4 * Core kernel scheduler code and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
10 #include <linux/nospec.h>
12 #include <linux/kcov.h>
14 #include <asm/switch_to.h>
17 #include "../workqueue_internal.h"
18 #include "../smpboot.h"
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/sched.h>
25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
27 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
29 * Debugging: various feature bits
31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32 * sysctl_sched_features, defined in sched.h, to allow constants propagation
33 * at compile time and compiler optimization based on features default.
35 #define SCHED_FEAT(name, enabled) \
36 (1UL << __SCHED_FEAT_##name) * enabled |
37 const_debug unsigned int sysctl_sched_features =
44 * Number of tasks to iterate in a single balance run.
45 * Limited because this is done with IRQs disabled.
47 const_debug unsigned int sysctl_sched_nr_migrate = 32;
50 * period over which we measure -rt task CPU usage in us.
53 unsigned int sysctl_sched_rt_period = 1000000;
55 __read_mostly int scheduler_running;
58 * part of the period that we allow rt tasks to run in us.
61 int sysctl_sched_rt_runtime = 950000;
64 * __task_rq_lock - lock the rq @p resides on.
66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
71 lockdep_assert_held(&p->pi_lock);
75 raw_spin_lock(&rq->lock);
76 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
80 raw_spin_unlock(&rq->lock);
82 while (unlikely(task_on_rq_migrating(p)))
88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
91 __acquires(p->pi_lock)
97 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
99 raw_spin_lock(&rq->lock);
101 * move_queued_task() task_rq_lock()
104 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
106 * [S] ->cpu = new_cpu [L] task_rq()
110 * If we observe the old CPU in task_rq_lock, the acquire of
111 * the old rq->lock will fully serialize against the stores.
113 * If we observe the new CPU in task_rq_lock, the acquire will
114 * pair with the WMB to ensure we must then also see migrating.
116 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
120 raw_spin_unlock(&rq->lock);
121 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
123 while (unlikely(task_on_rq_migrating(p)))
129 * RQ-clock updating methods:
132 static void update_rq_clock_task(struct rq *rq, s64 delta)
135 * In theory, the compile should just see 0 here, and optimize out the call
136 * to sched_rt_avg_update. But I don't trust it...
138 s64 __maybe_unused steal = 0, irq_delta = 0;
140 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
141 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
144 * Since irq_time is only updated on {soft,}irq_exit, we might run into
145 * this case when a previous update_rq_clock() happened inside a
148 * When this happens, we stop ->clock_task and only update the
149 * prev_irq_time stamp to account for the part that fit, so that a next
150 * update will consume the rest. This ensures ->clock_task is
153 * It does however cause some slight miss-attribution of {soft,}irq
154 * time, a more accurate solution would be to update the irq_time using
155 * the current rq->clock timestamp, except that would require using
158 if (irq_delta > delta)
161 rq->prev_irq_time += irq_delta;
164 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
165 if (static_key_false((¶virt_steal_rq_enabled))) {
166 steal = paravirt_steal_clock(cpu_of(rq));
167 steal -= rq->prev_steal_time_rq;
169 if (unlikely(steal > delta))
172 rq->prev_steal_time_rq += steal;
177 rq->clock_task += delta;
179 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
180 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
181 update_irq_load_avg(rq, irq_delta + steal);
185 void update_rq_clock(struct rq *rq)
189 lockdep_assert_held(&rq->lock);
191 if (rq->clock_update_flags & RQCF_ACT_SKIP)
194 #ifdef CONFIG_SCHED_DEBUG
195 if (sched_feat(WARN_DOUBLE_CLOCK))
196 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
197 rq->clock_update_flags |= RQCF_UPDATED;
200 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
204 update_rq_clock_task(rq, delta);
208 #ifdef CONFIG_SCHED_HRTICK
210 * Use HR-timers to deliver accurate preemption points.
213 static void hrtick_clear(struct rq *rq)
215 if (hrtimer_active(&rq->hrtick_timer))
216 hrtimer_cancel(&rq->hrtick_timer);
220 * High-resolution timer tick.
221 * Runs from hardirq context with interrupts disabled.
223 static enum hrtimer_restart hrtick(struct hrtimer *timer)
225 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
228 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
232 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
235 return HRTIMER_NORESTART;
240 static void __hrtick_restart(struct rq *rq)
242 struct hrtimer *timer = &rq->hrtick_timer;
244 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
248 * called from hardirq (IPI) context
250 static void __hrtick_start(void *arg)
256 __hrtick_restart(rq);
257 rq->hrtick_csd_pending = 0;
262 * Called to set the hrtick timer state.
264 * called with rq->lock held and irqs disabled
266 void hrtick_start(struct rq *rq, u64 delay)
268 struct hrtimer *timer = &rq->hrtick_timer;
273 * Don't schedule slices shorter than 10000ns, that just
274 * doesn't make sense and can cause timer DoS.
276 delta = max_t(s64, delay, 10000LL);
277 time = ktime_add_ns(timer->base->get_time(), delta);
279 hrtimer_set_expires(timer, time);
281 if (rq == this_rq()) {
282 __hrtick_restart(rq);
283 } else if (!rq->hrtick_csd_pending) {
284 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
285 rq->hrtick_csd_pending = 1;
291 * Called to set the hrtick timer state.
293 * called with rq->lock held and irqs disabled
295 void hrtick_start(struct rq *rq, u64 delay)
298 * Don't schedule slices shorter than 10000ns, that just
299 * doesn't make sense. Rely on vruntime for fairness.
301 delay = max_t(u64, delay, 10000LL);
302 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
303 HRTIMER_MODE_REL_PINNED);
305 #endif /* CONFIG_SMP */
307 static void hrtick_rq_init(struct rq *rq)
310 rq->hrtick_csd_pending = 0;
312 rq->hrtick_csd.flags = 0;
313 rq->hrtick_csd.func = __hrtick_start;
314 rq->hrtick_csd.info = rq;
317 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
318 rq->hrtick_timer.function = hrtick;
320 #else /* CONFIG_SCHED_HRTICK */
321 static inline void hrtick_clear(struct rq *rq)
325 static inline void hrtick_rq_init(struct rq *rq)
328 #endif /* CONFIG_SCHED_HRTICK */
331 * cmpxchg based fetch_or, macro so it works for different integer types
333 #define fetch_or(ptr, mask) \
335 typeof(ptr) _ptr = (ptr); \
336 typeof(mask) _mask = (mask); \
337 typeof(*_ptr) _old, _val = *_ptr; \
340 _old = cmpxchg(_ptr, _val, _val | _mask); \
348 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
350 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
351 * this avoids any races wrt polling state changes and thereby avoids
354 static bool set_nr_and_not_polling(struct task_struct *p)
356 struct thread_info *ti = task_thread_info(p);
357 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
361 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
363 * If this returns true, then the idle task promises to call
364 * sched_ttwu_pending() and reschedule soon.
366 static bool set_nr_if_polling(struct task_struct *p)
368 struct thread_info *ti = task_thread_info(p);
369 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
372 if (!(val & _TIF_POLLING_NRFLAG))
374 if (val & _TIF_NEED_RESCHED)
376 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
385 static bool set_nr_and_not_polling(struct task_struct *p)
387 set_tsk_need_resched(p);
392 static bool set_nr_if_polling(struct task_struct *p)
399 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
401 struct wake_q_node *node = &task->wake_q;
404 * Atomically grab the task, if ->wake_q is !nil already it means
405 * its already queued (either by us or someone else) and will get the
406 * wakeup due to that.
408 * In order to ensure that a pending wakeup will observe our pending
409 * state, even in the failed case, an explicit smp_mb() must be used.
411 smp_mb__before_atomic();
412 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
416 * The head is context local, there can be no concurrency.
419 head->lastp = &node->next;
424 * wake_q_add() - queue a wakeup for 'later' waking.
425 * @head: the wake_q_head to add @task to
426 * @task: the task to queue for 'later' wakeup
428 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
429 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
432 * This function must be used as-if it were wake_up_process(); IOW the task
433 * must be ready to be woken at this location.
435 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
437 if (__wake_q_add(head, task))
438 get_task_struct(task);
442 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
443 * @head: the wake_q_head to add @task to
444 * @task: the task to queue for 'later' wakeup
446 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
447 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
450 * This function must be used as-if it were wake_up_process(); IOW the task
451 * must be ready to be woken at this location.
453 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
454 * that already hold reference to @task can call the 'safe' version and trust
455 * wake_q to do the right thing depending whether or not the @task is already
458 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
460 if (!__wake_q_add(head, task))
461 put_task_struct(task);
464 void wake_up_q(struct wake_q_head *head)
466 struct wake_q_node *node = head->first;
468 while (node != WAKE_Q_TAIL) {
469 struct task_struct *task;
471 task = container_of(node, struct task_struct, wake_q);
473 /* Task can safely be re-inserted now: */
475 task->wake_q.next = NULL;
478 * wake_up_process() executes a full barrier, which pairs with
479 * the queueing in wake_q_add() so as not to miss wakeups.
481 wake_up_process(task);
482 put_task_struct(task);
487 * resched_curr - mark rq's current task 'to be rescheduled now'.
489 * On UP this means the setting of the need_resched flag, on SMP it
490 * might also involve a cross-CPU call to trigger the scheduler on
493 void resched_curr(struct rq *rq)
495 struct task_struct *curr = rq->curr;
498 lockdep_assert_held(&rq->lock);
500 if (test_tsk_need_resched(curr))
505 if (cpu == smp_processor_id()) {
506 set_tsk_need_resched(curr);
507 set_preempt_need_resched();
511 if (set_nr_and_not_polling(curr))
512 smp_send_reschedule(cpu);
514 trace_sched_wake_idle_without_ipi(cpu);
517 void resched_cpu(int cpu)
519 struct rq *rq = cpu_rq(cpu);
522 raw_spin_lock_irqsave(&rq->lock, flags);
523 if (cpu_online(cpu) || cpu == smp_processor_id())
525 raw_spin_unlock_irqrestore(&rq->lock, flags);
529 #ifdef CONFIG_NO_HZ_COMMON
531 * In the semi idle case, use the nearest busy CPU for migrating timers
532 * from an idle CPU. This is good for power-savings.
534 * We don't do similar optimization for completely idle system, as
535 * selecting an idle CPU will add more delays to the timers than intended
536 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
538 int get_nohz_timer_target(void)
540 int i, cpu = smp_processor_id();
541 struct sched_domain *sd;
543 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
547 for_each_domain(cpu, sd) {
548 for_each_cpu(i, sched_domain_span(sd)) {
552 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
559 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
560 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
567 * When add_timer_on() enqueues a timer into the timer wheel of an
568 * idle CPU then this timer might expire before the next timer event
569 * which is scheduled to wake up that CPU. In case of a completely
570 * idle system the next event might even be infinite time into the
571 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
572 * leaves the inner idle loop so the newly added timer is taken into
573 * account when the CPU goes back to idle and evaluates the timer
574 * wheel for the next timer event.
576 static void wake_up_idle_cpu(int cpu)
578 struct rq *rq = cpu_rq(cpu);
580 if (cpu == smp_processor_id())
583 if (set_nr_and_not_polling(rq->idle))
584 smp_send_reschedule(cpu);
586 trace_sched_wake_idle_without_ipi(cpu);
589 static bool wake_up_full_nohz_cpu(int cpu)
592 * We just need the target to call irq_exit() and re-evaluate
593 * the next tick. The nohz full kick at least implies that.
594 * If needed we can still optimize that later with an
597 if (cpu_is_offline(cpu))
598 return true; /* Don't try to wake offline CPUs. */
599 if (tick_nohz_full_cpu(cpu)) {
600 if (cpu != smp_processor_id() ||
601 tick_nohz_tick_stopped())
602 tick_nohz_full_kick_cpu(cpu);
610 * Wake up the specified CPU. If the CPU is going offline, it is the
611 * caller's responsibility to deal with the lost wakeup, for example,
612 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
614 void wake_up_nohz_cpu(int cpu)
616 if (!wake_up_full_nohz_cpu(cpu))
617 wake_up_idle_cpu(cpu);
620 static inline bool got_nohz_idle_kick(void)
622 int cpu = smp_processor_id();
624 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
627 if (idle_cpu(cpu) && !need_resched())
631 * We can't run Idle Load Balance on this CPU for this time so we
632 * cancel it and clear NOHZ_BALANCE_KICK
634 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
638 #else /* CONFIG_NO_HZ_COMMON */
640 static inline bool got_nohz_idle_kick(void)
645 #endif /* CONFIG_NO_HZ_COMMON */
647 #ifdef CONFIG_NO_HZ_FULL
648 bool sched_can_stop_tick(struct rq *rq)
652 /* Deadline tasks, even if single, need the tick */
653 if (rq->dl.dl_nr_running)
657 * If there are more than one RR tasks, we need the tick to effect the
658 * actual RR behaviour.
660 if (rq->rt.rr_nr_running) {
661 if (rq->rt.rr_nr_running == 1)
668 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
669 * forced preemption between FIFO tasks.
671 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
676 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
677 * if there's more than one we need the tick for involuntary
680 if (rq->nr_running > 1)
685 #endif /* CONFIG_NO_HZ_FULL */
686 #endif /* CONFIG_SMP */
688 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
689 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
691 * Iterate task_group tree rooted at *from, calling @down when first entering a
692 * node and @up when leaving it for the final time.
694 * Caller must hold rcu_lock or sufficient equivalent.
696 int walk_tg_tree_from(struct task_group *from,
697 tg_visitor down, tg_visitor up, void *data)
699 struct task_group *parent, *child;
705 ret = (*down)(parent, data);
708 list_for_each_entry_rcu(child, &parent->children, siblings) {
715 ret = (*up)(parent, data);
716 if (ret || parent == from)
720 parent = parent->parent;
727 int tg_nop(struct task_group *tg, void *data)
733 static void set_load_weight(struct task_struct *p, bool update_load)
735 int prio = p->static_prio - MAX_RT_PRIO;
736 struct load_weight *load = &p->se.load;
739 * SCHED_IDLE tasks get minimal weight:
741 if (task_has_idle_policy(p)) {
742 load->weight = scale_load(WEIGHT_IDLEPRIO);
743 load->inv_weight = WMULT_IDLEPRIO;
744 p->se.runnable_weight = load->weight;
749 * SCHED_OTHER tasks have to update their load when changing their
752 if (update_load && p->sched_class == &fair_sched_class) {
753 reweight_task(p, prio);
755 load->weight = scale_load(sched_prio_to_weight[prio]);
756 load->inv_weight = sched_prio_to_wmult[prio];
757 p->se.runnable_weight = load->weight;
761 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
763 if (!(flags & ENQUEUE_NOCLOCK))
766 if (!(flags & ENQUEUE_RESTORE)) {
767 sched_info_queued(rq, p);
768 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
771 p->sched_class->enqueue_task(rq, p, flags);
774 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
776 if (!(flags & DEQUEUE_NOCLOCK))
779 if (!(flags & DEQUEUE_SAVE)) {
780 sched_info_dequeued(rq, p);
781 psi_dequeue(p, flags & DEQUEUE_SLEEP);
784 p->sched_class->dequeue_task(rq, p, flags);
787 void activate_task(struct rq *rq, struct task_struct *p, int flags)
789 if (task_contributes_to_load(p))
790 rq->nr_uninterruptible--;
792 enqueue_task(rq, p, flags);
795 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
797 if (task_contributes_to_load(p))
798 rq->nr_uninterruptible++;
800 dequeue_task(rq, p, flags);
804 * __normal_prio - return the priority that is based on the static prio
806 static inline int __normal_prio(struct task_struct *p)
808 return p->static_prio;
812 * Calculate the expected normal priority: i.e. priority
813 * without taking RT-inheritance into account. Might be
814 * boosted by interactivity modifiers. Changes upon fork,
815 * setprio syscalls, and whenever the interactivity
816 * estimator recalculates.
818 static inline int normal_prio(struct task_struct *p)
822 if (task_has_dl_policy(p))
823 prio = MAX_DL_PRIO-1;
824 else if (task_has_rt_policy(p))
825 prio = MAX_RT_PRIO-1 - p->rt_priority;
827 prio = __normal_prio(p);
832 * Calculate the current priority, i.e. the priority
833 * taken into account by the scheduler. This value might
834 * be boosted by RT tasks, or might be boosted by
835 * interactivity modifiers. Will be RT if the task got
836 * RT-boosted. If not then it returns p->normal_prio.
838 static int effective_prio(struct task_struct *p)
840 p->normal_prio = normal_prio(p);
842 * If we are RT tasks or we were boosted to RT priority,
843 * keep the priority unchanged. Otherwise, update priority
844 * to the normal priority:
846 if (!rt_prio(p->prio))
847 return p->normal_prio;
852 * task_curr - is this task currently executing on a CPU?
853 * @p: the task in question.
855 * Return: 1 if the task is currently executing. 0 otherwise.
857 inline int task_curr(const struct task_struct *p)
859 return cpu_curr(task_cpu(p)) == p;
863 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
864 * use the balance_callback list if you want balancing.
866 * this means any call to check_class_changed() must be followed by a call to
867 * balance_callback().
869 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
870 const struct sched_class *prev_class,
873 if (prev_class != p->sched_class) {
874 if (prev_class->switched_from)
875 prev_class->switched_from(rq, p);
877 p->sched_class->switched_to(rq, p);
878 } else if (oldprio != p->prio || dl_task(p))
879 p->sched_class->prio_changed(rq, p, oldprio);
882 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
884 const struct sched_class *class;
886 if (p->sched_class == rq->curr->sched_class) {
887 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
889 for_each_class(class) {
890 if (class == rq->curr->sched_class)
892 if (class == p->sched_class) {
900 * A queue event has occurred, and we're going to schedule. In
901 * this case, we can save a useless back to back clock update.
903 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
904 rq_clock_skip_update(rq);
909 static inline bool is_per_cpu_kthread(struct task_struct *p)
911 if (!(p->flags & PF_KTHREAD))
914 if (p->nr_cpus_allowed != 1)
921 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
922 * __set_cpus_allowed_ptr() and select_fallback_rq().
924 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
926 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
929 if (is_per_cpu_kthread(p))
930 return cpu_online(cpu);
932 return cpu_active(cpu);
936 * This is how migration works:
938 * 1) we invoke migration_cpu_stop() on the target CPU using
940 * 2) stopper starts to run (implicitly forcing the migrated thread
942 * 3) it checks whether the migrated task is still in the wrong runqueue.
943 * 4) if it's in the wrong runqueue then the migration thread removes
944 * it and puts it into the right queue.
945 * 5) stopper completes and stop_one_cpu() returns and the migration
950 * move_queued_task - move a queued task to new rq.
952 * Returns (locked) new rq. Old rq's lock is released.
954 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
955 struct task_struct *p, int new_cpu)
957 lockdep_assert_held(&rq->lock);
959 p->on_rq = TASK_ON_RQ_MIGRATING;
960 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
961 set_task_cpu(p, new_cpu);
964 rq = cpu_rq(new_cpu);
967 BUG_ON(task_cpu(p) != new_cpu);
968 enqueue_task(rq, p, 0);
969 p->on_rq = TASK_ON_RQ_QUEUED;
970 check_preempt_curr(rq, p, 0);
975 struct migration_arg {
976 struct task_struct *task;
981 * Move (not current) task off this CPU, onto the destination CPU. We're doing
982 * this because either it can't run here any more (set_cpus_allowed()
983 * away from this CPU, or CPU going down), or because we're
984 * attempting to rebalance this task on exec (sched_exec).
986 * So we race with normal scheduler movements, but that's OK, as long
987 * as the task is no longer on this CPU.
989 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
990 struct task_struct *p, int dest_cpu)
992 /* Affinity changed (again). */
993 if (!is_cpu_allowed(p, dest_cpu))
997 rq = move_queued_task(rq, rf, p, dest_cpu);
1003 * migration_cpu_stop - this will be executed by a highprio stopper thread
1004 * and performs thread migration by bumping thread off CPU then
1005 * 'pushing' onto another runqueue.
1007 static int migration_cpu_stop(void *data)
1009 struct migration_arg *arg = data;
1010 struct task_struct *p = arg->task;
1011 struct rq *rq = this_rq();
1015 * The original target CPU might have gone down and we might
1016 * be on another CPU but it doesn't matter.
1018 local_irq_disable();
1020 * We need to explicitly wake pending tasks before running
1021 * __migrate_task() such that we will not miss enforcing cpus_allowed
1022 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1024 sched_ttwu_pending();
1026 raw_spin_lock(&p->pi_lock);
1029 * If task_rq(p) != rq, it cannot be migrated here, because we're
1030 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1031 * we're holding p->pi_lock.
1033 if (task_rq(p) == rq) {
1034 if (task_on_rq_queued(p))
1035 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1037 p->wake_cpu = arg->dest_cpu;
1040 raw_spin_unlock(&p->pi_lock);
1047 * sched_class::set_cpus_allowed must do the below, but is not required to
1048 * actually call this function.
1050 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1052 cpumask_copy(&p->cpus_allowed, new_mask);
1053 p->nr_cpus_allowed = cpumask_weight(new_mask);
1056 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1058 struct rq *rq = task_rq(p);
1059 bool queued, running;
1061 lockdep_assert_held(&p->pi_lock);
1063 queued = task_on_rq_queued(p);
1064 running = task_current(rq, p);
1068 * Because __kthread_bind() calls this on blocked tasks without
1071 lockdep_assert_held(&rq->lock);
1072 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1075 put_prev_task(rq, p);
1077 p->sched_class->set_cpus_allowed(p, new_mask);
1080 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1082 set_curr_task(rq, p);
1086 * Change a given task's CPU affinity. Migrate the thread to a
1087 * proper CPU and schedule it away if the CPU it's executing on
1088 * is removed from the allowed bitmask.
1090 * NOTE: the caller must have a valid reference to the task, the
1091 * task must not exit() & deallocate itself prematurely. The
1092 * call is not atomic; no spinlocks may be held.
1094 static int __set_cpus_allowed_ptr(struct task_struct *p,
1095 const struct cpumask *new_mask, bool check)
1097 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1098 unsigned int dest_cpu;
1103 rq = task_rq_lock(p, &rf);
1104 update_rq_clock(rq);
1106 if (p->flags & PF_KTHREAD) {
1108 * Kernel threads are allowed on online && !active CPUs
1110 cpu_valid_mask = cpu_online_mask;
1114 * Must re-check here, to close a race against __kthread_bind(),
1115 * sched_setaffinity() is not guaranteed to observe the flag.
1117 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1122 if (cpumask_equal(&p->cpus_allowed, new_mask))
1125 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1130 do_set_cpus_allowed(p, new_mask);
1132 if (p->flags & PF_KTHREAD) {
1134 * For kernel threads that do indeed end up on online &&
1135 * !active we want to ensure they are strict per-CPU threads.
1137 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1138 !cpumask_intersects(new_mask, cpu_active_mask) &&
1139 p->nr_cpus_allowed != 1);
1142 /* Can the task run on the task's current CPU? If so, we're done */
1143 if (cpumask_test_cpu(task_cpu(p), new_mask))
1146 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1147 if (task_running(rq, p) || p->state == TASK_WAKING) {
1148 struct migration_arg arg = { p, dest_cpu };
1149 /* Need help from migration thread: drop lock and wait. */
1150 task_rq_unlock(rq, p, &rf);
1151 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1152 tlb_migrate_finish(p->mm);
1154 } else if (task_on_rq_queued(p)) {
1156 * OK, since we're going to drop the lock immediately
1157 * afterwards anyway.
1159 rq = move_queued_task(rq, &rf, p, dest_cpu);
1162 task_rq_unlock(rq, p, &rf);
1167 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1169 return __set_cpus_allowed_ptr(p, new_mask, false);
1171 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1173 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1175 #ifdef CONFIG_SCHED_DEBUG
1177 * We should never call set_task_cpu() on a blocked task,
1178 * ttwu() will sort out the placement.
1180 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1184 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1185 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1186 * time relying on p->on_rq.
1188 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1189 p->sched_class == &fair_sched_class &&
1190 (p->on_rq && !task_on_rq_migrating(p)));
1192 #ifdef CONFIG_LOCKDEP
1194 * The caller should hold either p->pi_lock or rq->lock, when changing
1195 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1197 * sched_move_task() holds both and thus holding either pins the cgroup,
1200 * Furthermore, all task_rq users should acquire both locks, see
1203 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1204 lockdep_is_held(&task_rq(p)->lock)));
1207 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1209 WARN_ON_ONCE(!cpu_online(new_cpu));
1212 trace_sched_migrate_task(p, new_cpu);
1214 if (task_cpu(p) != new_cpu) {
1215 if (p->sched_class->migrate_task_rq)
1216 p->sched_class->migrate_task_rq(p, new_cpu);
1217 p->se.nr_migrations++;
1219 perf_event_task_migrate(p);
1222 __set_task_cpu(p, new_cpu);
1225 #ifdef CONFIG_NUMA_BALANCING
1226 static void __migrate_swap_task(struct task_struct *p, int cpu)
1228 if (task_on_rq_queued(p)) {
1229 struct rq *src_rq, *dst_rq;
1230 struct rq_flags srf, drf;
1232 src_rq = task_rq(p);
1233 dst_rq = cpu_rq(cpu);
1235 rq_pin_lock(src_rq, &srf);
1236 rq_pin_lock(dst_rq, &drf);
1238 p->on_rq = TASK_ON_RQ_MIGRATING;
1239 deactivate_task(src_rq, p, 0);
1240 set_task_cpu(p, cpu);
1241 activate_task(dst_rq, p, 0);
1242 p->on_rq = TASK_ON_RQ_QUEUED;
1243 check_preempt_curr(dst_rq, p, 0);
1245 rq_unpin_lock(dst_rq, &drf);
1246 rq_unpin_lock(src_rq, &srf);
1250 * Task isn't running anymore; make it appear like we migrated
1251 * it before it went to sleep. This means on wakeup we make the
1252 * previous CPU our target instead of where it really is.
1258 struct migration_swap_arg {
1259 struct task_struct *src_task, *dst_task;
1260 int src_cpu, dst_cpu;
1263 static int migrate_swap_stop(void *data)
1265 struct migration_swap_arg *arg = data;
1266 struct rq *src_rq, *dst_rq;
1269 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1272 src_rq = cpu_rq(arg->src_cpu);
1273 dst_rq = cpu_rq(arg->dst_cpu);
1275 double_raw_lock(&arg->src_task->pi_lock,
1276 &arg->dst_task->pi_lock);
1277 double_rq_lock(src_rq, dst_rq);
1279 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1282 if (task_cpu(arg->src_task) != arg->src_cpu)
1285 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1288 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1291 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1292 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1297 double_rq_unlock(src_rq, dst_rq);
1298 raw_spin_unlock(&arg->dst_task->pi_lock);
1299 raw_spin_unlock(&arg->src_task->pi_lock);
1305 * Cross migrate two tasks
1307 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1308 int target_cpu, int curr_cpu)
1310 struct migration_swap_arg arg;
1313 arg = (struct migration_swap_arg){
1315 .src_cpu = curr_cpu,
1317 .dst_cpu = target_cpu,
1320 if (arg.src_cpu == arg.dst_cpu)
1324 * These three tests are all lockless; this is OK since all of them
1325 * will be re-checked with proper locks held further down the line.
1327 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1330 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1333 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1336 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1337 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1342 #endif /* CONFIG_NUMA_BALANCING */
1345 * wait_task_inactive - wait for a thread to unschedule.
1347 * If @match_state is nonzero, it's the @p->state value just checked and
1348 * not expected to change. If it changes, i.e. @p might have woken up,
1349 * then return zero. When we succeed in waiting for @p to be off its CPU,
1350 * we return a positive number (its total switch count). If a second call
1351 * a short while later returns the same number, the caller can be sure that
1352 * @p has remained unscheduled the whole time.
1354 * The caller must ensure that the task *will* unschedule sometime soon,
1355 * else this function might spin for a *long* time. This function can't
1356 * be called with interrupts off, or it may introduce deadlock with
1357 * smp_call_function() if an IPI is sent by the same process we are
1358 * waiting to become inactive.
1360 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1362 int running, queued;
1369 * We do the initial early heuristics without holding
1370 * any task-queue locks at all. We'll only try to get
1371 * the runqueue lock when things look like they will
1377 * If the task is actively running on another CPU
1378 * still, just relax and busy-wait without holding
1381 * NOTE! Since we don't hold any locks, it's not
1382 * even sure that "rq" stays as the right runqueue!
1383 * But we don't care, since "task_running()" will
1384 * return false if the runqueue has changed and p
1385 * is actually now running somewhere else!
1387 while (task_running(rq, p)) {
1388 if (match_state && unlikely(p->state != match_state))
1394 * Ok, time to look more closely! We need the rq
1395 * lock now, to be *sure*. If we're wrong, we'll
1396 * just go back and repeat.
1398 rq = task_rq_lock(p, &rf);
1399 trace_sched_wait_task(p);
1400 running = task_running(rq, p);
1401 queued = task_on_rq_queued(p);
1403 if (!match_state || p->state == match_state)
1404 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1405 task_rq_unlock(rq, p, &rf);
1408 * If it changed from the expected state, bail out now.
1410 if (unlikely(!ncsw))
1414 * Was it really running after all now that we
1415 * checked with the proper locks actually held?
1417 * Oops. Go back and try again..
1419 if (unlikely(running)) {
1425 * It's not enough that it's not actively running,
1426 * it must be off the runqueue _entirely_, and not
1429 * So if it was still runnable (but just not actively
1430 * running right now), it's preempted, and we should
1431 * yield - it could be a while.
1433 if (unlikely(queued)) {
1434 ktime_t to = NSEC_PER_SEC / HZ;
1436 set_current_state(TASK_UNINTERRUPTIBLE);
1437 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1442 * Ahh, all good. It wasn't running, and it wasn't
1443 * runnable, which means that it will never become
1444 * running in the future either. We're all done!
1453 * kick_process - kick a running thread to enter/exit the kernel
1454 * @p: the to-be-kicked thread
1456 * Cause a process which is running on another CPU to enter
1457 * kernel-mode, without any delay. (to get signals handled.)
1459 * NOTE: this function doesn't have to take the runqueue lock,
1460 * because all it wants to ensure is that the remote task enters
1461 * the kernel. If the IPI races and the task has been migrated
1462 * to another CPU then no harm is done and the purpose has been
1465 void kick_process(struct task_struct *p)
1471 if ((cpu != smp_processor_id()) && task_curr(p))
1472 smp_send_reschedule(cpu);
1475 EXPORT_SYMBOL_GPL(kick_process);
1478 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1480 * A few notes on cpu_active vs cpu_online:
1482 * - cpu_active must be a subset of cpu_online
1484 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1485 * see __set_cpus_allowed_ptr(). At this point the newly online
1486 * CPU isn't yet part of the sched domains, and balancing will not
1489 * - on CPU-down we clear cpu_active() to mask the sched domains and
1490 * avoid the load balancer to place new tasks on the to be removed
1491 * CPU. Existing tasks will remain running there and will be taken
1494 * This means that fallback selection must not select !active CPUs.
1495 * And can assume that any active CPU must be online. Conversely
1496 * select_task_rq() below may allow selection of !active CPUs in order
1497 * to satisfy the above rules.
1499 static int select_fallback_rq(int cpu, struct task_struct *p)
1501 int nid = cpu_to_node(cpu);
1502 const struct cpumask *nodemask = NULL;
1503 enum { cpuset, possible, fail } state = cpuset;
1507 * If the node that the CPU is on has been offlined, cpu_to_node()
1508 * will return -1. There is no CPU on the node, and we should
1509 * select the CPU on the other node.
1512 nodemask = cpumask_of_node(nid);
1514 /* Look for allowed, online CPU in same node. */
1515 for_each_cpu(dest_cpu, nodemask) {
1516 if (!cpu_active(dest_cpu))
1518 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1524 /* Any allowed, online CPU? */
1525 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1526 if (!is_cpu_allowed(p, dest_cpu))
1532 /* No more Mr. Nice Guy. */
1535 if (IS_ENABLED(CONFIG_CPUSETS)) {
1536 cpuset_cpus_allowed_fallback(p);
1542 do_set_cpus_allowed(p, cpu_possible_mask);
1553 if (state != cpuset) {
1555 * Don't tell them about moving exiting tasks or
1556 * kernel threads (both mm NULL), since they never
1559 if (p->mm && printk_ratelimit()) {
1560 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1561 task_pid_nr(p), p->comm, cpu);
1569 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1572 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1574 lockdep_assert_held(&p->pi_lock);
1576 if (p->nr_cpus_allowed > 1)
1577 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1579 cpu = cpumask_any(&p->cpus_allowed);
1582 * In order not to call set_task_cpu() on a blocking task we need
1583 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1586 * Since this is common to all placement strategies, this lives here.
1588 * [ this allows ->select_task() to simply return task_cpu(p) and
1589 * not worry about this generic constraint ]
1591 if (unlikely(!is_cpu_allowed(p, cpu)))
1592 cpu = select_fallback_rq(task_cpu(p), p);
1597 static void update_avg(u64 *avg, u64 sample)
1599 s64 diff = sample - *avg;
1603 void sched_set_stop_task(int cpu, struct task_struct *stop)
1605 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1606 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1610 * Make it appear like a SCHED_FIFO task, its something
1611 * userspace knows about and won't get confused about.
1613 * Also, it will make PI more or less work without too
1614 * much confusion -- but then, stop work should not
1615 * rely on PI working anyway.
1617 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
1619 stop->sched_class = &stop_sched_class;
1622 cpu_rq(cpu)->stop = stop;
1626 * Reset it back to a normal scheduling class so that
1627 * it can die in pieces.
1629 old_stop->sched_class = &rt_sched_class;
1635 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1636 const struct cpumask *new_mask, bool check)
1638 return set_cpus_allowed_ptr(p, new_mask);
1641 #endif /* CONFIG_SMP */
1644 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1648 if (!schedstat_enabled())
1654 if (cpu == rq->cpu) {
1655 __schedstat_inc(rq->ttwu_local);
1656 __schedstat_inc(p->se.statistics.nr_wakeups_local);
1658 struct sched_domain *sd;
1660 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
1662 for_each_domain(rq->cpu, sd) {
1663 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1664 __schedstat_inc(sd->ttwu_wake_remote);
1671 if (wake_flags & WF_MIGRATED)
1672 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1673 #endif /* CONFIG_SMP */
1675 __schedstat_inc(rq->ttwu_count);
1676 __schedstat_inc(p->se.statistics.nr_wakeups);
1678 if (wake_flags & WF_SYNC)
1679 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
1682 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1684 activate_task(rq, p, en_flags);
1685 p->on_rq = TASK_ON_RQ_QUEUED;
1687 /* If a worker is waking up, notify the workqueue: */
1688 if (p->flags & PF_WQ_WORKER)
1689 wq_worker_waking_up(p, cpu_of(rq));
1693 * Mark the task runnable and perform wakeup-preemption.
1695 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1696 struct rq_flags *rf)
1698 check_preempt_curr(rq, p, wake_flags);
1699 p->state = TASK_RUNNING;
1700 trace_sched_wakeup(p);
1703 if (p->sched_class->task_woken) {
1705 * Our task @p is fully woken up and running; so its safe to
1706 * drop the rq->lock, hereafter rq is only used for statistics.
1708 rq_unpin_lock(rq, rf);
1709 p->sched_class->task_woken(rq, p);
1710 rq_repin_lock(rq, rf);
1713 if (rq->idle_stamp) {
1714 u64 delta = rq_clock(rq) - rq->idle_stamp;
1715 u64 max = 2*rq->max_idle_balance_cost;
1717 update_avg(&rq->avg_idle, delta);
1719 if (rq->avg_idle > max)
1728 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1729 struct rq_flags *rf)
1731 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1733 lockdep_assert_held(&rq->lock);
1736 if (p->sched_contributes_to_load)
1737 rq->nr_uninterruptible--;
1739 if (wake_flags & WF_MIGRATED)
1740 en_flags |= ENQUEUE_MIGRATED;
1743 ttwu_activate(rq, p, en_flags);
1744 ttwu_do_wakeup(rq, p, wake_flags, rf);
1748 * Called in case the task @p isn't fully descheduled from its runqueue,
1749 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1750 * since all we need to do is flip p->state to TASK_RUNNING, since
1751 * the task is still ->on_rq.
1753 static int ttwu_remote(struct task_struct *p, int wake_flags)
1759 rq = __task_rq_lock(p, &rf);
1760 if (task_on_rq_queued(p)) {
1761 /* check_preempt_curr() may use rq clock */
1762 update_rq_clock(rq);
1763 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1766 __task_rq_unlock(rq, &rf);
1772 void sched_ttwu_pending(void)
1774 struct rq *rq = this_rq();
1775 struct llist_node *llist = llist_del_all(&rq->wake_list);
1776 struct task_struct *p, *t;
1782 rq_lock_irqsave(rq, &rf);
1783 update_rq_clock(rq);
1785 llist_for_each_entry_safe(p, t, llist, wake_entry)
1786 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1788 rq_unlock_irqrestore(rq, &rf);
1791 void scheduler_ipi(void)
1794 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1795 * TIF_NEED_RESCHED remotely (for the first time) will also send
1798 preempt_fold_need_resched();
1800 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1804 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1805 * traditionally all their work was done from the interrupt return
1806 * path. Now that we actually do some work, we need to make sure
1809 * Some archs already do call them, luckily irq_enter/exit nest
1812 * Arguably we should visit all archs and update all handlers,
1813 * however a fair share of IPIs are still resched only so this would
1814 * somewhat pessimize the simple resched case.
1817 sched_ttwu_pending();
1820 * Check if someone kicked us for doing the nohz idle load balance.
1822 if (unlikely(got_nohz_idle_kick())) {
1823 this_rq()->idle_balance = 1;
1824 raise_softirq_irqoff(SCHED_SOFTIRQ);
1829 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1831 struct rq *rq = cpu_rq(cpu);
1833 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1835 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1836 if (!set_nr_if_polling(rq->idle))
1837 smp_send_reschedule(cpu);
1839 trace_sched_wake_idle_without_ipi(cpu);
1843 void wake_up_if_idle(int cpu)
1845 struct rq *rq = cpu_rq(cpu);
1850 if (!is_idle_task(rcu_dereference(rq->curr)))
1853 if (set_nr_if_polling(rq->idle)) {
1854 trace_sched_wake_idle_without_ipi(cpu);
1856 rq_lock_irqsave(rq, &rf);
1857 if (is_idle_task(rq->curr))
1858 smp_send_reschedule(cpu);
1859 /* Else CPU is not idle, do nothing here: */
1860 rq_unlock_irqrestore(rq, &rf);
1867 bool cpus_share_cache(int this_cpu, int that_cpu)
1869 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1871 #endif /* CONFIG_SMP */
1873 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1875 struct rq *rq = cpu_rq(cpu);
1878 #if defined(CONFIG_SMP)
1879 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1880 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1881 ttwu_queue_remote(p, cpu, wake_flags);
1887 update_rq_clock(rq);
1888 ttwu_do_activate(rq, p, wake_flags, &rf);
1893 * Notes on Program-Order guarantees on SMP systems.
1897 * The basic program-order guarantee on SMP systems is that when a task [t]
1898 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1899 * execution on its new CPU [c1].
1901 * For migration (of runnable tasks) this is provided by the following means:
1903 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1904 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1905 * rq(c1)->lock (if not at the same time, then in that order).
1906 * C) LOCK of the rq(c1)->lock scheduling in task
1908 * Release/acquire chaining guarantees that B happens after A and C after B.
1909 * Note: the CPU doing B need not be c0 or c1
1918 * UNLOCK rq(0)->lock
1920 * LOCK rq(0)->lock // orders against CPU0
1922 * UNLOCK rq(0)->lock
1926 * UNLOCK rq(1)->lock
1928 * LOCK rq(1)->lock // orders against CPU2
1931 * UNLOCK rq(1)->lock
1934 * BLOCKING -- aka. SLEEP + WAKEUP
1936 * For blocking we (obviously) need to provide the same guarantee as for
1937 * migration. However the means are completely different as there is no lock
1938 * chain to provide order. Instead we do:
1940 * 1) smp_store_release(X->on_cpu, 0)
1941 * 2) smp_cond_load_acquire(!X->on_cpu)
1945 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1947 * LOCK rq(0)->lock LOCK X->pi_lock
1950 * smp_store_release(X->on_cpu, 0);
1952 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1958 * X->state = RUNNING
1959 * UNLOCK rq(2)->lock
1961 * LOCK rq(2)->lock // orders against CPU1
1964 * UNLOCK rq(2)->lock
1967 * UNLOCK rq(0)->lock
1970 * However, for wakeups there is a second guarantee we must provide, namely we
1971 * must ensure that CONDITION=1 done by the caller can not be reordered with
1972 * accesses to the task state; see try_to_wake_up() and set_current_state().
1976 * try_to_wake_up - wake up a thread
1977 * @p: the thread to be awakened
1978 * @state: the mask of task states that can be woken
1979 * @wake_flags: wake modifier flags (WF_*)
1981 * If (@state & @p->state) @p->state = TASK_RUNNING.
1983 * If the task was not queued/runnable, also place it back on a runqueue.
1985 * Atomic against schedule() which would dequeue a task, also see
1986 * set_current_state().
1988 * This function executes a full memory barrier before accessing the task
1989 * state; see set_current_state().
1991 * Return: %true if @p->state changes (an actual wakeup was done),
1995 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1997 unsigned long flags;
1998 int cpu, success = 0;
2001 * If we are going to wake up a thread waiting for CONDITION we
2002 * need to ensure that CONDITION=1 done by the caller can not be
2003 * reordered with p->state check below. This pairs with mb() in
2004 * set_current_state() the waiting thread does.
2006 raw_spin_lock_irqsave(&p->pi_lock, flags);
2007 smp_mb__after_spinlock();
2008 if (!(p->state & state))
2011 trace_sched_waking(p);
2013 /* We're going to change ->state: */
2018 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2019 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2020 * in smp_cond_load_acquire() below.
2022 * sched_ttwu_pending() try_to_wake_up()
2023 * STORE p->on_rq = 1 LOAD p->state
2026 * __schedule() (switch to task 'p')
2027 * LOCK rq->lock smp_rmb();
2028 * smp_mb__after_spinlock();
2032 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2034 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2035 * __schedule(). See the comment for smp_mb__after_spinlock().
2038 if (p->on_rq && ttwu_remote(p, wake_flags))
2043 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2044 * possible to, falsely, observe p->on_cpu == 0.
2046 * One must be running (->on_cpu == 1) in order to remove oneself
2047 * from the runqueue.
2049 * __schedule() (switch to task 'p') try_to_wake_up()
2050 * STORE p->on_cpu = 1 LOAD p->on_rq
2053 * __schedule() (put 'p' to sleep)
2054 * LOCK rq->lock smp_rmb();
2055 * smp_mb__after_spinlock();
2056 * STORE p->on_rq = 0 LOAD p->on_cpu
2058 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2059 * __schedule(). See the comment for smp_mb__after_spinlock().
2064 * If the owning (remote) CPU is still in the middle of schedule() with
2065 * this task as prev, wait until its done referencing the task.
2067 * Pairs with the smp_store_release() in finish_task().
2069 * This ensures that tasks getting woken will be fully ordered against
2070 * their previous state and preserve Program Order.
2072 smp_cond_load_acquire(&p->on_cpu, !VAL);
2074 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2075 p->state = TASK_WAKING;
2078 delayacct_blkio_end(p);
2079 atomic_dec(&task_rq(p)->nr_iowait);
2082 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2083 if (task_cpu(p) != cpu) {
2084 wake_flags |= WF_MIGRATED;
2085 psi_ttwu_dequeue(p);
2086 set_task_cpu(p, cpu);
2089 #else /* CONFIG_SMP */
2092 delayacct_blkio_end(p);
2093 atomic_dec(&task_rq(p)->nr_iowait);
2096 #endif /* CONFIG_SMP */
2098 ttwu_queue(p, cpu, wake_flags);
2100 ttwu_stat(p, cpu, wake_flags);
2102 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2108 * try_to_wake_up_local - try to wake up a local task with rq lock held
2109 * @p: the thread to be awakened
2110 * @rf: request-queue flags for pinning
2112 * Put @p on the run-queue if it's not already there. The caller must
2113 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2116 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2118 struct rq *rq = task_rq(p);
2120 if (WARN_ON_ONCE(rq != this_rq()) ||
2121 WARN_ON_ONCE(p == current))
2124 lockdep_assert_held(&rq->lock);
2126 if (!raw_spin_trylock(&p->pi_lock)) {
2128 * This is OK, because current is on_cpu, which avoids it being
2129 * picked for load-balance and preemption/IRQs are still
2130 * disabled avoiding further scheduler activity on it and we've
2131 * not yet picked a replacement task.
2134 raw_spin_lock(&p->pi_lock);
2138 if (!(p->state & TASK_NORMAL))
2141 trace_sched_waking(p);
2143 if (!task_on_rq_queued(p)) {
2145 delayacct_blkio_end(p);
2146 atomic_dec(&rq->nr_iowait);
2148 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2151 ttwu_do_wakeup(rq, p, 0, rf);
2152 ttwu_stat(p, smp_processor_id(), 0);
2154 raw_spin_unlock(&p->pi_lock);
2158 * wake_up_process - Wake up a specific process
2159 * @p: The process to be woken up.
2161 * Attempt to wake up the nominated process and move it to the set of runnable
2164 * Return: 1 if the process was woken up, 0 if it was already running.
2166 * This function executes a full memory barrier before accessing the task state.
2168 int wake_up_process(struct task_struct *p)
2170 return try_to_wake_up(p, TASK_NORMAL, 0);
2172 EXPORT_SYMBOL(wake_up_process);
2174 int wake_up_state(struct task_struct *p, unsigned int state)
2176 return try_to_wake_up(p, state, 0);
2180 * Perform scheduler related setup for a newly forked process p.
2181 * p is forked by current.
2183 * __sched_fork() is basic setup used by init_idle() too:
2185 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2190 p->se.exec_start = 0;
2191 p->se.sum_exec_runtime = 0;
2192 p->se.prev_sum_exec_runtime = 0;
2193 p->se.nr_migrations = 0;
2195 INIT_LIST_HEAD(&p->se.group_node);
2197 #ifdef CONFIG_FAIR_GROUP_SCHED
2198 p->se.cfs_rq = NULL;
2201 #ifdef CONFIG_SCHEDSTATS
2202 /* Even if schedstat is disabled, there should not be garbage */
2203 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2206 RB_CLEAR_NODE(&p->dl.rb_node);
2207 init_dl_task_timer(&p->dl);
2208 init_dl_inactive_task_timer(&p->dl);
2209 __dl_clear_params(p);
2211 INIT_LIST_HEAD(&p->rt.run_list);
2213 p->rt.time_slice = sched_rr_timeslice;
2217 #ifdef CONFIG_PREEMPT_NOTIFIERS
2218 INIT_HLIST_HEAD(&p->preempt_notifiers);
2221 init_numa_balancing(clone_flags, p);
2224 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2226 #ifdef CONFIG_NUMA_BALANCING
2228 void set_numabalancing_state(bool enabled)
2231 static_branch_enable(&sched_numa_balancing);
2233 static_branch_disable(&sched_numa_balancing);
2236 #ifdef CONFIG_PROC_SYSCTL
2237 int sysctl_numa_balancing(struct ctl_table *table, int write,
2238 void __user *buffer, size_t *lenp, loff_t *ppos)
2242 int state = static_branch_likely(&sched_numa_balancing);
2244 if (write && !capable(CAP_SYS_ADMIN))
2249 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2253 set_numabalancing_state(state);
2259 #ifdef CONFIG_SCHEDSTATS
2261 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2262 static bool __initdata __sched_schedstats = false;
2264 static void set_schedstats(bool enabled)
2267 static_branch_enable(&sched_schedstats);
2269 static_branch_disable(&sched_schedstats);
2272 void force_schedstat_enabled(void)
2274 if (!schedstat_enabled()) {
2275 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2276 static_branch_enable(&sched_schedstats);
2280 static int __init setup_schedstats(char *str)
2287 * This code is called before jump labels have been set up, so we can't
2288 * change the static branch directly just yet. Instead set a temporary
2289 * variable so init_schedstats() can do it later.
2291 if (!strcmp(str, "enable")) {
2292 __sched_schedstats = true;
2294 } else if (!strcmp(str, "disable")) {
2295 __sched_schedstats = false;
2300 pr_warn("Unable to parse schedstats=\n");
2304 __setup("schedstats=", setup_schedstats);
2306 static void __init init_schedstats(void)
2308 set_schedstats(__sched_schedstats);
2311 #ifdef CONFIG_PROC_SYSCTL
2312 int sysctl_schedstats(struct ctl_table *table, int write,
2313 void __user *buffer, size_t *lenp, loff_t *ppos)
2317 int state = static_branch_likely(&sched_schedstats);
2319 if (write && !capable(CAP_SYS_ADMIN))
2324 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2328 set_schedstats(state);
2331 #endif /* CONFIG_PROC_SYSCTL */
2332 #else /* !CONFIG_SCHEDSTATS */
2333 static inline void init_schedstats(void) {}
2334 #endif /* CONFIG_SCHEDSTATS */
2337 * fork()/clone()-time setup:
2339 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2341 unsigned long flags;
2343 __sched_fork(clone_flags, p);
2345 * We mark the process as NEW here. This guarantees that
2346 * nobody will actually run it, and a signal or other external
2347 * event cannot wake it up and insert it on the runqueue either.
2349 p->state = TASK_NEW;
2352 * Make sure we do not leak PI boosting priority to the child.
2354 p->prio = current->normal_prio;
2357 * Revert to default priority/policy on fork if requested.
2359 if (unlikely(p->sched_reset_on_fork)) {
2360 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2361 p->policy = SCHED_NORMAL;
2362 p->static_prio = NICE_TO_PRIO(0);
2364 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2365 p->static_prio = NICE_TO_PRIO(0);
2367 p->prio = p->normal_prio = __normal_prio(p);
2368 set_load_weight(p, false);
2371 * We don't need the reset flag anymore after the fork. It has
2372 * fulfilled its duty:
2374 p->sched_reset_on_fork = 0;
2377 if (dl_prio(p->prio))
2379 else if (rt_prio(p->prio))
2380 p->sched_class = &rt_sched_class;
2382 p->sched_class = &fair_sched_class;
2384 init_entity_runnable_average(&p->se);
2387 * The child is not yet in the pid-hash so no cgroup attach races,
2388 * and the cgroup is pinned to this child due to cgroup_fork()
2389 * is ran before sched_fork().
2391 * Silence PROVE_RCU.
2393 raw_spin_lock_irqsave(&p->pi_lock, flags);
2395 * We're setting the CPU for the first time, we don't migrate,
2396 * so use __set_task_cpu().
2398 __set_task_cpu(p, smp_processor_id());
2399 if (p->sched_class->task_fork)
2400 p->sched_class->task_fork(p);
2401 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2403 #ifdef CONFIG_SCHED_INFO
2404 if (likely(sched_info_on()))
2405 memset(&p->sched_info, 0, sizeof(p->sched_info));
2407 #if defined(CONFIG_SMP)
2410 init_task_preempt_count(p);
2412 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2413 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2418 unsigned long to_ratio(u64 period, u64 runtime)
2420 if (runtime == RUNTIME_INF)
2424 * Doing this here saves a lot of checks in all
2425 * the calling paths, and returning zero seems
2426 * safe for them anyway.
2431 return div64_u64(runtime << BW_SHIFT, period);
2435 * wake_up_new_task - wake up a newly created task for the first time.
2437 * This function will do some initial scheduler statistics housekeeping
2438 * that must be done for every newly created context, then puts the task
2439 * on the runqueue and wakes it.
2441 void wake_up_new_task(struct task_struct *p)
2446 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2447 p->state = TASK_RUNNING;
2450 * Fork balancing, do it here and not earlier because:
2451 * - cpus_allowed can change in the fork path
2452 * - any previously selected CPU might disappear through hotplug
2454 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2455 * as we're not fully set-up yet.
2457 p->recent_used_cpu = task_cpu(p);
2458 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2460 rq = __task_rq_lock(p, &rf);
2461 update_rq_clock(rq);
2462 post_init_entity_util_avg(&p->se);
2464 activate_task(rq, p, ENQUEUE_NOCLOCK);
2465 p->on_rq = TASK_ON_RQ_QUEUED;
2466 trace_sched_wakeup_new(p);
2467 check_preempt_curr(rq, p, WF_FORK);
2469 if (p->sched_class->task_woken) {
2471 * Nothing relies on rq->lock after this, so its fine to
2474 rq_unpin_lock(rq, &rf);
2475 p->sched_class->task_woken(rq, p);
2476 rq_repin_lock(rq, &rf);
2479 task_rq_unlock(rq, p, &rf);
2482 #ifdef CONFIG_PREEMPT_NOTIFIERS
2484 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2486 void preempt_notifier_inc(void)
2488 static_branch_inc(&preempt_notifier_key);
2490 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2492 void preempt_notifier_dec(void)
2494 static_branch_dec(&preempt_notifier_key);
2496 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2499 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2500 * @notifier: notifier struct to register
2502 void preempt_notifier_register(struct preempt_notifier *notifier)
2504 if (!static_branch_unlikely(&preempt_notifier_key))
2505 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2507 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2509 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2512 * preempt_notifier_unregister - no longer interested in preemption notifications
2513 * @notifier: notifier struct to unregister
2515 * This is *not* safe to call from within a preemption notifier.
2517 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2519 hlist_del(¬ifier->link);
2521 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2523 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2525 struct preempt_notifier *notifier;
2527 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2528 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2531 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2533 if (static_branch_unlikely(&preempt_notifier_key))
2534 __fire_sched_in_preempt_notifiers(curr);
2538 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2539 struct task_struct *next)
2541 struct preempt_notifier *notifier;
2543 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2544 notifier->ops->sched_out(notifier, next);
2547 static __always_inline void
2548 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2549 struct task_struct *next)
2551 if (static_branch_unlikely(&preempt_notifier_key))
2552 __fire_sched_out_preempt_notifiers(curr, next);
2555 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2557 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2562 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2563 struct task_struct *next)
2567 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2569 static inline void prepare_task(struct task_struct *next)
2573 * Claim the task as running, we do this before switching to it
2574 * such that any running task will have this set.
2580 static inline void finish_task(struct task_struct *prev)
2584 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2585 * We must ensure this doesn't happen until the switch is completely
2588 * In particular, the load of prev->state in finish_task_switch() must
2589 * happen before this.
2591 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2593 smp_store_release(&prev->on_cpu, 0);
2598 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2601 * Since the runqueue lock will be released by the next
2602 * task (which is an invalid locking op but in the case
2603 * of the scheduler it's an obvious special-case), so we
2604 * do an early lockdep release here:
2606 rq_unpin_lock(rq, rf);
2607 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2608 #ifdef CONFIG_DEBUG_SPINLOCK
2609 /* this is a valid case when another task releases the spinlock */
2610 rq->lock.owner = next;
2614 static inline void finish_lock_switch(struct rq *rq)
2617 * If we are tracking spinlock dependencies then we have to
2618 * fix up the runqueue lock - which gets 'carried over' from
2619 * prev into current:
2621 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2622 raw_spin_unlock_irq(&rq->lock);
2626 * NOP if the arch has not defined these:
2629 #ifndef prepare_arch_switch
2630 # define prepare_arch_switch(next) do { } while (0)
2633 #ifndef finish_arch_post_lock_switch
2634 # define finish_arch_post_lock_switch() do { } while (0)
2638 * prepare_task_switch - prepare to switch tasks
2639 * @rq: the runqueue preparing to switch
2640 * @prev: the current task that is being switched out
2641 * @next: the task we are going to switch to.
2643 * This is called with the rq lock held and interrupts off. It must
2644 * be paired with a subsequent finish_task_switch after the context
2647 * prepare_task_switch sets up locking and calls architecture specific
2651 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2652 struct task_struct *next)
2654 kcov_prepare_switch(prev);
2655 sched_info_switch(rq, prev, next);
2656 perf_event_task_sched_out(prev, next);
2658 fire_sched_out_preempt_notifiers(prev, next);
2660 prepare_arch_switch(next);
2664 * finish_task_switch - clean up after a task-switch
2665 * @prev: the thread we just switched away from.
2667 * finish_task_switch must be called after the context switch, paired
2668 * with a prepare_task_switch call before the context switch.
2669 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2670 * and do any other architecture-specific cleanup actions.
2672 * Note that we may have delayed dropping an mm in context_switch(). If
2673 * so, we finish that here outside of the runqueue lock. (Doing it
2674 * with the lock held can cause deadlocks; see schedule() for
2677 * The context switch have flipped the stack from under us and restored the
2678 * local variables which were saved when this task called schedule() in the
2679 * past. prev == current is still correct but we need to recalculate this_rq
2680 * because prev may have moved to another CPU.
2682 static struct rq *finish_task_switch(struct task_struct *prev)
2683 __releases(rq->lock)
2685 struct rq *rq = this_rq();
2686 struct mm_struct *mm = rq->prev_mm;
2690 * The previous task will have left us with a preempt_count of 2
2691 * because it left us after:
2694 * preempt_disable(); // 1
2696 * raw_spin_lock_irq(&rq->lock) // 2
2698 * Also, see FORK_PREEMPT_COUNT.
2700 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2701 "corrupted preempt_count: %s/%d/0x%x\n",
2702 current->comm, current->pid, preempt_count()))
2703 preempt_count_set(FORK_PREEMPT_COUNT);
2708 * A task struct has one reference for the use as "current".
2709 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2710 * schedule one last time. The schedule call will never return, and
2711 * the scheduled task must drop that reference.
2713 * We must observe prev->state before clearing prev->on_cpu (in
2714 * finish_task), otherwise a concurrent wakeup can get prev
2715 * running on another CPU and we could rave with its RUNNING -> DEAD
2716 * transition, resulting in a double drop.
2718 prev_state = prev->state;
2719 vtime_task_switch(prev);
2720 perf_event_task_sched_in(prev, current);
2722 finish_lock_switch(rq);
2723 finish_arch_post_lock_switch();
2724 kcov_finish_switch(current);
2726 fire_sched_in_preempt_notifiers(current);
2728 * When switching through a kernel thread, the loop in
2729 * membarrier_{private,global}_expedited() may have observed that
2730 * kernel thread and not issued an IPI. It is therefore possible to
2731 * schedule between user->kernel->user threads without passing though
2732 * switch_mm(). Membarrier requires a barrier after storing to
2733 * rq->curr, before returning to userspace, so provide them here:
2735 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2736 * provided by mmdrop(),
2737 * - a sync_core for SYNC_CORE.
2740 membarrier_mm_sync_core_before_usermode(mm);
2743 if (unlikely(prev_state == TASK_DEAD)) {
2744 if (prev->sched_class->task_dead)
2745 prev->sched_class->task_dead(prev);
2748 * Remove function-return probe instances associated with this
2749 * task and put them back on the free list.
2751 kprobe_flush_task(prev);
2753 /* Task is done with its stack. */
2754 put_task_stack(prev);
2756 put_task_struct(prev);
2759 tick_nohz_task_switch();
2765 /* rq->lock is NOT held, but preemption is disabled */
2766 static void __balance_callback(struct rq *rq)
2768 struct callback_head *head, *next;
2769 void (*func)(struct rq *rq);
2770 unsigned long flags;
2772 raw_spin_lock_irqsave(&rq->lock, flags);
2773 head = rq->balance_callback;
2774 rq->balance_callback = NULL;
2776 func = (void (*)(struct rq *))head->func;
2783 raw_spin_unlock_irqrestore(&rq->lock, flags);
2786 static inline void balance_callback(struct rq *rq)
2788 if (unlikely(rq->balance_callback))
2789 __balance_callback(rq);
2794 static inline void balance_callback(struct rq *rq)
2801 * schedule_tail - first thing a freshly forked thread must call.
2802 * @prev: the thread we just switched away from.
2804 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2805 __releases(rq->lock)
2810 * New tasks start with FORK_PREEMPT_COUNT, see there and
2811 * finish_task_switch() for details.
2813 * finish_task_switch() will drop rq->lock() and lower preempt_count
2814 * and the preempt_enable() will end up enabling preemption (on
2815 * PREEMPT_COUNT kernels).
2818 rq = finish_task_switch(prev);
2819 balance_callback(rq);
2822 if (current->set_child_tid)
2823 put_user(task_pid_vnr(current), current->set_child_tid);
2825 calculate_sigpending();
2829 * context_switch - switch to the new MM and the new thread's register state.
2831 static __always_inline struct rq *
2832 context_switch(struct rq *rq, struct task_struct *prev,
2833 struct task_struct *next, struct rq_flags *rf)
2835 struct mm_struct *mm, *oldmm;
2837 prepare_task_switch(rq, prev, next);
2840 oldmm = prev->active_mm;
2842 * For paravirt, this is coupled with an exit in switch_to to
2843 * combine the page table reload and the switch backend into
2846 arch_start_context_switch(prev);
2849 * If mm is non-NULL, we pass through switch_mm(). If mm is
2850 * NULL, we will pass through mmdrop() in finish_task_switch().
2851 * Both of these contain the full memory barrier required by
2852 * membarrier after storing to rq->curr, before returning to
2856 next->active_mm = oldmm;
2858 enter_lazy_tlb(oldmm, next);
2860 switch_mm_irqs_off(oldmm, mm, next);
2863 prev->active_mm = NULL;
2864 rq->prev_mm = oldmm;
2867 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2869 prepare_lock_switch(rq, next, rf);
2871 /* Here we just switch the register state and the stack. */
2872 switch_to(prev, next, prev);
2875 return finish_task_switch(prev);
2879 * nr_running and nr_context_switches:
2881 * externally visible scheduler statistics: current number of runnable
2882 * threads, total number of context switches performed since bootup.
2884 unsigned long nr_running(void)
2886 unsigned long i, sum = 0;
2888 for_each_online_cpu(i)
2889 sum += cpu_rq(i)->nr_running;
2895 * Check if only the current task is running on the CPU.
2897 * Caution: this function does not check that the caller has disabled
2898 * preemption, thus the result might have a time-of-check-to-time-of-use
2899 * race. The caller is responsible to use it correctly, for example:
2901 * - from a non-preemptible section (of course)
2903 * - from a thread that is bound to a single CPU
2905 * - in a loop with very short iterations (e.g. a polling loop)
2907 bool single_task_running(void)
2909 return raw_rq()->nr_running == 1;
2911 EXPORT_SYMBOL(single_task_running);
2913 unsigned long long nr_context_switches(void)
2916 unsigned long long sum = 0;
2918 for_each_possible_cpu(i)
2919 sum += cpu_rq(i)->nr_switches;
2925 * Consumers of these two interfaces, like for example the cpuidle menu
2926 * governor, are using nonsensical data. Preferring shallow idle state selection
2927 * for a CPU that has IO-wait which might not even end up running the task when
2928 * it does become runnable.
2931 unsigned long nr_iowait_cpu(int cpu)
2933 return atomic_read(&cpu_rq(cpu)->nr_iowait);
2937 * IO-wait accounting, and how its mostly bollocks (on SMP).
2939 * The idea behind IO-wait account is to account the idle time that we could
2940 * have spend running if it were not for IO. That is, if we were to improve the
2941 * storage performance, we'd have a proportional reduction in IO-wait time.
2943 * This all works nicely on UP, where, when a task blocks on IO, we account
2944 * idle time as IO-wait, because if the storage were faster, it could've been
2945 * running and we'd not be idle.
2947 * This has been extended to SMP, by doing the same for each CPU. This however
2950 * Imagine for instance the case where two tasks block on one CPU, only the one
2951 * CPU will have IO-wait accounted, while the other has regular idle. Even
2952 * though, if the storage were faster, both could've ran at the same time,
2953 * utilising both CPUs.
2955 * This means, that when looking globally, the current IO-wait accounting on
2956 * SMP is a lower bound, by reason of under accounting.
2958 * Worse, since the numbers are provided per CPU, they are sometimes
2959 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2960 * associated with any one particular CPU, it can wake to another CPU than it
2961 * blocked on. This means the per CPU IO-wait number is meaningless.
2963 * Task CPU affinities can make all that even more 'interesting'.
2966 unsigned long nr_iowait(void)
2968 unsigned long i, sum = 0;
2970 for_each_possible_cpu(i)
2971 sum += nr_iowait_cpu(i);
2979 * sched_exec - execve() is a valuable balancing opportunity, because at
2980 * this point the task has the smallest effective memory and cache footprint.
2982 void sched_exec(void)
2984 struct task_struct *p = current;
2985 unsigned long flags;
2988 raw_spin_lock_irqsave(&p->pi_lock, flags);
2989 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2990 if (dest_cpu == smp_processor_id())
2993 if (likely(cpu_active(dest_cpu))) {
2994 struct migration_arg arg = { p, dest_cpu };
2996 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2997 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3001 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3006 DEFINE_PER_CPU(struct kernel_stat, kstat);
3007 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3009 EXPORT_PER_CPU_SYMBOL(kstat);
3010 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3013 * The function fair_sched_class.update_curr accesses the struct curr
3014 * and its field curr->exec_start; when called from task_sched_runtime(),
3015 * we observe a high rate of cache misses in practice.
3016 * Prefetching this data results in improved performance.
3018 static inline void prefetch_curr_exec_start(struct task_struct *p)
3020 #ifdef CONFIG_FAIR_GROUP_SCHED
3021 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3023 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3026 prefetch(&curr->exec_start);
3030 * Return accounted runtime for the task.
3031 * In case the task is currently running, return the runtime plus current's
3032 * pending runtime that have not been accounted yet.
3034 unsigned long long task_sched_runtime(struct task_struct *p)
3040 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3042 * 64-bit doesn't need locks to atomically read a 64-bit value.
3043 * So we have a optimization chance when the task's delta_exec is 0.
3044 * Reading ->on_cpu is racy, but this is ok.
3046 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3047 * If we race with it entering CPU, unaccounted time is 0. This is
3048 * indistinguishable from the read occurring a few cycles earlier.
3049 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3050 * been accounted, so we're correct here as well.
3052 if (!p->on_cpu || !task_on_rq_queued(p))
3053 return p->se.sum_exec_runtime;
3056 rq = task_rq_lock(p, &rf);
3058 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3059 * project cycles that may never be accounted to this
3060 * thread, breaking clock_gettime().
3062 if (task_current(rq, p) && task_on_rq_queued(p)) {
3063 prefetch_curr_exec_start(p);
3064 update_rq_clock(rq);
3065 p->sched_class->update_curr(rq);
3067 ns = p->se.sum_exec_runtime;
3068 task_rq_unlock(rq, p, &rf);
3074 * This function gets called by the timer code, with HZ frequency.
3075 * We call it with interrupts disabled.
3077 void scheduler_tick(void)
3079 int cpu = smp_processor_id();
3080 struct rq *rq = cpu_rq(cpu);
3081 struct task_struct *curr = rq->curr;
3088 update_rq_clock(rq);
3089 curr->sched_class->task_tick(rq, curr, 0);
3090 cpu_load_update_active(rq);
3091 calc_global_load_tick(rq);
3096 perf_event_task_tick();
3099 rq->idle_balance = idle_cpu(cpu);
3100 trigger_load_balance(rq);
3104 #ifdef CONFIG_NO_HZ_FULL
3108 struct delayed_work work;
3111 static struct tick_work __percpu *tick_work_cpu;
3113 static void sched_tick_remote(struct work_struct *work)
3115 struct delayed_work *dwork = to_delayed_work(work);
3116 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3117 int cpu = twork->cpu;
3118 struct rq *rq = cpu_rq(cpu);
3119 struct task_struct *curr;
3124 * Handle the tick only if it appears the remote CPU is running in full
3125 * dynticks mode. The check is racy by nature, but missing a tick or
3126 * having one too much is no big deal because the scheduler tick updates
3127 * statistics and checks timeslices in a time-independent way, regardless
3128 * of when exactly it is running.
3130 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3133 rq_lock_irq(rq, &rf);
3135 if (is_idle_task(curr))
3138 update_rq_clock(rq);
3139 delta = rq_clock_task(rq) - curr->se.exec_start;
3142 * Make sure the next tick runs within a reasonable
3145 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3146 curr->sched_class->task_tick(rq, curr, 0);
3149 rq_unlock_irq(rq, &rf);
3153 * Run the remote tick once per second (1Hz). This arbitrary
3154 * frequency is large enough to avoid overload but short enough
3155 * to keep scheduler internal stats reasonably up to date.
3157 queue_delayed_work(system_unbound_wq, dwork, HZ);
3160 static void sched_tick_start(int cpu)
3162 struct tick_work *twork;
3164 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3167 WARN_ON_ONCE(!tick_work_cpu);
3169 twork = per_cpu_ptr(tick_work_cpu, cpu);
3171 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3172 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3175 #ifdef CONFIG_HOTPLUG_CPU
3176 static void sched_tick_stop(int cpu)
3178 struct tick_work *twork;
3180 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3183 WARN_ON_ONCE(!tick_work_cpu);
3185 twork = per_cpu_ptr(tick_work_cpu, cpu);
3186 cancel_delayed_work_sync(&twork->work);
3188 #endif /* CONFIG_HOTPLUG_CPU */
3190 int __init sched_tick_offload_init(void)
3192 tick_work_cpu = alloc_percpu(struct tick_work);
3193 BUG_ON(!tick_work_cpu);
3198 #else /* !CONFIG_NO_HZ_FULL */
3199 static inline void sched_tick_start(int cpu) { }
3200 static inline void sched_tick_stop(int cpu) { }
3203 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3204 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3206 * If the value passed in is equal to the current preempt count
3207 * then we just disabled preemption. Start timing the latency.
3209 static inline void preempt_latency_start(int val)
3211 if (preempt_count() == val) {
3212 unsigned long ip = get_lock_parent_ip();
3213 #ifdef CONFIG_DEBUG_PREEMPT
3214 current->preempt_disable_ip = ip;
3216 trace_preempt_off(CALLER_ADDR0, ip);
3220 void preempt_count_add(int val)
3222 #ifdef CONFIG_DEBUG_PREEMPT
3226 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3229 __preempt_count_add(val);
3230 #ifdef CONFIG_DEBUG_PREEMPT
3232 * Spinlock count overflowing soon?
3234 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3237 preempt_latency_start(val);
3239 EXPORT_SYMBOL(preempt_count_add);
3240 NOKPROBE_SYMBOL(preempt_count_add);
3243 * If the value passed in equals to the current preempt count
3244 * then we just enabled preemption. Stop timing the latency.
3246 static inline void preempt_latency_stop(int val)
3248 if (preempt_count() == val)
3249 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3252 void preempt_count_sub(int val)
3254 #ifdef CONFIG_DEBUG_PREEMPT
3258 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3261 * Is the spinlock portion underflowing?
3263 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3264 !(preempt_count() & PREEMPT_MASK)))
3268 preempt_latency_stop(val);
3269 __preempt_count_sub(val);
3271 EXPORT_SYMBOL(preempt_count_sub);
3272 NOKPROBE_SYMBOL(preempt_count_sub);
3275 static inline void preempt_latency_start(int val) { }
3276 static inline void preempt_latency_stop(int val) { }
3279 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3281 #ifdef CONFIG_DEBUG_PREEMPT
3282 return p->preempt_disable_ip;
3289 * Print scheduling while atomic bug:
3291 static noinline void __schedule_bug(struct task_struct *prev)
3293 /* Save this before calling printk(), since that will clobber it */
3294 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3296 if (oops_in_progress)
3299 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3300 prev->comm, prev->pid, preempt_count());
3302 debug_show_held_locks(prev);
3304 if (irqs_disabled())
3305 print_irqtrace_events(prev);
3306 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3307 && in_atomic_preempt_off()) {
3308 pr_err("Preemption disabled at:");
3309 print_ip_sym(preempt_disable_ip);
3313 panic("scheduling while atomic\n");
3316 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3320 * Various schedule()-time debugging checks and statistics:
3322 static inline void schedule_debug(struct task_struct *prev)
3324 #ifdef CONFIG_SCHED_STACK_END_CHECK
3325 if (task_stack_end_corrupted(prev))
3326 panic("corrupted stack end detected inside scheduler\n");
3329 if (unlikely(in_atomic_preempt_off())) {
3330 __schedule_bug(prev);
3331 preempt_count_set(PREEMPT_DISABLED);
3335 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3337 schedstat_inc(this_rq()->sched_count);
3341 * Pick up the highest-prio task:
3343 static inline struct task_struct *
3344 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3346 const struct sched_class *class;
3347 struct task_struct *p;
3350 * Optimization: we know that if all tasks are in the fair class we can
3351 * call that function directly, but only if the @prev task wasn't of a
3352 * higher scheduling class, because otherwise those loose the
3353 * opportunity to pull in more work from other CPUs.
3355 if (likely((prev->sched_class == &idle_sched_class ||
3356 prev->sched_class == &fair_sched_class) &&
3357 rq->nr_running == rq->cfs.h_nr_running)) {
3359 p = fair_sched_class.pick_next_task(rq, prev, rf);
3360 if (unlikely(p == RETRY_TASK))
3363 /* Assumes fair_sched_class->next == idle_sched_class */
3365 p = idle_sched_class.pick_next_task(rq, prev, rf);
3371 for_each_class(class) {
3372 p = class->pick_next_task(rq, prev, rf);
3374 if (unlikely(p == RETRY_TASK))
3380 /* The idle class should always have a runnable task: */
3385 * __schedule() is the main scheduler function.
3387 * The main means of driving the scheduler and thus entering this function are:
3389 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3391 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3392 * paths. For example, see arch/x86/entry_64.S.
3394 * To drive preemption between tasks, the scheduler sets the flag in timer
3395 * interrupt handler scheduler_tick().
3397 * 3. Wakeups don't really cause entry into schedule(). They add a
3398 * task to the run-queue and that's it.
3400 * Now, if the new task added to the run-queue preempts the current
3401 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3402 * called on the nearest possible occasion:
3404 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3406 * - in syscall or exception context, at the next outmost
3407 * preempt_enable(). (this might be as soon as the wake_up()'s
3410 * - in IRQ context, return from interrupt-handler to
3411 * preemptible context
3413 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3416 * - cond_resched() call
3417 * - explicit schedule() call
3418 * - return from syscall or exception to user-space
3419 * - return from interrupt-handler to user-space
3421 * WARNING: must be called with preemption disabled!
3423 static void __sched notrace __schedule(bool preempt)
3425 struct task_struct *prev, *next;
3426 unsigned long *switch_count;
3431 cpu = smp_processor_id();
3435 schedule_debug(prev);
3437 if (sched_feat(HRTICK))
3440 local_irq_disable();
3441 rcu_note_context_switch(preempt);
3444 * Make sure that signal_pending_state()->signal_pending() below
3445 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3446 * done by the caller to avoid the race with signal_wake_up().
3448 * The membarrier system call requires a full memory barrier
3449 * after coming from user-space, before storing to rq->curr.
3452 smp_mb__after_spinlock();
3454 /* Promote REQ to ACT */
3455 rq->clock_update_flags <<= 1;
3456 update_rq_clock(rq);
3458 switch_count = &prev->nivcsw;
3459 if (!preempt && prev->state) {
3460 if (signal_pending_state(prev->state, prev)) {
3461 prev->state = TASK_RUNNING;
3463 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3466 if (prev->in_iowait) {
3467 atomic_inc(&rq->nr_iowait);
3468 delayacct_blkio_start();
3472 * If a worker went to sleep, notify and ask workqueue
3473 * whether it wants to wake up a task to maintain
3476 if (prev->flags & PF_WQ_WORKER) {
3477 struct task_struct *to_wakeup;
3479 to_wakeup = wq_worker_sleeping(prev);
3481 try_to_wake_up_local(to_wakeup, &rf);
3484 switch_count = &prev->nvcsw;
3487 next = pick_next_task(rq, prev, &rf);
3488 clear_tsk_need_resched(prev);
3489 clear_preempt_need_resched();
3491 if (likely(prev != next)) {
3495 * The membarrier system call requires each architecture
3496 * to have a full memory barrier after updating
3497 * rq->curr, before returning to user-space.
3499 * Here are the schemes providing that barrier on the
3500 * various architectures:
3501 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3502 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3503 * - finish_lock_switch() for weakly-ordered
3504 * architectures where spin_unlock is a full barrier,
3505 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3506 * is a RELEASE barrier),
3510 trace_sched_switch(preempt, prev, next);
3512 /* Also unlocks the rq: */
3513 rq = context_switch(rq, prev, next, &rf);
3515 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3516 rq_unlock_irq(rq, &rf);
3519 balance_callback(rq);
3522 void __noreturn do_task_dead(void)
3524 /* Causes final put_task_struct in finish_task_switch(): */
3525 set_special_state(TASK_DEAD);
3527 /* Tell freezer to ignore us: */
3528 current->flags |= PF_NOFREEZE;
3533 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3538 static inline void sched_submit_work(struct task_struct *tsk)
3540 if (!tsk->state || tsk_is_pi_blocked(tsk))
3543 * If we are going to sleep and we have plugged IO queued,
3544 * make sure to submit it to avoid deadlocks.
3546 if (blk_needs_flush_plug(tsk))
3547 blk_schedule_flush_plug(tsk);
3550 asmlinkage __visible void __sched schedule(void)
3552 struct task_struct *tsk = current;
3554 sched_submit_work(tsk);
3558 sched_preempt_enable_no_resched();
3559 } while (need_resched());
3561 EXPORT_SYMBOL(schedule);
3564 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3565 * state (have scheduled out non-voluntarily) by making sure that all
3566 * tasks have either left the run queue or have gone into user space.
3567 * As idle tasks do not do either, they must not ever be preempted
3568 * (schedule out non-voluntarily).
3570 * schedule_idle() is similar to schedule_preempt_disable() except that it
3571 * never enables preemption because it does not call sched_submit_work().
3573 void __sched schedule_idle(void)
3576 * As this skips calling sched_submit_work(), which the idle task does
3577 * regardless because that function is a nop when the task is in a
3578 * TASK_RUNNING state, make sure this isn't used someplace that the
3579 * current task can be in any other state. Note, idle is always in the
3580 * TASK_RUNNING state.
3582 WARN_ON_ONCE(current->state);
3585 } while (need_resched());
3588 #ifdef CONFIG_CONTEXT_TRACKING
3589 asmlinkage __visible void __sched schedule_user(void)
3592 * If we come here after a random call to set_need_resched(),
3593 * or we have been woken up remotely but the IPI has not yet arrived,
3594 * we haven't yet exited the RCU idle mode. Do it here manually until
3595 * we find a better solution.
3597 * NB: There are buggy callers of this function. Ideally we
3598 * should warn if prev_state != CONTEXT_USER, but that will trigger
3599 * too frequently to make sense yet.
3601 enum ctx_state prev_state = exception_enter();
3603 exception_exit(prev_state);
3608 * schedule_preempt_disabled - called with preemption disabled
3610 * Returns with preemption disabled. Note: preempt_count must be 1
3612 void __sched schedule_preempt_disabled(void)
3614 sched_preempt_enable_no_resched();
3619 static void __sched notrace preempt_schedule_common(void)
3623 * Because the function tracer can trace preempt_count_sub()
3624 * and it also uses preempt_enable/disable_notrace(), if
3625 * NEED_RESCHED is set, the preempt_enable_notrace() called
3626 * by the function tracer will call this function again and
3627 * cause infinite recursion.
3629 * Preemption must be disabled here before the function
3630 * tracer can trace. Break up preempt_disable() into two
3631 * calls. One to disable preemption without fear of being
3632 * traced. The other to still record the preemption latency,
3633 * which can also be traced by the function tracer.
3635 preempt_disable_notrace();
3636 preempt_latency_start(1);
3638 preempt_latency_stop(1);
3639 preempt_enable_no_resched_notrace();
3642 * Check again in case we missed a preemption opportunity
3643 * between schedule and now.