pmd_to_page(pmd_t *pmd)
1921 {
1922         unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1923         return virt_to_page((void *)((unsigned long) pmd & mask));
1924 }
1925
1926 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1927 {
1928         return ptlock_ptr(pmd_to_page(pmd));
1929 }
1930
1931 static inline bool pgtable_pmd_page_ctor(struct page *page)
1932 {
1933 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1934         page->pmd_huge_pte = NULL;
1935 #endif
1936         return ptlock_init(page);
1937 }
1938
1939 static inline void pgtable_pmd_page_dtor(struct page *page)
1940 {
1941 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1942         VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1943 #endif
1944         ptlock_free(page);
1945 }
1946
1947 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1948
1949 #else
1950
1951 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1952 {
1953         return &mm->page_table_lock;
1954 }
1955
1956 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1957 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1958
1959 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1960
1961 #endif
1962
1963 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1964 {
1965         spinlock_t *ptl = pmd_lockptr(mm, pmd);
1966         spin_lock(ptl);
1967         return ptl;
1968 }
1969
1970 /*
1971  * No scalability reason to split PUD locks yet, but follow the same pattern
1972  * as the PMD locks to make it easier if we decide to.  The VM should not be
1973  * considered ready to switch to split PUD locks yet; there may be places
1974  * which need to be converted from page_table_lock.
1975  */
1976 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1977 {
1978         return &mm->page_table_lock;
1979 }
1980
1981 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1982 {
1983         spinlock_t *ptl = pud_lockptr(mm, pud);
1984
1985         spin_lock(ptl);
1986         return ptl;
1987 }
1988
1989 extern void __init pagecache_init(void);
1990 extern void free_area_init(unsigned long * zones_size);
1991 extern void free_area_init_node(int nid, unsigned long * zones_size,
1992                 unsigned long zone_start_pfn, unsigned long *zholes_size);
1993 extern void free_initmem(void);
1994
1995 /*
1996  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1997  * into the buddy system. The freed pages will be poisoned with pattern
1998  * "poison" if it's within range [0, UCHAR_MAX].
1999  * Return pages freed into the buddy system.
2000  */
2001 extern unsigned long free_reserved_area(void *start, void *end,
2002                                         int poison, char *s);
2003
2004 #ifdef  CONFIG_HIGHMEM
2005 /*
2006  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2007  * and totalram_pages.
2008  */
2009 extern void free_highmem_page(struct page *page);
2010 #endif
2011
2012 extern void adjust_managed_page_count(struct page *page, long count);
2013 extern void mem_init_print_info(const char *str);
2014
2015 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2016
2017 /* Free the reserved page into the buddy system, so it gets managed. */
2018 static inline void __free_reserved_page(struct page *page)
2019 {
2020         ClearPageReserved(page);
2021         init_page_count(page);
2022         __free_page(page);
2023 }
2024
2025 static inline void free_reserved_page(struct page *page)
2026 {
2027         __free_reserved_page(page);
2028         adjust_managed_page_count(page, 1);
2029 }
2030
2031 static inline void mark_page_reserved(struct page *page)
2032 {
2033         SetPageReserved(page);
2034         adjust_managed_page_count(page, -1);
2035 }
2036
2037 /*
2038  * Default method to free all the __init memory into the buddy system.
2039  * The freed pages will be poisoned with pattern "poison" if it's within
2040  * range [0, UCHAR_MAX].
2041  * Return pages freed into the buddy system.
2042  */
2043 static inline unsigned long free_initmem_default(int poison)
2044 {
2045         extern char __init_begin[], __init_end[];
2046
2047         return free_reserved_area(&__init_begin, &__init_end,
2048                                   poison, "unused kernel");
2049 }
2050
2051 static inline unsigned long get_num_physpages(void)
2052 {
2053         int nid;
2054         unsigned long phys_pages = 0;
2055
2056         for_each_online_node(nid)
2057                 phys_pages += node_present_pages(nid);
2058
2059         return phys_pages;
2060 }
2061
2062 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2063 /*
2064  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2065  * zones, allocate the backing mem_map and account for memory holes in a more
2066  * architecture independent manner. This is a substitute for creating the
2067  * zone_sizes[] and zholes_size[] arrays and passing them to
2068  * free_area_init_node()
2069  *
2070  * An architecture is expected to register range of page frames backed by
2071  * physical memory with memblock_add[_node]() before calling
2072  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2073  * usage, an architecture is expected to do something like
2074  *
2075  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2076  *                                                       max_highmem_pfn};
2077  * for_each_valid_physical_page_range()
2078  *      memblock_add_node(base, size, nid)
2079  * free_area_init_nodes(max_zone_pfns);
2080  *
2081  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2082  * registered physical page range.  Similarly
2083  * sparse_memory_present_with_active_regions() calls memory_present() for
2084  * each range when SPARSEMEM is enabled.
2085  *
2086  * See mm/page_alloc.c for more information on each function exposed by
2087  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2088  */
2089 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2090 unsigned long node_map_pfn_alignment(void);
2091 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2092                                                 unsigned long end_pfn);
2093 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2094                                                 unsigned long end_pfn);
2095 extern void get_pfn_range_for_nid(unsigned int nid,
2096                         unsigned long *start_pfn, unsigned long *end_pfn);
2097 extern unsigned long find_min_pfn_with_active_regions(void);
2098 extern void free_bootmem_with_active_regions(int nid,
2099                                                 unsigned long max_low_pfn);
2100 extern void sparse_memory_present_with_active_regions(int nid);
2101
2102 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2103
2104 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2105     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2106 static inline int __early_pfn_to_nid(unsigned long pfn,
2107                                         struct mminit_pfnnid_cache *state)
2108 {
2109         return 0;
2110 }
2111 #else
2112 /* please see mm/page_alloc.c */
2113 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2114 /* there is a per-arch backend function. */
2115 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2116                                         struct mminit_pfnnid_cache *state);
2117 #endif
2118
2119 #ifdef CONFIG_HAVE_MEMBLOCK
2120 void zero_resv_unavail(void);
2121 #else
2122 static inline void zero_resv_unavail(void) {}
2123 #endif
2124
2125 extern void set_dma_reserve(unsigned long new_dma_reserve);
2126 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2127                 enum memmap_context, struct vmem_altmap *);
2128 extern void setup_per_zone_wmarks(void);
2129 extern int __meminit init_per_zone_wmark_min(void);
2130 extern void mem_init(void);
2131 extern void __init mmap_init(void);
2132 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2133 extern long si_mem_available(void);
2134 extern void si_meminfo(struct sysinfo * val);
2135 extern void si_meminfo_node(struct sysinfo *val, int nid);
2136 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2137 extern unsigned long arch_reserved_kernel_pages(void);
2138 #endif
2139
2140 extern __printf(3, 4)
2141 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2142
2143 extern void setup_per_cpu_pageset(void);
2144
2145 extern void zone_pcp_update(struct zone *zone);
2146 extern void zone_pcp_reset(struct zone *zone);
2147 extern void setup_zone_pageset(struct zone *zone);
2148
2149 /* page_alloc.c */
2150 extern int min_free_kbytes;
2151 extern int watermark_scale_factor;
2152
2153 /* nommu.c */
2154 extern atomic_long_t mmap_pages_allocated;
2155 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2156
2157 /* interval_tree.c */
2158 void vma_interval_tree_insert(struct vm_area_struct *node,
2159                               struct rb_root_cached *root);
2160 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2161                                     struct vm_area_struct *prev,
2162                                     struct rb_root_cached *root);
2163 void vma_interval_tree_remove(struct vm_area_struct *node,
2164                               struct rb_root_cached *root);
2165 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2166                                 unsigned long start, unsigned long last);
2167 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2168                                 unsigned long start, unsigned long last);
2169
2170 #define vma_interval_tree_foreach(vma, root, start, last)               \
2171         for (vma = vma_interval_tree_iter_first(root, start, last);     \
2172              vma; vma = vma_interval_tree_iter_next(vma, start, last))
2173
2174 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2175                                    struct rb_root_cached *root);
2176 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2177                                    struct rb_root_cached *root);
2178 struct anon_vma_chain *
2179 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2180                                   unsigned long start, unsigned long last);
2181 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2182         struct anon_vma_chain *node, unsigned long start, unsigned long last);
2183 #ifdef CONFIG_DEBUG_VM_RB
2184 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2185 #endif
2186
2187 #define anon_vma_interval_tree_foreach(avc, root, start, last)           \
2188         for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2189              avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2190
2191 /* mmap.c */
2192 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2193 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2194         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2195         struct vm_area_struct *expand);
2196 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2197         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2198 {
2199         return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2200 }
2201 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2202         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2203         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2204         struct mempolicy *, struct vm_userfaultfd_ctx);
2205 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2206 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2207         unsigned long addr, int new_below);
2208 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2209         unsigned long addr, int new_below);
2210 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2211 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2212         struct rb_node **, struct rb_node *);
2213 extern void unlink_file_vma(struct vm_area_struct *);
2214 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2215         unsigned long addr, unsigned long len, pgoff_t pgoff,
2216         bool *need_rmap_locks);
2217 extern void exit_mmap(struct mm_struct *);
2218
2219 static inline int check_data_rlimit(unsigned long rlim,
2220                                     unsigned long new,
2221                                     unsigned long start,
2222                                     unsigned long end_data,
2223                                     unsigned long start_data)
2224 {
2225         if (rlim < RLIM_INFINITY) {
2226                 if (((new - start) + (end_data - start_data)) > rlim)
2227                         return -ENOSPC;
2228         }
2229
2230         return 0;
2231 }
2232
2233 extern int mm_take_all_locks(struct mm_struct *mm);
2234 extern void mm_drop_all_locks(struct mm_struct *mm);
2235
2236 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2237 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2238 extern struct file *get_task_exe_file(struct task_struct *task);
2239
2240 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2241 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2242
2243 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2244                                    const struct vm_special_mapping *sm);
2245 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2246                                    unsigned long addr, unsigned long len,
2247                                    unsigned long flags,
2248                                    const struct vm_special_mapping *spec);
2249 /* This is an obsolete alternative to _install_special_mapping. */
2250 extern int install_special_mapping(struct mm_struct *mm,
2251                                    unsigned long addr, unsigned long len,
2252                                    unsigned long flags, struct page **pages);
2253
2254 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2255
2256 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2257         unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2258         struct list_head *uf);
2259 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2260         unsigned long len, unsigned long prot, unsigned long flags,
2261         vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2262         struct list_head *uf);
2263 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2264                      struct list_head *uf);
2265
2266 static inline unsigned long
2267 do_mmap_pgoff(struct file *file, unsigned long addr,
2268         unsigned long len, unsigned long prot, unsigned long flags,
2269         unsigned long pgoff, unsigned long *populate,
2270         struct list_head *uf)
2271 {
2272         return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2273 }
2274
2275 #ifdef CONFIG_MMU
2276 extern int __mm_populate(unsigned long addr, unsigned long len,
2277                          int ignore_errors);
2278 static inline void mm_populate(unsigned long addr, unsigned long len)
2279 {
2280         /* Ignore errors */
2281         (void) __mm_populate(addr, len, 1);
2282 }
2283 #else
2284 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2285 #endif
2286
2287 /* These take the mm semaphore themselves */
2288 extern int __must_check vm_brk(unsigned long, unsigned long);
2289 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2290 extern int vm_munmap(unsigned long, size_t);
2291 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2292         unsigned long, unsigned long,
2293         unsigned long, unsigned long);
2294
2295 struct vm_unmapped_area_info {
2296 #define VM_UNMAPPED_AREA_TOPDOWN 1
2297         unsigned long flags;
2298         unsigned long length;
2299         unsigned long low_limit;
2300         unsigned long high_limit;
2301         unsigned long align_mask;
2302         unsigned long align_offset;
2303 };
2304
2305 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2306 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2307
2308 /*
2309  * Search for an unmapped address range.
2310  *
2311  * We are looking for a range that:
2312  * - does not intersect with any VMA;
2313  * - is contained within the [low_limit, high_limit) interval;
2314  * - is at least the desired size.
2315  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2316  */
2317 static inline unsigned long
2318 vm_unmapped_area(struct vm_unmapped_area_info *info)
2319 {
2320         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2321                 return unmapped_area_topdown(info);
2322         else
2323                 return unmapped_area(info);
2324 }
2325
2326 /* truncate.c */
2327 extern void truncate_inode_pages(struct address_space *, loff_t);
2328 extern void truncate_inode_pages_range(struct address_space *,
2329                                        loff_t lstart, loff_t lend);
2330 extern void truncate_inode_pages_final(struct address_space *);
2331
2332 /* generic vm_area_ops exported for stackable file systems */
2333 extern int filemap_fault(struct vm_fault *vmf);
2334 extern void filemap_map_pages(struct vm_fault *vmf,
2335                 pgoff_t start_pgoff, pgoff_t end_pgoff);
2336 extern int filemap_page_mkwrite(struct vm_fault *vmf);
2337
2338 /* mm/page-writeback.c */
2339 int __must_check write_one_page(struct page *page);
2340 void task_dirty_inc(struct task_struct *tsk);
2341
2342 /* readahead.c */
2343 #define VM_MAX_READAHEAD        128     /* kbytes */
2344 #define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
2345
2346 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2347                         pgoff_t offset, unsigned long nr_to_read);
2348
2349 void page_cache_sync_readahead(struct address_space *mapping,
2350                                struct file_ra_state *ra,
2351                                struct file *filp,
2352                                pgoff_t offset,
2353                                unsigned long size);
2354
2355 void page_cache_async_readahead(struct address_space *mapping,
2356                                 struct file_ra_state *ra,
2357                                 struct file *filp,
2358                                 struct page *pg,
2359                                 pgoff_t offset,
2360                                 unsigned long size);
2361
2362 extern unsigned long stack_guard_gap;
2363 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2364 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2365
2366 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2367 extern int expand_downwards(struct vm_area_struct *vma,
2368                 unsigned long address);
2369 #if VM_GROWSUP
2370 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2371 #else
2372   #define expand_upwards(vma, address) (0)
2373 #endif
2374
2375 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2376 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2377 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2378                                              struct vm_area_struct **pprev);
2379
2380 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2381    NULL if none.  Assume start_addr < end_addr. */
2382 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2383 {
2384         struct vm_area_struct * vma = find_vma(mm,start_addr);
2385
2386         if (vma && end_addr <= vma->vm_start)
2387                 vma = NULL;
2388         return vma;
2389 }
2390
2391 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2392 {
2393         unsigned long vm_start = vma->vm_start;
2394
2395         if (vma->vm_flags & VM_GROWSDOWN) {
2396                 vm_start -= stack_guard_gap;
2397                 if (vm_start > vma->vm_start)
2398                         vm_start = 0;
2399         }
2400         return vm_start;
2401 }
2402
2403 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2404 {
2405         unsigned long vm_end = vma->vm_end;
2406
2407         if (vma->vm_flags & VM_GROWSUP) {
2408                 vm_end += stack_guard_gap;
2409                 if (vm_end < vma->vm_end)
2410                         vm_end = -PAGE_SIZE;
2411         }
2412         return vm_end;
2413 }
2414
2415 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2416 {
2417         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2418 }
2419
2420 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2421 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2422                                 unsigned long vm_start, unsigned long vm_end)
2423 {
2424         struct vm_area_struct *vma = find_vma(mm, vm_start);
2425
2426         if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2427                 vma = NULL;
2428
2429         return vma;
2430 }
2431
2432 #ifdef CONFIG_MMU
2433 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2434 void vma_set_page_prot(struct vm_area_struct *vma);
2435 #else
2436 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2437 {
2438         return __pgprot(0);
2439 }
2440 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2441 {
2442         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2443 }
2444 #endif
2445
2446 #ifdef CONFIG_NUMA_BALANCING
2447 unsigned long change_prot_numa(struct vm_area_struct *vma,
2448                         unsigned long start, unsigned long end);
2449 #endif
2450
2451 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2452 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2453                         unsigned long pfn, unsigned long size, pgprot_t);
2454 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2455 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2456                         unsigned long pfn);
2457 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2458                         unsigned long pfn, pgprot_t pgprot);
2459 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2460                         pfn_t pfn);
2461 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2462                         pfn_t pfn);
2463 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2464
2465 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2466                                 unsigned long addr, struct page *page)
2467 {
2468         int err = vm_insert_page(vma, addr, page);
2469
2470         if (err == -ENOMEM)
2471                 return VM_FAULT_OOM;
2472         if (err < 0 && err != -EBUSY)
2473                 return VM_FAULT_SIGBUS;
2474
2475         return VM_FAULT_NOPAGE;
2476 }
2477
2478 static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
2479                                 unsigned long addr, pfn_t pfn)
2480 {
2481         int err = vm_insert_mixed(vma, addr, pfn);
2482
2483         if (err == -ENOMEM)
2484                 return VM_FAULT_OOM;
2485         if (err < 0 && err != -EBUSY)
2486                 return VM_FAULT_SIGBUS;
2487
2488         return VM_FAULT_NOPAGE;
2489 }
2490
2491 static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
2492                         unsigned long addr, unsigned long pfn)
2493 {
2494         int err = vm_insert_pfn(vma, addr, pfn);
2495
2496         if (err == -ENOMEM)
2497                 return VM_FAULT_OOM;
2498         if (err < 0 && err != -EBUSY)
2499                 return VM_FAULT_SIGBUS;
2500
2501         return VM_FAULT_NOPAGE;
2502 }
2503
2504 struct page *follow_page_mask(struct vm_area_struct *vma,
2505                               unsigned long address, unsigned int foll_flags,
2506                               unsigned int *page_mask);
2507
2508 static inline struct page *follow_page(struct vm_area_struct *vma,
2509                 unsigned long address, unsigned int foll_flags)
2510 {
2511         unsigned int unused_page_mask;
2512         return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2513 }
2514
2515 #define FOLL_WRITE      0x01    /* check pte is writable */
2516 #define FOLL_TOUCH      0x02    /* mark page accessed */
2517 #define FOLL_GET        0x04    /* do get_page on page */
2518 #define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
2519 #define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
2520 #define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
2521                                  * and return without waiting upon it */
2522 #define FOLL_POPULATE   0x40    /* fault in page */
2523 #define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
2524 #define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2525 #define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
2526 #define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2527 #define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
2528 #define FOLL_MLOCK      0x1000  /* lock present pages */
2529 #define FOLL_REMOTE     0x2000  /* we are working on non-current tsk/mm */
2530 #define FOLL_COW        0x4000  /* internal GUP flag */
2531
2532 static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2533 {
2534         if (vm_fault & VM_FAULT_OOM)
2535                 return -ENOMEM;
2536         if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2537                 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2538         if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2539                 return -EFAULT;
2540         return 0;
2541 }
2542
2543 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2544                         void *data);
2545 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2546                                unsigned long size, pte_fn_t fn, void *data);
2547
2548
2549 #ifdef CONFIG_PAGE_POISONING
2550 extern bool page_poisoning_enabled(void);
2551 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2552 extern bool page_is_poisoned(struct page *page);
2553 #else
2554 static inline bool page_poisoning_enabled(void) { return false; }
2555 static inline void kernel_poison_pages(struct page *page, int numpages,
2556                                         int enable) { }
2557 static inline bool page_is_poisoned(struct page *page) { return false; }
2558 #endif
2559
2560 #ifdef CONFIG_DEBUG_PAGEALLOC
2561 extern bool _debug_pagealloc_enabled;
2562 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2563
2564 static inline bool debug_pagealloc_enabled(void)
2565 {
2566         return _debug_pagealloc_enabled;
2567 }
2568
2569 static inline void
2570 kernel_map_pages(struct page *page, int numpages, int enable)
2571 {
2572         if (!debug_pagealloc_enabled())
2573                 return;
2574
2575         __kernel_map_pages(page, numpages, enable);
2576 }
2577 #ifdef CONFIG_HIBERNATION
2578 extern bool kernel_page_present(struct page *page);
2579 #endif  /* CONFIG_HIBERNATION */
2580 #else   /* CONFIG_DEBUG_PAGEALLOC */
2581 static inline void
2582 kernel_map_pages(struct page *page, int numpages, int enable) {}
2583 #ifdef CONFIG_HIBERNATION
2584 static inline bool kernel_page_present(struct page *page) { return true; }
2585 #endif  /* CONFIG_HIBERNATION */
2586 static inline bool debug_pagealloc_enabled(void)
2587 {
2588         return false;
2589 }
2590 #endif  /* CONFIG_DEBUG_PAGEALLOC */
2591
2592 #ifdef __HAVE_ARCH_GATE_AREA
2593 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2594 extern int in_gate_area_no_mm(unsigned long addr);
2595 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2596 #else
2597 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2598 {
2599         return NULL;
2600 }
2601 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2602 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2603 {
2604         return 0;
2605 }
2606 #endif  /* __HAVE_ARCH_GATE_AREA */
2607
2608 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2609
2610 #ifdef CONFIG_SYSCTL
2611 extern int sysctl_drop_caches;
2612 int drop_caches_sysctl_handler(struct ctl_table *, int,
2613                                         void __user *, size_t *, loff_t *);
2614 #endif
2615
2616 void drop_slab(void);
2617 void drop_slab_node(int nid);
2618
2619 #ifndef CONFIG_MMU
2620 #define randomize_va_space 0
2621 #else
2622 extern int randomize_va_space;
2623 #endif
2624
2625 const char * arch_vma_name(struct vm_area_struct *vma);
2626 void print_vma_addr(char *prefix, unsigned long rip);
2627
2628 void sparse_mem_maps_populate_node(struct page **map_map,
2629                                    unsigned long pnum_begin,
2630                                    unsigned long pnum_end,
2631                                    unsigned long map_count,
2632                                    int nodeid);
2633
2634 struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2635                 struct vmem_altmap *altmap);
2636 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2637 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2638 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2639 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2640 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2641 void *vmemmap_alloc_block(unsigned long size, int node);
2642 struct vmem_altmap;
2643 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2644 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2645 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2646 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2647                                int node);
2648 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2649                 struct vmem_altmap *altmap);
2650 void vmemmap_populate_print_last(void);
2651 #ifdef CONFIG_MEMORY_HOTPLUG
2652 void vmemmap_free(unsigned long start, unsigned long end,
2653                 struct vmem_altmap *altmap);
2654 #endif
2655 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2656                                   unsigned long nr_pages);
2657
2658 enum mf_flags {
2659         MF_COUNT_INCREASED = 1 << 0,
2660         MF_ACTION_REQUIRED = 1 << 1,
2661         MF_MUST_KILL = 1 << 2,
2662         MF_SOFT_OFFLINE = 1 << 3,
2663 };
2664 extern int memory_failure(unsigned long pfn, int flags);
2665 extern void memory_failure_queue(unsigned long pfn, int flags);
2666 extern int unpoison_memory(unsigned long pfn);
2667 extern int get_hwpoison_page(struct page *page);
2668 #define put_hwpoison_page(page) put_page(page)
2669 extern int sysctl_memory_failure_early_kill;
2670 extern int sysctl_memory_failure_recovery;
2671 extern void shake_page(struct page *p, int access);
2672 extern atomic_long_t num_poisoned_pages __read_mostly;
2673 extern int soft_offline_page(struct page *page, int flags);
2674
2675
2676 /*
2677  * Error handlers for various types of pages.
2678  */
2679 enum mf_result {
2680         MF_IGNORED,     /* Error: cannot be handled */
2681         MF_FAILED,      /* Error: handling failed */
2682         MF_DELAYED,     /* Will be handled later */
2683         MF_RECOVERED,   /* Successfully recovered */
2684 };
2685
2686 enum mf_action_page_type {
2687         MF_MSG_KERNEL,
2688         MF_MSG_KERNEL_HIGH_ORDER,
2689         MF_MSG_SLAB,
2690         MF_MSG_DIFFERENT_COMPOUND,
2691         MF_MSG_POISONED_HUGE,
2692         MF_MSG_HUGE,
2693         MF_MSG_FREE_HUGE,
2694         MF_MSG_NON_PMD_HUGE,
2695         MF_MSG_UNMAP_FAILED,
2696         MF_MSG_DIRTY_SWAPCACHE,
2697         MF_MSG_CLEAN_SWAPCACHE,
2698         MF_MSG_DIRTY_MLOCKED_LRU,
2699         MF_MSG_CLEAN_MLOCKED_LRU,
2700         MF_MSG_DIRTY_UNEVICTABLE_LRU,
2701         MF_MSG_CLEAN_UNEVICTABLE_LRU,
2702         MF_MSG_DIRTY_LRU,
2703         MF_MSG_CLEAN_LRU,
2704         MF_MSG_TRUNCATED_LRU,
2705         MF_MSG_BUDDY,
2706         MF_MSG_BUDDY_2ND,
2707         MF_MSG_UNKNOWN,
2708 };
2709
2710 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2711 extern void clear_huge_page(struct page *page,
2712                             unsigned long addr_hint,
2713                             unsigned int pages_per_huge_page);
2714 extern void copy_user_huge_page(struct page *dst, struct page *src,
2715                                 unsigned long addr, struct vm_area_struct *vma,
2716                                 unsigned int pages_per_huge_page);
2717 extern long copy_huge_page_from_user(struct page *dst_page,
2718                                 const void __user *usr_src,
2719                                 unsigned int pages_per_huge_page,
2720                                 bool allow_pagefault);
2721 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2722
2723 extern struct page_ext_operations debug_guardpage_ops;
2724
2725 #ifdef CONFIG_DEBUG_PAGEALLOC
2726 extern unsigned int _debug_guardpage_minorder;
2727 extern bool _debug_guardpage_enabled;
2728
2729 static inline unsigned int debug_guardpage_minorder(void)
2730 {
2731         return _debug_guardpage_minorder;
2732 }
2733
2734 static inline bool debug_guardpage_enabled(void)
2735 {
2736         return _debug_guardpage_enabled;
2737 }
2738
2739 static inline bool page_is_guard(struct page *page)
2740 {
2741         struct page_ext *page_ext;
2742
2743         if (!debug_guardpage_enabled())
2744                 return false;
2745
2746         page_ext = lookup_page_ext(page);
2747         if (unlikely(!page_ext))
2748                 return false;
2749
2750         return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2751 }
2752 #else
2753 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2754 static inline bool debug_guardpage_enabled(void) { return false; }
2755 static inline bool page_is_guard(struct page *page) { return false; }
2756 #endif /* CONFIG_DEBUG_PAGEALLOC */
2757
2758 #if MAX_NUMNODES > 1
2759 void __init setup_nr_node_ids(void);
2760 #else
2761 static inline void setup_nr_node_ids(void) {}
2762 #endif
2763
2764 #endif /* __KERNEL__ */
2765 #endif /* _LINUX_MM_H */