2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include "cgroup-internal.h"
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/cgroup.h>
62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
66 * cgroup_mutex is the master lock. Any modification to cgroup or its
67 * hierarchy must be performed while holding it.
69 * css_set_lock protects task->cgroups pointer, the list of css_set
70 * objects, and the chain of tasks off each css_set.
72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
73 * cgroup.h can use them for lockdep annotations.
75 DEFINE_MUTEX(cgroup_mutex);
76 DEFINE_SPINLOCK(css_set_lock);
78 #ifdef CONFIG_PROVE_RCU
79 EXPORT_SYMBOL_GPL(cgroup_mutex);
80 EXPORT_SYMBOL_GPL(css_set_lock);
84 * Protects cgroup_idr and css_idr so that IDs can be released without
85 * grabbing cgroup_mutex.
87 static DEFINE_SPINLOCK(cgroup_idr_lock);
90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
91 * against file removal/re-creation across css hiding.
93 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
97 #define cgroup_assert_mutex_or_rcu_locked() \
98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
99 !lockdep_is_held(&cgroup_mutex), \
100 "cgroup_mutex or RCU read lock required");
103 * cgroup destruction makes heavy use of work items and there can be a lot
104 * of concurrent destructions. Use a separate workqueue so that cgroup
105 * destruction work items don't end up filling up max_active of system_wq
106 * which may lead to deadlock.
108 static struct workqueue_struct *cgroup_destroy_wq;
110 /* generate an array of cgroup subsystem pointers */
111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
112 struct cgroup_subsys *cgroup_subsys[] = {
113 #include <linux/cgroup_subsys.h>
117 /* array of cgroup subsystem names */
118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
119 static const char *cgroup_subsys_name[] = {
120 #include <linux/cgroup_subsys.h>
124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
130 #include <linux/cgroup_subsys.h>
133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
134 static struct static_key_true *cgroup_subsys_enabled_key[] = {
135 #include <linux/cgroup_subsys.h>
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
141 #include <linux/cgroup_subsys.h>
145 static DEFINE_PER_CPU(struct cgroup_cpu_stat, cgrp_dfl_root_cpu_stat);
148 * The default hierarchy, reserved for the subsystems that are otherwise
149 * unattached - it never has more than a single cgroup, and all tasks are
150 * part of that cgroup.
152 struct cgroup_root cgrp_dfl_root = { .cgrp.cpu_stat = &cgrp_dfl_root_cpu_stat };
153 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
156 * The default hierarchy always exists but is hidden until mounted for the
157 * first time. This is for backward compatibility.
159 static bool cgrp_dfl_visible;
161 /* some controllers are not supported in the default hierarchy */
162 static u16 cgrp_dfl_inhibit_ss_mask;
164 /* some controllers are implicitly enabled on the default hierarchy */
165 static u16 cgrp_dfl_implicit_ss_mask;
167 /* some controllers can be threaded on the default hierarchy */
168 static u16 cgrp_dfl_threaded_ss_mask;
170 /* The list of hierarchy roots */
171 LIST_HEAD(cgroup_roots);
172 static int cgroup_root_count;
174 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
175 static DEFINE_IDR(cgroup_hierarchy_idr);
178 * Assign a monotonically increasing serial number to csses. It guarantees
179 * cgroups with bigger numbers are newer than those with smaller numbers.
180 * Also, as csses are always appended to the parent's ->children list, it
181 * guarantees that sibling csses are always sorted in the ascending serial
182 * number order on the list. Protected by cgroup_mutex.
184 static u64 css_serial_nr_next = 1;
187 * These bitmasks identify subsystems with specific features to avoid
188 * having to do iterative checks repeatedly.
190 static u16 have_fork_callback __read_mostly;
191 static u16 have_exit_callback __read_mostly;
192 static u16 have_free_callback __read_mostly;
193 static u16 have_canfork_callback __read_mostly;
195 /* cgroup namespace for init task */
196 struct cgroup_namespace init_cgroup_ns = {
197 .count = REFCOUNT_INIT(2),
198 .user_ns = &init_user_ns,
199 .ns.ops = &cgroupns_operations,
200 .ns.inum = PROC_CGROUP_INIT_INO,
201 .root_cset = &init_css_set,
204 static struct file_system_type cgroup2_fs_type;
205 static struct cftype cgroup_base_files[];
207 static int cgroup_apply_control(struct cgroup *cgrp);
208 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
209 static void css_task_iter_advance(struct css_task_iter *it);
210 static int cgroup_destroy_locked(struct cgroup *cgrp);
211 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
212 struct cgroup_subsys *ss);
213 static void css_release(struct percpu_ref *ref);
214 static void kill_css(struct cgroup_subsys_state *css);
215 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
216 struct cgroup *cgrp, struct cftype cfts[],
220 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
221 * @ssid: subsys ID of interest
223 * cgroup_subsys_enabled() can only be used with literal subsys names which
224 * is fine for individual subsystems but unsuitable for cgroup core. This
225 * is slower static_key_enabled() based test indexed by @ssid.
227 bool cgroup_ssid_enabled(int ssid)
229 if (CGROUP_SUBSYS_COUNT == 0)
232 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
236 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
237 * @cgrp: the cgroup of interest
239 * The default hierarchy is the v2 interface of cgroup and this function
240 * can be used to test whether a cgroup is on the default hierarchy for
241 * cases where a subsystem should behave differnetly depending on the
244 * The set of behaviors which change on the default hierarchy are still
245 * being determined and the mount option is prefixed with __DEVEL__.
247 * List of changed behaviors:
249 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
250 * and "name" are disallowed.
252 * - When mounting an existing superblock, mount options should match.
254 * - Remount is disallowed.
256 * - rename(2) is disallowed.
258 * - "tasks" is removed. Everything should be at process granularity. Use
259 * "cgroup.procs" instead.
261 * - "cgroup.procs" is not sorted. pids will be unique unless they got
262 * recycled inbetween reads.
264 * - "release_agent" and "notify_on_release" are removed. Replacement
265 * notification mechanism will be implemented.
267 * - "cgroup.clone_children" is removed.
269 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
270 * and its descendants contain no task; otherwise, 1. The file also
271 * generates kernfs notification which can be monitored through poll and
272 * [di]notify when the value of the file changes.
274 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
275 * take masks of ancestors with non-empty cpus/mems, instead of being
276 * moved to an ancestor.
278 * - cpuset: a task can be moved into an empty cpuset, and again it takes
279 * masks of ancestors.
281 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
284 * - blkcg: blk-throttle becomes properly hierarchical.
286 * - debug: disallowed on the default hierarchy.
288 bool cgroup_on_dfl(const struct cgroup *cgrp)
290 return cgrp->root == &cgrp_dfl_root;
293 /* IDR wrappers which synchronize using cgroup_idr_lock */
294 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
299 idr_preload(gfp_mask);
300 spin_lock_bh(&cgroup_idr_lock);
301 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
302 spin_unlock_bh(&cgroup_idr_lock);
307 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
311 spin_lock_bh(&cgroup_idr_lock);
312 ret = idr_replace(idr, ptr, id);
313 spin_unlock_bh(&cgroup_idr_lock);
317 static void cgroup_idr_remove(struct idr *idr, int id)
319 spin_lock_bh(&cgroup_idr_lock);
321 spin_unlock_bh(&cgroup_idr_lock);
324 static bool cgroup_has_tasks(struct cgroup *cgrp)
326 return cgrp->nr_populated_csets;
329 bool cgroup_is_threaded(struct cgroup *cgrp)
331 return cgrp->dom_cgrp != cgrp;
334 /* can @cgrp host both domain and threaded children? */
335 static bool cgroup_is_mixable(struct cgroup *cgrp)
338 * Root isn't under domain level resource control exempting it from
339 * the no-internal-process constraint, so it can serve as a thread
340 * root and a parent of resource domains at the same time.
342 return !cgroup_parent(cgrp);
345 /* can @cgrp become a thread root? should always be true for a thread root */
346 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
348 /* mixables don't care */
349 if (cgroup_is_mixable(cgrp))
352 /* domain roots can't be nested under threaded */
353 if (cgroup_is_threaded(cgrp))
356 /* can only have either domain or threaded children */
357 if (cgrp->nr_populated_domain_children)
360 /* and no domain controllers can be enabled */
361 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
367 /* is @cgrp root of a threaded subtree? */
368 bool cgroup_is_thread_root(struct cgroup *cgrp)
370 /* thread root should be a domain */
371 if (cgroup_is_threaded(cgrp))
374 /* a domain w/ threaded children is a thread root */
375 if (cgrp->nr_threaded_children)
379 * A domain which has tasks and explicit threaded controllers
380 * enabled is a thread root.
382 if (cgroup_has_tasks(cgrp) &&
383 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
389 /* a domain which isn't connected to the root w/o brekage can't be used */
390 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
392 /* the cgroup itself can be a thread root */
393 if (cgroup_is_threaded(cgrp))
396 /* but the ancestors can't be unless mixable */
397 while ((cgrp = cgroup_parent(cgrp))) {
398 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
400 if (cgroup_is_threaded(cgrp))
407 /* subsystems visibly enabled on a cgroup */
408 static u16 cgroup_control(struct cgroup *cgrp)
410 struct cgroup *parent = cgroup_parent(cgrp);
411 u16 root_ss_mask = cgrp->root->subsys_mask;
414 u16 ss_mask = parent->subtree_control;
416 /* threaded cgroups can only have threaded controllers */
417 if (cgroup_is_threaded(cgrp))
418 ss_mask &= cgrp_dfl_threaded_ss_mask;
422 if (cgroup_on_dfl(cgrp))
423 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
424 cgrp_dfl_implicit_ss_mask);
428 /* subsystems enabled on a cgroup */
429 static u16 cgroup_ss_mask(struct cgroup *cgrp)
431 struct cgroup *parent = cgroup_parent(cgrp);
434 u16 ss_mask = parent->subtree_ss_mask;
436 /* threaded cgroups can only have threaded controllers */
437 if (cgroup_is_threaded(cgrp))
438 ss_mask &= cgrp_dfl_threaded_ss_mask;
442 return cgrp->root->subsys_mask;
446 * cgroup_css - obtain a cgroup's css for the specified subsystem
447 * @cgrp: the cgroup of interest
448 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
450 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
451 * function must be called either under cgroup_mutex or rcu_read_lock() and
452 * the caller is responsible for pinning the returned css if it wants to
453 * keep accessing it outside the said locks. This function may return
454 * %NULL if @cgrp doesn't have @subsys_id enabled.
456 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
457 struct cgroup_subsys *ss)
460 return rcu_dereference_check(cgrp->subsys[ss->id],
461 lockdep_is_held(&cgroup_mutex));
467 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
468 * @cgrp: the cgroup of interest
469 * @ss: the subsystem of interest
471 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
472 * or is offline, %NULL is returned.
474 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
475 struct cgroup_subsys *ss)
477 struct cgroup_subsys_state *css;
480 css = cgroup_css(cgrp, ss);
481 if (!css || !css_tryget_online(css))
489 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
490 * @cgrp: the cgroup of interest
491 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
493 * Similar to cgroup_css() but returns the effective css, which is defined
494 * as the matching css of the nearest ancestor including self which has @ss
495 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
496 * function is guaranteed to return non-NULL css.
498 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
499 struct cgroup_subsys *ss)
501 lockdep_assert_held(&cgroup_mutex);
507 * This function is used while updating css associations and thus
508 * can't test the csses directly. Test ss_mask.
510 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
511 cgrp = cgroup_parent(cgrp);
516 return cgroup_css(cgrp, ss);
520 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
521 * @cgrp: the cgroup of interest
522 * @ss: the subsystem of interest
524 * Find and get the effective css of @cgrp for @ss. The effective css is
525 * defined as the matching css of the nearest ancestor including self which
526 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
527 * the root css is returned, so this function always returns a valid css.
528 * The returned css must be put using css_put().
530 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
531 struct cgroup_subsys *ss)
533 struct cgroup_subsys_state *css;
538 css = cgroup_css(cgrp, ss);
540 if (css && css_tryget_online(css))
542 cgrp = cgroup_parent(cgrp);
545 css = init_css_set.subsys[ss->id];
552 static void cgroup_get_live(struct cgroup *cgrp)
554 WARN_ON_ONCE(cgroup_is_dead(cgrp));
555 css_get(&cgrp->self);
558 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
560 struct cgroup *cgrp = of->kn->parent->priv;
561 struct cftype *cft = of_cft(of);
564 * This is open and unprotected implementation of cgroup_css().
565 * seq_css() is only called from a kernfs file operation which has
566 * an active reference on the file. Because all the subsystem
567 * files are drained before a css is disassociated with a cgroup,
568 * the matching css from the cgroup's subsys table is guaranteed to
569 * be and stay valid until the enclosing operation is complete.
572 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
576 EXPORT_SYMBOL_GPL(of_css);
579 * for_each_css - iterate all css's of a cgroup
580 * @css: the iteration cursor
581 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
582 * @cgrp: the target cgroup to iterate css's of
584 * Should be called under cgroup_[tree_]mutex.
586 #define for_each_css(css, ssid, cgrp) \
587 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
588 if (!((css) = rcu_dereference_check( \
589 (cgrp)->subsys[(ssid)], \
590 lockdep_is_held(&cgroup_mutex)))) { } \
594 * for_each_e_css - iterate all effective css's of a cgroup
595 * @css: the iteration cursor
596 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
597 * @cgrp: the target cgroup to iterate css's of
599 * Should be called under cgroup_[tree_]mutex.
601 #define for_each_e_css(css, ssid, cgrp) \
602 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
603 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
608 * do_each_subsys_mask - filter for_each_subsys with a bitmask
609 * @ss: the iteration cursor
610 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
611 * @ss_mask: the bitmask
613 * The block will only run for cases where the ssid-th bit (1 << ssid) of
616 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
617 unsigned long __ss_mask = (ss_mask); \
618 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
622 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
623 (ss) = cgroup_subsys[ssid]; \
626 #define while_each_subsys_mask() \
631 /* iterate over child cgrps, lock should be held throughout iteration */
632 #define cgroup_for_each_live_child(child, cgrp) \
633 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
634 if (({ lockdep_assert_held(&cgroup_mutex); \
635 cgroup_is_dead(child); })) \
639 /* walk live descendants in preorder */
640 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
641 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
642 if (({ lockdep_assert_held(&cgroup_mutex); \
643 (dsct) = (d_css)->cgroup; \
644 cgroup_is_dead(dsct); })) \
648 /* walk live descendants in postorder */
649 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
650 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
651 if (({ lockdep_assert_held(&cgroup_mutex); \
652 (dsct) = (d_css)->cgroup; \
653 cgroup_is_dead(dsct); })) \
658 * The default css_set - used by init and its children prior to any
659 * hierarchies being mounted. It contains a pointer to the root state
660 * for each subsystem. Also used to anchor the list of css_sets. Not
661 * reference-counted, to improve performance when child cgroups
662 * haven't been created.
664 struct css_set init_css_set = {
665 .refcount = REFCOUNT_INIT(1),
666 .dom_cset = &init_css_set,
667 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
668 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
669 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
670 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
671 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
672 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
673 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
676 * The following field is re-initialized when this cset gets linked
677 * in cgroup_init(). However, let's initialize the field
678 * statically too so that the default cgroup can be accessed safely
681 .dfl_cgrp = &cgrp_dfl_root.cgrp,
684 static int css_set_count = 1; /* 1 for init_css_set */
686 static bool css_set_threaded(struct css_set *cset)
688 return cset->dom_cset != cset;
692 * css_set_populated - does a css_set contain any tasks?
693 * @cset: target css_set
695 * css_set_populated() should be the same as !!cset->nr_tasks at steady
696 * state. However, css_set_populated() can be called while a task is being
697 * added to or removed from the linked list before the nr_tasks is
698 * properly updated. Hence, we can't just look at ->nr_tasks here.
700 static bool css_set_populated(struct css_set *cset)
702 lockdep_assert_held(&css_set_lock);
704 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
708 * cgroup_update_populated - update the populated count of a cgroup
709 * @cgrp: the target cgroup
710 * @populated: inc or dec populated count
712 * One of the css_sets associated with @cgrp is either getting its first
713 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
714 * count is propagated towards root so that a given cgroup's
715 * nr_populated_children is zero iff none of its descendants contain any
718 * @cgrp's interface file "cgroup.populated" is zero if both
719 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
720 * 1 otherwise. When the sum changes from or to zero, userland is notified
721 * that the content of the interface file has changed. This can be used to
722 * detect when @cgrp and its descendants become populated or empty.
724 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
726 struct cgroup *child = NULL;
727 int adj = populated ? 1 : -1;
729 lockdep_assert_held(&css_set_lock);
732 bool was_populated = cgroup_is_populated(cgrp);
735 cgrp->nr_populated_csets += adj;
737 if (cgroup_is_threaded(child))
738 cgrp->nr_populated_threaded_children += adj;
740 cgrp->nr_populated_domain_children += adj;
743 if (was_populated == cgroup_is_populated(cgrp))
746 cgroup1_check_for_release(cgrp);
747 cgroup_file_notify(&cgrp->events_file);
750 cgrp = cgroup_parent(cgrp);
755 * css_set_update_populated - update populated state of a css_set
756 * @cset: target css_set
757 * @populated: whether @cset is populated or depopulated
759 * @cset is either getting the first task or losing the last. Update the
760 * populated counters of all associated cgroups accordingly.
762 static void css_set_update_populated(struct css_set *cset, bool populated)
764 struct cgrp_cset_link *link;
766 lockdep_assert_held(&css_set_lock);
768 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
769 cgroup_update_populated(link->cgrp, populated);
773 * css_set_move_task - move a task from one css_set to another
774 * @task: task being moved
775 * @from_cset: css_set @task currently belongs to (may be NULL)
776 * @to_cset: new css_set @task is being moved to (may be NULL)
777 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
779 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
780 * css_set, @from_cset can be NULL. If @task is being disassociated
781 * instead of moved, @to_cset can be NULL.
783 * This function automatically handles populated counter updates and
784 * css_task_iter adjustments but the caller is responsible for managing
785 * @from_cset and @to_cset's reference counts.
787 static void css_set_move_task(struct task_struct *task,
788 struct css_set *from_cset, struct css_set *to_cset,
791 lockdep_assert_held(&css_set_lock);
793 if (to_cset && !css_set_populated(to_cset))
794 css_set_update_populated(to_cset, true);
797 struct css_task_iter *it, *pos;
799 WARN_ON_ONCE(list_empty(&task->cg_list));
802 * @task is leaving, advance task iterators which are
803 * pointing to it so that they can resume at the next
804 * position. Advancing an iterator might remove it from
805 * the list, use safe walk. See css_task_iter_advance*()
808 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
810 if (it->task_pos == &task->cg_list)
811 css_task_iter_advance(it);
813 list_del_init(&task->cg_list);
814 if (!css_set_populated(from_cset))
815 css_set_update_populated(from_cset, false);
817 WARN_ON_ONCE(!list_empty(&task->cg_list));
822 * We are synchronized through cgroup_threadgroup_rwsem
823 * against PF_EXITING setting such that we can't race
824 * against cgroup_exit() changing the css_set to
825 * init_css_set and dropping the old one.
827 WARN_ON_ONCE(task->flags & PF_EXITING);
829 rcu_assign_pointer(task->cgroups, to_cset);
830 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
836 * hash table for cgroup groups. This improves the performance to find
837 * an existing css_set. This hash doesn't (currently) take into
838 * account cgroups in empty hierarchies.
840 #define CSS_SET_HASH_BITS 7
841 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
843 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
845 unsigned long key = 0UL;
846 struct cgroup_subsys *ss;
849 for_each_subsys(ss, i)
850 key += (unsigned long)css[i];
851 key = (key >> 16) ^ key;
856 void put_css_set_locked(struct css_set *cset)
858 struct cgrp_cset_link *link, *tmp_link;
859 struct cgroup_subsys *ss;
862 lockdep_assert_held(&css_set_lock);
864 if (!refcount_dec_and_test(&cset->refcount))
867 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
869 /* This css_set is dead. unlink it and release cgroup and css refs */
870 for_each_subsys(ss, ssid) {
871 list_del(&cset->e_cset_node[ssid]);
872 css_put(cset->subsys[ssid]);
874 hash_del(&cset->hlist);
877 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
878 list_del(&link->cset_link);
879 list_del(&link->cgrp_link);
880 if (cgroup_parent(link->cgrp))
881 cgroup_put(link->cgrp);
885 if (css_set_threaded(cset)) {
886 list_del(&cset->threaded_csets_node);
887 put_css_set_locked(cset->dom_cset);
890 kfree_rcu(cset, rcu_head);
894 * compare_css_sets - helper function for find_existing_css_set().
895 * @cset: candidate css_set being tested
896 * @old_cset: existing css_set for a task
897 * @new_cgrp: cgroup that's being entered by the task
898 * @template: desired set of css pointers in css_set (pre-calculated)
900 * Returns true if "cset" matches "old_cset" except for the hierarchy
901 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
903 static bool compare_css_sets(struct css_set *cset,
904 struct css_set *old_cset,
905 struct cgroup *new_cgrp,
906 struct cgroup_subsys_state *template[])
908 struct cgroup *new_dfl_cgrp;
909 struct list_head *l1, *l2;
912 * On the default hierarchy, there can be csets which are
913 * associated with the same set of cgroups but different csses.
914 * Let's first ensure that csses match.
916 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
920 /* @cset's domain should match the default cgroup's */
921 if (cgroup_on_dfl(new_cgrp))
922 new_dfl_cgrp = new_cgrp;
924 new_dfl_cgrp = old_cset->dfl_cgrp;
926 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
930 * Compare cgroup pointers in order to distinguish between
931 * different cgroups in hierarchies. As different cgroups may
932 * share the same effective css, this comparison is always
935 l1 = &cset->cgrp_links;
936 l2 = &old_cset->cgrp_links;
938 struct cgrp_cset_link *link1, *link2;
939 struct cgroup *cgrp1, *cgrp2;
943 /* See if we reached the end - both lists are equal length. */
944 if (l1 == &cset->cgrp_links) {
945 BUG_ON(l2 != &old_cset->cgrp_links);
948 BUG_ON(l2 == &old_cset->cgrp_links);
950 /* Locate the cgroups associated with these links. */
951 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
952 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
955 /* Hierarchies should be linked in the same order. */
956 BUG_ON(cgrp1->root != cgrp2->root);
959 * If this hierarchy is the hierarchy of the cgroup
960 * that's changing, then we need to check that this
961 * css_set points to the new cgroup; if it's any other
962 * hierarchy, then this css_set should point to the
963 * same cgroup as the old css_set.
965 if (cgrp1->root == new_cgrp->root) {
966 if (cgrp1 != new_cgrp)
977 * find_existing_css_set - init css array and find the matching css_set
978 * @old_cset: the css_set that we're using before the cgroup transition
979 * @cgrp: the cgroup that we're moving into
980 * @template: out param for the new set of csses, should be clear on entry
982 static struct css_set *find_existing_css_set(struct css_set *old_cset,
984 struct cgroup_subsys_state *template[])
986 struct cgroup_root *root = cgrp->root;
987 struct cgroup_subsys *ss;
988 struct css_set *cset;
993 * Build the set of subsystem state objects that we want to see in the
994 * new css_set. while subsystems can change globally, the entries here
995 * won't change, so no need for locking.
997 for_each_subsys(ss, i) {
998 if (root->subsys_mask & (1UL << i)) {
1000 * @ss is in this hierarchy, so we want the
1001 * effective css from @cgrp.
1003 template[i] = cgroup_e_css(cgrp, ss);
1006 * @ss is not in this hierarchy, so we don't want
1007 * to change the css.
1009 template[i] = old_cset->subsys[i];
1013 key = css_set_hash(template);
1014 hash_for_each_possible(css_set_table, cset, hlist, key) {
1015 if (!compare_css_sets(cset, old_cset, cgrp, template))
1018 /* This css_set matches what we need */
1022 /* No existing cgroup group matched */
1026 static void free_cgrp_cset_links(struct list_head *links_to_free)
1028 struct cgrp_cset_link *link, *tmp_link;
1030 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1031 list_del(&link->cset_link);
1037 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1038 * @count: the number of links to allocate
1039 * @tmp_links: list_head the allocated links are put on
1041 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1042 * through ->cset_link. Returns 0 on success or -errno.
1044 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1046 struct cgrp_cset_link *link;
1049 INIT_LIST_HEAD(tmp_links);
1051 for (i = 0; i < count; i++) {
1052 link = kzalloc(sizeof(*link), GFP_KERNEL);
1054 free_cgrp_cset_links(tmp_links);
1057 list_add(&link->cset_link, tmp_links);
1063 * link_css_set - a helper function to link a css_set to a cgroup
1064 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1065 * @cset: the css_set to be linked
1066 * @cgrp: the destination cgroup
1068 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1069 struct cgroup *cgrp)
1071 struct cgrp_cset_link *link;
1073 BUG_ON(list_empty(tmp_links));
1075 if (cgroup_on_dfl(cgrp))
1076 cset->dfl_cgrp = cgrp;
1078 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1083 * Always add links to the tail of the lists so that the lists are
1084 * in choronological order.
1086 list_move_tail(&link->cset_link, &cgrp->cset_links);
1087 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1089 if (cgroup_parent(cgrp))
1090 cgroup_get_live(cgrp);
1094 * find_css_set - return a new css_set with one cgroup updated
1095 * @old_cset: the baseline css_set
1096 * @cgrp: the cgroup to be updated
1098 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1099 * substituted into the appropriate hierarchy.
1101 static struct css_set *find_css_set(struct css_set *old_cset,
1102 struct cgroup *cgrp)
1104 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1105 struct css_set *cset;
1106 struct list_head tmp_links;
1107 struct cgrp_cset_link *link;
1108 struct cgroup_subsys *ss;
1112 lockdep_assert_held(&cgroup_mutex);
1114 /* First see if we already have a cgroup group that matches
1115 * the desired set */
1116 spin_lock_irq(&css_set_lock);
1117 cset = find_existing_css_set(old_cset, cgrp, template);
1120 spin_unlock_irq(&css_set_lock);
1125 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1129 /* Allocate all the cgrp_cset_link objects that we'll need */
1130 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1135 refcount_set(&cset->refcount, 1);
1136 cset->dom_cset = cset;
1137 INIT_LIST_HEAD(&cset->tasks);
1138 INIT_LIST_HEAD(&cset->mg_tasks);
1139 INIT_LIST_HEAD(&cset->task_iters);
1140 INIT_LIST_HEAD(&cset->threaded_csets);
1141 INIT_HLIST_NODE(&cset->hlist);
1142 INIT_LIST_HEAD(&cset->cgrp_links);
1143 INIT_LIST_HEAD(&cset->mg_preload_node);
1144 INIT_LIST_HEAD(&cset->mg_node);
1146 /* Copy the set of subsystem state objects generated in
1147 * find_existing_css_set() */
1148 memcpy(cset->subsys, template, sizeof(cset->subsys));
1150 spin_lock_irq(&css_set_lock);
1151 /* Add reference counts and links from the new css_set. */
1152 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1153 struct cgroup *c = link->cgrp;
1155 if (c->root == cgrp->root)
1157 link_css_set(&tmp_links, cset, c);
1160 BUG_ON(!list_empty(&tmp_links));
1164 /* Add @cset to the hash table */
1165 key = css_set_hash(cset->subsys);
1166 hash_add(css_set_table, &cset->hlist, key);
1168 for_each_subsys(ss, ssid) {
1169 struct cgroup_subsys_state *css = cset->subsys[ssid];
1171 list_add_tail(&cset->e_cset_node[ssid],
1172 &css->cgroup->e_csets[ssid]);
1176 spin_unlock_irq(&css_set_lock);
1179 * If @cset should be threaded, look up the matching dom_cset and
1180 * link them up. We first fully initialize @cset then look for the
1181 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1182 * to stay empty until we return.
1184 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1185 struct css_set *dcset;
1187 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1193 spin_lock_irq(&css_set_lock);
1194 cset->dom_cset = dcset;
1195 list_add_tail(&cset->threaded_csets_node,
1196 &dcset->threaded_csets);
1197 spin_unlock_irq(&css_set_lock);
1203 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1205 struct cgroup *root_cgrp = kf_root->kn->priv;
1207 return root_cgrp->root;
1210 static int cgroup_init_root_id(struct cgroup_root *root)
1214 lockdep_assert_held(&cgroup_mutex);
1216 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1220 root->hierarchy_id = id;
1224 static void cgroup_exit_root_id(struct cgroup_root *root)
1226 lockdep_assert_held(&cgroup_mutex);
1228 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1231 void cgroup_free_root(struct cgroup_root *root)
1234 idr_destroy(&root->cgroup_idr);
1239 static void cgroup_destroy_root(struct cgroup_root *root)
1241 struct cgroup *cgrp = &root->cgrp;
1242 struct cgrp_cset_link *link, *tmp_link;
1244 trace_cgroup_destroy_root(root);
1246 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1248 BUG_ON(atomic_read(&root->nr_cgrps));
1249 BUG_ON(!list_empty(&cgrp->self.children));
1251 /* Rebind all subsystems back to the default hierarchy */
1252 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1255 * Release all the links from cset_links to this hierarchy's
1258 spin_lock_irq(&css_set_lock);
1260 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1261 list_del(&link->cset_link);
1262 list_del(&link->cgrp_link);
1266 spin_unlock_irq(&css_set_lock);
1268 if (!list_empty(&root->root_list)) {
1269 list_del(&root->root_list);
1270 cgroup_root_count--;
1273 cgroup_exit_root_id(root);
1275 mutex_unlock(&cgroup_mutex);
1277 kernfs_destroy_root(root->kf_root);
1278 cgroup_free_root(root);
1282 * look up cgroup associated with current task's cgroup namespace on the
1283 * specified hierarchy
1285 static struct cgroup *
1286 current_cgns_cgroup_from_root(struct cgroup_root *root)
1288 struct cgroup *res = NULL;
1289 struct css_set *cset;
1291 lockdep_assert_held(&css_set_lock);
1295 cset = current->nsproxy->cgroup_ns->root_cset;
1296 if (cset == &init_css_set) {
1299 struct cgrp_cset_link *link;
1301 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1302 struct cgroup *c = link->cgrp;
1304 if (c->root == root) {
1316 /* look up cgroup associated with given css_set on the specified hierarchy */
1317 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1318 struct cgroup_root *root)
1320 struct cgroup *res = NULL;
1322 lockdep_assert_held(&cgroup_mutex);
1323 lockdep_assert_held(&css_set_lock);
1325 if (cset == &init_css_set) {
1327 } else if (root == &cgrp_dfl_root) {
1328 res = cset->dfl_cgrp;
1330 struct cgrp_cset_link *link;
1332 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1333 struct cgroup *c = link->cgrp;
1335 if (c->root == root) {
1347 * Return the cgroup for "task" from the given hierarchy. Must be
1348 * called with cgroup_mutex and css_set_lock held.
1350 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1351 struct cgroup_root *root)
1354 * No need to lock the task - since we hold cgroup_mutex the
1355 * task can't change groups, so the only thing that can happen
1356 * is that it exits and its css is set back to init_css_set.
1358 return cset_cgroup_from_root(task_css_set(task), root);
1362 * A task must hold cgroup_mutex to modify cgroups.
1364 * Any task can increment and decrement the count field without lock.
1365 * So in general, code holding cgroup_mutex can't rely on the count
1366 * field not changing. However, if the count goes to zero, then only
1367 * cgroup_attach_task() can increment it again. Because a count of zero
1368 * means that no tasks are currently attached, therefore there is no
1369 * way a task attached to that cgroup can fork (the other way to
1370 * increment the count). So code holding cgroup_mutex can safely
1371 * assume that if the count is zero, it will stay zero. Similarly, if
1372 * a task holds cgroup_mutex on a cgroup with zero count, it
1373 * knows that the cgroup won't be removed, as cgroup_rmdir()
1376 * A cgroup can only be deleted if both its 'count' of using tasks
1377 * is zero, and its list of 'children' cgroups is empty. Since all
1378 * tasks in the system use _some_ cgroup, and since there is always at
1379 * least one task in the system (init, pid == 1), therefore, root cgroup
1380 * always has either children cgroups and/or using tasks. So we don't
1381 * need a special hack to ensure that root cgroup cannot be deleted.
1383 * P.S. One more locking exception. RCU is used to guard the
1384 * update of a tasks cgroup pointer by cgroup_attach_task()
1387 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1389 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1392 struct cgroup_subsys *ss = cft->ss;
1394 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1395 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1396 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1397 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1400 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1405 * cgroup_file_mode - deduce file mode of a control file
1406 * @cft: the control file in question
1408 * S_IRUGO for read, S_IWUSR for write.
1410 static umode_t cgroup_file_mode(const struct cftype *cft)
1414 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1417 if (cft->write_u64 || cft->write_s64 || cft->write) {
1418 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1428 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1429 * @subtree_control: the new subtree_control mask to consider
1430 * @this_ss_mask: available subsystems
1432 * On the default hierarchy, a subsystem may request other subsystems to be
1433 * enabled together through its ->depends_on mask. In such cases, more
1434 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1436 * This function calculates which subsystems need to be enabled if
1437 * @subtree_control is to be applied while restricted to @this_ss_mask.
1439 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1441 u16 cur_ss_mask = subtree_control;
1442 struct cgroup_subsys *ss;
1445 lockdep_assert_held(&cgroup_mutex);
1447 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1450 u16 new_ss_mask = cur_ss_mask;
1452 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1453 new_ss_mask |= ss->depends_on;
1454 } while_each_subsys_mask();
1457 * Mask out subsystems which aren't available. This can
1458 * happen only if some depended-upon subsystems were bound
1459 * to non-default hierarchies.
1461 new_ss_mask &= this_ss_mask;
1463 if (new_ss_mask == cur_ss_mask)
1465 cur_ss_mask = new_ss_mask;
1472 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1473 * @kn: the kernfs_node being serviced
1475 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1476 * the method finishes if locking succeeded. Note that once this function
1477 * returns the cgroup returned by cgroup_kn_lock_live() may become
1478 * inaccessible any time. If the caller intends to continue to access the
1479 * cgroup, it should pin it before invoking this function.
1481 void cgroup_kn_unlock(struct kernfs_node *kn)
1483 struct cgroup *cgrp;
1485 if (kernfs_type(kn) == KERNFS_DIR)
1488 cgrp = kn->parent->priv;
1490 mutex_unlock(&cgroup_mutex);
1492 kernfs_unbreak_active_protection(kn);
1497 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1498 * @kn: the kernfs_node being serviced
1499 * @drain_offline: perform offline draining on the cgroup
1501 * This helper is to be used by a cgroup kernfs method currently servicing
1502 * @kn. It breaks the active protection, performs cgroup locking and
1503 * verifies that the associated cgroup is alive. Returns the cgroup if
1504 * alive; otherwise, %NULL. A successful return should be undone by a
1505 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1506 * cgroup is drained of offlining csses before return.
1508 * Any cgroup kernfs method implementation which requires locking the
1509 * associated cgroup should use this helper. It avoids nesting cgroup
1510 * locking under kernfs active protection and allows all kernfs operations
1511 * including self-removal.
1513 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1515 struct cgroup *cgrp;
1517 if (kernfs_type(kn) == KERNFS_DIR)
1520 cgrp = kn->parent->priv;
1523 * We're gonna grab cgroup_mutex which nests outside kernfs
1524 * active_ref. cgroup liveliness check alone provides enough
1525 * protection against removal. Ensure @cgrp stays accessible and
1526 * break the active_ref protection.
1528 if (!cgroup_tryget(cgrp))
1530 kernfs_break_active_protection(kn);
1533 cgroup_lock_and_drain_offline(cgrp);
1535 mutex_lock(&cgroup_mutex);
1537 if (!cgroup_is_dead(cgrp))
1540 cgroup_kn_unlock(kn);
1544 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1546 char name[CGROUP_FILE_NAME_MAX];
1548 lockdep_assert_held(&cgroup_mutex);
1550 if (cft->file_offset) {
1551 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1552 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1554 spin_lock_irq(&cgroup_file_kn_lock);
1556 spin_unlock_irq(&cgroup_file_kn_lock);
1559 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1563 * css_clear_dir - remove subsys files in a cgroup directory
1566 static void css_clear_dir(struct cgroup_subsys_state *css)
1568 struct cgroup *cgrp = css->cgroup;
1569 struct cftype *cfts;
1571 if (!(css->flags & CSS_VISIBLE))
1574 css->flags &= ~CSS_VISIBLE;
1576 list_for_each_entry(cfts, &css->ss->cfts, node)
1577 cgroup_addrm_files(css, cgrp, cfts, false);
1581 * css_populate_dir - create subsys files in a cgroup directory
1584 * On failure, no file is added.
1586 static int css_populate_dir(struct cgroup_subsys_state *css)
1588 struct cgroup *cgrp = css->cgroup;
1589 struct cftype *cfts, *failed_cfts;
1592 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1596 if (cgroup_on_dfl(cgrp))
1597 cfts = cgroup_base_files;
1599 cfts = cgroup1_base_files;
1601 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1604 list_for_each_entry(cfts, &css->ss->cfts, node) {
1605 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1612 css->flags |= CSS_VISIBLE;
1616 list_for_each_entry(cfts, &css->ss->cfts, node) {
1617 if (cfts == failed_cfts)
1619 cgroup_addrm_files(css, cgrp, cfts, false);
1624 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1626 struct cgroup *dcgrp = &dst_root->cgrp;
1627 struct cgroup_subsys *ss;
1630 lockdep_assert_held(&cgroup_mutex);
1632 do_each_subsys_mask(ss, ssid, ss_mask) {
1634 * If @ss has non-root csses attached to it, can't move.
1635 * If @ss is an implicit controller, it is exempt from this
1636 * rule and can be stolen.
1638 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1639 !ss->implicit_on_dfl)
1642 /* can't move between two non-dummy roots either */
1643 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1645 } while_each_subsys_mask();
1647 do_each_subsys_mask(ss, ssid, ss_mask) {
1648 struct cgroup_root *src_root = ss->root;
1649 struct cgroup *scgrp = &src_root->cgrp;
1650 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1651 struct css_set *cset;
1653 WARN_ON(!css || cgroup_css(dcgrp, ss));
1655 /* disable from the source */
1656 src_root->subsys_mask &= ~(1 << ssid);
1657 WARN_ON(cgroup_apply_control(scgrp));
1658 cgroup_finalize_control(scgrp, 0);
1661 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1662 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1663 ss->root = dst_root;
1664 css->cgroup = dcgrp;
1666 spin_lock_irq(&css_set_lock);
1667 hash_for_each(css_set_table, i, cset, hlist)
1668 list_move_tail(&cset->e_cset_node[ss->id],
1669 &dcgrp->e_csets[ss->id]);
1670 spin_unlock_irq(&css_set_lock);
1672 /* default hierarchy doesn't enable controllers by default */
1673 dst_root->subsys_mask |= 1 << ssid;
1674 if (dst_root == &cgrp_dfl_root) {
1675 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1677 dcgrp->subtree_control |= 1 << ssid;
1678 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1681 ret = cgroup_apply_control(dcgrp);
1683 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1688 } while_each_subsys_mask();
1690 kernfs_activate(dcgrp->kn);
1694 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1695 struct kernfs_root *kf_root)
1699 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1700 struct cgroup *ns_cgroup;
1702 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1706 spin_lock_irq(&css_set_lock);
1707 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1708 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1709 spin_unlock_irq(&css_set_lock);
1711 if (len >= PATH_MAX)
1714 seq_escape(sf, buf, " \t\n\\");
1721 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1730 while ((token = strsep(&data, ",")) != NULL) {
1731 if (!strcmp(token, "nsdelegate")) {
1732 *root_flags |= CGRP_ROOT_NS_DELEGATE;
1736 pr_err("cgroup2: unknown option \"%s\"\n", token);
1743 static void apply_cgroup_root_flags(unsigned int root_flags)
1745 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1746 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1747 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1749 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1753 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1755 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1756 seq_puts(seq, ",nsdelegate");
1760 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1762 unsigned int root_flags;
1765 ret = parse_cgroup_root_flags(data, &root_flags);
1769 apply_cgroup_root_flags(root_flags);
1774 * To reduce the fork() overhead for systems that are not actually using
1775 * their cgroups capability, we don't maintain the lists running through
1776 * each css_set to its tasks until we see the list actually used - in other
1777 * words after the first mount.
1779 static bool use_task_css_set_links __read_mostly;
1781 static void cgroup_enable_task_cg_lists(void)
1783 struct task_struct *p, *g;
1785 spin_lock_irq(&css_set_lock);
1787 if (use_task_css_set_links)
1790 use_task_css_set_links = true;
1793 * We need tasklist_lock because RCU is not safe against
1794 * while_each_thread(). Besides, a forking task that has passed
1795 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1796 * is not guaranteed to have its child immediately visible in the
1797 * tasklist if we walk through it with RCU.
1799 read_lock(&tasklist_lock);
1800 do_each_thread(g, p) {
1801 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1802 task_css_set(p) != &init_css_set);
1805 * We should check if the process is exiting, otherwise
1806 * it will race with cgroup_exit() in that the list
1807 * entry won't be deleted though the process has exited.
1808 * Do it while holding siglock so that we don't end up
1809 * racing against cgroup_exit().
1811 * Interrupts were already disabled while acquiring
1812 * the css_set_lock, so we do not need to disable it
1813 * again when acquiring the sighand->siglock here.
1815 spin_lock(&p->sighand->siglock);
1816 if (!(p->flags & PF_EXITING)) {
1817 struct css_set *cset = task_css_set(p);
1819 if (!css_set_populated(cset))
1820 css_set_update_populated(cset, true);
1821 list_add_tail(&p->cg_list, &cset->tasks);
1825 spin_unlock(&p->sighand->siglock);
1826 } while_each_thread(g, p);
1827 read_unlock(&tasklist_lock);
1829 spin_unlock_irq(&css_set_lock);
1832 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1834 struct cgroup_subsys *ss;
1837 INIT_LIST_HEAD(&cgrp->self.sibling);
1838 INIT_LIST_HEAD(&cgrp->self.children);
1839 INIT_LIST_HEAD(&cgrp->cset_links);
1840 INIT_LIST_HEAD(&cgrp->pidlists);
1841 mutex_init(&cgrp->pidlist_mutex);
1842 cgrp->self.cgroup = cgrp;
1843 cgrp->self.flags |= CSS_ONLINE;
1844 cgrp->dom_cgrp = cgrp;
1845 cgrp->max_descendants = INT_MAX;
1846 cgrp->max_depth = INT_MAX;
1848 for_each_subsys(ss, ssid)
1849 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1851 init_waitqueue_head(&cgrp->offline_waitq);
1852 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1855 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1857 struct cgroup *cgrp = &root->cgrp;
1859 INIT_LIST_HEAD(&root->root_list);
1860 atomic_set(&root->nr_cgrps, 1);
1862 init_cgroup_housekeeping(cgrp);
1863 idr_init(&root->cgroup_idr);
1865 root->flags = opts->flags;
1866 if (opts->release_agent)
1867 strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1869 strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1870 if (opts->cpuset_clone_children)
1871 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1874 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1876 LIST_HEAD(tmp_links);
1877 struct cgroup *root_cgrp = &root->cgrp;
1878 struct kernfs_syscall_ops *kf_sops;
1879 struct css_set *cset;
1882 lockdep_assert_held(&cgroup_mutex);
1884 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1887 root_cgrp->id = ret;
1888 root_cgrp->ancestor_ids[0] = ret;
1890 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1891 ref_flags, GFP_KERNEL);
1896 * We're accessing css_set_count without locking css_set_lock here,
1897 * but that's OK - it can only be increased by someone holding
1898 * cgroup_lock, and that's us. Later rebinding may disable
1899 * controllers on the default hierarchy and thus create new csets,
1900 * which can't be more than the existing ones. Allocate 2x.
1902 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1906 ret = cgroup_init_root_id(root);
1910 kf_sops = root == &cgrp_dfl_root ?
1911 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1913 root->kf_root = kernfs_create_root(kf_sops,
1914 KERNFS_ROOT_CREATE_DEACTIVATED |
1915 KERNFS_ROOT_SUPPORT_EXPORTOP,
1917 if (IS_ERR(root->kf_root)) {
1918 ret = PTR_ERR(root->kf_root);
1921 root_cgrp->kn = root->kf_root->kn;
1923 ret = css_populate_dir(&root_cgrp->self);
1927 ret = rebind_subsystems(root, ss_mask);
1931 ret = cgroup_bpf_inherit(root_cgrp);
1934 trace_cgroup_setup_root(root);
1937 * There must be no failure case after here, since rebinding takes
1938 * care of subsystems' refcounts, which are explicitly dropped in
1939 * the failure exit path.
1941 list_add(&root->root_list, &cgroup_roots);
1942 cgroup_root_count++;
1945 * Link the root cgroup in this hierarchy into all the css_set
1948 spin_lock_irq(&css_set_lock);
1949 hash_for_each(css_set_table, i, cset, hlist) {
1950 link_css_set(&tmp_links, cset, root_cgrp);
1951 if (css_set_populated(cset))
1952 cgroup_update_populated(root_cgrp, true);
1954 spin_unlock_irq(&css_set_lock);
1956 BUG_ON(!list_empty(&root_cgrp->self.children));
1957 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1959 kernfs_activate(root_cgrp->kn);
1964 kernfs_destroy_root(root->kf_root);
1965 root->kf_root = NULL;
1967 cgroup_exit_root_id(root);
1969 percpu_ref_exit(&root_cgrp->self.refcnt);
1971 free_cgrp_cset_links(&tmp_links);
1975 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1976 struct cgroup_root *root, unsigned long magic,
1977 struct cgroup_namespace *ns)
1979 struct dentry *dentry;
1982 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
1985 * In non-init cgroup namespace, instead of root cgroup's dentry,
1986 * we return the dentry corresponding to the cgroupns->root_cgrp.
1988 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
1989 struct dentry *nsdentry;
1990 struct cgroup *cgrp;
1992 mutex_lock(&cgroup_mutex);
1993 spin_lock_irq(&css_set_lock);
1995 cgrp = cset_cgroup_from_root(ns->root_cset, root);
1997 spin_unlock_irq(&css_set_lock);
1998 mutex_unlock(&cgroup_mutex);
2000 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2005 if (IS_ERR(dentry) || !new_sb)
2006 cgroup_put(&root->cgrp);
2011 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2012 int flags, const char *unused_dev_name,
2015 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2016 struct dentry *dentry;
2021 /* Check if the caller has permission to mount. */
2022 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2024 return ERR_PTR(-EPERM);
2028 * The first time anyone tries to mount a cgroup, enable the list
2029 * linking each css_set to its tasks and fix up all existing tasks.
2031 if (!use_task_css_set_links)
2032 cgroup_enable_task_cg_lists();
2034 if (fs_type == &cgroup2_fs_type) {
2035 unsigned int root_flags;
2037 ret = parse_cgroup_root_flags(data, &root_flags);
2040 return ERR_PTR(ret);
2043 cgrp_dfl_visible = true;
2044 cgroup_get_live(&cgrp_dfl_root.cgrp);
2046 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2047 CGROUP2_SUPER_MAGIC, ns);
2048 if (!IS_ERR(dentry))
2049 apply_cgroup_root_flags(root_flags);
2051 dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2052 CGROUP_SUPER_MAGIC, ns);
2059 static void cgroup_kill_sb(struct super_block *sb)
2061 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2062 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2065 * If @root doesn't have any mounts or children, start killing it.
2066 * This prevents new mounts by disabling percpu_ref_tryget_live().
2067 * cgroup_mount() may wait for @root's release.
2069 * And don't kill the default root.
2071 if (!list_empty(&root->cgrp.self.children) ||
2072 root == &cgrp_dfl_root)
2073 cgroup_put(&root->cgrp);
2075 percpu_ref_kill(&root->cgrp.self.refcnt);
2080 struct file_system_type cgroup_fs_type = {
2082 .mount = cgroup_mount,
2083 .kill_sb = cgroup_kill_sb,
2084 .fs_flags = FS_USERNS_MOUNT,
2087 static struct file_system_type cgroup2_fs_type = {
2089 .mount = cgroup_mount,
2090 .kill_sb = cgroup_kill_sb,
2091 .fs_flags = FS_USERNS_MOUNT,
2094 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2095 struct cgroup_namespace *ns)
2097 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2099 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2102 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2103 struct cgroup_namespace *ns)
2107 mutex_lock(&cgroup_mutex);
2108 spin_lock_irq(&css_set_lock);
2110 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2112 spin_unlock_irq(&css_set_lock);
2113 mutex_unlock(&cgroup_mutex);
2117 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2120 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2121 * @task: target task
2122 * @buf: the buffer to write the path into
2123 * @buflen: the length of the buffer
2125 * Determine @task's cgroup on the first (the one with the lowest non-zero
2126 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2127 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2128 * cgroup controller callbacks.
2130 * Return value is the same as kernfs_path().
2132 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2134 struct cgroup_root *root;
2135 struct cgroup *cgrp;
2136 int hierarchy_id = 1;
2139 mutex_lock(&cgroup_mutex);
2140 spin_lock_irq(&css_set_lock);
2142 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2145 cgrp = task_cgroup_from_root(task, root);
2146 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2148 /* if no hierarchy exists, everyone is in "/" */
2149 ret = strlcpy(buf, "/", buflen);
2152 spin_unlock_irq(&css_set_lock);
2153 mutex_unlock(&cgroup_mutex);
2156 EXPORT_SYMBOL_GPL(task_cgroup_path);
2159 * cgroup_migrate_add_task - add a migration target task to a migration context
2160 * @task: target task
2161 * @mgctx: target migration context
2163 * Add @task, which is a migration target, to @mgctx->tset. This function
2164 * becomes noop if @task doesn't need to be migrated. @task's css_set
2165 * should have been added as a migration source and @task->cg_list will be
2166 * moved from the css_set's tasks list to mg_tasks one.
2168 static void cgroup_migrate_add_task(struct task_struct *task,
2169 struct cgroup_mgctx *mgctx)
2171 struct css_set *cset;
2173 lockdep_assert_held(&css_set_lock);
2175 /* @task either already exited or can't exit until the end */
2176 if (task->flags & PF_EXITING)
2179 /* leave @task alone if post_fork() hasn't linked it yet */
2180 if (list_empty(&task->cg_list))
2183 cset = task_css_set(task);
2184 if (!cset->mg_src_cgrp)
2187 mgctx->tset.nr_tasks++;
2189 list_move_tail(&task->cg_list, &cset->mg_tasks);
2190 if (list_empty(&cset->mg_node))
2191 list_add_tail(&cset->mg_node,
2192 &mgctx->tset.src_csets);
2193 if (list_empty(&cset->mg_dst_cset->mg_node))
2194 list_add_tail(&cset->mg_dst_cset->mg_node,
2195 &mgctx->tset.dst_csets);
2199 * cgroup_taskset_first - reset taskset and return the first task
2200 * @tset: taskset of interest
2201 * @dst_cssp: output variable for the destination css
2203 * @tset iteration is initialized and the first task is returned.
2205 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2206 struct cgroup_subsys_state **dst_cssp)
2208 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2209 tset->cur_task = NULL;
2211 return cgroup_taskset_next(tset, dst_cssp);
2215 * cgroup_taskset_next - iterate to the next task in taskset
2216 * @tset: taskset of interest
2217 * @dst_cssp: output variable for the destination css
2219 * Return the next task in @tset. Iteration must have been initialized
2220 * with cgroup_taskset_first().
2222 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2223 struct cgroup_subsys_state **dst_cssp)
2225 struct css_set *cset = tset->cur_cset;
2226 struct task_struct *task = tset->cur_task;
2228 while (&cset->mg_node != tset->csets) {
2230 task = list_first_entry(&cset->mg_tasks,
2231 struct task_struct, cg_list);
2233 task = list_next_entry(task, cg_list);
2235 if (&task->cg_list != &cset->mg_tasks) {
2236 tset->cur_cset = cset;
2237 tset->cur_task = task;
2240 * This function may be called both before and
2241 * after cgroup_taskset_migrate(). The two cases
2242 * can be distinguished by looking at whether @cset
2243 * has its ->mg_dst_cset set.
2245 if (cset->mg_dst_cset)
2246 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2248 *dst_cssp = cset->subsys[tset->ssid];
2253 cset = list_next_entry(cset, mg_node);
2261 * cgroup_taskset_migrate - migrate a taskset
2262 * @mgctx: migration context
2264 * Migrate tasks in @mgctx as setup by migration preparation functions.
2265 * This function fails iff one of the ->can_attach callbacks fails and
2266 * guarantees that either all or none of the tasks in @mgctx are migrated.
2267 * @mgctx is consumed regardless of success.
2269 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2271 struct cgroup_taskset *tset = &mgctx->tset;
2272 struct cgroup_subsys *ss;
2273 struct task_struct *task, *tmp_task;
2274 struct css_set *cset, *tmp_cset;
2275 int ssid, failed_ssid, ret;
2277 /* check that we can legitimately attach to the cgroup */
2278 if (tset->nr_tasks) {
2279 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2280 if (ss->can_attach) {
2282 ret = ss->can_attach(tset);
2285 goto out_cancel_attach;
2288 } while_each_subsys_mask();
2292 * Now that we're guaranteed success, proceed to move all tasks to
2293 * the new cgroup. There are no failure cases after here, so this
2294 * is the commit point.
2296 spin_lock_irq(&css_set_lock);
2297 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2298 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2299 struct css_set *from_cset = task_css_set(task);
2300 struct css_set *to_cset = cset->mg_dst_cset;
2302 get_css_set(to_cset);
2303 to_cset->nr_tasks++;
2304 css_set_move_task(task, from_cset, to_cset, true);
2305 put_css_set_locked(from_cset);
2306 from_cset->nr_tasks--;
2309 spin_unlock_irq(&css_set_lock);
2312 * Migration is committed, all target tasks are now on dst_csets.
2313 * Nothing is sensitive to fork() after this point. Notify
2314 * controllers that migration is complete.
2316 tset->csets = &tset->dst_csets;
2318 if (tset->nr_tasks) {
2319 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2324 } while_each_subsys_mask();
2328 goto out_release_tset;
2331 if (tset->nr_tasks) {
2332 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2333 if (ssid == failed_ssid)
2335 if (ss->cancel_attach) {
2337 ss->cancel_attach(tset);
2339 } while_each_subsys_mask();
2342 spin_lock_irq(&css_set_lock);
2343 list_splice_init(&tset->dst_csets, &tset->src_csets);
2344 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2345 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2346 list_del_init(&cset->mg_node);
2348 spin_unlock_irq(&css_set_lock);
2351 * Re-initialize the cgroup_taskset structure in case it is reused
2352 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2356 tset->csets = &tset->src_csets;
2361 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2362 * @dst_cgrp: destination cgroup to test
2364 * On the default hierarchy, except for the mixable, (possible) thread root
2365 * and threaded cgroups, subtree_control must be zero for migration
2366 * destination cgroups with tasks so that child cgroups don't compete
2369 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2371 /* v1 doesn't have any restriction */
2372 if (!cgroup_on_dfl(dst_cgrp))
2375 /* verify @dst_cgrp can host resources */
2376 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2379 /* mixables don't care */
2380 if (cgroup_is_mixable(dst_cgrp))
2384 * If @dst_cgrp is already or can become a thread root or is
2385 * threaded, it doesn't matter.
2387 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2390 /* apply no-internal-process constraint */
2391 if (dst_cgrp->subtree_control)
2398 * cgroup_migrate_finish - cleanup after attach
2399 * @mgctx: migration context
2401 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2402 * those functions for details.
2404 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2406 LIST_HEAD(preloaded);
2407 struct css_set *cset, *tmp_cset;
2409 lockdep_assert_held(&cgroup_mutex);
2411 spin_lock_irq(&css_set_lock);
2413 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2414 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2416 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2417 cset->mg_src_cgrp = NULL;
2418 cset->mg_dst_cgrp = NULL;
2419 cset->mg_dst_cset = NULL;
2420 list_del_init(&cset->mg_preload_node);
2421 put_css_set_locked(cset);
2424 spin_unlock_irq(&css_set_lock);
2428 * cgroup_migrate_add_src - add a migration source css_set
2429 * @src_cset: the source css_set to add
2430 * @dst_cgrp: the destination cgroup
2431 * @mgctx: migration context
2433 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2434 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2435 * up by cgroup_migrate_finish().
2437 * This function may be called without holding cgroup_threadgroup_rwsem
2438 * even if the target is a process. Threads may be created and destroyed
2439 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2440 * into play and the preloaded css_sets are guaranteed to cover all
2443 void cgroup_migrate_add_src(struct css_set *src_cset,
2444 struct cgroup *dst_cgrp,
2445 struct cgroup_mgctx *mgctx)
2447 struct cgroup *src_cgrp;
2449 lockdep_assert_held(&cgroup_mutex);
2450 lockdep_assert_held(&css_set_lock);
2453 * If ->dead, @src_set is associated with one or more dead cgroups
2454 * and doesn't contain any migratable tasks. Ignore it early so
2455 * that the rest of migration path doesn't get confused by it.
2460 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2462 if (!list_empty(&src_cset->mg_preload_node))
2465 WARN_ON(src_cset->mg_src_cgrp);
2466 WARN_ON(src_cset->mg_dst_cgrp);
2467 WARN_ON(!list_empty(&src_cset->mg_tasks));
2468 WARN_ON(!list_empty(&src_cset->mg_node));
2470 src_cset->mg_src_cgrp = src_cgrp;
2471 src_cset->mg_dst_cgrp = dst_cgrp;
2472 get_css_set(src_cset);
2473 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2477 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2478 * @mgctx: migration context
2480 * Tasks are about to be moved and all the source css_sets have been
2481 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2482 * pins all destination css_sets, links each to its source, and append them
2483 * to @mgctx->preloaded_dst_csets.
2485 * This function must be called after cgroup_migrate_add_src() has been
2486 * called on each migration source css_set. After migration is performed
2487 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2490 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2492 struct css_set *src_cset, *tmp_cset;
2494 lockdep_assert_held(&cgroup_mutex);
2496 /* look up the dst cset for each src cset and link it to src */
2497 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2499 struct css_set *dst_cset;
2500 struct cgroup_subsys *ss;
2503 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2507 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2510 * If src cset equals dst, it's noop. Drop the src.
2511 * cgroup_migrate() will skip the cset too. Note that we
2512 * can't handle src == dst as some nodes are used by both.
2514 if (src_cset == dst_cset) {
2515 src_cset->mg_src_cgrp = NULL;
2516 src_cset->mg_dst_cgrp = NULL;
2517 list_del_init(&src_cset->mg_preload_node);
2518 put_css_set(src_cset);
2519 put_css_set(dst_cset);
2523 src_cset->mg_dst_cset = dst_cset;
2525 if (list_empty(&dst_cset->mg_preload_node))
2526 list_add_tail(&dst_cset->mg_preload_node,
2527 &mgctx->preloaded_dst_csets);
2529 put_css_set(dst_cset);
2531 for_each_subsys(ss, ssid)
2532 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2533 mgctx->ss_mask |= 1 << ssid;
2538 cgroup_migrate_finish(mgctx);
2543 * cgroup_migrate - migrate a process or task to a cgroup
2544 * @leader: the leader of the process or the task to migrate
2545 * @threadgroup: whether @leader points to the whole process or a single task
2546 * @mgctx: migration context
2548 * Migrate a process or task denoted by @leader. If migrating a process,
2549 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2550 * responsible for invoking cgroup_migrate_add_src() and
2551 * cgroup_migrate_prepare_dst() on the targets before invoking this
2552 * function and following up with cgroup_migrate_finish().
2554 * As long as a controller's ->can_attach() doesn't fail, this function is
2555 * guaranteed to succeed. This means that, excluding ->can_attach()
2556 * failure, when migrating multiple targets, the success or failure can be
2557 * decided for all targets by invoking group_migrate_prepare_dst() before
2558 * actually starting migrating.
2560 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2561 struct cgroup_mgctx *mgctx)
2563 struct task_struct *task;
2566 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2567 * already PF_EXITING could be freed from underneath us unless we
2568 * take an rcu_read_lock.
2570 spin_lock_irq(&css_set_lock);
2574 cgroup_migrate_add_task(task, mgctx);
2577 } while_each_thread(leader, task);
2579 spin_unlock_irq(&css_set_lock);
2581 return cgroup_migrate_execute(mgctx);
2585 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2586 * @dst_cgrp: the cgroup to attach to
2587 * @leader: the task or the leader of the threadgroup to be attached
2588 * @threadgroup: attach the whole threadgroup?
2590 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2592 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2595 DEFINE_CGROUP_MGCTX(mgctx);
2596 struct task_struct *task;
2599 ret = cgroup_migrate_vet_dst(dst_cgrp);
2603 /* look up all src csets */
2604 spin_lock_irq(&css_set_lock);
2608 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2611 } while_each_thread(leader, task);
2613 spin_unlock_irq(&css_set_lock);
2615 /* prepare dst csets and commit */
2616 ret = cgroup_migrate_prepare_dst(&mgctx);
2618 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2620 cgroup_migrate_finish(&mgctx);
2623 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2628 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2629 __acquires(&cgroup_threadgroup_rwsem)
2631 struct task_struct *tsk;
2634 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2635 return ERR_PTR(-EINVAL);
2637 percpu_down_write(&cgroup_threadgroup_rwsem);
2641 tsk = find_task_by_vpid(pid);
2643 tsk = ERR_PTR(-ESRCH);
2644 goto out_unlock_threadgroup;
2651 tsk = tsk->group_leader;
2654 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2655 * If userland migrates such a kthread to a non-root cgroup, it can
2656 * become trapped in a cpuset, or RT kthread may be born in a
2657 * cgroup with no rt_runtime allocated. Just say no.
2659 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2660 tsk = ERR_PTR(-EINVAL);
2661 goto out_unlock_threadgroup;
2664 get_task_struct(tsk);
2665 goto out_unlock_rcu;
2667 out_unlock_threadgroup:
2668 percpu_up_write(&cgroup_threadgroup_rwsem);
2674 void cgroup_procs_write_finish(struct task_struct *task)
2675 __releases(&cgroup_threadgroup_rwsem)
2677 struct cgroup_subsys *ss;
2680 /* release reference from cgroup_procs_write_start() */
2681 put_task_struct(task);
2683 percpu_up_write(&cgroup_threadgroup_rwsem);
2684 for_each_subsys(ss, ssid)
2685 if (ss->post_attach)
2689 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2691 struct cgroup_subsys *ss;
2692 bool printed = false;
2695 do_each_subsys_mask(ss, ssid, ss_mask) {
2698 seq_printf(seq, "%s", ss->name);
2700 } while_each_subsys_mask();
2702 seq_putc(seq, '\n');
2705 /* show controllers which are enabled from the parent */
2706 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2708 struct cgroup *cgrp = seq_css(seq)->cgroup;
2710 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2714 /* show controllers which are enabled for a given cgroup's children */
2715 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2717 struct cgroup *cgrp = seq_css(seq)->cgroup;
2719 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2724 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2725 * @cgrp: root of the subtree to update csses for
2727 * @cgrp's control masks have changed and its subtree's css associations
2728 * need to be updated accordingly. This function looks up all css_sets
2729 * which are attached to the subtree, creates the matching updated css_sets
2730 * and migrates the tasks to the new ones.
2732 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2734 DEFINE_CGROUP_MGCTX(mgctx);
2735 struct cgroup_subsys_state *d_css;
2736 struct cgroup *dsct;
2737 struct css_set *src_cset;
2740 lockdep_assert_held(&cgroup_mutex);
2742 percpu_down_write(&cgroup_threadgroup_rwsem);
2744 /* look up all csses currently attached to @cgrp's subtree */
2745 spin_lock_irq(&css_set_lock);
2746 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2747 struct cgrp_cset_link *link;
2749 list_for_each_entry(link, &dsct->cset_links, cset_link)
2750 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2752 spin_unlock_irq(&css_set_lock);
2754 /* NULL dst indicates self on default hierarchy */
2755 ret = cgroup_migrate_prepare_dst(&mgctx);
2759 spin_lock_irq(&css_set_lock);
2760 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2761 struct task_struct *task, *ntask;
2763 /* all tasks in src_csets need to be migrated */
2764 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2765 cgroup_migrate_add_task(task, &mgctx);
2767 spin_unlock_irq(&css_set_lock);
2769 ret = cgroup_migrate_execute(&mgctx);
2771 cgroup_migrate_finish(&mgctx);
2772 percpu_up_write(&cgroup_threadgroup_rwsem);
2777 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2778 * @cgrp: root of the target subtree
2780 * Because css offlining is asynchronous, userland may try to re-enable a
2781 * controller while the previous css is still around. This function grabs
2782 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2784 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2785 __acquires(&cgroup_mutex)
2787 struct cgroup *dsct;
2788 struct cgroup_subsys_state *d_css;
2789 struct cgroup_subsys *ss;
2793 mutex_lock(&cgroup_mutex);
2795 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2796 for_each_subsys(ss, ssid) {
2797 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2800 if (!css || !percpu_ref_is_dying(&css->refcnt))
2803 cgroup_get_live(dsct);
2804 prepare_to_wait(&dsct->offline_waitq, &wait,
2805 TASK_UNINTERRUPTIBLE);
2807 mutex_unlock(&cgroup_mutex);
2809 finish_wait(&dsct->offline_waitq, &wait);
2818 * cgroup_save_control - save control masks of a subtree
2819 * @cgrp: root of the target subtree
2821 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2822 * prefixed fields for @cgrp's subtree including @cgrp itself.
2824 static void cgroup_save_control(struct cgroup *cgrp)
2826 struct cgroup *dsct;
2827 struct cgroup_subsys_state *d_css;
2829 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2830 dsct->old_subtree_control = dsct->subtree_control;
2831 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2836 * cgroup_propagate_control - refresh control masks of a subtree
2837 * @cgrp: root of the target subtree
2839 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2840 * ->subtree_control and propagate controller availability through the
2841 * subtree so that descendants don't have unavailable controllers enabled.
2843 static void cgroup_propagate_control(struct cgroup *cgrp)
2845 struct cgroup *dsct;
2846 struct cgroup_subsys_state *d_css;
2848 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2849 dsct->subtree_control &= cgroup_control(dsct);
2850 dsct->subtree_ss_mask =
2851 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2852 cgroup_ss_mask(dsct));
2857 * cgroup_restore_control - restore control masks of a subtree
2858 * @cgrp: root of the target subtree
2860 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2861 * prefixed fields for @cgrp's subtree including @cgrp itself.
2863 static void cgroup_restore_control(struct cgroup *cgrp)
2865 struct cgroup *dsct;
2866 struct cgroup_subsys_state *d_css;
2868 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2869 dsct->subtree_control = dsct->old_subtree_control;
2870 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2874 static bool css_visible(struct cgroup_subsys_state *css)
2876 struct cgroup_subsys *ss = css->ss;
2877 struct cgroup *cgrp = css->cgroup;
2879 if (cgroup_control(cgrp) & (1 << ss->id))
2881 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2883 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2887 * cgroup_apply_control_enable - enable or show csses according to control
2888 * @cgrp: root of the target subtree
2890 * Walk @cgrp's subtree and create new csses or make the existing ones
2891 * visible. A css is created invisible if it's being implicitly enabled
2892 * through dependency. An invisible css is made visible when the userland
2893 * explicitly enables it.
2895 * Returns 0 on success, -errno on failure. On failure, csses which have
2896 * been processed already aren't cleaned up. The caller is responsible for
2897 * cleaning up with cgroup_apply_control_disable().
2899 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2901 struct cgroup *dsct;
2902 struct cgroup_subsys_state *d_css;
2903 struct cgroup_subsys *ss;
2906 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2907 for_each_subsys(ss, ssid) {
2908 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2910 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2912 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2916 css = css_create(dsct, ss);
2918 return PTR_ERR(css);
2921 if (css_visible(css)) {
2922 ret = css_populate_dir(css);
2933 * cgroup_apply_control_disable - kill or hide csses according to control
2934 * @cgrp: root of the target subtree
2936 * Walk @cgrp's subtree and kill and hide csses so that they match
2937 * cgroup_ss_mask() and cgroup_visible_mask().
2939 * A css is hidden when the userland requests it to be disabled while other
2940 * subsystems are still depending on it. The css must not actively control
2941 * resources and be in the vanilla state if it's made visible again later.
2942 * Controllers which may be depended upon should provide ->css_reset() for
2945 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2947 struct cgroup *dsct;
2948 struct cgroup_subsys_state *d_css;
2949 struct cgroup_subsys *ss;
2952 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2953 for_each_subsys(ss, ssid) {
2954 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2956 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2962 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2964 } else if (!css_visible(css)) {
2974 * cgroup_apply_control - apply control mask updates to the subtree
2975 * @cgrp: root of the target subtree
2977 * subsystems can be enabled and disabled in a subtree using the following
2980 * 1. Call cgroup_save_control() to stash the current state.
2981 * 2. Update ->subtree_control masks in the subtree as desired.
2982 * 3. Call cgroup_apply_control() to apply the changes.
2983 * 4. Optionally perform other related operations.
2984 * 5. Call cgroup_finalize_control() to finish up.
2986 * This function implements step 3 and propagates the mask changes
2987 * throughout @cgrp's subtree, updates csses accordingly and perform
2988 * process migrations.
2990 static int cgroup_apply_control(struct cgroup *cgrp)
2994 cgroup_propagate_control(cgrp);
2996 ret = cgroup_apply_control_enable(cgrp);
3001 * At this point, cgroup_e_css() results reflect the new csses
3002 * making the following cgroup_update_dfl_csses() properly update
3003 * css associations of all tasks in the subtree.
3005 ret = cgroup_update_dfl_csses(cgrp);
3013 * cgroup_finalize_control - finalize control mask update
3014 * @cgrp: root of the target subtree
3015 * @ret: the result of the update
3017 * Finalize control mask update. See cgroup_apply_control() for more info.
3019 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3022 cgroup_restore_control(cgrp);
3023 cgroup_propagate_control(cgrp);
3026 cgroup_apply_control_disable(cgrp);
3029 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3031 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3033 /* if nothing is getting enabled, nothing to worry about */
3037 /* can @cgrp host any resources? */
3038 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3041 /* mixables don't care */
3042 if (cgroup_is_mixable(cgrp))
3045 if (domain_enable) {
3046 /* can't enable domain controllers inside a thread subtree */
3047 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3051 * Threaded controllers can handle internal competitions
3052 * and are always allowed inside a (prospective) thread
3055 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3060 * Controllers can't be enabled for a cgroup with tasks to avoid
3061 * child cgroups competing against tasks.
3063 if (cgroup_has_tasks(cgrp))
3069 /* change the enabled child controllers for a cgroup in the default hierarchy */
3070 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3071 char *buf, size_t nbytes,
3074 u16 enable = 0, disable = 0;
3075 struct cgroup *cgrp, *child;
3076 struct cgroup_subsys *ss;
3081 * Parse input - space separated list of subsystem names prefixed
3082 * with either + or -.
3084 buf = strstrip(buf);
3085 while ((tok = strsep(&buf, " "))) {
3088 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3089 if (!cgroup_ssid_enabled(ssid) ||
3090 strcmp(tok + 1, ss->name))
3094 enable |= 1 << ssid;
3095 disable &= ~(1 << ssid);
3096 } else if (*tok == '-') {
3097 disable |= 1 << ssid;
3098 enable &= ~(1 << ssid);
3103 } while_each_subsys_mask();
3104 if (ssid == CGROUP_SUBSYS_COUNT)
3108 cgrp = cgroup_kn_lock_live(of->kn, true);
3112 for_each_subsys(ss, ssid) {
3113 if (enable & (1 << ssid)) {
3114 if (cgrp->subtree_control & (1 << ssid)) {
3115 enable &= ~(1 << ssid);
3119 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3123 } else if (disable & (1 << ssid)) {
3124 if (!(cgrp->subtree_control & (1 << ssid))) {
3125 disable &= ~(1 << ssid);
3129 /* a child has it enabled? */
3130 cgroup_for_each_live_child(child, cgrp) {
3131 if (child->subtree_control & (1 << ssid)) {
3139 if (!enable && !disable) {
3144 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3148 /* save and update control masks and prepare csses */
3149 cgroup_save_control(cgrp);
3151 cgrp->subtree_control |= enable;
3152 cgrp->subtree_control &= ~disable;
3154 ret = cgroup_apply_control(cgrp);
3155 cgroup_finalize_control(cgrp, ret);
3159 kernfs_activate(cgrp->kn);
3161 cgroup_kn_unlock(of->kn);
3162 return ret ?: nbytes;
3166 * cgroup_enable_threaded - make @cgrp threaded
3167 * @cgrp: the target cgroup
3169 * Called when "threaded" is written to the cgroup.type interface file and
3170 * tries to make @cgrp threaded and join the parent's resource domain.
3171 * This function is never called on the root cgroup as cgroup.type doesn't
3174 static int cgroup_enable_threaded(struct cgroup *cgrp)
3176 struct cgroup *parent = cgroup_parent(cgrp);
3177 struct cgroup *dom_cgrp = parent->dom_cgrp;
3180 lockdep_assert_held(&cgroup_mutex);
3182 /* noop if already threaded */
3183 if (cgroup_is_threaded(cgrp))
3187 * If @cgroup is populated or has domain controllers enabled, it
3188 * can't be switched. While the below cgroup_can_be_thread_root()
3189 * test can catch the same conditions, that's only when @parent is
3190 * not mixable, so let's check it explicitly.
3192 if (cgroup_is_populated(cgrp) ||
3193 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3196 /* we're joining the parent's domain, ensure its validity */
3197 if (!cgroup_is_valid_domain(dom_cgrp) ||
3198 !cgroup_can_be_thread_root(dom_cgrp))
3202 * The following shouldn't cause actual migrations and should
3205 cgroup_save_control(cgrp);
3207 cgrp->dom_cgrp = dom_cgrp;
3208 ret = cgroup_apply_control(cgrp);
3210 parent->nr_threaded_children++;
3212 cgrp->dom_cgrp = cgrp;
3214 cgroup_finalize_control(cgrp, ret);
3218 static int cgroup_type_show(struct seq_file *seq, void *v)
3220 struct cgroup *cgrp = seq_css(seq)->cgroup;
3222 if (cgroup_is_threaded(cgrp))
3223 seq_puts(seq, "threaded\n");
3224 else if (!cgroup_is_valid_domain(cgrp))
3225 seq_puts(seq, "domain invalid\n");
3226 else if (cgroup_is_thread_root(cgrp))
3227 seq_puts(seq, "domain threaded\n");
3229 seq_puts(seq, "domain\n");
3234 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3235 size_t nbytes, loff_t off)
3237 struct cgroup *cgrp;
3240 /* only switching to threaded mode is supported */
3241 if (strcmp(strstrip(buf), "threaded"))
3244 cgrp = cgroup_kn_lock_live(of->kn, false);
3248 /* threaded can only be enabled */
3249 ret = cgroup_enable_threaded(cgrp);
3251 cgroup_kn_unlock(of->kn);
3252 return ret ?: nbytes;
3255 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3257 struct cgroup *cgrp = seq_css(seq)->cgroup;
3258 int descendants = READ_ONCE(cgrp->max_descendants);
3260 if (descendants == INT_MAX)
3261 seq_puts(seq, "max\n");
3263 seq_printf(seq, "%d\n", descendants);
3268 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3269 char *buf, size_t nbytes, loff_t off)
3271 struct cgroup *cgrp;
3275 buf = strstrip(buf);
3276 if (!strcmp(buf, "max")) {
3277 descendants = INT_MAX;
3279 ret = kstrtoint(buf, 0, &descendants);
3284 if (descendants < 0)
3287 cgrp = cgroup_kn_lock_live(of->kn, false);
3291 cgrp->max_descendants = descendants;
3293 cgroup_kn_unlock(of->kn);
3298 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3300 struct cgroup *cgrp = seq_css(seq)->cgroup;
3301 int depth = READ_ONCE(cgrp->max_depth);
3303 if (depth == INT_MAX)
3304 seq_puts(seq, "max\n");
3306 seq_printf(seq, "%d\n", depth);
3311 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3312 char *buf, size_t nbytes, loff_t off)
3314 struct cgroup *cgrp;
3318 buf = strstrip(buf);
3319 if (!strcmp(buf, "max")) {
3322 ret = kstrtoint(buf, 0, &depth);
3330 cgrp = cgroup_kn_lock_live(of->kn, false);
3334 cgrp->max_depth = depth;
3336 cgroup_kn_unlock(of->kn);
3341 static int cgroup_events_show(struct seq_file *seq, void *v)
3343 seq_printf(seq, "populated %d\n",
3344 cgroup_is_populated(seq_css(seq)->cgroup));
3348 static int cgroup_stat_show(struct seq_file *seq, void *v)
3350 struct cgroup *cgroup = seq_css(seq)->cgroup;
3352 seq_printf(seq, "nr_descendants %d\n",
3353 cgroup->nr_descendants);
3354 seq_printf(seq, "nr_dying_descendants %d\n",
3355 cgroup->nr_dying_descendants);
3360 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3361 struct cgroup *cgrp, int ssid)
3363 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3364 struct cgroup_subsys_state *css;
3367 if (!ss->css_extra_stat_show)
3370 css = cgroup_tryget_css(cgrp, ss);
3374 ret = ss->css_extra_stat_show(seq, css);
3379 static int cpu_stat_show(struct seq_file *seq, void *v)
3381 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3384 cgroup_stat_show_cputime(seq);
3385 #ifdef CONFIG_CGROUP_SCHED
3386 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3391 static int cgroup_file_open(struct kernfs_open_file *of)
3393 struct cftype *cft = of->kn->priv;
3396 return cft->open(of);
3400 static void cgroup_file_release(struct kernfs_open_file *of)
3402 struct cftype *cft = of->kn->priv;
3408 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3409 size_t nbytes, loff_t off)
3411 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3412 struct cgroup *cgrp = of->kn->parent->priv;
3413 struct cftype *cft = of->kn->priv;
3414 struct cgroup_subsys_state *css;
3418 * If namespaces are delegation boundaries, disallow writes to
3419 * files in an non-init namespace root from inside the namespace
3420 * except for the files explicitly marked delegatable -
3421 * cgroup.procs and cgroup.subtree_control.
3423 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3424 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3425 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3429 return cft->write(of, buf, nbytes, off);
3432 * kernfs guarantees that a file isn't deleted with operations in
3433 * flight, which means that the matching css is and stays alive and
3434 * doesn't need to be pinned. The RCU locking is not necessary
3435 * either. It's just for the convenience of using cgroup_css().
3438 css = cgroup_css(cgrp, cft->ss);
3441 if (cft->write_u64) {
3442 unsigned long long v;
3443 ret = kstrtoull(buf, 0, &v);
3445 ret = cft->write_u64(css, cft, v);
3446 } else if (cft->write_s64) {
3448 ret = kstrtoll(buf, 0, &v);
3450 ret = cft->write_s64(css, cft, v);
3455 return ret ?: nbytes;
3458 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3460 return seq_cft(seq)->seq_start(seq, ppos);
3463 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3465 return seq_cft(seq)->seq_next(seq, v, ppos);
3468 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3470 if (seq_cft(seq)->seq_stop)
3471 seq_cft(seq)->seq_stop(seq, v);
3474 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3476 struct cftype *cft = seq_cft(m);
3477 struct cgroup_subsys_state *css = seq_css(m);
3480 return cft->seq_show(m, arg);
3483 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3484 else if (cft->read_s64)
3485 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3491 static struct kernfs_ops cgroup_kf_single_ops = {
3492 .atomic_write_len = PAGE_SIZE,
3493 .open = cgroup_file_open,
3494 .release = cgroup_file_release,
3495 .write = cgroup_file_write,
3496 .seq_show = cgroup_seqfile_show,
3499 static struct kernfs_ops cgroup_kf_ops = {
3500 .atomic_write_len = PAGE_SIZE,
3501 .open = cgroup_file_open,
3502 .release = cgroup_file_release,
3503 .write = cgroup_file_write,
3504 .seq_start = cgroup_seqfile_start,
3505 .seq_next = cgroup_seqfile_next,
3506 .seq_stop = cgroup_seqfile_stop,
3507 .seq_show = cgroup_seqfile_show,
3510 /* set uid and gid of cgroup dirs and files to that of the creator */
3511 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3513 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3514 .ia_uid = current_fsuid(),