2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
33 #ifdef CONFIG_RCU_BOOST
35 #include "../locking/rtmutex_common.h"
37 /* rcuc/rcub kthread realtime priority */
38 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
39 module_param(kthread_prio, int, 0644);
42 * Control variables for per-CPU and per-rcu_node kthreads. These
43 * handle all flavors of RCU.
45 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
46 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
47 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
48 DEFINE_PER_CPU(char, rcu_cpu_has_work);
50 #endif /* #ifdef CONFIG_RCU_BOOST */
52 #ifdef CONFIG_RCU_NOCB_CPU
53 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
54 static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
55 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
56 static char __initdata nocb_buf[NR_CPUS * 5];
57 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
60 * Check the RCU kernel configuration parameters and print informative
61 * messages about anything out of the ordinary. If you like #ifdef, you
62 * will love this function.
64 static void __init rcu_bootup_announce_oddness(void)
66 #ifdef CONFIG_RCU_TRACE
67 pr_info("\tRCU debugfs-based tracing is enabled.\n");
69 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
70 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
73 #ifdef CONFIG_RCU_FANOUT_EXACT
74 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
76 #ifdef CONFIG_RCU_FAST_NO_HZ
77 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
79 #ifdef CONFIG_PROVE_RCU
80 pr_info("\tRCU lockdep checking is enabled.\n");
82 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
83 pr_info("\tRCU torture testing starts during boot.\n");
85 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
86 pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
88 #if defined(CONFIG_RCU_CPU_STALL_INFO)
89 pr_info("\tAdditional per-CPU info printed with stalls.\n");
91 #if NUM_RCU_LVL_4 != 0
92 pr_info("\tFour-level hierarchy is enabled.\n");
94 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
95 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
96 if (nr_cpu_ids != NR_CPUS)
97 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
98 #ifdef CONFIG_RCU_BOOST
99 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
103 #ifdef CONFIG_TREE_PREEMPT_RCU
105 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
106 static struct rcu_state *rcu_state_p = &rcu_preempt_state;
108 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
111 * Tell them what RCU they are running.
113 static void __init rcu_bootup_announce(void)
115 pr_info("Preemptible hierarchical RCU implementation.\n");
116 rcu_bootup_announce_oddness();
120 * Return the number of RCU-preempt batches processed thus far
121 * for debug and statistics.
123 static long rcu_batches_completed_preempt(void)
125 return rcu_preempt_state.completed;
127 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
130 * Return the number of RCU batches processed thus far for debug & stats.
132 long rcu_batches_completed(void)
134 return rcu_batches_completed_preempt();
136 EXPORT_SYMBOL_GPL(rcu_batches_completed);
139 * Record a preemptible-RCU quiescent state for the specified CPU. Note
140 * that this just means that the task currently running on the CPU is
141 * not in a quiescent state. There might be any number of tasks blocked
142 * while in an RCU read-side critical section.
144 * As with the other rcu_*_qs() functions, callers to this function
145 * must disable preemption.
147 static void rcu_preempt_qs(void)
149 if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
150 trace_rcu_grace_period(TPS("rcu_preempt"),
151 __this_cpu_read(rcu_preempt_data.gpnum),
153 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
154 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
155 current->rcu_read_unlock_special.b.need_qs = false;
160 * We have entered the scheduler, and the current task might soon be
161 * context-switched away from. If this task is in an RCU read-side
162 * critical section, we will no longer be able to rely on the CPU to
163 * record that fact, so we enqueue the task on the blkd_tasks list.
164 * The task will dequeue itself when it exits the outermost enclosing
165 * RCU read-side critical section. Therefore, the current grace period
166 * cannot be permitted to complete until the blkd_tasks list entries
167 * predating the current grace period drain, in other words, until
168 * rnp->gp_tasks becomes NULL.
170 * Caller must disable preemption.
172 static void rcu_preempt_note_context_switch(int cpu)
174 struct task_struct *t = current;
176 struct rcu_data *rdp;
177 struct rcu_node *rnp;
179 if (t->rcu_read_lock_nesting > 0 &&
180 !t->rcu_read_unlock_special.b.blocked) {
182 /* Possibly blocking in an RCU read-side critical section. */
183 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
185 raw_spin_lock_irqsave(&rnp->lock, flags);
186 smp_mb__after_unlock_lock();
187 t->rcu_read_unlock_special.b.blocked = true;
188 t->rcu_blocked_node = rnp;
191 * If this CPU has already checked in, then this task
192 * will hold up the next grace period rather than the
193 * current grace period. Queue the task accordingly.
194 * If the task is queued for the current grace period
195 * (i.e., this CPU has not yet passed through a quiescent
196 * state for the current grace period), then as long
197 * as that task remains queued, the current grace period
198 * cannot end. Note that there is some uncertainty as
199 * to exactly when the current grace period started.
200 * We take a conservative approach, which can result
201 * in unnecessarily waiting on tasks that started very
202 * slightly after the current grace period began. C'est
205 * But first, note that the current CPU must still be
208 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
209 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
210 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
211 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
212 rnp->gp_tasks = &t->rcu_node_entry;
213 #ifdef CONFIG_RCU_BOOST
214 if (rnp->boost_tasks != NULL)
215 rnp->boost_tasks = rnp->gp_tasks;
216 #endif /* #ifdef CONFIG_RCU_BOOST */
218 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
219 if (rnp->qsmask & rdp->grpmask)
220 rnp->gp_tasks = &t->rcu_node_entry;
222 trace_rcu_preempt_task(rdp->rsp->name,
224 (rnp->qsmask & rdp->grpmask)
227 raw_spin_unlock_irqrestore(&rnp->lock, flags);
228 } else if (t->rcu_read_lock_nesting < 0 &&
229 t->rcu_read_unlock_special.s) {
232 * Complete exit from RCU read-side critical section on
233 * behalf of preempted instance of __rcu_read_unlock().
235 rcu_read_unlock_special(t);
239 * Either we were not in an RCU read-side critical section to
240 * begin with, or we have now recorded that critical section
241 * globally. Either way, we can now note a quiescent state
242 * for this CPU. Again, if we were in an RCU read-side critical
243 * section, and if that critical section was blocking the current
244 * grace period, then the fact that the task has been enqueued
245 * means that we continue to block the current grace period.
251 * Check for preempted RCU readers blocking the current grace period
252 * for the specified rcu_node structure. If the caller needs a reliable
253 * answer, it must hold the rcu_node's ->lock.
255 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
257 return rnp->gp_tasks != NULL;
261 * Record a quiescent state for all tasks that were previously queued
262 * on the specified rcu_node structure and that were blocking the current
263 * RCU grace period. The caller must hold the specified rnp->lock with
264 * irqs disabled, and this lock is released upon return, but irqs remain
267 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
268 __releases(rnp->lock)
271 struct rcu_node *rnp_p;
273 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
274 raw_spin_unlock_irqrestore(&rnp->lock, flags);
275 return; /* Still need more quiescent states! */
281 * Either there is only one rcu_node in the tree,
282 * or tasks were kicked up to root rcu_node due to
283 * CPUs going offline.
285 rcu_report_qs_rsp(&rcu_preempt_state, flags);
289 /* Report up the rest of the hierarchy. */
291 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
292 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
293 smp_mb__after_unlock_lock();
294 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
298 * Advance a ->blkd_tasks-list pointer to the next entry, instead
299 * returning NULL if at the end of the list.
301 static struct list_head *rcu_next_node_entry(struct task_struct *t,
302 struct rcu_node *rnp)
304 struct list_head *np;
306 np = t->rcu_node_entry.next;
307 if (np == &rnp->blkd_tasks)
313 * Handle special cases during rcu_read_unlock(), such as needing to
314 * notify RCU core processing or task having blocked during the RCU
315 * read-side critical section.
317 void rcu_read_unlock_special(struct task_struct *t)
323 struct list_head *np;
324 #ifdef CONFIG_RCU_BOOST
325 bool drop_boost_mutex = false;
326 #endif /* #ifdef CONFIG_RCU_BOOST */
327 struct rcu_node *rnp;
328 union rcu_special special;
330 /* NMI handlers cannot block and cannot safely manipulate state. */
334 local_irq_save(flags);
337 * If RCU core is waiting for this CPU to exit critical section,
338 * let it know that we have done so. Because irqs are disabled,
339 * t->rcu_read_unlock_special cannot change.
341 special = t->rcu_read_unlock_special;
342 if (special.b.need_qs) {
344 if (!t->rcu_read_unlock_special.s) {
345 local_irq_restore(flags);
350 /* Hardware IRQ handlers cannot block, complain if they get here. */
351 if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
352 local_irq_restore(flags);
356 /* Clean up if blocked during RCU read-side critical section. */
357 if (special.b.blocked) {
358 t->rcu_read_unlock_special.b.blocked = false;
361 * Remove this task from the list it blocked on. The
362 * task can migrate while we acquire the lock, but at
363 * most one time. So at most two passes through loop.
366 rnp = t->rcu_blocked_node;
367 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
368 smp_mb__after_unlock_lock();
369 if (rnp == t->rcu_blocked_node)
371 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
373 empty = !rcu_preempt_blocked_readers_cgp(rnp);
374 empty_exp = !rcu_preempted_readers_exp(rnp);
375 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
376 np = rcu_next_node_entry(t, rnp);
377 list_del_init(&t->rcu_node_entry);
378 t->rcu_blocked_node = NULL;
379 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
381 if (&t->rcu_node_entry == rnp->gp_tasks)
383 if (&t->rcu_node_entry == rnp->exp_tasks)
385 #ifdef CONFIG_RCU_BOOST
386 if (&t->rcu_node_entry == rnp->boost_tasks)
387 rnp->boost_tasks = np;
388 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
389 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
390 #endif /* #ifdef CONFIG_RCU_BOOST */
393 * If this was the last task on the current list, and if
394 * we aren't waiting on any CPUs, report the quiescent state.
395 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
396 * so we must take a snapshot of the expedited state.
398 empty_exp_now = !rcu_preempted_readers_exp(rnp);
399 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
400 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
407 rcu_report_unblock_qs_rnp(rnp, flags);
409 raw_spin_unlock_irqrestore(&rnp->lock, flags);
412 #ifdef CONFIG_RCU_BOOST
413 /* Unboost if we were boosted. */
414 if (drop_boost_mutex) {
415 rt_mutex_unlock(&rnp->boost_mtx);
416 complete(&rnp->boost_completion);
418 #endif /* #ifdef CONFIG_RCU_BOOST */
421 * If this was the last task on the expedited lists,
422 * then we need to report up the rcu_node hierarchy.
424 if (!empty_exp && empty_exp_now)
425 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
427 local_irq_restore(flags);
431 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
434 * Dump detailed information for all tasks blocking the current RCU
435 * grace period on the specified rcu_node structure.
437 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
440 struct task_struct *t;
442 raw_spin_lock_irqsave(&rnp->lock, flags);
443 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
444 raw_spin_unlock_irqrestore(&rnp->lock, flags);
447 t = list_entry(rnp->gp_tasks,
448 struct task_struct, rcu_node_entry);
449 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
451 raw_spin_unlock_irqrestore(&rnp->lock, flags);
455 * Dump detailed information for all tasks blocking the current RCU
458 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
460 struct rcu_node *rnp = rcu_get_root(rsp);
462 rcu_print_detail_task_stall_rnp(rnp);
463 rcu_for_each_leaf_node(rsp, rnp)
464 rcu_print_detail_task_stall_rnp(rnp);
467 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
469 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
473 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
475 #ifdef CONFIG_RCU_CPU_STALL_INFO
477 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
479 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
480 rnp->level, rnp->grplo, rnp->grphi);
483 static void rcu_print_task_stall_end(void)
488 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
490 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
494 static void rcu_print_task_stall_end(void)
498 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
501 * Scan the current list of tasks blocked within RCU read-side critical
502 * sections, printing out the tid of each.
504 static int rcu_print_task_stall(struct rcu_node *rnp)
506 struct task_struct *t;
509 if (!rcu_preempt_blocked_readers_cgp(rnp))
511 rcu_print_task_stall_begin(rnp);
512 t = list_entry(rnp->gp_tasks,
513 struct task_struct, rcu_node_entry);
514 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
515 pr_cont(" P%d", t->pid);
518 rcu_print_task_stall_end();
523 * Check that the list of blocked tasks for the newly completed grace
524 * period is in fact empty. It is a serious bug to complete a grace
525 * period that still has RCU readers blocked! This function must be
526 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
527 * must be held by the caller.
529 * Also, if there are blocked tasks on the list, they automatically
530 * block the newly created grace period, so set up ->gp_tasks accordingly.
532 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
534 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
535 if (!list_empty(&rnp->blkd_tasks))
536 rnp->gp_tasks = rnp->blkd_tasks.next;
537 WARN_ON_ONCE(rnp->qsmask);
540 #ifdef CONFIG_HOTPLUG_CPU
543 * Handle tasklist migration for case in which all CPUs covered by the
544 * specified rcu_node have gone offline. Move them up to the root
545 * rcu_node. The reason for not just moving them to the immediate
546 * parent is to remove the need for rcu_read_unlock_special() to
547 * make more than two attempts to acquire the target rcu_node's lock.
548 * Returns true if there were tasks blocking the current RCU grace
551 * Returns 1 if there was previously a task blocking the current grace
552 * period on the specified rcu_node structure.
554 * The caller must hold rnp->lock with irqs disabled.
556 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
557 struct rcu_node *rnp,
558 struct rcu_data *rdp)
560 struct list_head *lp;
561 struct list_head *lp_root;
563 struct rcu_node *rnp_root = rcu_get_root(rsp);
564 struct task_struct *t;
566 if (rnp == rnp_root) {
567 WARN_ONCE(1, "Last CPU thought to be offlined?");
568 return 0; /* Shouldn't happen: at least one CPU online. */
571 /* If we are on an internal node, complain bitterly. */
572 WARN_ON_ONCE(rnp != rdp->mynode);
575 * Move tasks up to root rcu_node. Don't try to get fancy for
576 * this corner-case operation -- just put this node's tasks
577 * at the head of the root node's list, and update the root node's
578 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
579 * if non-NULL. This might result in waiting for more tasks than
580 * absolutely necessary, but this is a good performance/complexity
583 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
584 retval |= RCU_OFL_TASKS_NORM_GP;
585 if (rcu_preempted_readers_exp(rnp))
586 retval |= RCU_OFL_TASKS_EXP_GP;
587 lp = &rnp->blkd_tasks;
588 lp_root = &rnp_root->blkd_tasks;
589 while (!list_empty(lp)) {
590 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
591 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
592 smp_mb__after_unlock_lock();
593 list_del(&t->rcu_node_entry);
594 t->rcu_blocked_node = rnp_root;
595 list_add(&t->rcu_node_entry, lp_root);
596 if (&t->rcu_node_entry == rnp->gp_tasks)
597 rnp_root->gp_tasks = rnp->gp_tasks;
598 if (&t->rcu_node_entry == rnp->exp_tasks)
599 rnp_root->exp_tasks = rnp->exp_tasks;
600 #ifdef CONFIG_RCU_BOOST
601 if (&t->rcu_node_entry == rnp->boost_tasks)
602 rnp_root->boost_tasks = rnp->boost_tasks;
603 #endif /* #ifdef CONFIG_RCU_BOOST */
604 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
607 rnp->gp_tasks = NULL;
608 rnp->exp_tasks = NULL;
609 #ifdef CONFIG_RCU_BOOST
610 rnp->boost_tasks = NULL;
612 * In case root is being boosted and leaf was not. Make sure
613 * that we boost the tasks blocking the current grace period
616 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
617 smp_mb__after_unlock_lock();
618 if (rnp_root->boost_tasks != NULL &&
619 rnp_root->boost_tasks != rnp_root->gp_tasks &&
620 rnp_root->boost_tasks != rnp_root->exp_tasks)
621 rnp_root->boost_tasks = rnp_root->gp_tasks;
622 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
623 #endif /* #ifdef CONFIG_RCU_BOOST */
628 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
631 * Check for a quiescent state from the current CPU. When a task blocks,
632 * the task is recorded in the corresponding CPU's rcu_node structure,
633 * which is checked elsewhere.
635 * Caller must disable hard irqs.
637 static void rcu_preempt_check_callbacks(int cpu)
639 struct task_struct *t = current;
641 if (t->rcu_read_lock_nesting == 0) {
645 if (t->rcu_read_lock_nesting > 0 &&
646 per_cpu(rcu_preempt_data, cpu).qs_pending &&
647 !per_cpu(rcu_preempt_data, cpu).passed_quiesce)
648 t->rcu_read_unlock_special.b.need_qs = true;
651 #ifdef CONFIG_RCU_BOOST
653 static void rcu_preempt_do_callbacks(void)
655 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
658 #endif /* #ifdef CONFIG_RCU_BOOST */
661 * Queue a preemptible-RCU callback for invocation after a grace period.
663 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
665 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
667 EXPORT_SYMBOL_GPL(call_rcu);
670 * synchronize_rcu - wait until a grace period has elapsed.
672 * Control will return to the caller some time after a full grace
673 * period has elapsed, in other words after all currently executing RCU
674 * read-side critical sections have completed. Note, however, that
675 * upon return from synchronize_rcu(), the caller might well be executing
676 * concurrently with new RCU read-side critical sections that began while
677 * synchronize_rcu() was waiting. RCU read-side critical sections are
678 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
680 * See the description of synchronize_sched() for more detailed information
681 * on memory ordering guarantees.
683 void synchronize_rcu(void)
685 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
686 !lock_is_held(&rcu_lock_map) &&
687 !lock_is_held(&rcu_sched_lock_map),
688 "Illegal synchronize_rcu() in RCU read-side critical section");
689 if (!rcu_scheduler_active)
692 synchronize_rcu_expedited();
694 wait_rcu_gp(call_rcu);
696 EXPORT_SYMBOL_GPL(synchronize_rcu);
698 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
699 static unsigned long sync_rcu_preempt_exp_count;
700 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
703 * Return non-zero if there are any tasks in RCU read-side critical
704 * sections blocking the current preemptible-RCU expedited grace period.
705 * If there is no preemptible-RCU expedited grace period currently in
706 * progress, returns zero unconditionally.
708 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
710 return rnp->exp_tasks != NULL;
714 * return non-zero if there is no RCU expedited grace period in progress
715 * for the specified rcu_node structure, in other words, if all CPUs and
716 * tasks covered by the specified rcu_node structure have done their bit
717 * for the current expedited grace period. Works only for preemptible
718 * RCU -- other RCU implementation use other means.
720 * Caller must hold sync_rcu_preempt_exp_mutex.
722 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
724 return !rcu_preempted_readers_exp(rnp) &&
725 ACCESS_ONCE(rnp->expmask) == 0;
729 * Report the exit from RCU read-side critical section for the last task
730 * that queued itself during or before the current expedited preemptible-RCU
731 * grace period. This event is reported either to the rcu_node structure on
732 * which the task was queued or to one of that rcu_node structure's ancestors,
733 * recursively up the tree. (Calm down, calm down, we do the recursion
736 * Most callers will set the "wake" flag, but the task initiating the
737 * expedited grace period need not wake itself.
739 * Caller must hold sync_rcu_preempt_exp_mutex.
741 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
747 raw_spin_lock_irqsave(&rnp->lock, flags);
748 smp_mb__after_unlock_lock();
750 if (!sync_rcu_preempt_exp_done(rnp)) {
751 raw_spin_unlock_irqrestore(&rnp->lock, flags);
754 if (rnp->parent == NULL) {
755 raw_spin_unlock_irqrestore(&rnp->lock, flags);
757 smp_mb(); /* EGP done before wake_up(). */
758 wake_up(&sync_rcu_preempt_exp_wq);
763 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
765 raw_spin_lock(&rnp->lock); /* irqs already disabled */
766 smp_mb__after_unlock_lock();
767 rnp->expmask &= ~mask;
772 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
773 * grace period for the specified rcu_node structure. If there are no such
774 * tasks, report it up the rcu_node hierarchy.
776 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
777 * CPU hotplug operations.
780 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
785 raw_spin_lock_irqsave(&rnp->lock, flags);
786 smp_mb__after_unlock_lock();
787 if (list_empty(&rnp->blkd_tasks)) {
788 raw_spin_unlock_irqrestore(&rnp->lock, flags);
790 rnp->exp_tasks = rnp->blkd_tasks.next;
791 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
795 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
799 * synchronize_rcu_expedited - Brute-force RCU grace period
801 * Wait for an RCU-preempt grace period, but expedite it. The basic
802 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
803 * the ->blkd_tasks lists and wait for this list to drain. This consumes
804 * significant time on all CPUs and is unfriendly to real-time workloads,
805 * so is thus not recommended for any sort of common-case code.
806 * In fact, if you are using synchronize_rcu_expedited() in a loop,
807 * please restructure your code to batch your updates, and then Use a
808 * single synchronize_rcu() instead.
810 void synchronize_rcu_expedited(void)
813 struct rcu_node *rnp;
814 struct rcu_state *rsp = &rcu_preempt_state;
818 smp_mb(); /* Caller's modifications seen first by other CPUs. */
819 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
820 smp_mb(); /* Above access cannot bleed into critical section. */
823 * Block CPU-hotplug operations. This means that any CPU-hotplug
824 * operation that finds an rcu_node structure with tasks in the
825 * process of being boosted will know that all tasks blocking
826 * this expedited grace period will already be in the process of
827 * being boosted. This simplifies the process of moving tasks
828 * from leaf to root rcu_node structures.
830 if (!try_get_online_cpus()) {
831 /* CPU-hotplug operation in flight, fall back to normal GP. */
832 wait_rcu_gp(call_rcu);
837 * Acquire lock, falling back to synchronize_rcu() if too many
838 * lock-acquisition failures. Of course, if someone does the
839 * expedited grace period for us, just leave.
841 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
842 if (ULONG_CMP_LT(snap,
843 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
845 goto mb_ret; /* Others did our work for us. */
847 if (trycount++ < 10) {
848 udelay(trycount * num_online_cpus());
851 wait_rcu_gp(call_rcu);
855 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
857 goto unlock_mb_ret; /* Others did our work for us. */
860 /* force all RCU readers onto ->blkd_tasks lists. */
861 synchronize_sched_expedited();
863 /* Initialize ->expmask for all non-leaf rcu_node structures. */
864 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
865 raw_spin_lock_irqsave(&rnp->lock, flags);
866 smp_mb__after_unlock_lock();
867 rnp->expmask = rnp->qsmaskinit;
868 raw_spin_unlock_irqrestore(&rnp->lock, flags);
871 /* Snapshot current state of ->blkd_tasks lists. */
872 rcu_for_each_leaf_node(rsp, rnp)
873 sync_rcu_preempt_exp_init(rsp, rnp);
874 if (NUM_RCU_NODES > 1)
875 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
879 /* Wait for snapshotted ->blkd_tasks lists to drain. */
880 rnp = rcu_get_root(rsp);
881 wait_event(sync_rcu_preempt_exp_wq,
882 sync_rcu_preempt_exp_done(rnp));
884 /* Clean up and exit. */
885 smp_mb(); /* ensure expedited GP seen before counter increment. */
886 ACCESS_ONCE(sync_rcu_preempt_exp_count) =
887 sync_rcu_preempt_exp_count + 1;
889 mutex_unlock(&sync_rcu_preempt_exp_mutex);
891 smp_mb(); /* ensure subsequent action seen after grace period. */
893 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
896 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
898 * Note that this primitive does not necessarily wait for an RCU grace period
899 * to complete. For example, if there are no RCU callbacks queued anywhere
900 * in the system, then rcu_barrier() is within its rights to return
901 * immediately, without waiting for anything, much less an RCU grace period.
903 void rcu_barrier(void)
905 _rcu_barrier(&rcu_preempt_state);
907 EXPORT_SYMBOL_GPL(rcu_barrier);
910 * Initialize preemptible RCU's state structures.
912 static void __init __rcu_init_preempt(void)
914 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
918 * Check for a task exiting while in a preemptible-RCU read-side
919 * critical section, clean up if so. No need to issue warnings,
920 * as debug_check_no_locks_held() already does this if lockdep
925 struct task_struct *t = current;
927 if (likely(list_empty(¤t->rcu_node_entry)))
929 t->rcu_read_lock_nesting = 1;
931 t->rcu_read_unlock_special.b.blocked = true;
935 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
937 static struct rcu_state *rcu_state_p = &rcu_sched_state;
940 * Tell them what RCU they are running.
942 static void __init rcu_bootup_announce(void)
944 pr_info("Hierarchical RCU implementation.\n");
945 rcu_bootup_announce_oddness();
949 * Return the number of RCU batches processed thus far for debug & stats.
951 long rcu_batches_completed(void)
953 return rcu_batches_completed_sched();
955 EXPORT_SYMBOL_GPL(rcu_batches_completed);
958 * Because preemptible RCU does not exist, we never have to check for
959 * CPUs being in quiescent states.
961 static void rcu_preempt_note_context_switch(int cpu)
966 * Because preemptible RCU does not exist, there are never any preempted
969 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
974 #ifdef CONFIG_HOTPLUG_CPU
976 /* Because preemptible RCU does not exist, no quieting of tasks. */
977 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
978 __releases(rnp->lock)
980 raw_spin_unlock_irqrestore(&rnp->lock, flags);
983 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
986 * Because preemptible RCU does not exist, we never have to check for
987 * tasks blocked within RCU read-side critical sections.
989 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
994 * Because preemptible RCU does not exist, we never have to check for
995 * tasks blocked within RCU read-side critical sections.
997 static int rcu_print_task_stall(struct rcu_node *rnp)
1003 * Because there is no preemptible RCU, there can be no readers blocked,
1004 * so there is no need to check for blocked tasks. So check only for
1005 * bogus qsmask values.
1007 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1009 WARN_ON_ONCE(rnp->qsmask);
1012 #ifdef CONFIG_HOTPLUG_CPU
1015 * Because preemptible RCU does not exist, it never needs to migrate
1016 * tasks that were blocked within RCU read-side critical sections, and
1017 * such non-existent tasks cannot possibly have been blocking the current
1020 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1021 struct rcu_node *rnp,
1022 struct rcu_data *rdp)
1027 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1030 * Because preemptible RCU does not exist, it never has any callbacks
1033 static void rcu_preempt_check_callbacks(int cpu)
1038 * Wait for an rcu-preempt grace period, but make it happen quickly.
1039 * But because preemptible RCU does not exist, map to rcu-sched.
1041 void synchronize_rcu_expedited(void)
1043 synchronize_sched_expedited();
1045 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1047 #ifdef CONFIG_HOTPLUG_CPU
1050 * Because preemptible RCU does not exist, there is never any need to
1051 * report on tasks preempted in RCU read-side critical sections during
1052 * expedited RCU grace periods.
1054 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1059 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1062 * Because preemptible RCU does not exist, rcu_barrier() is just
1063 * another name for rcu_barrier_sched().
1065 void rcu_barrier(void)
1067 rcu_barrier_sched();
1069 EXPORT_SYMBOL_GPL(rcu_barrier);
1072 * Because preemptible RCU does not exist, it need not be initialized.
1074 static void __init __rcu_init_preempt(void)
1079 * Because preemptible RCU does not exist, tasks cannot possibly exit
1080 * while in preemptible RCU read-side critical sections.
1086 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1088 #ifdef CONFIG_RCU_BOOST
1090 #include "../locking/rtmutex_common.h"
1092 #ifdef CONFIG_RCU_TRACE
1094 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1096 if (list_empty(&rnp->blkd_tasks))
1097 rnp->n_balk_blkd_tasks++;
1098 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1099 rnp->n_balk_exp_gp_tasks++;
1100 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1101 rnp->n_balk_boost_tasks++;
1102 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1103 rnp->n_balk_notblocked++;
1104 else if (rnp->gp_tasks != NULL &&
1105 ULONG_CMP_LT(jiffies, rnp->boost_time))
1106 rnp->n_balk_notyet++;
1111 #else /* #ifdef CONFIG_RCU_TRACE */
1113 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1117 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1119 static void rcu_wake_cond(struct task_struct *t, int status)
1122 * If the thread is yielding, only wake it when this
1123 * is invoked from idle
1125 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1130 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1131 * or ->boost_tasks, advancing the pointer to the next task in the
1132 * ->blkd_tasks list.
1134 * Note that irqs must be enabled: boosting the task can block.
1135 * Returns 1 if there are more tasks needing to be boosted.
1137 static int rcu_boost(struct rcu_node *rnp)
1139 unsigned long flags;
1140 struct task_struct *t;
1141 struct list_head *tb;
1143 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1144 return 0; /* Nothing left to boost. */
1146 raw_spin_lock_irqsave(&rnp->lock, flags);
1147 smp_mb__after_unlock_lock();
1150 * Recheck under the lock: all tasks in need of boosting
1151 * might exit their RCU read-side critical sections on their own.
1153 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1154 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1159 * Preferentially boost tasks blocking expedited grace periods.
1160 * This cannot starve the normal grace periods because a second
1161 * expedited grace period must boost all blocked tasks, including
1162 * those blocking the pre-existing normal grace period.
1164 if (rnp->exp_tasks != NULL) {
1165 tb = rnp->exp_tasks;
1166 rnp->n_exp_boosts++;
1168 tb = rnp->boost_tasks;
1169 rnp->n_normal_boosts++;
1171 rnp->n_tasks_boosted++;
1174 * We boost task t by manufacturing an rt_mutex that appears to
1175 * be held by task t. We leave a pointer to that rt_mutex where
1176 * task t can find it, and task t will release the mutex when it
1177 * exits its outermost RCU read-side critical section. Then
1178 * simply acquiring this artificial rt_mutex will boost task
1179 * t's priority. (Thanks to tglx for suggesting this approach!)
1181 * Note that task t must acquire rnp->lock to remove itself from
1182 * the ->blkd_tasks list, which it will do from exit() if from
1183 * nowhere else. We therefore are guaranteed that task t will
1184 * stay around at least until we drop rnp->lock. Note that
1185 * rnp->lock also resolves races between our priority boosting
1186 * and task t's exiting its outermost RCU read-side critical
1189 t = container_of(tb, struct task_struct, rcu_node_entry);
1190 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1191 init_completion(&rnp->boost_completion);
1192 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1193 /* Lock only for side effect: boosts task t's priority. */
1194 rt_mutex_lock(&rnp->boost_mtx);
1195 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1197 /* Wait for boostee to be done w/boost_mtx before reinitializing. */
1198 wait_for_completion(&rnp->boost_completion);
1200 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1201 ACCESS_ONCE(rnp->boost_tasks) != NULL;
1205 * Priority-boosting kthread. One per leaf rcu_node and one for the
1208 static int rcu_boost_kthread(void *arg)
1210 struct rcu_node *rnp = (struct rcu_node *)arg;
1214 trace_rcu_utilization(TPS("Start boost kthread@init"));
1216 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1217 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1218 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1219 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1220 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1221 more2boost = rcu_boost(rnp);
1227 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1228 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1229 schedule_timeout_interruptible(2);
1230 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1235 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1240 * Check to see if it is time to start boosting RCU readers that are
1241 * blocking the current grace period, and, if so, tell the per-rcu_node
1242 * kthread to start boosting them. If there is an expedited grace
1243 * period in progress, it is always time to boost.
1245 * The caller must hold rnp->lock, which this function releases.
1246 * The ->boost_kthread_task is immortal, so we don't need to worry
1247 * about it going away.
1249 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1250 __releases(rnp->lock)
1252 struct task_struct *t;
1254 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1255 rnp->n_balk_exp_gp_tasks++;
1256 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1259 if (rnp->exp_tasks != NULL ||
1260 (rnp->gp_tasks != NULL &&
1261 rnp->boost_tasks == NULL &&
1263 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1264 if (rnp->exp_tasks == NULL)
1265 rnp->boost_tasks = rnp->gp_tasks;
1266 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1267 t = rnp->boost_kthread_task;
1269 rcu_wake_cond(t, rnp->boost_kthread_status);
1271 rcu_initiate_boost_trace(rnp);
1272 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1277 * Wake up the per-CPU kthread to invoke RCU callbacks.
1279 static void invoke_rcu_callbacks_kthread(void)
1281 unsigned long flags;
1283 local_irq_save(flags);
1284 __this_cpu_write(rcu_cpu_has_work, 1);
1285 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1286 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1287 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1288 __this_cpu_read(rcu_cpu_kthread_status));
1290 local_irq_restore(flags);
1294 * Is the current CPU running the RCU-callbacks kthread?
1295 * Caller must have preemption disabled.
1297 static bool rcu_is_callbacks_kthread(void)
1299 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1302 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1305 * Do priority-boost accounting for the start of a new grace period.
1307 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1309 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1313 * Create an RCU-boost kthread for the specified node if one does not
1314 * already exist. We only create this kthread for preemptible RCU.
1315 * Returns zero if all is well, a negated errno otherwise.
1317 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1318 struct rcu_node *rnp)
1320 int rnp_index = rnp - &rsp->node[0];
1321 unsigned long flags;
1322 struct sched_param sp;
1323 struct task_struct *t;
1325 if (&rcu_preempt_state != rsp)
1328 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1332 if (rnp->boost_kthread_task != NULL)
1334 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1335 "rcub/%d", rnp_index);
1338 raw_spin_lock_irqsave(&rnp->lock, flags);
1339 smp_mb__after_unlock_lock();
1340 rnp->boost_kthread_task = t;
1341 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1342 sp.sched_priority = kthread_prio;
1343 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1344 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1348 static void rcu_kthread_do_work(void)
1350 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1351 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1352 rcu_preempt_do_callbacks();
1355 static void rcu_cpu_kthread_setup(unsigned int cpu)
1357 struct sched_param sp;
1359 sp.sched_priority = kthread_prio;
1360 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1363 static void rcu_cpu_kthread_park(unsigned int cpu)
1365 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1368 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1370 return __this_cpu_read(rcu_cpu_has_work);
1374 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1375 * RCU softirq used in flavors and configurations of RCU that do not
1376 * support RCU priority boosting.
1378 static void rcu_cpu_kthread(unsigned int cpu)
1380 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1381 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1384 for (spincnt = 0; spincnt < 10; spincnt++) {
1385 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1387 *statusp = RCU_KTHREAD_RUNNING;
1388 this_cpu_inc(rcu_cpu_kthread_loops);
1389 local_irq_disable();
1394 rcu_kthread_do_work();
1397 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1398 *statusp = RCU_KTHREAD_WAITING;
1402 *statusp = RCU_KTHREAD_YIELDING;
1403 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1404 schedule_timeout_interruptible(2);
1405 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1406 *statusp = RCU_KTHREAD_WAITING;
1410 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1411 * served by the rcu_node in question. The CPU hotplug lock is still
1412 * held, so the value of rnp->qsmaskinit will be stable.
1414 * We don't include outgoingcpu in the affinity set, use -1 if there is
1415 * no outgoing CPU. If there are no CPUs left in the affinity set,
1416 * this function allows the kthread to execute on any CPU.
1418 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1420 struct task_struct *t = rnp->boost_kthread_task;
1421 unsigned long mask = rnp->qsmaskinit;
1427 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1429 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1430 if ((mask & 0x1) && cpu != outgoingcpu)
1431 cpumask_set_cpu(cpu, cm);
1432 if (cpumask_weight(cm) == 0) {
1434 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1435 cpumask_clear_cpu(cpu, cm);
1436 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1438 set_cpus_allowed_ptr(t, cm);
1439 free_cpumask_var(cm);
1442 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1443 .store = &rcu_cpu_kthread_task,
1444 .thread_should_run = rcu_cpu_kthread_should_run,
1445 .thread_fn = rcu_cpu_kthread,
1446 .thread_comm = "rcuc/%u",
1447 .setup = rcu_cpu_kthread_setup,
1448 .park = rcu_cpu_kthread_park,
1452 * Spawn boost kthreads -- called as soon as the scheduler is running.
1454 static void __init rcu_spawn_boost_kthreads(void)
1456 struct rcu_node *rnp;
1459 for_each_possible_cpu(cpu)
1460 per_cpu(rcu_cpu_has_work, cpu) = 0;
1461 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1462 rnp = rcu_get_root(rcu_state_p);
1463 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1464 if (NUM_RCU_NODES > 1) {
1465 rcu_for_each_leaf_node(rcu_state_p, rnp)
1466 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1470 static void rcu_prepare_kthreads(int cpu)
1472 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1473 struct rcu_node *rnp = rdp->mynode;
1475 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1476 if (rcu_scheduler_fully_active)
1477 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1480 #else /* #ifdef CONFIG_RCU_BOOST */
1482 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1483 __releases(rnp->lock)
1485 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1488 static void invoke_rcu_callbacks_kthread(void)
1493 static bool rcu_is_callbacks_kthread(void)
1498 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1502 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1506 static void __init rcu_spawn_boost_kthreads(void)
1510 static void rcu_prepare_kthreads(int cpu)
1514 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1516 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1519 * Check to see if any future RCU-related work will need to be done
1520 * by the current CPU, even if none need be done immediately, returning
1521 * 1 if so. This function is part of the RCU implementation; it is -not-
1522 * an exported member of the RCU API.
1524 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1525 * any flavor of RCU.
1527 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1528 int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1530 *delta_jiffies = ULONG_MAX;
1531 return rcu_cpu_has_callbacks(cpu, NULL);
1533 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1536 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1539 static void rcu_cleanup_after_idle(int cpu)
1544 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1547 static void rcu_prepare_for_idle(int cpu)
1552 * Don't bother keeping a running count of the number of RCU callbacks
1553 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1555 static void rcu_idle_count_callbacks_posted(void)
1559 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1562 * This code is invoked when a CPU goes idle, at which point we want
1563 * to have the CPU do everything required for RCU so that it can enter
1564 * the energy-efficient dyntick-idle mode. This is handled by a
1565 * state machine implemented by rcu_prepare_for_idle() below.
1567 * The following three proprocessor symbols control this state machine:
1569 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1570 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1571 * is sized to be roughly one RCU grace period. Those energy-efficiency
1572 * benchmarkers who might otherwise be tempted to set this to a large
1573 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1574 * system. And if you are -that- concerned about energy efficiency,
1575 * just power the system down and be done with it!
1576 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1577 * permitted to sleep in dyntick-idle mode with only lazy RCU
1578 * callbacks pending. Setting this too high can OOM your system.
1580 * The values below work well in practice. If future workloads require
1581 * adjustment, they can be converted into kernel config parameters, though
1582 * making the state machine smarter might be a better option.
1584 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1585 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1587 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1588 module_param(rcu_idle_gp_delay, int, 0644);
1589 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1590 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1592 extern int tick_nohz_active;
1595 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1596 * only if it has been awhile since the last time we did so. Afterwards,
1597 * if there are any callbacks ready for immediate invocation, return true.
1599 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1601 bool cbs_ready = false;
1602 struct rcu_data *rdp;
1603 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1604 struct rcu_node *rnp;
1605 struct rcu_state *rsp;
1607 /* Exit early if we advanced recently. */
1608 if (jiffies == rdtp->last_advance_all)
1610 rdtp->last_advance_all = jiffies;
1612 for_each_rcu_flavor(rsp) {
1613 rdp = this_cpu_ptr(rsp->rda);
1617 * Don't bother checking unless a grace period has
1618 * completed since we last checked and there are
1619 * callbacks not yet ready to invoke.
1621 if (rdp->completed != rnp->completed &&
1622 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1623 note_gp_changes(rsp, rdp);
1625 if (cpu_has_callbacks_ready_to_invoke(rdp))
1632 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1633 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1634 * caller to set the timeout based on whether or not there are non-lazy
1637 * The caller must have disabled interrupts.
1639 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1640 int rcu_needs_cpu(int cpu, unsigned long *dj)
1642 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1644 /* Snapshot to detect later posting of non-lazy callback. */
1645 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1647 /* If no callbacks, RCU doesn't need the CPU. */
1648 if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1653 /* Attempt to advance callbacks. */
1654 if (rcu_try_advance_all_cbs()) {
1655 /* Some ready to invoke, so initiate later invocation. */
1659 rdtp->last_accelerate = jiffies;
1661 /* Request timer delay depending on laziness, and round. */
1662 if (!rdtp->all_lazy) {
1663 *dj = round_up(rcu_idle_gp_delay + jiffies,
1664 rcu_idle_gp_delay) - jiffies;
1666 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1670 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1673 * Prepare a CPU for idle from an RCU perspective. The first major task
1674 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1675 * The second major task is to check to see if a non-lazy callback has
1676 * arrived at a CPU that previously had only lazy callbacks. The third
1677 * major task is to accelerate (that is, assign grace-period numbers to)
1678 * any recently arrived callbacks.
1680 * The caller must have disabled interrupts.
1682 static void rcu_prepare_for_idle(int cpu)
1684 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1686 struct rcu_data *rdp;
1687 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1688 struct rcu_node *rnp;
1689 struct rcu_state *rsp;
1692 /* Handle nohz enablement switches conservatively. */
1693 tne = ACCESS_ONCE(tick_nohz_active);
1694 if (tne != rdtp->tick_nohz_enabled_snap) {
1695 if (rcu_cpu_has_callbacks(cpu, NULL))
1696 invoke_rcu_core(); /* force nohz to see update. */
1697 rdtp->tick_nohz_enabled_snap = tne;
1703 /* If this is a no-CBs CPU, no callbacks, just return. */
1704 if (rcu_is_nocb_cpu(cpu))
1708 * If a non-lazy callback arrived at a CPU having only lazy
1709 * callbacks, invoke RCU core for the side-effect of recalculating
1710 * idle duration on re-entry to idle.
1712 if (rdtp->all_lazy &&
1713 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1714 rdtp->all_lazy = false;
1715 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1721 * If we have not yet accelerated this jiffy, accelerate all
1722 * callbacks on this CPU.
1724 if (rdtp->last_accelerate == jiffies)
1726 rdtp->last_accelerate = jiffies;
1727 for_each_rcu_flavor(rsp) {
1728 rdp = per_cpu_ptr(rsp->rda, cpu);
1729 if (!*rdp->nxttail[RCU_DONE_TAIL])
1732 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1733 smp_mb__after_unlock_lock();
1734 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1735 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1737 rcu_gp_kthread_wake(rsp);
1739 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1743 * Clean up for exit from idle. Attempt to advance callbacks based on
1744 * any grace periods that elapsed while the CPU was idle, and if any
1745 * callbacks are now ready to invoke, initiate invocation.
1747 static void rcu_cleanup_after_idle(int cpu)
1749 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1750 if (rcu_is_nocb_cpu(cpu))
1752 if (rcu_try_advance_all_cbs())
1754 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1758 * Keep a running count of the number of non-lazy callbacks posted
1759 * on this CPU. This running counter (which is never decremented) allows
1760 * rcu_prepare_for_idle() to detect when something out of the idle loop
1761 * posts a callback, even if an equal number of callbacks are invoked.
1762 * Of course, callbacks should only be posted from within a trace event
1763 * designed to be called from idle or from within RCU_NONIDLE().
1765 static void rcu_idle_count_callbacks_posted(void)
1767 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1771 * Data for flushing lazy RCU callbacks at OOM time.
1773 static atomic_t oom_callback_count;
1774 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1777 * RCU OOM callback -- decrement the outstanding count and deliver the
1778 * wake-up if we are the last one.
1780 static void rcu_oom_callback(struct rcu_head *rhp)
1782 if (atomic_dec_and_test(&oom_callback_count))
1783 wake_up(&oom_callback_wq);
1787 * Post an rcu_oom_notify callback on the current CPU if it has at
1788 * least one lazy callback. This will unnecessarily post callbacks
1789 * to CPUs that already have a non-lazy callback at the end of their
1790 * callback list, but this is an infrequent operation, so accept some
1791 * extra overhead to keep things simple.
1793 static void rcu_oom_notify_cpu(void *unused)
1795 struct rcu_state *rsp;
1796 struct rcu_data *rdp;
1798 for_each_rcu_flavor(rsp) {
1799 rdp = raw_cpu_ptr(rsp->rda);
1800 if (rdp->qlen_lazy != 0) {
1801 atomic_inc(&oom_callback_count);
1802 rsp->call(&rdp->oom_head, rcu_oom_callback);
1808 * If low on memory, ensure that each CPU has a non-lazy callback.
1809 * This will wake up CPUs that have only lazy callbacks, in turn
1810 * ensuring that they free up the corresponding memory in a timely manner.
1811 * Because an uncertain amount of memory will be freed in some uncertain
1812 * timeframe, we do not claim to have freed anything.
1814 static int rcu_oom_notify(struct notifier_block *self,
1815 unsigned long notused, void *nfreed)
1819 /* Wait for callbacks from earlier instance to complete. */
1820 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1821 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1824 * Prevent premature wakeup: ensure that all increments happen
1825 * before there is a chance of the counter reaching zero.
1827 atomic_set(&oom_callback_count, 1);
1830 for_each_online_cpu(cpu) {
1831 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1832 cond_resched_rcu_qs();
1836 /* Unconditionally decrement: no need to wake ourselves up. */
1837 atomic_dec(&oom_callback_count);
1842 static struct notifier_block rcu_oom_nb = {
1843 .notifier_call = rcu_oom_notify
1846 static int __init rcu_register_oom_notifier(void)
1848 register_oom_notifier(&rcu_oom_nb);
1851 early_initcall(rcu_register_oom_notifier);
1853 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1855 #ifdef CONFIG_RCU_CPU_STALL_INFO
1857 #ifdef CONFIG_RCU_FAST_NO_HZ
1859 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1861 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1862 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1864 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1865 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1867 rdtp->all_lazy ? 'L' : '.',
1868 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1871 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1873 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1878 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1880 /* Initiate the stall-info list. */
1881 static void print_cpu_stall_info_begin(void)
1887 * Print out diagnostic information for the specified stalled CPU.
1889 * If the specified CPU is aware of the current RCU grace period
1890 * (flavor specified by rsp), then print the number of scheduling
1891 * clock interrupts the CPU has taken during the time that it has
1892 * been aware. Otherwise, print the number of RCU grace periods
1893 * that this CPU is ignorant of, for example, "1" if the CPU was
1894 * aware of the previous grace period.
1896 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1898 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1900 char fast_no_hz[72];
1901 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1902 struct rcu_dynticks *rdtp = rdp->dynticks;
1904 unsigned long ticks_value;
1906 if (rsp->gpnum == rdp->gpnum) {
1907 ticks_title = "ticks this GP";
1908 ticks_value = rdp->ticks_this_gp;
1910 ticks_title = "GPs behind";
1911 ticks_value = rsp->gpnum - rdp->gpnum;
1913 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1914 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1915 cpu, ticks_value, ticks_title,
1916 atomic_read(&rdtp->dynticks) & 0xfff,
1917 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1918 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1922 /* Terminate the stall-info list. */
1923 static void print_cpu_stall_info_end(void)
1928 /* Zero ->ticks_this_gp for all flavors of RCU. */
1929 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1931 rdp->ticks_this_gp = 0;
1932 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1935 /* Increment ->ticks_this_gp for all flavors of RCU. */
1936 static void increment_cpu_stall_ticks(void)
1938 struct rcu_state *rsp;
1940 for_each_rcu_flavor(rsp)
1941 raw_cpu_inc(rsp->rda->ticks_this_gp);
1944 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1946 static void print_cpu_stall_info_begin(void)
1951 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1953 pr_cont(" %d", cpu);
1956 static void print_cpu_stall_info_end(void)
1961 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1965 static void increment_cpu_stall_ticks(void)
1969 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1971 #ifdef CONFIG_RCU_NOCB_CPU
1974 * Offload callback processing from the boot-time-specified set of CPUs
1975 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1976 * kthread created that pulls the callbacks from the corresponding CPU,
1977 * waits for a grace period to elapse, and invokes the callbacks.
1978 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1979 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1980 * has been specified, in which case each kthread actively polls its
1981 * CPU. (Which isn't so great for energy efficiency, but which does
1982 * reduce RCU's overhead on that CPU.)
1984 * This is intended to be used in conjunction with Frederic Weisbecker's
1985 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1986 * running CPU-bound user-mode computations.
1988 * Offloading of callback processing could also in theory be used as
1989 * an energy-efficiency measure because CPUs with no RCU callbacks
1990 * queued are more aggressive about entering dyntick-idle mode.
1994 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1995 static int __init rcu_nocb_setup(char *str)
1997 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1998 have_rcu_nocb_mask = true;
1999 cpulist_parse(str, rcu_nocb_mask);
2002 __setup("rcu_nocbs=", rcu_nocb_setup);
2004 static int __init parse_rcu_nocb_poll(char *arg)
2009 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2012 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2015 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2017 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2021 * Set the root rcu_node structure's ->need_future_gp field
2022 * based on the sum of those of all rcu_node structures. This does
2023 * double-count the root rcu_node structure's requests, but this
2024 * is necessary to handle the possibility of a rcu_nocb_kthread()
2025 * having awakened during the time that the rcu_node structures
2026 * were being updated for the end of the previous grace period.
2028 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2030 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2033 static void rcu_init_one_nocb(struct rcu_node *rnp)
2035 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2036 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2039 #ifndef CONFIG_RCU_NOCB_CPU_ALL
2040 /* Is the specified CPU a no-CBs CPU? */
2041 bool rcu_is_nocb_cpu(int cpu)
2043 if (have_rcu_nocb_mask)
2044 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2047 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2050 * Kick the leader kthread for this NOCB group.
2052 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2054 struct rcu_data *rdp_leader = rdp->nocb_leader;
2056 if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2058 if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
2059 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
2060 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
2061 wake_up(&rdp_leader->nocb_wq);
2066 * Does the specified CPU need an RCU callback for the specified flavor
2069 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2071 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2072 struct rcu_head *rhp;
2074 /* No-CBs CPUs might have callbacks on any of three lists. */
2075 rhp = ACCESS_ONCE(rdp->nocb_head);
2077 rhp = ACCESS_ONCE(rdp->nocb_gp_head);
2079 rhp = ACCESS_ONCE(rdp->nocb_follower_head);
2081 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
2082 if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
2083 /* RCU callback enqueued before CPU first came online??? */
2084 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
2093 * Enqueue the specified string of rcu_head structures onto the specified
2094 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2095 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2096 * counts are supplied by rhcount and rhcount_lazy.
2098 * If warranted, also wake up the kthread servicing this CPUs queues.
2100 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2101 struct rcu_head *rhp,
2102 struct rcu_head **rhtp,
2103 int rhcount, int rhcount_lazy,
2104 unsigned long flags)
2107 struct rcu_head **old_rhpp;
2108 struct task_struct *t;
2110 /* Enqueue the callback on the nocb list and update counts. */
2111 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2112 ACCESS_ONCE(*old_rhpp) = rhp;
2113 atomic_long_add(rhcount, &rdp->nocb_q_count);
2114 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2115 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
2117 /* If we are not being polled and there is a kthread, awaken it ... */
2118 t = ACCESS_ONCE(rdp->nocb_kthread);
2119 if (rcu_nocb_poll || !t) {
2120 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2121 TPS("WakeNotPoll"));
2124 len = atomic_long_read(&rdp->nocb_q_count);
2125 if (old_rhpp == &rdp->nocb_head) {
2126 if (!irqs_disabled_flags(flags)) {
2127 /* ... if queue was empty ... */
2128 wake_nocb_leader(rdp, false);
2129 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2132 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
2133 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2134 TPS("WakeEmptyIsDeferred"));
2136 rdp->qlen_last_fqs_check = 0;
2137 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2138 /* ... or if many callbacks queued. */
2139 if (!irqs_disabled_flags(flags)) {
2140 wake_nocb_leader(rdp, true);
2141 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2144 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2145 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2146 TPS("WakeOvfIsDeferred"));
2148 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2150 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2156 * This is a helper for __call_rcu(), which invokes this when the normal
2157 * callback queue is inoperable. If this is not a no-CBs CPU, this
2158 * function returns failure back to __call_rcu(), which can complain
2161 * Otherwise, this function queues the callback where the corresponding
2162 * "rcuo" kthread can find it.
2164 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2165 bool lazy, unsigned long flags)
2168 if (!rcu_is_nocb_cpu(rdp->cpu))
2170 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2171 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2172 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2173 (unsigned long)rhp->func,
2174 -atomic_long_read(&rdp->nocb_q_count_lazy),
2175 -atomic_long_read(&rdp->nocb_q_count));
2177 trace_rcu_callback(rdp->rsp->name, rhp,
2178 -atomic_long_read(&rdp->nocb_q_count_lazy),
2179 -atomic_long_read(&rdp->nocb_q_count));
2182 * If called from an extended quiescent state with interrupts
2183 * disabled, invoke the RCU core in order to allow the idle-entry
2184 * deferred-wakeup check to function.
2186 if (irqs_disabled_flags(flags) &&
2187 !rcu_is_watching() &&
2188 cpu_online(smp_processor_id()))
2195 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2198 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2199 struct rcu_data *rdp,
2200 unsigned long flags)
2202 long ql = rsp->qlen;
2203 long qll = rsp->qlen_lazy;
2205 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2206 if (!rcu_is_nocb_cpu(smp_processor_id()))
2211 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2212 if (rsp->orphan_donelist != NULL) {
2213 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2214 rsp->orphan_donetail, ql, qll, flags);
2216 rsp->orphan_donelist = NULL;
2217 rsp->orphan_donetail = &rsp->orphan_donelist;
2219 if (rsp->orphan_nxtlist != NULL) {
2220 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2221 rsp->orphan_nxttail, ql, qll, flags);
2223 rsp->orphan_nxtlist = NULL;
2224 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2230 * If necessary, kick off a new grace period, and either way wait
2231 * for a subsequent grace period to complete.
2233 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2237 unsigned long flags;
2239 struct rcu_node *rnp = rdp->mynode;
2241 raw_spin_lock_irqsave(&rnp->lock, flags);
2242 smp_mb__after_unlock_lock();
2243 needwake = rcu_start_future_gp(rnp, rdp, &c);
2244 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2246 rcu_gp_kthread_wake(rdp->rsp);
2249 * Wait for the grace period. Do so interruptibly to avoid messing
2250 * up the load average.
2252 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2254 wait_event_interruptible(
2255 rnp->nocb_gp_wq[c & 0x1],
2256 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2259 WARN_ON(signal_pending(current));
2260 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2262 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2263 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2267 * Leaders come here to wait for additional callbacks to show up.
2268 * This function does not return until callbacks appear.
2270 static void nocb_leader_wait(struct rcu_data *my_rdp)
2272 bool firsttime = true;
2274 struct rcu_data *rdp;
2275 struct rcu_head **tail;
2279 /* Wait for callbacks to appear. */
2280 if (!rcu_nocb_poll) {
2281 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2282 wait_event_interruptible(my_rdp->nocb_wq,
2283 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2284 /* Memory barrier handled by smp_mb() calls below and repoll. */
2285 } else if (firsttime) {
2286 firsttime = false; /* Don't drown trace log with "Poll"! */
2287 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2291 * Each pass through the following loop checks a follower for CBs.
2292 * We are our own first follower. Any CBs found are moved to
2293 * nocb_gp_head, where they await a grace period.
2296 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2297 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2298 if (!rdp->nocb_gp_head)
2299 continue; /* No CBs here, try next follower. */
2301 /* Move callbacks to wait-for-GP list, which is empty. */
2302 ACCESS_ONCE(rdp->nocb_head) = NULL;
2303 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2304 rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2305 rdp->nocb_gp_count_lazy =
2306 atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2311 * If there were no callbacks, sleep a bit, rescan after a
2312 * memory barrier, and go retry.
2314 if (unlikely(!gotcbs)) {
2316 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2318 WARN_ON(signal_pending(current));
2319 schedule_timeout_interruptible(1);
2321 /* Rescan in case we were a victim of memory ordering. */
2322 my_rdp->nocb_leader_sleep = true;
2323 smp_mb(); /* Ensure _sleep true before scan. */
2324 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2325 if (ACCESS_ONCE(rdp->nocb_head)) {
2326 /* Found CB, so short-circuit next wait. */
2327 my_rdp->nocb_leader_sleep = false;
2333 /* Wait for one grace period. */
2334 rcu_nocb_wait_gp(my_rdp);
2337 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2338 * We set it now, but recheck for new callbacks while
2339 * traversing our follower list.
2341 my_rdp->nocb_leader_sleep = true;
2342 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2344 /* Each pass through the following loop wakes a follower, if needed. */
2345 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2346 if (ACCESS_ONCE(rdp->nocb_head))
2347 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2348 if (!rdp->nocb_gp_head)
2349 continue; /* No CBs, so no need to wake follower. */
2351 /* Append callbacks to follower's "done" list. */
2352 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2353 *tail = rdp->nocb_gp_head;
2354 atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2355 atomic_long_add(rdp->nocb_gp_count_lazy,
2356 &rdp->nocb_follower_count_lazy);
2357 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2358 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2360 * List was empty, wake up the follower.
2361 * Memory barriers supplied by atomic_long_add().
2363 wake_up(&rdp->nocb_wq);
2367 /* If we (the leader) don't have CBs, go wait some more. */
2368 if (!my_rdp->nocb_follower_head)
2373 * Followers come here to wait for additional callbacks to show up.
2374 * This function does not return until callbacks appear.
2376 static void nocb_follower_wait(struct rcu_data *rdp)
2378 bool firsttime = true;
2381 if (!rcu_nocb_poll) {
2382 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2384 wait_event_interruptible(rdp->nocb_wq,
2385 ACCESS_ONCE(rdp->nocb_follower_head));
2386 } else if (firsttime) {
2387 /* Don't drown trace log with "Poll"! */
2389 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2391 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2392 /* ^^^ Ensure CB invocation follows _head test. */
2396 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2398 WARN_ON(signal_pending(current));
2399 schedule_timeout_interruptible(1);
2404 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2405 * callbacks queued by the corresponding no-CBs CPU, however, there is
2406 * an optional leader-follower relationship so that the grace-period
2407 * kthreads don't have to do quite so many wakeups.
2409 static int rcu_nocb_kthread(void *arg)
2412 struct rcu_head *list;
2413 struct rcu_head *next;
2414 struct rcu_head **tail;
2415 struct rcu_data *rdp = arg;
2417 /* Each pass through this loop invokes one batch of callbacks */
2419 /* Wait for callbacks. */
2420 if (rdp->nocb_leader == rdp)
2421 nocb_leader_wait(rdp);
2423 nocb_follower_wait(rdp);
2425 /* Pull the ready-to-invoke callbacks onto local list. */
2426 list = ACCESS_ONCE(rdp->nocb_follower_head);
2428 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2429 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2430 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2431 c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2432 cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2433 rdp->nocb_p_count += c;
2434 rdp->nocb_p_count_lazy += cl;
2436 /* Each pass through the following loop invokes a callback. */
2437 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2441 /* Wait for enqueuing to complete, if needed. */
2442 while (next == NULL && &list->next != tail) {
2443 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2445 schedule_timeout_interruptible(1);
2446 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2450 debug_rcu_head_unqueue(list);
2452 if (__rcu_reclaim(rdp->rsp->name, list))
2458 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2459 ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
2460 ACCESS_ONCE(rdp->nocb_p_count_lazy) =
2461 rdp->nocb_p_count_lazy - cl;
2462 rdp->n_nocbs_invoked += c;
2467 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2468 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2470 return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2473 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2474 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2478 if (!rcu_nocb_need_deferred_wakeup(rdp))
2480 ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2481 ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2482 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2483 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2486 void __init rcu_init_nohz(void)
2489 bool need_rcu_nocb_mask = true;
2490 struct rcu_state *rsp;
2492 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2493 need_rcu_nocb_mask = false;
2494 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2496 #if defined(CONFIG_NO_HZ_FULL)
2497 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2498 need_rcu_nocb_mask = true;
2499 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2501 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2502 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2503 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2506 have_rcu_nocb_mask = true;
2508 if (!have_rcu_nocb_mask)
2511 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2512 pr_info("\tOffload RCU callbacks from CPU 0\n");
2513 cpumask_set_cpu(0, rcu_nocb_mask);
2514 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2515 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2516 pr_info("\tOffload RCU callbacks from all CPUs\n");
2517 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2518 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2519 #if defined(CONFIG_NO_HZ_FULL)
2520 if (tick_nohz_full_running)
2521 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2522 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2524 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2525 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2526 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2529 cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
2530 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
2532 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2534 for_each_rcu_flavor(rsp) {
2535 for_each_cpu(cpu, rcu_nocb_mask) {
2536 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2539 * If there are early callbacks, they will need
2540 * to be moved to the nocb lists.
2542 WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2544 rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2545 init_nocb_callback_list(rdp);
2547 rcu_organize_nocb_kthreads(rsp);
2551 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2552 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2554 rdp->nocb_tail = &rdp->nocb_head;
2555 init_waitqueue_head(&rdp->nocb_wq);
2556 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2560 * If the specified CPU is a no-CBs CPU that does not already have its
2561 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2562 * brought online out of order, this can require re-organizing the
2563 * leader-follower relationships.
2565 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2567 struct rcu_data *rdp;
2568 struct rcu_data *rdp_last;
2569 struct rcu_data *rdp_old_leader;
2570 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2571 struct task_struct *t;
2574 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2575 * then nothing to do.
2577 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2580 /* If we didn't spawn the leader first, reorganize! */
2581 rdp_old_leader = rdp_spawn->nocb_leader;
2582 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2584 rdp = rdp_old_leader;
2586 rdp->nocb_leader = rdp_spawn;
2587 if (rdp_last && rdp != rdp_spawn)
2588 rdp_last->nocb_next_follower = rdp;
2590 rdp = rdp->nocb_next_follower;
2591 rdp_last->nocb_next_follower = NULL;
2593 rdp_spawn->nocb_next_follower = rdp_old_leader;
2596 /* Spawn the kthread for this CPU and RCU flavor. */
2597 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2598 "rcuo%c/%d", rsp->abbr, cpu);
2600 ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2604 * If the specified CPU is a no-CBs CPU that does not already have its
2605 * rcuo kthreads, spawn them.
2607 static void rcu_spawn_all_nocb_kthreads(int cpu)
2609 struct rcu_state *rsp;
2611 if (rcu_scheduler_fully_active)
2612 for_each_rcu_flavor(rsp)
2613 rcu_spawn_one_nocb_kthread(rsp, cpu);
2617 * Once the scheduler is running, spawn rcuo kthreads for all online
2618 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2619 * non-boot CPUs come online -- if this changes, we will need to add
2620 * some mutual exclusion.
2622 static void __init rcu_spawn_nocb_kthreads(void)
2626 for_each_online_cpu(cpu)
2627 rcu_spawn_all_nocb_kthreads(cpu);
2630 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2631 static int rcu_nocb_leader_stride = -1;
2632 module_param(rcu_nocb_leader_stride, int, 0444);
2635 * Initialize leader-follower relationships for all no-CBs CPU.
2637 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2640 int ls = rcu_nocb_leader_stride;
2641 int nl = 0; /* Next leader. */
2642 struct rcu_data *rdp;
2643 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2644 struct rcu_data *rdp_prev = NULL;
2646 if (!have_rcu_nocb_mask)
2649 ls = int_sqrt(nr_cpu_ids);
2650 rcu_nocb_leader_stride = ls;
2654 * Each pass through this loop sets up one rcu_data structure and
2655 * spawns one rcu_nocb_kthread().
2657 for_each_cpu(cpu, rcu_nocb_mask) {
2658 rdp = per_cpu_ptr(rsp->rda, cpu);
2659 if (rdp->cpu >= nl) {
2660 /* New leader, set up for followers & next leader. */
2661 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2662 rdp->nocb_leader = rdp;
2665 /* Another follower, link to previous leader. */
2666 rdp->nocb_leader = rdp_leader;
2667 rdp_prev->nocb_next_follower = rdp;
2673 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2674 static bool init_nocb_callback_list(struct rcu_data *rdp)
2676 if (!rcu_is_nocb_cpu(rdp->cpu))
2679 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2683 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2685 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2687 WARN_ON_ONCE(1); /* Should be dead code. */
2691 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2695 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2699 static void rcu_init_one_nocb(struct rcu_node *rnp)
2703 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2704 bool lazy, unsigned long flags)
2709 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2710 struct rcu_data *rdp,
2711 unsigned long flags)
2716 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2720 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2725 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2729 static void rcu_spawn_all_nocb_kthreads(int cpu)
2733 static void __init rcu_spawn_nocb_kthreads(void)
2737 static bool init_nocb_callback_list(struct rcu_data *rdp)
2742 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2745 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2746 * arbitrarily long period of time with the scheduling-clock tick turned
2747 * off. RCU will be paying attention to this CPU because it is in the
2748 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2749 * machine because the scheduling-clock tick has been disabled. Therefore,
2750 * if an adaptive-ticks CPU is failing to respond to the current grace
2751 * period and has not be idle from an RCU perspective, kick it.
2753 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2755 #ifdef CONFIG_NO_HZ_FULL
2756 if (tick_nohz_full_cpu(cpu))
2757 smp_send_reschedule(cpu);
2758 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2762 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2764 static int full_sysidle_state; /* Current system-idle state. */
2765 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2766 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2767 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2768 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2769 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2772 * Invoked to note exit from irq or task transition to idle. Note that
2773 * usermode execution does -not- count as idle here! After all, we want
2774 * to detect full-system idle states, not RCU quiescent states and grace
2775 * periods. The caller must have disabled interrupts.
2777 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2781 /* If there are no nohz_full= CPUs, no need to track this. */
2782 if (!tick_nohz_full_enabled())
2785 /* Adjust nesting, check for fully idle. */
2787 rdtp->dynticks_idle_nesting--;
2788 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2789 if (rdtp->dynticks_idle_nesting != 0)
2790 return; /* Still not fully idle. */
2792 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2793 DYNTICK_TASK_NEST_VALUE) {
2794 rdtp->dynticks_idle_nesting = 0;
2796 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2797 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2798 return; /* Still not fully idle. */
2802 /* Record start of fully idle period. */
2804 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2805 smp_mb__before_atomic();
2806 atomic_inc(&rdtp->dynticks_idle);
2807 smp_mb__after_atomic();
2808 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2812 * Unconditionally force exit from full system-idle state. This is
2813 * invoked when a normal CPU exits idle, but must be called separately
2814 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2815 * is that the timekeeping CPU is permitted to take scheduling-clock
2816 * interrupts while the system is in system-idle state, and of course
2817 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2818 * interrupt from any other type of interrupt.
2820 void rcu_sysidle_force_exit(void)
2822 int oldstate = ACCESS_ONCE(full_sysidle_state);
2826 * Each pass through the following loop attempts to exit full
2827 * system-idle state. If contention proves to be a problem,
2828 * a trylock-based contention tree could be used here.
2830 while (oldstate > RCU_SYSIDLE_SHORT) {
2831 newoldstate = cmpxchg(&full_sysidle_state,
2832 oldstate, RCU_SYSIDLE_NOT);
2833 if (oldstate == newoldstate &&
2834 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2835 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2836 return; /* We cleared it, done! */
2838 oldstate = newoldstate;
2840 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2844 * Invoked to note entry to irq or task transition from idle. Note that
2845 * usermode execution does -not- count as idle here! The caller must
2846 * have disabled interrupts.
2848 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2850 /* If there are no nohz_full= CPUs, no need to track this. */
2851 if (!tick_nohz_full_enabled())
2854 /* Adjust nesting, check for already non-idle. */
2856 rdtp->dynticks_idle_nesting++;
2857 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2858 if (rdtp->dynticks_idle_nesting != 1)
2859 return; /* Already non-idle. */
2862 * Allow for irq misnesting. Yes, it really is possible
2863 * to enter an irq handler then never leave it, and maybe
2864 * also vice versa. Handle both possibilities.
2866 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2867 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2868 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2869 return; /* Already non-idle. */
2871 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2875 /* Record end of idle period. */
2876 smp_mb__before_atomic();
2877 atomic_inc(&rdtp->dynticks_idle);
2878 smp_mb__after_atomic();
2879 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2882 * If we are the timekeeping CPU, we are permitted to be non-idle
2883 * during a system-idle state. This must be the case, because
2884 * the timekeeping CPU has to take scheduling-clock interrupts
2885 * during the time that the system is transitioning to full
2886 * system-idle state. This means that the timekeeping CPU must
2887 * invoke rcu_sysidle_force_exit() directly if it does anything
2888 * more than take a scheduling-clock interrupt.
2890 if (smp_processor_id() == tick_do_timer_cpu)
2893 /* Update system-idle state: We are clearly no longer fully idle! */
2894 rcu_sysidle_force_exit();
2898 * Check to see if the current CPU is idle. Note that usermode execution
2899 * does not count as idle. The caller must have disabled interrupts.
2901 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2902 unsigned long *maxj)
2906 struct rcu_dynticks *rdtp = rdp->dynticks;
2908 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2909 if (!tick_nohz_full_enabled())
2913 * If some other CPU has already reported non-idle, if this is
2914 * not the flavor of RCU that tracks sysidle state, or if this
2915 * is an offline or the timekeeping CPU, nothing to do.
2917 if (!*isidle || rdp->rsp != rcu_state_p ||
2918 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2920 if (rcu_gp_in_progress(rdp->rsp))
2921 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2923 /* Pick up current idle and NMI-nesting counter and check. */
2924 cur = atomic_read(&rdtp->dynticks_idle);
2926 *isidle = false; /* We are not idle! */
2929 smp_mb(); /* Read counters before timestamps. */
2931 /* Pick up timestamps. */
2932 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2933 /* If this CPU entered idle more recently, update maxj timestamp. */
2934 if (ULONG_CMP_LT(*maxj, j))
2939 * Is this the flavor of RCU that is handling full-system idle?
2941 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2943 return rsp == rcu_state_p;
2947 * Return a delay in jiffies based on the number of CPUs, rcu_node
2948 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2949 * systems more time to transition to full-idle state in order to
2950 * avoid the cache thrashing that otherwise occur on the state variable.
2951 * Really small systems (less than a couple of tens of CPUs) should
2952 * instead use a single global atomically incremented counter, and later
2953 * versions of this will automatically reconfigure themselves accordingly.
2955 static unsigned long rcu_sysidle_delay(void)
2957 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2959 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2963 * Advance the full-system-idle state. This is invoked when all of
2964 * the non-timekeeping CPUs are idle.
2966 static void rcu_sysidle(unsigned long j)
2968 /* Check the current state. */
2969 switch (ACCESS_ONCE(full_sysidle_state)) {
2970 case RCU_SYSIDLE_NOT:
2972 /* First time all are idle, so note a short idle period. */
2973 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2976 case RCU_SYSIDLE_SHORT:
2979 * Idle for a bit, time to advance to next state?
2980 * cmpxchg failure means race with non-idle, let them win.
2982 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2983 (void)cmpxchg(&full_sysidle_state,
2984 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2987 case RCU_SYSIDLE_LONG:
2990 * Do an additional check pass before advancing to full.
2991 * cmpxchg failure means race with non-idle, let them win.
2993 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2994 (void)cmpxchg(&full_sysidle_state,
2995 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
3004 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
3005 * back to the beginning.
3007 static void rcu_sysidle_cancel(void)
3010 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
3011 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
3015 * Update the sysidle state based on the results of a force-quiescent-state
3016 * scan of the CPUs' dyntick-idle state.
3018 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
3019 unsigned long maxj, bool gpkt)
3021 if (rsp != rcu_state_p)
3022 return; /* Wrong flavor, ignore. */
3023 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
3024 return; /* Running state machine from timekeeping CPU. */
3026 rcu_sysidle(maxj); /* More idle! */
3028 rcu_sysidle_cancel(); /* Idle is over. */
3032 * Wrapper for rcu_sysidle_report() when called from the grace-period
3033 * kthread's context.
3035 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3038 /* If there are no nohz_full= CPUs, no need to track this. */
3039 if (!tick_nohz_full_enabled())
3042 rcu_sysidle_report(rsp, isidle, maxj, true);
3045 /* Callback and function for forcing an RCU grace period. */
3046 struct rcu_sysidle_head {
3051 static void rcu_sysidle_cb(struct rcu_head *rhp)
3053 struct rcu_sysidle_head *rshp;
3056 * The following memory barrier is needed to replace the
3057 * memory barriers that would normally be in the memory
3060 smp_mb(); /* grace period precedes setting inuse. */
3062 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
3063 ACCESS_ONCE(rshp->inuse) = 0;
3067 * Check to see if the system is fully idle, other than the timekeeping CPU.
3068 * The caller must have disabled interrupts. This is not intended to be
3069 * called unless tick_nohz_full_enabled().
3071 bool rcu_sys_is_idle(void)
3073 static struct rcu_sysidle_head rsh;
3074 int rss = ACCESS_ONCE(full_sysidle_state);
3076 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
3079 /* Handle small-system case by doing a full scan of CPUs. */
3080 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
3081 int oldrss = rss - 1;
3084 * One pass to advance to each state up to _FULL.
3085 * Give up if any pass fails to advance the state.
3087 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
3090 unsigned long maxj = jiffies - ULONG_MAX / 4;
3091 struct rcu_data *rdp;
3093 /* Scan all the CPUs looking for nonidle CPUs. */
3094 for_each_possible_cpu(cpu) {
3095 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3096 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
3100 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
3102 rss = ACCESS_ONCE(full_sysidle_state);
3106 /* If this is the first observation of an idle period, record it. */
3107 if (rss == RCU_SYSIDLE_FULL) {
3108 rss = cmpxchg(&full_sysidle_state,
3109 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
3110 return rss == RCU_SYSIDLE_FULL;
3113 smp_mb(); /* ensure rss load happens before later caller actions. */
3115 /* If already fully idle, tell the caller (in case of races). */
3116 if (rss == RCU_SYSIDLE_FULL_NOTED)
3120 * If we aren't there yet, and a grace period is not in flight,
3121 * initiate a grace period. Either way, tell the caller that
3122 * we are not there yet. We use an xchg() rather than an assignment
3123 * to make up for the memory barriers that would otherwise be
3124 * provided by the memory allocator.
3126 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
3127 !rcu_gp_in_progress(rcu_state_p) &&
3128 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
3129 call_rcu(&rsh.rh, rcu_sysidle_cb);
3134 * Initialize dynticks sysidle state for CPUs coming online.
3136 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3138 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3141 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3143 static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
3147 static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
3151 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3152 unsigned long *maxj)
3156 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3161 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3166 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3170 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3173 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3174 * grace-period kthread will do force_quiescent_state() processing?
3175 * The idea is to avoid waking up RCU core processing on such a
3176 * CPU unless the grace period has extended for too long.
3178 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3179 * CONFIG_RCU_NOCB_CPU CPUs.
3181 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3183 #ifdef CONFIG_NO_HZ_FULL
3184 if (tick_nohz_full_cpu(smp_processor_id()) &&
3185 (!rcu_gp_in_progress(rsp) ||
3186 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3188 #endif /* #ifdef CONFIG_NO_HZ_FULL */
3193 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3196 static void rcu_bind_gp_kthread(void)
3198 int __maybe_unused cpu;
3200 if (!tick_nohz_full_enabled())
3202 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3203 cpu = tick_do_timer_cpu;
3204 if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3205 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3206 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3207 if (!is_housekeeping_cpu(raw_smp_processor_id()))
3208 housekeeping_affine(current);
3209 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3212 /* Record the current task on dyntick-idle entry. */
3213 static void rcu_dynticks_task_enter(void)
3215 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3216 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3217 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3220 /* Record no current task on dyntick-idle exit. */
3221 static void rcu_dynticks_task_exit(void)
3223 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3224 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3225 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */