2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
56 #include <asm/irq_regs.h>
58 typedef int (*remote_function_f)(void *);
60 struct remote_function_call {
61 struct task_struct *p;
62 remote_function_f func;
67 static void remote_function(void *data)
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
74 if (task_cpu(p) != smp_processor_id())
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
82 tfc->ret = -ESRCH; /* No such (running) process */
87 tfc->ret = tfc->func(tfc->info);
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 struct remote_function_call data = {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
118 } while (ret == -EAGAIN);
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
128 * Calls the function @func on the remote cpu.
130 * returns: @func return value or -ENXIO when the cpu is offline
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
134 struct remote_function_call data = {
138 .ret = -ENXIO, /* No such CPU */
141 smp_call_function_single(cpu, remote_function, &data, 1);
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
155 raw_spin_lock(&cpuctx->ctx.lock);
157 raw_spin_lock(&ctx->lock);
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
168 #define TASK_TOMBSTONE ((void *)-1L)
170 static bool is_kernel_event(struct perf_event *event)
172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
176 * On task ctx scheduling...
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
182 * This however results in two special cases:
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
197 struct event_function_struct {
198 struct perf_event *event;
203 static int event_function(void *info)
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
207 struct perf_event_context *ctx = event->ctx;
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
212 lockdep_assert_irqs_disabled();
214 perf_ctx_lock(cpuctx, task_ctx);
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
220 if (ctx->task != current) {
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
232 WARN_ON_ONCE(!ctx->is_active);
234 * And since we have ctx->is_active, cpuctx->task_ctx must
237 WARN_ON_ONCE(task_ctx != ctx);
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
242 efs->func(event, cpuctx, ctx, efs->data);
244 perf_ctx_unlock(cpuctx, task_ctx);
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
251 struct perf_event_context *ctx = event->ctx;
252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 struct event_function_struct efs = {
259 if (!event->parent) {
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
265 lockdep_assert_held(&ctx->mutex);
269 cpu_function_call(event->cpu, event_function, &efs);
273 if (task == TASK_TOMBSTONE)
277 if (!task_function_call(task, event_function, &efs))
280 raw_spin_lock_irq(&ctx->lock);
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
294 func(event, NULL, ctx, data);
295 raw_spin_unlock_irq(&ctx->lock);
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
309 lockdep_assert_irqs_disabled();
312 if (task == TASK_TOMBSTONE)
318 perf_ctx_lock(cpuctx, task_ctx);
321 if (task == TASK_TOMBSTONE)
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
341 func(event, cpuctx, ctx, data);
343 perf_ctx_unlock(cpuctx, task_ctx);
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
352 * branch priv levels that need permission checks
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
359 EVENT_FLEXIBLE = 0x1,
362 /* see ctx_resched() for details */
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
395 * perf event paranoia level:
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
398 * 1 - disallow cpu events for unpriv
399 * 2 - disallow kernel profiling for unpriv
401 int sysctl_perf_event_paranoid __read_mostly = 2;
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
407 * max perf event sample rate
409 #define DEFAULT_MAX_SAMPLE_RATE 100000
410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418 static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421 static void update_perf_cpu_limits(void)
423 u64 tmp = perf_sample_period_ns;
425 tmp *= sysctl_perf_cpu_time_max_percent;
426 tmp = div_u64(tmp, 100);
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
445 * If throttling is disabled don't allow the write:
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
475 update_perf_cpu_limits();
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
490 static u64 __report_avg;
491 static u64 __report_allowed;
493 static void perf_duration_warn(struct irq_work *w)
495 printk_ratelimited(KERN_INFO
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504 void perf_sample_event_took(u64 sample_len_ns)
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 * from having to maintain a count.
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
529 __report_avg = avg_len;
530 __report_allowed = max_len;
533 * Compute a throttle threshold 25% below the current duration.
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548 if (!irq_work_queue(&perf_duration_work)) {
549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 "kernel.perf_event_max_sample_rate to %d\n",
551 __report_avg, __report_allowed,
552 sysctl_perf_event_sample_rate);
556 static atomic64_t perf_event_id;
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 enum event_type_t event_type,
563 struct task_struct *task);
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
568 void __weak perf_event_print_debug(void) { }
570 extern __weak const char *perf_pmu_name(void)
575 static inline u64 perf_clock(void)
577 return local_clock();
580 static inline u64 perf_event_clock(struct perf_event *event)
582 return event->clock();
586 * State based event timekeeping...
588 * The basic idea is to use event->state to determine which (if any) time
589 * fields to increment with the current delta. This means we only need to
590 * update timestamps when we change state or when they are explicitly requested
593 * Event groups make things a little more complicated, but not terribly so. The
594 * rules for a group are that if the group leader is OFF the entire group is
595 * OFF, irrespecive of what the group member states are. This results in
596 * __perf_effective_state().
598 * A futher ramification is that when a group leader flips between OFF and
599 * !OFF, we need to update all group member times.
602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603 * need to make sure the relevant context time is updated before we try and
604 * update our timestamps.
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
610 struct perf_event *leader = event->group_leader;
612 if (leader->state <= PERF_EVENT_STATE_OFF)
613 return leader->state;
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 enum perf_event_state state = __perf_effective_state(event);
622 u64 delta = now - event->tstamp;
624 *enabled = event->total_time_enabled;
625 if (state >= PERF_EVENT_STATE_INACTIVE)
628 *running = event->total_time_running;
629 if (state >= PERF_EVENT_STATE_ACTIVE)
633 static void perf_event_update_time(struct perf_event *event)
635 u64 now = perf_event_time(event);
637 __perf_update_times(event, now, &event->total_time_enabled,
638 &event->total_time_running);
642 static void perf_event_update_sibling_time(struct perf_event *leader)
644 struct perf_event *sibling;
646 for_each_sibling_event(sibling, leader)
647 perf_event_update_time(sibling);
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 if (event->state == state)
656 perf_event_update_time(event);
658 * If a group leader gets enabled/disabled all its siblings
661 if ((event->state < 0) ^ (state < 0))
662 perf_event_update_sibling_time(event);
664 WRITE_ONCE(event->state, state);
667 #ifdef CONFIG_CGROUP_PERF
670 perf_cgroup_match(struct perf_event *event)
672 struct perf_event_context *ctx = event->ctx;
673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675 /* @event doesn't care about cgroup */
679 /* wants specific cgroup scope but @cpuctx isn't associated with any */
684 * Cgroup scoping is recursive. An event enabled for a cgroup is
685 * also enabled for all its descendant cgroups. If @cpuctx's
686 * cgroup is a descendant of @event's (the test covers identity
687 * case), it's a match.
689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 event->cgrp->css.cgroup);
693 static inline void perf_detach_cgroup(struct perf_event *event)
695 css_put(&event->cgrp->css);
699 static inline int is_cgroup_event(struct perf_event *event)
701 return event->cgrp != NULL;
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 struct perf_cgroup_info *t;
708 t = per_cpu_ptr(event->cgrp->info, event->cpu);
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 struct perf_cgroup_info *info;
719 info = this_cpu_ptr(cgrp->info);
721 info->time += now - info->timestamp;
722 info->timestamp = now;
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 struct perf_cgroup *cgrp = cpuctx->cgrp;
728 struct cgroup_subsys_state *css;
731 for (css = &cgrp->css; css; css = css->parent) {
732 cgrp = container_of(css, struct perf_cgroup, css);
733 __update_cgrp_time(cgrp);
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 struct perf_cgroup *cgrp;
743 * ensure we access cgroup data only when needed and
744 * when we know the cgroup is pinned (css_get)
746 if (!is_cgroup_event(event))
749 cgrp = perf_cgroup_from_task(current, event->ctx);
751 * Do not update time when cgroup is not active
753 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754 __update_cgrp_time(event->cgrp);
758 perf_cgroup_set_timestamp(struct task_struct *task,
759 struct perf_event_context *ctx)
761 struct perf_cgroup *cgrp;
762 struct perf_cgroup_info *info;
763 struct cgroup_subsys_state *css;
766 * ctx->lock held by caller
767 * ensure we do not access cgroup data
768 * unless we have the cgroup pinned (css_get)
770 if (!task || !ctx->nr_cgroups)
773 cgrp = perf_cgroup_from_task(task, ctx);
775 for (css = &cgrp->css; css; css = css->parent) {
776 cgrp = container_of(css, struct perf_cgroup, css);
777 info = this_cpu_ptr(cgrp->info);
778 info->timestamp = ctx->timestamp;
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
788 * reschedule events based on the cgroup constraint of task.
790 * mode SWOUT : schedule out everything
791 * mode SWIN : schedule in based on cgroup for next
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 struct perf_cpu_context *cpuctx;
796 struct list_head *list;
800 * Disable interrupts and preemption to avoid this CPU's
801 * cgrp_cpuctx_entry to change under us.
803 local_irq_save(flags);
805 list = this_cpu_ptr(&cgrp_cpuctx_list);
806 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810 perf_pmu_disable(cpuctx->ctx.pmu);
812 if (mode & PERF_CGROUP_SWOUT) {
813 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 * must not be done before ctxswout due
816 * to event_filter_match() in event_sched_out()
821 if (mode & PERF_CGROUP_SWIN) {
822 WARN_ON_ONCE(cpuctx->cgrp);
824 * set cgrp before ctxsw in to allow
825 * event_filter_match() to not have to pass
827 * we pass the cpuctx->ctx to perf_cgroup_from_task()
828 * because cgorup events are only per-cpu
830 cpuctx->cgrp = perf_cgroup_from_task(task,
832 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 perf_pmu_enable(cpuctx->ctx.pmu);
835 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
838 local_irq_restore(flags);
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842 struct task_struct *next)
844 struct perf_cgroup *cgrp1;
845 struct perf_cgroup *cgrp2 = NULL;
849 * we come here when we know perf_cgroup_events > 0
850 * we do not need to pass the ctx here because we know
851 * we are holding the rcu lock
853 cgrp1 = perf_cgroup_from_task(task, NULL);
854 cgrp2 = perf_cgroup_from_task(next, NULL);
857 * only schedule out current cgroup events if we know
858 * that we are switching to a different cgroup. Otherwise,
859 * do no touch the cgroup events.
862 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868 struct task_struct *task)
870 struct perf_cgroup *cgrp1;
871 struct perf_cgroup *cgrp2 = NULL;
875 * we come here when we know perf_cgroup_events > 0
876 * we do not need to pass the ctx here because we know
877 * we are holding the rcu lock
879 cgrp1 = perf_cgroup_from_task(task, NULL);
880 cgrp2 = perf_cgroup_from_task(prev, NULL);
883 * only need to schedule in cgroup events if we are changing
884 * cgroup during ctxsw. Cgroup events were not scheduled
885 * out of ctxsw out if that was not the case.
888 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894 struct perf_event_attr *attr,
895 struct perf_event *group_leader)
897 struct perf_cgroup *cgrp;
898 struct cgroup_subsys_state *css;
899 struct fd f = fdget(fd);
905 css = css_tryget_online_from_dir(f.file->f_path.dentry,
906 &perf_event_cgrp_subsys);
912 cgrp = container_of(css, struct perf_cgroup, css);
916 * all events in a group must monitor
917 * the same cgroup because a task belongs
918 * to only one perf cgroup at a time
920 if (group_leader && group_leader->cgrp != cgrp) {
921 perf_detach_cgroup(event);
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 struct perf_cgroup_info *t;
933 t = per_cpu_ptr(event->cgrp->info, event->cpu);
934 event->shadow_ctx_time = now - t->timestamp;
938 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939 * cleared when last cgroup event is removed.
942 list_update_cgroup_event(struct perf_event *event,
943 struct perf_event_context *ctx, bool add)
945 struct perf_cpu_context *cpuctx;
946 struct list_head *cpuctx_entry;
948 if (!is_cgroup_event(event))
952 * Because cgroup events are always per-cpu events,
953 * this will always be called from the right CPU.
955 cpuctx = __get_cpu_context(ctx);
958 * Since setting cpuctx->cgrp is conditional on the current @cgrp
959 * matching the event's cgroup, we must do this for every new event,
960 * because if the first would mismatch, the second would not try again
961 * and we would leave cpuctx->cgrp unset.
963 if (add && !cpuctx->cgrp) {
964 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
970 if (add && ctx->nr_cgroups++)
972 else if (!add && --ctx->nr_cgroups)
975 /* no cgroup running */
979 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 list_del(cpuctx_entry);
986 #else /* !CONFIG_CGROUP_PERF */
989 perf_cgroup_match(struct perf_event *event)
994 static inline void perf_detach_cgroup(struct perf_event *event)
997 static inline int is_cgroup_event(struct perf_event *event)
1002 static inline void update_cgrp_time_from_event(struct perf_event *event)
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1010 static inline void perf_cgroup_sched_out(struct task_struct *task,
1011 struct task_struct *next)
1015 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016 struct task_struct *task)
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021 struct perf_event_attr *attr,
1022 struct perf_event *group_leader)
1028 perf_cgroup_set_timestamp(struct task_struct *task,
1029 struct perf_event_context *ctx)
1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1043 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 list_update_cgroup_event(struct perf_event *event,
1050 struct perf_event_context *ctx, bool add)
1057 * set default to be dependent on timer tick just
1058 * like original code
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 * function must be called with interrupts disabled
1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 struct perf_cpu_context *cpuctx;
1069 lockdep_assert_irqs_disabled();
1071 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072 rotations = perf_rotate_context(cpuctx);
1074 raw_spin_lock(&cpuctx->hrtimer_lock);
1076 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078 cpuctx->hrtimer_active = 0;
1079 raw_spin_unlock(&cpuctx->hrtimer_lock);
1081 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 struct hrtimer *timer = &cpuctx->hrtimer;
1087 struct pmu *pmu = cpuctx->ctx.pmu;
1090 /* no multiplexing needed for SW PMU */
1091 if (pmu->task_ctx_nr == perf_sw_context)
1095 * check default is sane, if not set then force to
1096 * default interval (1/tick)
1098 interval = pmu->hrtimer_interval_ms;
1100 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106 timer->function = perf_mux_hrtimer_handler;
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 struct hrtimer *timer = &cpuctx->hrtimer;
1112 struct pmu *pmu = cpuctx->ctx.pmu;
1113 unsigned long flags;
1115 /* not for SW PMU */
1116 if (pmu->task_ctx_nr == perf_sw_context)
1119 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120 if (!cpuctx->hrtimer_active) {
1121 cpuctx->hrtimer_active = 1;
1122 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1130 void perf_pmu_disable(struct pmu *pmu)
1132 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 pmu->pmu_disable(pmu);
1137 void perf_pmu_enable(struct pmu *pmu)
1139 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 pmu->pmu_enable(pmu);
1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1147 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148 * perf_event_task_tick() are fully serialized because they're strictly cpu
1149 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150 * disabled, while perf_event_task_tick is called from IRQ context.
1152 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156 lockdep_assert_irqs_disabled();
1158 WARN_ON(!list_empty(&ctx->active_ctx_list));
1160 list_add(&ctx->active_ctx_list, head);
1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 lockdep_assert_irqs_disabled();
1167 WARN_ON(list_empty(&ctx->active_ctx_list));
1169 list_del_init(&ctx->active_ctx_list);
1172 static void get_ctx(struct perf_event_context *ctx)
1174 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1177 static void free_ctx(struct rcu_head *head)
1179 struct perf_event_context *ctx;
1181 ctx = container_of(head, struct perf_event_context, rcu_head);
1182 kfree(ctx->task_ctx_data);
1186 static void put_ctx(struct perf_event_context *ctx)
1188 if (atomic_dec_and_test(&ctx->refcount)) {
1189 if (ctx->parent_ctx)
1190 put_ctx(ctx->parent_ctx);
1191 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192 put_task_struct(ctx->task);
1193 call_rcu(&ctx->rcu_head, free_ctx);
1198 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199 * perf_pmu_migrate_context() we need some magic.
1201 * Those places that change perf_event::ctx will hold both
1202 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204 * Lock ordering is by mutex address. There are two other sites where
1205 * perf_event_context::mutex nests and those are:
1207 * - perf_event_exit_task_context() [ child , 0 ]
1208 * perf_event_exit_event()
1209 * put_event() [ parent, 1 ]
1211 * - perf_event_init_context() [ parent, 0 ]
1212 * inherit_task_group()
1215 * perf_event_alloc()
1217 * perf_try_init_event() [ child , 1 ]
1219 * While it appears there is an obvious deadlock here -- the parent and child
1220 * nesting levels are inverted between the two. This is in fact safe because
1221 * life-time rules separate them. That is an exiting task cannot fork, and a
1222 * spawning task cannot (yet) exit.
1224 * But remember that that these are parent<->child context relations, and
1225 * migration does not affect children, therefore these two orderings should not
1228 * The change in perf_event::ctx does not affect children (as claimed above)
1229 * because the sys_perf_event_open() case will install a new event and break
1230 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231 * concerned with cpuctx and that doesn't have children.
1233 * The places that change perf_event::ctx will issue:
1235 * perf_remove_from_context();
1236 * synchronize_rcu();
1237 * perf_install_in_context();
1239 * to affect the change. The remove_from_context() + synchronize_rcu() should
1240 * quiesce the event, after which we can install it in the new location. This
1241 * means that only external vectors (perf_fops, prctl) can perturb the event
1242 * while in transit. Therefore all such accessors should also acquire
1243 * perf_event_context::mutex to serialize against this.
1245 * However; because event->ctx can change while we're waiting to acquire
1246 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1251 * task_struct::perf_event_mutex
1252 * perf_event_context::mutex
1253 * perf_event::child_mutex;
1254 * perf_event_context::lock
1255 * perf_event::mmap_mutex
1260 * cpuctx->mutex / perf_event_context::mutex
1262 static struct perf_event_context *
1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1265 struct perf_event_context *ctx;
1269 ctx = READ_ONCE(event->ctx);
1270 if (!atomic_inc_not_zero(&ctx->refcount)) {
1276 mutex_lock_nested(&ctx->mutex, nesting);
1277 if (event->ctx != ctx) {
1278 mutex_unlock(&ctx->mutex);
1286 static inline struct perf_event_context *
1287 perf_event_ctx_lock(struct perf_event *event)
1289 return perf_event_ctx_lock_nested(event, 0);
1292 static void perf_event_ctx_unlock(struct perf_event *event,
1293 struct perf_event_context *ctx)
1295 mutex_unlock(&ctx->mutex);
1300 * This must be done under the ctx->lock, such as to serialize against
1301 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302 * calling scheduler related locks and ctx->lock nests inside those.
1304 static __must_check struct perf_event_context *
1305 unclone_ctx(struct perf_event_context *ctx)
1307 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1309 lockdep_assert_held(&ctx->lock);
1312 ctx->parent_ctx = NULL;
1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 * only top level events have the pid namespace they were created in
1326 event = event->parent;
1328 nr = __task_pid_nr_ns(p, type, event->ns);
1329 /* avoid -1 if it is idle thread or runs in another ns */
1330 if (!nr && !pid_alive(p))
1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1337 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1342 return perf_event_pid_type(event, p, PIDTYPE_PID);
1346 * If we inherit events we want to return the parent event id
1349 static u64 primary_event_id(struct perf_event *event)
1354 id = event->parent->id;
1360 * Get the perf_event_context for a task and lock it.
1362 * This has to cope with with the fact that until it is locked,
1363 * the context could get moved to another task.
1365 static struct perf_event_context *
1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1368 struct perf_event_context *ctx;
1372 * One of the few rules of preemptible RCU is that one cannot do
1373 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374 * part of the read side critical section was irqs-enabled -- see
1375 * rcu_read_unlock_special().
1377 * Since ctx->lock nests under rq->lock we must ensure the entire read
1378 * side critical section has interrupts disabled.
1380 local_irq_save(*flags);
1382 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385 * If this context is a clone of another, it might
1386 * get swapped for another underneath us by
1387 * perf_event_task_sched_out, though the
1388 * rcu_read_lock() protects us from any context
1389 * getting freed. Lock the context and check if it
1390 * got swapped before we could get the lock, and retry
1391 * if so. If we locked the right context, then it
1392 * can't get swapped on us any more.
1394 raw_spin_lock(&ctx->lock);
1395 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396 raw_spin_unlock(&ctx->lock);
1398 local_irq_restore(*flags);
1402 if (ctx->task == TASK_TOMBSTONE ||
1403 !atomic_inc_not_zero(&ctx->refcount)) {
1404 raw_spin_unlock(&ctx->lock);
1407 WARN_ON_ONCE(ctx->task != task);
1412 local_irq_restore(*flags);
1417 * Get the context for a task and increment its pin_count so it
1418 * can't get swapped to another task. This also increments its
1419 * reference count so that the context can't get freed.
1421 static struct perf_event_context *
1422 perf_pin_task_context(struct task_struct *task, int ctxn)
1424 struct perf_event_context *ctx;
1425 unsigned long flags;
1427 ctx = perf_lock_task_context(task, ctxn, &flags);
1430 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 static void perf_unpin_context(struct perf_event_context *ctx)
1437 unsigned long flags;
1439 raw_spin_lock_irqsave(&ctx->lock, flags);
1441 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1445 * Update the record of the current time in a context.
1447 static void update_context_time(struct perf_event_context *ctx)
1449 u64 now = perf_clock();
1451 ctx->time += now - ctx->timestamp;
1452 ctx->timestamp = now;
1455 static u64 perf_event_time(struct perf_event *event)
1457 struct perf_event_context *ctx = event->ctx;
1459 if (is_cgroup_event(event))
1460 return perf_cgroup_event_time(event);
1462 return ctx ? ctx->time : 0;
1465 static enum event_type_t get_event_type(struct perf_event *event)
1467 struct perf_event_context *ctx = event->ctx;
1468 enum event_type_t event_type;
1470 lockdep_assert_held(&ctx->lock);
1473 * It's 'group type', really, because if our group leader is
1474 * pinned, so are we.
1476 if (event->group_leader != event)
1477 event = event->group_leader;
1479 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1481 event_type |= EVENT_CPU;
1487 * Helper function to initialize event group nodes.
1489 static void init_event_group(struct perf_event *event)
1491 RB_CLEAR_NODE(&event->group_node);
1492 event->group_index = 0;
1496 * Extract pinned or flexible groups from the context
1497 * based on event attrs bits.
1499 static struct perf_event_groups *
1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1502 if (event->attr.pinned)
1503 return &ctx->pinned_groups;
1505 return &ctx->flexible_groups;
1509 * Helper function to initializes perf_event_group trees.
1511 static void perf_event_groups_init(struct perf_event_groups *groups)
1513 groups->tree = RB_ROOT;
1518 * Compare function for event groups;
1520 * Implements complex key that first sorts by CPU and then by virtual index
1521 * which provides ordering when rotating groups for the same CPU.
1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1526 if (left->cpu < right->cpu)
1528 if (left->cpu > right->cpu)
1531 if (left->group_index < right->group_index)
1533 if (left->group_index > right->group_index)
1540 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541 * key (see perf_event_groups_less). This places it last inside the CPU
1545 perf_event_groups_insert(struct perf_event_groups *groups,
1546 struct perf_event *event)
1548 struct perf_event *node_event;
1549 struct rb_node *parent;
1550 struct rb_node **node;
1552 event->group_index = ++groups->index;
1554 node = &groups->tree.rb_node;
1559 node_event = container_of(*node, struct perf_event, group_node);
1561 if (perf_event_groups_less(event, node_event))
1562 node = &parent->rb_left;
1564 node = &parent->rb_right;
1567 rb_link_node(&event->group_node, parent, node);
1568 rb_insert_color(&event->group_node, &groups->tree);
1572 * Helper function to insert event into the pinned or flexible groups.
1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1577 struct perf_event_groups *groups;
1579 groups = get_event_groups(event, ctx);
1580 perf_event_groups_insert(groups, event);
1584 * Delete a group from a tree.
1587 perf_event_groups_delete(struct perf_event_groups *groups,
1588 struct perf_event *event)
1590 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591 RB_EMPTY_ROOT(&groups->tree));
1593 rb_erase(&event->group_node, &groups->tree);
1594 init_event_group(event);
1598 * Helper function to delete event from its groups.
1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1603 struct perf_event_groups *groups;
1605 groups = get_event_groups(event, ctx);
1606 perf_event_groups_delete(groups, event);
1610 * Get the leftmost event in the @cpu subtree.
1612 static struct perf_event *
1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1615 struct perf_event *node_event = NULL, *match = NULL;
1616 struct rb_node *node = groups->tree.rb_node;
1619 node_event = container_of(node, struct perf_event, group_node);
1621 if (cpu < node_event->cpu) {
1622 node = node->rb_left;
1623 } else if (cpu > node_event->cpu) {
1624 node = node->rb_right;
1627 node = node->rb_left;
1635 * Like rb_entry_next_safe() for the @cpu subtree.
1637 static struct perf_event *
1638 perf_event_groups_next(struct perf_event *event)
1640 struct perf_event *next;
1642 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643 if (next && next->cpu == event->cpu)
1650 * Iterate through the whole groups tree.
1652 #define perf_event_groups_for_each(event, groups) \
1653 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1654 typeof(*event), group_node); event; \
1655 event = rb_entry_safe(rb_next(&event->group_node), \
1656 typeof(*event), group_node))
1659 * Add an event from the lists for its context.
1660 * Must be called with ctx->mutex and ctx->lock held.
1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1665 lockdep_assert_held(&ctx->lock);
1667 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668 event->attach_state |= PERF_ATTACH_CONTEXT;
1670 event->tstamp = perf_event_time(event);
1673 * If we're a stand alone event or group leader, we go to the context
1674 * list, group events are kept attached to the group so that
1675 * perf_group_detach can, at all times, locate all siblings.
1677 if (event->group_leader == event) {
1678 event->group_caps = event->event_caps;
1679 add_event_to_groups(event, ctx);
1682 list_update_cgroup_event(event, ctx, true);
1684 list_add_rcu(&event->event_entry, &ctx->event_list);
1686 if (event->attr.inherit_stat)
1693 * Initialize event state based on the perf_event_attr::disabled.
1695 static inline void perf_event__state_init(struct perf_event *event)
1697 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698 PERF_EVENT_STATE_INACTIVE;
1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1703 int entry = sizeof(u64); /* value */
1707 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708 size += sizeof(u64);
1710 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711 size += sizeof(u64);
1713 if (event->attr.read_format & PERF_FORMAT_ID)
1714 entry += sizeof(u64);
1716 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1718 size += sizeof(u64);
1722 event->read_size = size;
1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1727 struct perf_sample_data *data;
1730 if (sample_type & PERF_SAMPLE_IP)
1731 size += sizeof(data->ip);
1733 if (sample_type & PERF_SAMPLE_ADDR)
1734 size += sizeof(data->addr);
1736 if (sample_type & PERF_SAMPLE_PERIOD)
1737 size += sizeof(data->period);
1739 if (sample_type & PERF_SAMPLE_WEIGHT)
1740 size += sizeof(data->weight);
1742 if (sample_type & PERF_SAMPLE_READ)
1743 size += event->read_size;
1745 if (sample_type & PERF_SAMPLE_DATA_SRC)
1746 size += sizeof(data->data_src.val);
1748 if (sample_type & PERF_SAMPLE_TRANSACTION)
1749 size += sizeof(data->txn);
1751 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752 size += sizeof(data->phys_addr);
1754 event->header_size = size;
1758 * Called at perf_event creation and when events are attached/detached from a
1761 static void perf_event__header_size(struct perf_event *event)
1763 __perf_event_read_size(event,
1764 event->group_leader->nr_siblings);
1765 __perf_event_header_size(event, event->attr.sample_type);
1768 static void perf_event__id_header_size(struct perf_event *event)
1770 struct perf_sample_data *data;
1771 u64 sample_type = event->attr.sample_type;
1774 if (sample_type & PERF_SAMPLE_TID)
1775 size += sizeof(data->tid_entry);
1777 if (sample_type & PERF_SAMPLE_TIME)
1778 size += sizeof(data->time);
1780 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781 size += sizeof(data->id);
1783 if (sample_type & PERF_SAMPLE_ID)
1784 size += sizeof(data->id);
1786 if (sample_type & PERF_SAMPLE_STREAM_ID)
1787 size += sizeof(data->stream_id);
1789 if (sample_type & PERF_SAMPLE_CPU)
1790 size += sizeof(data->cpu_entry);
1792 event->id_header_size = size;
1795 static bool perf_event_validate_size(struct perf_event *event)
1798 * The values computed here will be over-written when we actually
1801 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803 perf_event__id_header_size(event);
1806 * Sum the lot; should not exceed the 64k limit we have on records.
1807 * Conservative limit to allow for callchains and other variable fields.
1809 if (event->read_size + event->header_size +
1810 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1816 static void perf_group_attach(struct perf_event *event)
1818 struct perf_event *group_leader = event->group_leader, *pos;
1820 lockdep_assert_held(&event->ctx->lock);
1823 * We can have double attach due to group movement in perf_event_open.
1825 if (event->attach_state & PERF_ATTACH_GROUP)
1828 event->attach_state |= PERF_ATTACH_GROUP;
1830 if (group_leader == event)
1833 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1835 group_leader->group_caps &= event->event_caps;
1837 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838 group_leader->nr_siblings++;
1840 perf_event__header_size(group_leader);
1842 for_each_sibling_event(pos, group_leader)
1843 perf_event__header_size(pos);
1847 * Remove an event from the lists for its context.
1848 * Must be called with ctx->mutex and ctx->lock held.
1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1853 WARN_ON_ONCE(event->ctx != ctx);
1854 lockdep_assert_held(&ctx->lock);
1857 * We can have double detach due to exit/hot-unplug + close.
1859 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1864 list_update_cgroup_event(event, ctx, false);
1867 if (event->attr.inherit_stat)
1870 list_del_rcu(&event->event_entry);
1872 if (event->group_leader == event)
1873 del_event_from_groups(event, ctx);
1876 * If event was in error state, then keep it
1877 * that way, otherwise bogus counts will be
1878 * returned on read(). The only way to get out
1879 * of error state is by explicit re-enabling
1882 if (event->state > PERF_EVENT_STATE_OFF)
1883 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1888 static void perf_group_detach(struct perf_event *event)
1890 struct perf_event *sibling, *tmp;
1891 struct perf_event_context *ctx = event->ctx;
1893 lockdep_assert_held(&ctx->lock);
1896 * We can have double detach due to exit/hot-unplug + close.
1898 if (!(event->attach_state & PERF_ATTACH_GROUP))
1901 event->attach_state &= ~PERF_ATTACH_GROUP;
1904 * If this is a sibling, remove it from its group.
1906 if (event->group_leader != event) {
1907 list_del_init(&event->sibling_list);
1908 event->group_leader->nr_siblings--;
1913 * If this was a group event with sibling events then
1914 * upgrade the siblings to singleton events by adding them
1915 * to whatever list we are on.
1917 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1919 sibling->group_leader = sibling;
1920 list_del_init(&sibling->sibling_list);
1922 /* Inherit group flags from the previous leader */
1923 sibling->group_caps = event->group_caps;
1925 if (!RB_EMPTY_NODE(&event->group_node)) {
1926 add_event_to_groups(sibling, event->ctx);
1928 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929 struct list_head *list = sibling->attr.pinned ?
1930 &ctx->pinned_active : &ctx->flexible_active;
1932 list_add_tail(&sibling->active_list, list);
1936 WARN_ON_ONCE(sibling->ctx != event->ctx);
1940 perf_event__header_size(event->group_leader);
1942 for_each_sibling_event(tmp, event->group_leader)
1943 perf_event__header_size(tmp);
1946 static bool is_orphaned_event(struct perf_event *event)
1948 return event->state == PERF_EVENT_STATE_DEAD;
1951 static inline int __pmu_filter_match(struct perf_event *event)
1953 struct pmu *pmu = event->pmu;
1954 return pmu->filter_match ? pmu->filter_match(event) : 1;
1958 * Check whether we should attempt to schedule an event group based on
1959 * PMU-specific filtering. An event group can consist of HW and SW events,
1960 * potentially with a SW leader, so we must check all the filters, to
1961 * determine whether a group is schedulable:
1963 static inline int pmu_filter_match(struct perf_event *event)
1965 struct perf_event *sibling;
1967 if (!__pmu_filter_match(event))
1970 for_each_sibling_event(sibling, event) {
1971 if (!__pmu_filter_match(sibling))
1979 event_filter_match(struct perf_event *event)
1981 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982 perf_cgroup_match(event) && pmu_filter_match(event);
1986 event_sched_out(struct perf_event *event,
1987 struct perf_cpu_context *cpuctx,
1988 struct perf_event_context *ctx)
1990 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1992 WARN_ON_ONCE(event->ctx != ctx);
1993 lockdep_assert_held(&ctx->lock);
1995 if (event->state != PERF_EVENT_STATE_ACTIVE)
1999 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000 * we can schedule events _OUT_ individually through things like
2001 * __perf_remove_from_context().
2003 list_del_init(&event->active_list);
2005 perf_pmu_disable(event->pmu);
2007 event->pmu->del(event, 0);
2010 if (event->pending_disable) {
2011 event->pending_disable = 0;
2012 state = PERF_EVENT_STATE_OFF;
2014 perf_event_set_state(event, state);
2016 if (!is_software_event(event))
2017 cpuctx->active_oncpu--;
2018 if (!--ctx->nr_active)
2019 perf_event_ctx_deactivate(ctx);
2020 if (event->attr.freq && event->attr.sample_freq)
2022 if (event->attr.exclusive || !cpuctx->active_oncpu)
2023 cpuctx->exclusive = 0;
2025 perf_pmu_enable(event->pmu);
2029 group_sched_out(struct perf_event *group_event,
2030 struct perf_cpu_context *cpuctx,
2031 struct perf_event_context *ctx)
2033 struct perf_event *event;
2035 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2038 perf_pmu_disable(ctx->pmu);
2040 event_sched_out(group_event, cpuctx, ctx);
2043 * Schedule out siblings (if any):
2045 for_each_sibling_event(event, group_event)
2046 event_sched_out(event, cpuctx, ctx);
2048 perf_pmu_enable(ctx->pmu);
2050 if (group_event->attr.exclusive)
2051 cpuctx->exclusive = 0;
2054 #define DETACH_GROUP 0x01UL
2057 * Cross CPU call to remove a performance event
2059 * We disable the event on the hardware level first. After that we
2060 * remove it from the context list.
2063 __perf_remove_from_context(struct perf_event *event,
2064 struct perf_cpu_context *cpuctx,
2065 struct perf_event_context *ctx,
2068 unsigned long flags = (unsigned long)info;
2070 if (ctx->is_active & EVENT_TIME) {
2071 update_context_time(ctx);
2072 update_cgrp_time_from_cpuctx(cpuctx);
2075 event_sched_out(event, cpuctx, ctx);
2076 if (flags & DETACH_GROUP)
2077 perf_group_detach(event);
2078 list_del_event(event, ctx);
2080 if (!ctx->nr_events && ctx->is_active) {
2083 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084 cpuctx->task_ctx = NULL;
2090 * Remove the event from a task's (or a CPU's) list of events.
2092 * If event->ctx is a cloned context, callers must make sure that
2093 * every task struct that event->ctx->task could possibly point to
2094 * remains valid. This is OK when called from perf_release since
2095 * that only calls us on the top-level context, which can't be a clone.
2096 * When called from perf_event_exit_task, it's OK because the
2097 * context has been detached from its task.
2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2101 struct perf_event_context *ctx = event->ctx;
2103 lockdep_assert_held(&ctx->mutex);
2105 event_function_call(event, __perf_remove_from_context, (void *)flags);
2108 * The above event_function_call() can NO-OP when it hits
2109 * TASK_TOMBSTONE. In that case we must already have been detached
2110 * from the context (by perf_event_exit_event()) but the grouping
2111 * might still be in-tact.
2113 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114 if ((flags & DETACH_GROUP) &&
2115 (event->attach_state & PERF_ATTACH_GROUP)) {
2117 * Since in that case we cannot possibly be scheduled, simply
2120 raw_spin_lock_irq(&ctx->lock);
2121 perf_group_detach(event);
2122 raw_spin_unlock_irq(&ctx->lock);
2127 * Cross CPU call to disable a performance event
2129 static void __perf_event_disable(struct perf_event *event,
2130 struct perf_cpu_context *cpuctx,
2131 struct perf_event_context *ctx,
2134 if (event->state < PERF_EVENT_STATE_INACTIVE)
2137 if (ctx->is_active & EVENT_TIME) {
2138 update_context_time(ctx);
2139 update_cgrp_time_from_event(event);
2142 if (event == event->group_leader)
2143 group_sched_out(event, cpuctx, ctx);
2145 event_sched_out(event, cpuctx, ctx);
2147 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2153 * If event->ctx is a cloned context, callers must make sure that
2154 * every task struct that event->ctx->task could possibly point to
2155 * remains valid. This condition is satisifed when called through
2156 * perf_event_for_each_child or perf_event_for_each because they
2157 * hold the top-level event's child_mutex, so any descendant that
2158 * goes to exit will block in perf_event_exit_event().
2160 * When called from perf_pending_event it's OK because event->ctx
2161 * is the current context on this CPU and preemption is disabled,
2162 * hence we can't get into perf_event_task_sched_out for this context.
2164 static void _perf_event_disable(struct perf_event *event)
2166 struct perf_event_context *ctx = event->ctx;
2168 raw_spin_lock_irq(&ctx->lock);
2169 if (event->state <= PERF_EVENT_STATE_OFF) {
2170 raw_spin_unlock_irq(&ctx->lock);
2173 raw_spin_unlock_irq(&ctx->lock);
2175 event_function_call(event, __perf_event_disable, NULL);
2178 void perf_event_disable_local(struct perf_event *event)
2180 event_function_local(event, __perf_event_disable, NULL);
2184 * Strictly speaking kernel users cannot create groups and therefore this
2185 * interface does not need the perf_event_ctx_lock() magic.
2187 void perf_event_disable(struct perf_event *event)
2189 struct perf_event_context *ctx;
2191 ctx = perf_event_ctx_lock(event);
2192 _perf_event_disable(event);
2193 perf_event_ctx_unlock(event, ctx);
2195 EXPORT_SYMBOL_GPL(perf_event_disable);
2197 void perf_event_disable_inatomic(struct perf_event *event)
2199 event->pending_disable = 1;
2200 irq_work_queue(&event->pending);
2203 static void perf_set_shadow_time(struct perf_event *event,
2204 struct perf_event_context *ctx)
2207 * use the correct time source for the time snapshot
2209 * We could get by without this by leveraging the
2210 * fact that to get to this function, the caller
2211 * has most likely already called update_context_time()
2212 * and update_cgrp_time_xx() and thus both timestamp
2213 * are identical (or very close). Given that tstamp is,
2214 * already adjusted for cgroup, we could say that:
2215 * tstamp - ctx->timestamp
2217 * tstamp - cgrp->timestamp.
2219 * Then, in perf_output_read(), the calculation would
2220 * work with no changes because:
2221 * - event is guaranteed scheduled in
2222 * - no scheduled out in between
2223 * - thus the timestamp would be the same
2225 * But this is a bit hairy.
2227 * So instead, we have an explicit cgroup call to remain
2228 * within the time time source all along. We believe it
2229 * is cleaner and simpler to understand.
2231 if (is_cgroup_event(event))
2232 perf_cgroup_set_shadow_time(event, event->tstamp);
2234 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2237 #define MAX_INTERRUPTS (~0ULL)
2239 static void perf_log_throttle(struct perf_event *event, int enable);
2240 static void perf_log_itrace_start(struct perf_event *event);
2243 event_sched_in(struct perf_event *event,
2244 struct perf_cpu_context *cpuctx,
2245 struct perf_event_context *ctx)
2249 lockdep_assert_held(&ctx->lock);
2251 if (event->state <= PERF_EVENT_STATE_OFF)
2254 WRITE_ONCE(event->oncpu, smp_processor_id());
2256 * Order event::oncpu write to happen before the ACTIVE state is
2257 * visible. This allows perf_event_{stop,read}() to observe the correct
2258 * ->oncpu if it sees ACTIVE.
2261 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2264 * Unthrottle events, since we scheduled we might have missed several
2265 * ticks already, also for a heavily scheduling task there is little
2266 * guarantee it'll get a tick in a timely manner.
2268 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269 perf_log_throttle(event, 1);
2270 event->hw.interrupts = 0;
2273 perf_pmu_disable(event->pmu);
2275 perf_set_shadow_time(event, ctx);
2277 perf_log_itrace_start(event);
2279 if (event->pmu->add(event, PERF_EF_START)) {
2280 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2286 if (!is_software_event(event))
2287 cpuctx->active_oncpu++;
2288 if (!ctx->nr_active++)
2289 perf_event_ctx_activate(ctx);
2290 if (event->attr.freq && event->attr.sample_freq)
2293 if (event->attr.exclusive)
2294 cpuctx->exclusive = 1;
2297 perf_pmu_enable(event->pmu);
2303 group_sched_in(struct perf_event *group_event,
2304 struct perf_cpu_context *cpuctx,
2305 struct perf_event_context *ctx)
2307 struct perf_event *event, *partial_group = NULL;
2308 struct pmu *pmu = ctx->pmu;
2310 if (group_event->state == PERF_EVENT_STATE_OFF)
2313 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2315 if (event_sched_in(group_event, cpuctx, ctx)) {
2316 pmu->cancel_txn(pmu);
2317 perf_mux_hrtimer_restart(cpuctx);
2322 * Schedule in siblings as one group (if any):
2324 for_each_sibling_event(event, group_event) {
2325 if (event_sched_in(event, cpuctx, ctx)) {
2326 partial_group = event;
2331 if (!pmu->commit_txn(pmu))
2336 * Groups can be scheduled in as one unit only, so undo any
2337 * partial group before returning:
2338 * The events up to the failed event are scheduled out normally.
2340 for_each_sibling_event(event, group_event) {
2341 if (event == partial_group)
2344 event_sched_out(event, cpuctx, ctx);
2346 event_sched_out(group_event, cpuctx, ctx);
2348 pmu->cancel_txn(pmu);
2350 perf_mux_hrtimer_restart(cpuctx);
2356 * Work out whether we can put this event group on the CPU now.
2358 static int group_can_go_on(struct perf_event *event,
2359 struct perf_cpu_context *cpuctx,
2363 * Groups consisting entirely of software events can always go on.
2365 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2368 * If an exclusive group is already on, no other hardware
2371 if (cpuctx->exclusive)
2374 * If this group is exclusive and there are already
2375 * events on the CPU, it can't go on.
2377 if (event->attr.exclusive && cpuctx->active_oncpu)
2380 * Otherwise, try to add it if all previous groups were able
2386 static void add_event_to_ctx(struct perf_event *event,
2387 struct perf_event_context *ctx)
2389 list_add_event(event, ctx);
2390 perf_group_attach(event);
2393 static void ctx_sched_out(struct perf_event_context *ctx,
2394 struct perf_cpu_context *cpuctx,
2395 enum event_type_t event_type);
2397 ctx_sched_in(struct perf_event_context *ctx,
2398 struct perf_cpu_context *cpuctx,
2399 enum event_type_t event_type,
2400 struct task_struct *task);
2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403 struct perf_event_context *ctx,
2404 enum event_type_t event_type)
2406 if (!cpuctx->task_ctx)
2409 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2412 ctx_sched_out(ctx, cpuctx, event_type);
2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416 struct perf_event_context *ctx,
2417 struct task_struct *task)
2419 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2421 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2424 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2428 * We want to maintain the following priority of scheduling:
2429 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430 * - task pinned (EVENT_PINNED)
2431 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432 * - task flexible (EVENT_FLEXIBLE).
2434 * In order to avoid unscheduling and scheduling back in everything every
2435 * time an event is added, only do it for the groups of equal priority and
2438 * This can be called after a batch operation on task events, in which case
2439 * event_type is a bit mask of the types of events involved. For CPU events,
2440 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2442 static void ctx_resched(struct perf_cpu_context *cpuctx,
2443 struct perf_event_context *task_ctx,
2444 enum event_type_t event_type)
2446 enum event_type_t ctx_event_type;
2447 bool cpu_event = !!(event_type & EVENT_CPU);
2450 * If pinned groups are involved, flexible groups also need to be
2453 if (event_type & EVENT_PINNED)
2454 event_type |= EVENT_FLEXIBLE;
2456 ctx_event_type = event_type & EVENT_ALL;
2458 perf_pmu_disable(cpuctx->ctx.pmu);
2460 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2463 * Decide which cpu ctx groups to schedule out based on the types
2464 * of events that caused rescheduling:
2465 * - EVENT_CPU: schedule out corresponding groups;
2466 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467 * - otherwise, do nothing more.
2470 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471 else if (ctx_event_type & EVENT_PINNED)
2472 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2474 perf_event_sched_in(cpuctx, task_ctx, current);
2475 perf_pmu_enable(cpuctx->ctx.pmu);
2479 * Cross CPU call to install and enable a performance event
2481 * Very similar to remote_function() + event_function() but cannot assume that
2482 * things like ctx->is_active and cpuctx->task_ctx are set.
2484 static int __perf_install_in_context(void *info)
2486 struct perf_event *event = info;
2487 struct perf_event_context *ctx = event->ctx;
2488 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490 bool reprogram = true;
2493 raw_spin_lock(&cpuctx->ctx.lock);
2495 raw_spin_lock(&ctx->lock);
2498 reprogram = (ctx->task == current);
2501 * If the task is running, it must be running on this CPU,
2502 * otherwise we cannot reprogram things.
2504 * If its not running, we don't care, ctx->lock will
2505 * serialize against it becoming runnable.
2507 if (task_curr(ctx->task) && !reprogram) {
2512 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513 } else if (task_ctx) {
2514 raw_spin_lock(&task_ctx->lock);
2517 #ifdef CONFIG_CGROUP_PERF
2518 if (is_cgroup_event(event)) {
2520 * If the current cgroup doesn't match the event's
2521 * cgroup, we should not try to schedule it.
2523 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525 event->cgrp->css.cgroup);
2530 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531 add_event_to_ctx(event, ctx);
2532 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2534 add_event_to_ctx(event, ctx);
2538 perf_ctx_unlock(cpuctx, task_ctx);
2544 * Attach a performance event to a context.
2546 * Very similar to event_function_call, see comment there.
2549 perf_install_in_context(struct perf_event_context *ctx,
2550 struct perf_event *event,
2553 struct task_struct *task = READ_ONCE(ctx->task);
2555 lockdep_assert_held(&ctx->mutex);
2557 if (event->cpu != -1)
2561 * Ensures that if we can observe event->ctx, both the event and ctx
2562 * will be 'complete'. See perf_iterate_sb_cpu().
2564 smp_store_release(&event->ctx, ctx);
2567 cpu_function_call(cpu, __perf_install_in_context, event);
2572 * Should not happen, we validate the ctx is still alive before calling.
2574 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2578 * Installing events is tricky because we cannot rely on ctx->is_active
2579 * to be set in case this is the nr_events 0 -> 1 transition.
2581 * Instead we use task_curr(), which tells us if the task is running.
2582 * However, since we use task_curr() outside of rq::lock, we can race
2583 * against the actual state. This means the result can be wrong.
2585 * If we get a false positive, we retry, this is harmless.
2587 * If we get a false negative, things are complicated. If we are after
2588 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589 * value must be correct. If we're before, it doesn't matter since
2590 * perf_event_context_sched_in() will program the counter.
2592 * However, this hinges on the remote context switch having observed
2593 * our task->perf_event_ctxp[] store, such that it will in fact take
2594 * ctx::lock in perf_event_context_sched_in().
2596 * We do this by task_function_call(), if the IPI fails to hit the task
2597 * we know any future context switch of task must see the
2598 * perf_event_ctpx[] store.
2602 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603 * task_cpu() load, such that if the IPI then does not find the task
2604 * running, a future context switch of that task must observe the
2609 if (!task_function_call(task, __perf_install_in_context, event))
2612 raw_spin_lock_irq(&ctx->lock);
2614 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2616 * Cannot happen because we already checked above (which also
2617 * cannot happen), and we hold ctx->mutex, which serializes us
2618 * against perf_event_exit_task_context().
2620 raw_spin_unlock_irq(&ctx->lock);
2624 * If the task is not running, ctx->lock will avoid it becoming so,
2625 * thus we can safely install the event.
2627 if (task_curr(task)) {
2628 raw_spin_unlock_irq(&ctx->lock);
2631 add_event_to_ctx(event, ctx);
2632 raw_spin_unlock_irq(&ctx->lock);
2636 * Cross CPU call to enable a performance event
2638 static void __perf_event_enable(struct perf_event *event,
2639 struct perf_cpu_context *cpuctx,
2640 struct perf_event_context *ctx,
2643 struct perf_event *leader = event->group_leader;
2644 struct perf_event_context *task_ctx;
2646 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647 event->state <= PERF_EVENT_STATE_ERROR)
2651 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2653 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2655 if (!ctx->is_active)
2658 if (!event_filter_match(event)) {
2659 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2664 * If the event is in a group and isn't the group leader,
2665 * then don't put it on unless the group is on.
2667 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2672 task_ctx = cpuctx->task_ctx;
2674 WARN_ON_ONCE(task_ctx != ctx);
2676 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2682 * If event->ctx is a cloned context, callers must make sure that
2683 * every task struct that event->ctx->task could possibly point to
2684 * remains valid. This condition is satisfied when called through
2685 * perf_event_for_each_child or perf_event_for_each as described
2686 * for perf_event_disable.
2688 static void _perf_event_enable(struct perf_event *event)
2690 struct perf_event_context *ctx = event->ctx;
2692 raw_spin_lock_irq(&ctx->lock);
2693 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694 event->state < PERF_EVENT_STATE_ERROR) {
2695 raw_spin_unlock_irq(&ctx->lock);
2700 * If the event is in error state, clear that first.
2702 * That way, if we see the event in error state below, we know that it
2703 * has gone back into error state, as distinct from the task having
2704 * been scheduled away before the cross-call arrived.
2706 if (event->state == PERF_EVENT_STATE_ERROR)
2707 event->state = PERF_EVENT_STATE_OFF;
2708 raw_spin_unlock_irq(&ctx->lock);
2710 event_function_call(event, __perf_event_enable, NULL);
2714 * See perf_event_disable();
2716 void perf_event_enable(struct perf_event *event)
2718 struct perf_event_context *ctx;
2720 ctx = perf_event_ctx_lock(event);
2721 _perf_event_enable(event);
2722 perf_event_ctx_unlock(event, ctx);
2724 EXPORT_SYMBOL_GPL(perf_event_enable);
2726 struct stop_event_data {
2727 struct perf_event *event;
2728 unsigned int restart;
2731 static int __perf_event_stop(void *info)
2733 struct stop_event_data *sd = info;
2734 struct perf_event *event = sd->event;
2736 /* if it's already INACTIVE, do nothing */
2737 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2740 /* matches smp_wmb() in event_sched_in() */
2744 * There is a window with interrupts enabled before we get here,
2745 * so we need to check again lest we try to stop another CPU's event.
2747 if (READ_ONCE(event->oncpu) != smp_processor_id())
2750 event->pmu->stop(event, PERF_EF_UPDATE);
2753 * May race with the actual stop (through perf_pmu_output_stop()),
2754 * but it is only used for events with AUX ring buffer, and such
2755 * events will refuse to restart because of rb::aux_mmap_count==0,
2756 * see comments in perf_aux_output_begin().
2758 * Since this is happening on an event-local CPU, no trace is lost
2762 event->pmu->start(event, 0);
2767 static int perf_event_stop(struct perf_event *event, int restart)
2769 struct stop_event_data sd = {
2776 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2779 /* matches smp_wmb() in event_sched_in() */
2783 * We only want to restart ACTIVE events, so if the event goes
2784 * inactive here (event->oncpu==-1), there's nothing more to do;
2785 * fall through with ret==-ENXIO.
2787 ret = cpu_function_call(READ_ONCE(event->oncpu),
2788 __perf_event_stop, &sd);
2789 } while (ret == -EAGAIN);
2795 * In order to contain the amount of racy and tricky in the address filter
2796 * configuration management, it is a two part process:
2798 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799 * we update the addresses of corresponding vmas in
2800 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2801 * (p2) when an event is scheduled in (pmu::add), it calls
2802 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803 * if the generation has changed since the previous call.
2805 * If (p1) happens while the event is active, we restart it to force (p2).
2807 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2810 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2813 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2816 void perf_event_addr_filters_sync(struct perf_event *event)
2818 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2820 if (!has_addr_filter(event))
2823 raw_spin_lock(&ifh->lock);
2824 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825 event->pmu->addr_filters_sync(event);
2826 event->hw.addr_filters_gen = event->addr_filters_gen;
2828 raw_spin_unlock(&ifh->lock);
2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2832 static int _perf_event_refresh(struct perf_event *event, int refresh)
2835 * not supported on inherited events
2837 if (event->attr.inherit || !is_sampling_event(event))
2840 atomic_add(refresh, &event->event_limit);
2841 _perf_event_enable(event);
2847 * See perf_event_disable()
2849 int perf_event_refresh(struct perf_event *event, int refresh)
2851 struct perf_event_context *ctx;
2854 ctx = perf_event_ctx_lock(event);
2855 ret = _perf_event_refresh(event, refresh);
2856 perf_event_ctx_unlock(event, ctx);
2860 EXPORT_SYMBOL_GPL(perf_event_refresh);
2862 static int perf_event_modify_breakpoint(struct perf_event *bp,
2863 struct perf_event_attr *attr)
2867 _perf_event_disable(bp);
2869 err = modify_user_hw_breakpoint_check(bp, attr, true);
2871 if (!bp->attr.disabled)
2872 _perf_event_enable(bp);
2877 static int perf_event_modify_attr(struct perf_event *event,
2878 struct perf_event_attr *attr)
2880 if (event->attr.type != attr->type)
2883 switch (event->attr.type) {
2884 case PERF_TYPE_BREAKPOINT:
2885 return perf_event_modify_breakpoint(event, attr);
2887 /* Place holder for future additions. */
2892 static void ctx_sched_out(struct perf_event_context *ctx,
2893 struct perf_cpu_context *cpuctx,
2894 enum event_type_t event_type)
2896 struct perf_event *event, *tmp;
2897 int is_active = ctx->is_active;
2899 lockdep_assert_held(&ctx->lock);
2901 if (likely(!ctx->nr_events)) {
2903 * See __perf_remove_from_context().
2905 WARN_ON_ONCE(ctx->is_active);
2907 WARN_ON_ONCE(cpuctx->task_ctx);
2911 ctx->is_active &= ~event_type;
2912 if (!(ctx->is_active & EVENT_ALL))
2916 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2917 if (!ctx->is_active)
2918 cpuctx->task_ctx = NULL;
2922 * Always update time if it was set; not only when it changes.
2923 * Otherwise we can 'forget' to update time for any but the last
2924 * context we sched out. For example:
2926 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2927 * ctx_sched_out(.event_type = EVENT_PINNED)
2929 * would only update time for the pinned events.
2931 if (is_active & EVENT_TIME) {
2932 /* update (and stop) ctx time */
2933 update_context_time(ctx);
2934 update_cgrp_time_from_cpuctx(cpuctx);
2937 is_active ^= ctx->is_active; /* changed bits */
2939 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2942 perf_pmu_disable(ctx->pmu);
2943 if (is_active & EVENT_PINNED) {
2944 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2945 group_sched_out(event, cpuctx, ctx);
2948 if (is_active & EVENT_FLEXIBLE) {
2949 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2950 group_sched_out(event, cpuctx, ctx);
2952 perf_pmu_enable(ctx->pmu);
2956 * Test whether two contexts are equivalent, i.e. whether they have both been
2957 * cloned from the same version of the same context.
2959 * Equivalence is measured using a generation number in the context that is
2960 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2961 * and list_del_event().
2963 static int context_equiv(struct perf_event_context *ctx1,
2964 struct perf_event_context *ctx2)
2966 lockdep_assert_held(&ctx1->lock);
2967 lockdep_assert_held(&ctx2->lock);
2969 /* Pinning disables the swap optimization */
2970 if (ctx1->pin_count || ctx2->pin_count)
2973 /* If ctx1 is the parent of ctx2 */
2974 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2977 /* If ctx2 is the parent of ctx1 */
2978 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2982 * If ctx1 and ctx2 have the same parent; we flatten the parent
2983 * hierarchy, see perf_event_init_context().
2985 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2986 ctx1->parent_gen == ctx2->parent_gen)
2993 static void __perf_event_sync_stat(struct perf_event *event,
2994 struct perf_event *next_event)
2998 if (!event->attr.inherit_stat)
3002 * Update the event value, we cannot use perf_event_read()
3003 * because we're in the middle of a context switch and have IRQs
3004 * disabled, which upsets smp_call_function_single(), however
3005 * we know the event must be on the current CPU, therefore we
3006 * don't need to use it.
3008 if (event->state == PERF_EVENT_STATE_ACTIVE)
3009 event->pmu->read(event);
3011 perf_event_update_time(event);
3014 * In order to keep per-task stats reliable we need to flip the event
3015 * values when we flip the contexts.
3017 value = local64_read(&next_event->count);
3018 value = local64_xchg(&event->count, value);
3019 local64_set(&next_event->count, value);
3021 swap(event->total_time_enabled, next_event->total_time_enabled);
3022 swap(event->total_time_running, next_event->total_time_running);
3025 * Since we swizzled the values, update the user visible data too.
3027 perf_event_update_userpage(event);
3028 perf_event_update_userpage(next_event);
3031 static void perf_event_sync_stat(struct perf_event_context *ctx,
3032 struct perf_event_context *next_ctx)
3034 struct perf_event *event, *next_event;
3039 update_context_time(ctx);
3041 event = list_first_entry(&ctx->event_list,
3042 struct perf_event, event_entry);
3044 next_event = list_first_entry(&next_ctx->event_list,
3045 struct perf_event, event_entry);
3047 while (&event->event_entry != &ctx->event_list &&
3048 &next_event->event_entry != &next_ctx->event_list) {
3050 __perf_event_sync_stat(event, next_event);
3052 event = list_next_entry(event, event_entry);
3053 next_event = list_next_entry(next_event, event_entry);
3057 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3058 struct task_struct *next)
3060 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3061 struct perf_event_context *next_ctx;
3062 struct perf_event_context *parent, *next_parent;
3063 struct perf_cpu_context *cpuctx;
3069 cpuctx = __get_cpu_context(ctx);
3070 if (!cpuctx->task_ctx)
3074 next_ctx = next->perf_event_ctxp[ctxn];
3078 parent = rcu_dereference(ctx->parent_ctx);
3079 next_parent = rcu_dereference(next_ctx->parent_ctx);
3081 /* If neither context have a parent context; they cannot be clones. */
3082 if (!parent && !next_parent)
3085 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3087 * Looks like the two contexts are clones, so we might be
3088 * able to optimize the context switch. We lock both
3089 * contexts and check that they are clones under the
3090 * lock (including re-checking that neither has been
3091 * uncloned in the meantime). It doesn't matter which
3092 * order we take the locks because no other cpu could
3093 * be trying to lock both of these tasks.
3095 raw_spin_lock(&ctx->lock);
3096 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3097 if (context_equiv(ctx, next_ctx)) {
3098 WRITE_ONCE(ctx->task, next);
3099 WRITE_ONCE(next_ctx->task, task);
3101 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3104 * RCU_INIT_POINTER here is safe because we've not
3105 * modified the ctx and the above modification of
3106 * ctx->task and ctx->task_ctx_data are immaterial
3107 * since those values are always verified under
3108 * ctx->lock which we're now holding.
3110 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3111 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3115 perf_event_sync_stat(ctx, next_ctx);
3117 raw_spin_unlock(&next_ctx->lock);
3118 raw_spin_unlock(&ctx->lock);
3124 raw_spin_lock(&ctx->lock);
3125 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3126 raw_spin_unlock(&ctx->lock);
3130 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3132 void perf_sched_cb_dec(struct pmu *pmu)
3134 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3136 this_cpu_dec(perf_sched_cb_usages);
3138 if (!--cpuctx->sched_cb_usage)
3139 list_del(&cpuctx->sched_cb_entry);
3143 void perf_sched_cb_inc(struct pmu *pmu)
3145 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3147 if (!cpuctx->sched_cb_usage++)
3148 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3150 this_cpu_inc(perf_sched_cb_usages);
3154 * This function provides the context switch callback to the lower code
3155 * layer. It is invoked ONLY when the context switch callback is enabled.
3157 * This callback is relevant even to per-cpu events; for example multi event
3158 * PEBS requires this to provide PID/TID information. This requires we flush
3159 * all queued PEBS records before we context switch to a new task.
3161 static void perf_pmu_sched_task(struct task_struct *prev,
3162 struct task_struct *next,
3165 struct perf_cpu_context *cpuctx;
3171 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3172 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3174 if (WARN_ON_ONCE(!pmu->sched_task))
3177 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3178 perf_pmu_disable(pmu);
3180 pmu->sched_task(cpuctx->task_ctx, sched_in);
3182 perf_pmu_enable(pmu);
3183 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3187 static void perf_event_switch(struct task_struct *task,
3188 struct task_struct *next_prev, bool sched_in);
3190 #define for_each_task_context_nr(ctxn) \
3191 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3194 * Called from scheduler to remove the events of the current task,
3195 * with interrupts disabled.
3197 * We stop each event and update the event value in event->count.
3199 * This does not protect us against NMI, but disable()
3200 * sets the disabled bit in the control field of event _before_
3201 * accessing the event control register. If a NMI hits, then it will
3202 * not restart the event.
3204 void __perf_event_task_sched_out(struct task_struct *task,
3205 struct task_struct *next)
3209 if (__this_cpu_read(perf_sched_cb_usages))
3210 perf_pmu_sched_task(task, next, false);
3212 if (atomic_read(&nr_switch_events))
3213 perf_event_switch(task, next, false);
3215 for_each_task_context_nr(ctxn)
3216 perf_event_context_sched_out(task, ctxn, next);
3219 * if cgroup events exist on this CPU, then we need
3220 * to check if we have to switch out PMU state.
3221 * cgroup event are system-wide mode only
3223 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3224 perf_cgroup_sched_out(task, next);
3228 * Called with IRQs disabled
3230 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3231 enum event_type_t event_type)
3233 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3236 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3237 int (*func)(struct perf_event *, void *), void *data)
3239 struct perf_event **evt, *evt1, *evt2;
3242 evt1 = perf_event_groups_first(groups, -1);
3243 evt2 = perf_event_groups_first(groups, cpu);
3245 while (evt1 || evt2) {
3247 if (evt1->group_index < evt2->group_index)
3257 ret = func(*evt, data);
3261 *evt = perf_event_groups_next(*evt);
3267 struct sched_in_data {
3268 struct perf_event_context *ctx;
3269 struct perf_cpu_context *cpuctx;
3273 static int pinned_sched_in(struct perf_event *event, void *data)
3275 struct sched_in_data *sid = data;
3277 if (event->state <= PERF_EVENT_STATE_OFF)
3280 if (!event_filter_match(event))
3283 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3284 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3285 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3289 * If this pinned group hasn't been scheduled,
3290 * put it in error state.
3292 if (event->state == PERF_EVENT_STATE_INACTIVE)
3293 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3298 static int flexible_sched_in(struct perf_event *event, void *data)
3300 struct sched_in_data *sid = data;
3302 if (event->state <= PERF_EVENT_STATE_OFF)
3305 if (!event_filter_match(event))
3308 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3309 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3310 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3312 sid->can_add_hw = 0;
3319 ctx_pinned_sched_in(struct perf_event_context *ctx,
3320 struct perf_cpu_context *cpuctx)
3322 struct sched_in_data sid = {
3328 visit_groups_merge(&ctx->pinned_groups,
3330 pinned_sched_in, &sid);
3334 ctx_flexible_sched_in(struct perf_event_context *ctx,
3335 struct perf_cpu_context *cpuctx)
3337 struct sched_in_data sid = {
3343 visit_groups_merge(&ctx->flexible_groups,
3345 flexible_sched_in, &sid);
3349 ctx_sched_in(struct perf_event_context *ctx,
3350 struct perf_cpu_context *cpuctx,
3351 enum event_type_t event_type,
3352 struct task_struct *task)
3354 int is_active = ctx->is_active;
3357 lockdep_assert_held(&ctx->lock);
3359 if (likely(!ctx->nr_events))
3362 ctx->is_active |= (event_type | EVENT_TIME);
3365 cpuctx->task_ctx = ctx;
3367 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3370 is_active ^= ctx->is_active; /* changed bits */
3372 if (is_active & EVENT_TIME) {
3373 /* start ctx time */
3375 ctx->timestamp = now;
3376 perf_cgroup_set_timestamp(task, ctx);
3380 * First go through the list and put on any pinned groups
3381 * in order to give them the best chance of going on.
3383 if (is_active & EVENT_PINNED)
3384 ctx_pinned_sched_in(ctx, cpuctx);
3386 /* Then walk through the lower prio flexible groups */
3387 if (is_active & EVENT_FLEXIBLE)
3388 ctx_flexible_sched_in(ctx, cpuctx);
3391 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3392 enum event_type_t event_type,
3393 struct task_struct *task)
3395 struct perf_event_context *ctx = &cpuctx->ctx;
3397 ctx_sched_in(ctx, cpuctx, event_type, task);
3400 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3401 struct task_struct *task)
3403 struct perf_cpu_context *cpuctx;
3405 cpuctx = __get_cpu_context(ctx);
3406 if (cpuctx->task_ctx == ctx)
3409 perf_ctx_lock(cpuctx, ctx);
3411 * We must check ctx->nr_events while holding ctx->lock, such
3412 * that we serialize against perf_install_in_context().
3414 if (!ctx->nr_events)
3417 perf_pmu_disable(ctx->pmu);
3419 * We want to keep the following priority order:
3420 * cpu pinned (that don't need to move), task pinned,
3421 * cpu flexible, task flexible.
3423 * However, if task's ctx is not carrying any pinned
3424 * events, no need to flip the cpuctx's events around.
3426 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3427 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3428 perf_event_sched_in(cpuctx, ctx, task);
3429 perf_pmu_enable(ctx->pmu);
3432 perf_ctx_unlock(cpuctx, ctx);
3436 * Called from scheduler to add the events of the current task
3437 * with interrupts disabled.
3439 * We restore the event value and then enable it.
3441 * This does not protect us against NMI, but enable()
3442 * sets the enabled bit in the control field of event _before_
3443 * accessing the event control register. If a NMI hits, then it will
3444 * keep the event running.
3446 void __perf_event_task_sched_in(struct task_struct *prev,
3447 struct task_struct *task)
3449 struct perf_event_context *ctx;
3453 * If cgroup events exist on this CPU, then we need to check if we have
3454 * to switch in PMU state; cgroup event are system-wide mode only.
3456 * Since cgroup events are CPU events, we must schedule these in before
3457 * we schedule in the task events.
3459 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3460 perf_cgroup_sched_in(prev, task);
3462 for_each_task_context_nr(ctxn) {
3463 ctx = task->perf_event_ctxp[ctxn];
3467 perf_event_context_sched_in(ctx, task);
3470 if (atomic_read(&nr_switch_events))
3471 perf_event_switch(task, prev, true);
3473 if (__this_cpu_read(perf_sched_cb_usages))
3474 perf_pmu_sched_task(prev, task, true);
3477 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3479 u64 frequency = event->attr.sample_freq;
3480 u64 sec = NSEC_PER_SEC;
3481 u64 divisor, dividend;
3483 int count_fls, nsec_fls, frequency_fls, sec_fls;
3485 count_fls = fls64(count);
3486 nsec_fls = fls64(nsec);
3487 frequency_fls = fls64(frequency);
3491 * We got @count in @nsec, with a target of sample_freq HZ
3492 * the target period becomes:
3495 * period = -------------------
3496 * @nsec * sample_freq
3501 * Reduce accuracy by one bit such that @a and @b converge
3502 * to a similar magnitude.
3504 #define REDUCE_FLS(a, b) \
3506 if (a##_fls > b##_fls) { \
3516 * Reduce accuracy until either term fits in a u64, then proceed with
3517 * the other, so that finally we can do a u64/u64 division.
3519 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3520 REDUCE_FLS(nsec, frequency);
3521 REDUCE_FLS(sec, count);
3524 if (count_fls + sec_fls > 64) {
3525 divisor = nsec * frequency;
3527 while (count_fls + sec_fls > 64) {
3528 REDUCE_FLS(count, sec);
3532 dividend = count * sec;
3534 dividend = count * sec;
3536 while (nsec_fls + frequency_fls > 64) {
3537 REDUCE_FLS(nsec, frequency);
3541 divisor = nsec * frequency;
3547 return div64_u64(dividend, divisor);
3550 static DEFINE_PER_CPU(int, perf_throttled_count);
3551 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3553 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3555 struct hw_perf_event *hwc = &event->hw;
3556 s64 period, sample_period;
3559 period = perf_calculate_period(event, nsec, count);
3561 delta = (s64)(period - hwc->sample_period);
3562 delta = (delta + 7) / 8; /* low pass filter */
3564 sample_period = hwc->sample_period + delta;
3569 hwc->sample_period = sample_period;
3571 if (local64_read(&hwc->period_left) > 8*sample_period) {
3573 event->pmu->stop(event, PERF_EF_UPDATE);
3575 local64_set(&hwc->period_left, 0);
3578 event->pmu->start(event, PERF_EF_RELOAD);
3583 * combine freq adjustment with unthrottling to avoid two passes over the
3584 * events. At the same time, make sure, having freq events does not change
3585 * the rate of unthrottling as that would introduce bias.
3587 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3590 struct perf_event *event;
3591 struct hw_perf_event *hwc;
3592 u64 now, period = TICK_NSEC;
3596 * only need to iterate over all events iff:
3597 * - context have events in frequency mode (needs freq adjust)
3598 * - there are events to unthrottle on this cpu
3600 if (!(ctx->nr_freq || needs_unthr))
3603 raw_spin_lock(&ctx->lock);
3604 perf_pmu_disable(ctx->pmu);
3606 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3607 if (event->state != PERF_EVENT_STATE_ACTIVE)
3610 if (!event_filter_match(event))
3613 perf_pmu_disable(event->pmu);
3617 if (hwc->interrupts == MAX_INTERRUPTS) {
3618 hwc->interrupts = 0;
3619 perf_log_throttle(event, 1);
3620 event->pmu->start(event, 0);
3623 if (!event->attr.freq || !event->attr.sample_freq)
3627 * stop the event and update event->count
3629 event->pmu->stop(event, PERF_EF_UPDATE);
3631 now = local64_read(&event->count);
3632 delta = now - hwc->freq_count_stamp;
3633 hwc->freq_count_stamp = now;