4 * Core kernel scheduler code and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
10 #include <linux/nospec.h>
12 #include <linux/kcov.h>
14 #include <asm/switch_to.h>
17 #include "../workqueue_internal.h"
18 #include "../smpboot.h"
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/sched.h>
25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
27 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
29 * Debugging: various feature bits
31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32 * sysctl_sched_features, defined in sched.h, to allow constants propagation
33 * at compile time and compiler optimization based on features default.
35 #define SCHED_FEAT(name, enabled) \
36 (1UL << __SCHED_FEAT_##name) * enabled |
37 const_debug unsigned int sysctl_sched_features =
44 * Number of tasks to iterate in a single balance run.
45 * Limited because this is done with IRQs disabled.
47 const_debug unsigned int sysctl_sched_nr_migrate = 32;
50 * period over which we measure -rt task CPU usage in us.
53 unsigned int sysctl_sched_rt_period = 1000000;
55 __read_mostly int scheduler_running;
58 * part of the period that we allow rt tasks to run in us.
61 int sysctl_sched_rt_runtime = 950000;
64 * __task_rq_lock - lock the rq @p resides on.
66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
71 lockdep_assert_held(&p->pi_lock);
75 raw_spin_lock(&rq->lock);
76 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
80 raw_spin_unlock(&rq->lock);
82 while (unlikely(task_on_rq_migrating(p)))
88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
91 __acquires(p->pi_lock)
97 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
99 raw_spin_lock(&rq->lock);
101 * move_queued_task() task_rq_lock()
104 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
106 * [S] ->cpu = new_cpu [L] task_rq()
110 * If we observe the old CPU in task_rq_lock, the acquire of
111 * the old rq->lock will fully serialize against the stores.
113 * If we observe the new CPU in task_rq_lock, the acquire will
114 * pair with the WMB to ensure we must then also see migrating.
116 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
120 raw_spin_unlock(&rq->lock);
121 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
123 while (unlikely(task_on_rq_migrating(p)))
129 * RQ-clock updating methods:
132 static void update_rq_clock_task(struct rq *rq, s64 delta)
135 * In theory, the compile should just see 0 here, and optimize out the call
136 * to sched_rt_avg_update. But I don't trust it...
138 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
139 s64 steal = 0, irq_delta = 0;
141 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
142 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
145 * Since irq_time is only updated on {soft,}irq_exit, we might run into
146 * this case when a previous update_rq_clock() happened inside a
149 * When this happens, we stop ->clock_task and only update the
150 * prev_irq_time stamp to account for the part that fit, so that a next
151 * update will consume the rest. This ensures ->clock_task is
154 * It does however cause some slight miss-attribution of {soft,}irq
155 * time, a more accurate solution would be to update the irq_time using
156 * the current rq->clock timestamp, except that would require using
159 if (irq_delta > delta)
162 rq->prev_irq_time += irq_delta;
165 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
166 if (static_key_false((¶virt_steal_rq_enabled))) {
167 steal = paravirt_steal_clock(cpu_of(rq));
168 steal -= rq->prev_steal_time_rq;
170 if (unlikely(steal > delta))
173 rq->prev_steal_time_rq += steal;
178 rq->clock_task += delta;
180 #ifdef HAVE_SCHED_AVG_IRQ
181 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
182 update_irq_load_avg(rq, irq_delta + steal);
186 void update_rq_clock(struct rq *rq)
190 lockdep_assert_held(&rq->lock);
192 if (rq->clock_update_flags & RQCF_ACT_SKIP)
195 #ifdef CONFIG_SCHED_DEBUG
196 if (sched_feat(WARN_DOUBLE_CLOCK))
197 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
198 rq->clock_update_flags |= RQCF_UPDATED;
201 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
205 update_rq_clock_task(rq, delta);
209 #ifdef CONFIG_SCHED_HRTICK
211 * Use HR-timers to deliver accurate preemption points.
214 static void hrtick_clear(struct rq *rq)
216 if (hrtimer_active(&rq->hrtick_timer))
217 hrtimer_cancel(&rq->hrtick_timer);
221 * High-resolution timer tick.
222 * Runs from hardirq context with interrupts disabled.
224 static enum hrtimer_restart hrtick(struct hrtimer *timer)
226 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
229 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
233 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
236 return HRTIMER_NORESTART;
241 static void __hrtick_restart(struct rq *rq)
243 struct hrtimer *timer = &rq->hrtick_timer;
245 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
249 * called from hardirq (IPI) context
251 static void __hrtick_start(void *arg)
257 __hrtick_restart(rq);
258 rq->hrtick_csd_pending = 0;
263 * Called to set the hrtick timer state.
265 * called with rq->lock held and irqs disabled
267 void hrtick_start(struct rq *rq, u64 delay)
269 struct hrtimer *timer = &rq->hrtick_timer;
274 * Don't schedule slices shorter than 10000ns, that just
275 * doesn't make sense and can cause timer DoS.
277 delta = max_t(s64, delay, 10000LL);
278 time = ktime_add_ns(timer->base->get_time(), delta);
280 hrtimer_set_expires(timer, time);
282 if (rq == this_rq()) {
283 __hrtick_restart(rq);
284 } else if (!rq->hrtick_csd_pending) {
285 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
286 rq->hrtick_csd_pending = 1;
292 * Called to set the hrtick timer state.
294 * called with rq->lock held and irqs disabled
296 void hrtick_start(struct rq *rq, u64 delay)
299 * Don't schedule slices shorter than 10000ns, that just
300 * doesn't make sense. Rely on vruntime for fairness.
302 delay = max_t(u64, delay, 10000LL);
303 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
304 HRTIMER_MODE_REL_PINNED);
306 #endif /* CONFIG_SMP */
308 static void hrtick_rq_init(struct rq *rq)
311 rq->hrtick_csd_pending = 0;
313 rq->hrtick_csd.flags = 0;
314 rq->hrtick_csd.func = __hrtick_start;
315 rq->hrtick_csd.info = rq;
318 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
319 rq->hrtick_timer.function = hrtick;
321 #else /* CONFIG_SCHED_HRTICK */
322 static inline void hrtick_clear(struct rq *rq)
326 static inline void hrtick_rq_init(struct rq *rq)
329 #endif /* CONFIG_SCHED_HRTICK */
332 * cmpxchg based fetch_or, macro so it works for different integer types
334 #define fetch_or(ptr, mask) \
336 typeof(ptr) _ptr = (ptr); \
337 typeof(mask) _mask = (mask); \
338 typeof(*_ptr) _old, _val = *_ptr; \
341 _old = cmpxchg(_ptr, _val, _val | _mask); \
349 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
351 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
352 * this avoids any races wrt polling state changes and thereby avoids
355 static bool set_nr_and_not_polling(struct task_struct *p)
357 struct thread_info *ti = task_thread_info(p);
358 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
362 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
364 * If this returns true, then the idle task promises to call
365 * sched_ttwu_pending() and reschedule soon.
367 static bool set_nr_if_polling(struct task_struct *p)
369 struct thread_info *ti = task_thread_info(p);
370 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
373 if (!(val & _TIF_POLLING_NRFLAG))
375 if (val & _TIF_NEED_RESCHED)
377 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
386 static bool set_nr_and_not_polling(struct task_struct *p)
388 set_tsk_need_resched(p);
393 static bool set_nr_if_polling(struct task_struct *p)
400 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
402 struct wake_q_node *node = &task->wake_q;
405 * Atomically grab the task, if ->wake_q is !nil already it means
406 * its already queued (either by us or someone else) and will get the
407 * wakeup due to that.
409 * This cmpxchg() executes a full barrier, which pairs with the full
410 * barrier executed by the wakeup in wake_up_q().
412 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
415 get_task_struct(task);
418 * The head is context local, there can be no concurrency.
421 head->lastp = &node->next;
424 void wake_up_q(struct wake_q_head *head)
426 struct wake_q_node *node = head->first;
428 while (node != WAKE_Q_TAIL) {
429 struct task_struct *task;
431 task = container_of(node, struct task_struct, wake_q);
433 /* Task can safely be re-inserted now: */
435 task->wake_q.next = NULL;
438 * wake_up_process() executes a full barrier, which pairs with
439 * the queueing in wake_q_add() so as not to miss wakeups.
441 wake_up_process(task);
442 put_task_struct(task);
447 * resched_curr - mark rq's current task 'to be rescheduled now'.
449 * On UP this means the setting of the need_resched flag, on SMP it
450 * might also involve a cross-CPU call to trigger the scheduler on
453 void resched_curr(struct rq *rq)
455 struct task_struct *curr = rq->curr;
458 lockdep_assert_held(&rq->lock);
460 if (test_tsk_need_resched(curr))
465 if (cpu == smp_processor_id()) {
466 set_tsk_need_resched(curr);
467 set_preempt_need_resched();
471 if (set_nr_and_not_polling(curr))
472 smp_send_reschedule(cpu);
474 trace_sched_wake_idle_without_ipi(cpu);
477 void resched_cpu(int cpu)
479 struct rq *rq = cpu_rq(cpu);
482 raw_spin_lock_irqsave(&rq->lock, flags);
483 if (cpu_online(cpu) || cpu == smp_processor_id())
485 raw_spin_unlock_irqrestore(&rq->lock, flags);
489 #ifdef CONFIG_NO_HZ_COMMON
491 * In the semi idle case, use the nearest busy CPU for migrating timers
492 * from an idle CPU. This is good for power-savings.
494 * We don't do similar optimization for completely idle system, as
495 * selecting an idle CPU will add more delays to the timers than intended
496 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
498 int get_nohz_timer_target(void)
500 int i, cpu = smp_processor_id();
501 struct sched_domain *sd;
503 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
507 for_each_domain(cpu, sd) {
508 for_each_cpu(i, sched_domain_span(sd)) {
512 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
519 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
520 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
527 * When add_timer_on() enqueues a timer into the timer wheel of an
528 * idle CPU then this timer might expire before the next timer event
529 * which is scheduled to wake up that CPU. In case of a completely
530 * idle system the next event might even be infinite time into the
531 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
532 * leaves the inner idle loop so the newly added timer is taken into
533 * account when the CPU goes back to idle and evaluates the timer
534 * wheel for the next timer event.
536 static void wake_up_idle_cpu(int cpu)
538 struct rq *rq = cpu_rq(cpu);
540 if (cpu == smp_processor_id())
543 if (set_nr_and_not_polling(rq->idle))
544 smp_send_reschedule(cpu);
546 trace_sched_wake_idle_without_ipi(cpu);
549 static bool wake_up_full_nohz_cpu(int cpu)
552 * We just need the target to call irq_exit() and re-evaluate
553 * the next tick. The nohz full kick at least implies that.
554 * If needed we can still optimize that later with an
557 if (cpu_is_offline(cpu))
558 return true; /* Don't try to wake offline CPUs. */
559 if (tick_nohz_full_cpu(cpu)) {
560 if (cpu != smp_processor_id() ||
561 tick_nohz_tick_stopped())
562 tick_nohz_full_kick_cpu(cpu);
570 * Wake up the specified CPU. If the CPU is going offline, it is the
571 * caller's responsibility to deal with the lost wakeup, for example,
572 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
574 void wake_up_nohz_cpu(int cpu)
576 if (!wake_up_full_nohz_cpu(cpu))
577 wake_up_idle_cpu(cpu);
580 static inline bool got_nohz_idle_kick(void)
582 int cpu = smp_processor_id();
584 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
587 if (idle_cpu(cpu) && !need_resched())
591 * We can't run Idle Load Balance on this CPU for this time so we
592 * cancel it and clear NOHZ_BALANCE_KICK
594 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
598 #else /* CONFIG_NO_HZ_COMMON */
600 static inline bool got_nohz_idle_kick(void)
605 #endif /* CONFIG_NO_HZ_COMMON */
607 #ifdef CONFIG_NO_HZ_FULL
608 bool sched_can_stop_tick(struct rq *rq)
612 /* Deadline tasks, even if single, need the tick */
613 if (rq->dl.dl_nr_running)
617 * If there are more than one RR tasks, we need the tick to effect the
618 * actual RR behaviour.
620 if (rq->rt.rr_nr_running) {
621 if (rq->rt.rr_nr_running == 1)
628 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
629 * forced preemption between FIFO tasks.
631 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
636 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
637 * if there's more than one we need the tick for involuntary
640 if (rq->nr_running > 1)
645 #endif /* CONFIG_NO_HZ_FULL */
646 #endif /* CONFIG_SMP */
648 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
649 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
651 * Iterate task_group tree rooted at *from, calling @down when first entering a
652 * node and @up when leaving it for the final time.
654 * Caller must hold rcu_lock or sufficient equivalent.
656 int walk_tg_tree_from(struct task_group *from,
657 tg_visitor down, tg_visitor up, void *data)
659 struct task_group *parent, *child;
665 ret = (*down)(parent, data);
668 list_for_each_entry_rcu(child, &parent->children, siblings) {
675 ret = (*up)(parent, data);
676 if (ret || parent == from)
680 parent = parent->parent;
687 int tg_nop(struct task_group *tg, void *data)
693 static void set_load_weight(struct task_struct *p, bool update_load)
695 int prio = p->static_prio - MAX_RT_PRIO;
696 struct load_weight *load = &p->se.load;
699 * SCHED_IDLE tasks get minimal weight:
701 if (idle_policy(p->policy)) {
702 load->weight = scale_load(WEIGHT_IDLEPRIO);
703 load->inv_weight = WMULT_IDLEPRIO;
708 * SCHED_OTHER tasks have to update their load when changing their
711 if (update_load && p->sched_class == &fair_sched_class) {
712 reweight_task(p, prio);
714 load->weight = scale_load(sched_prio_to_weight[prio]);
715 load->inv_weight = sched_prio_to_wmult[prio];
719 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
721 if (!(flags & ENQUEUE_NOCLOCK))
724 if (!(flags & ENQUEUE_RESTORE))
725 sched_info_queued(rq, p);
727 p->sched_class->enqueue_task(rq, p, flags);
730 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
732 if (!(flags & DEQUEUE_NOCLOCK))
735 if (!(flags & DEQUEUE_SAVE))
736 sched_info_dequeued(rq, p);
738 p->sched_class->dequeue_task(rq, p, flags);
741 void activate_task(struct rq *rq, struct task_struct *p, int flags)
743 if (task_contributes_to_load(p))
744 rq->nr_uninterruptible--;
746 enqueue_task(rq, p, flags);
749 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
751 if (task_contributes_to_load(p))
752 rq->nr_uninterruptible++;
754 dequeue_task(rq, p, flags);
758 * __normal_prio - return the priority that is based on the static prio
760 static inline int __normal_prio(struct task_struct *p)
762 return p->static_prio;
766 * Calculate the expected normal priority: i.e. priority
767 * without taking RT-inheritance into account. Might be
768 * boosted by interactivity modifiers. Changes upon fork,
769 * setprio syscalls, and whenever the interactivity
770 * estimator recalculates.
772 static inline int normal_prio(struct task_struct *p)
776 if (task_has_dl_policy(p))
777 prio = MAX_DL_PRIO-1;
778 else if (task_has_rt_policy(p))
779 prio = MAX_RT_PRIO-1 - p->rt_priority;
781 prio = __normal_prio(p);
786 * Calculate the current priority, i.e. the priority
787 * taken into account by the scheduler. This value might
788 * be boosted by RT tasks, or might be boosted by
789 * interactivity modifiers. Will be RT if the task got
790 * RT-boosted. If not then it returns p->normal_prio.
792 static int effective_prio(struct task_struct *p)
794 p->normal_prio = normal_prio(p);
796 * If we are RT tasks or we were boosted to RT priority,
797 * keep the priority unchanged. Otherwise, update priority
798 * to the normal priority:
800 if (!rt_prio(p->prio))
801 return p->normal_prio;
806 * task_curr - is this task currently executing on a CPU?
807 * @p: the task in question.
809 * Return: 1 if the task is currently executing. 0 otherwise.
811 inline int task_curr(const struct task_struct *p)
813 return cpu_curr(task_cpu(p)) == p;
817 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
818 * use the balance_callback list if you want balancing.
820 * this means any call to check_class_changed() must be followed by a call to
821 * balance_callback().
823 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
824 const struct sched_class *prev_class,
827 if (prev_class != p->sched_class) {
828 if (prev_class->switched_from)
829 prev_class->switched_from(rq, p);
831 p->sched_class->switched_to(rq, p);
832 } else if (oldprio != p->prio || dl_task(p))
833 p->sched_class->prio_changed(rq, p, oldprio);
836 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
838 const struct sched_class *class;
840 if (p->sched_class == rq->curr->sched_class) {
841 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
843 for_each_class(class) {
844 if (class == rq->curr->sched_class)
846 if (class == p->sched_class) {
854 * A queue event has occurred, and we're going to schedule. In
855 * this case, we can save a useless back to back clock update.
857 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
858 rq_clock_skip_update(rq);
863 static inline bool is_per_cpu_kthread(struct task_struct *p)
865 if (!(p->flags & PF_KTHREAD))
868 if (p->nr_cpus_allowed != 1)
875 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
876 * __set_cpus_allowed_ptr() and select_fallback_rq().
878 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
880 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
883 if (is_per_cpu_kthread(p))
884 return cpu_online(cpu);
886 return cpu_active(cpu);
890 * This is how migration works:
892 * 1) we invoke migration_cpu_stop() on the target CPU using
894 * 2) stopper starts to run (implicitly forcing the migrated thread
896 * 3) it checks whether the migrated task is still in the wrong runqueue.
897 * 4) if it's in the wrong runqueue then the migration thread removes
898 * it and puts it into the right queue.
899 * 5) stopper completes and stop_one_cpu() returns and the migration
904 * move_queued_task - move a queued task to new rq.
906 * Returns (locked) new rq. Old rq's lock is released.
908 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
909 struct task_struct *p, int new_cpu)
911 lockdep_assert_held(&rq->lock);
913 p->on_rq = TASK_ON_RQ_MIGRATING;
914 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
915 set_task_cpu(p, new_cpu);
918 rq = cpu_rq(new_cpu);
921 BUG_ON(task_cpu(p) != new_cpu);
922 enqueue_task(rq, p, 0);
923 p->on_rq = TASK_ON_RQ_QUEUED;
924 check_preempt_curr(rq, p, 0);
929 struct migration_arg {
930 struct task_struct *task;
935 * Move (not current) task off this CPU, onto the destination CPU. We're doing
936 * this because either it can't run here any more (set_cpus_allowed()
937 * away from this CPU, or CPU going down), or because we're
938 * attempting to rebalance this task on exec (sched_exec).
940 * So we race with normal scheduler movements, but that's OK, as long
941 * as the task is no longer on this CPU.
943 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
944 struct task_struct *p, int dest_cpu)
946 /* Affinity changed (again). */
947 if (!is_cpu_allowed(p, dest_cpu))
951 rq = move_queued_task(rq, rf, p, dest_cpu);
957 * migration_cpu_stop - this will be executed by a highprio stopper thread
958 * and performs thread migration by bumping thread off CPU then
959 * 'pushing' onto another runqueue.
961 static int migration_cpu_stop(void *data)
963 struct migration_arg *arg = data;
964 struct task_struct *p = arg->task;
965 struct rq *rq = this_rq();
969 * The original target CPU might have gone down and we might
970 * be on another CPU but it doesn't matter.
974 * We need to explicitly wake pending tasks before running
975 * __migrate_task() such that we will not miss enforcing cpus_allowed
976 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
978 sched_ttwu_pending();
980 raw_spin_lock(&p->pi_lock);
983 * If task_rq(p) != rq, it cannot be migrated here, because we're
984 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
985 * we're holding p->pi_lock.
987 if (task_rq(p) == rq) {
988 if (task_on_rq_queued(p))
989 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
991 p->wake_cpu = arg->dest_cpu;
994 raw_spin_unlock(&p->pi_lock);
1001 * sched_class::set_cpus_allowed must do the below, but is not required to
1002 * actually call this function.
1004 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1006 cpumask_copy(&p->cpus_allowed, new_mask);
1007 p->nr_cpus_allowed = cpumask_weight(new_mask);
1010 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1012 struct rq *rq = task_rq(p);
1013 bool queued, running;
1015 lockdep_assert_held(&p->pi_lock);
1017 queued = task_on_rq_queued(p);
1018 running = task_current(rq, p);
1022 * Because __kthread_bind() calls this on blocked tasks without
1025 lockdep_assert_held(&rq->lock);
1026 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1029 put_prev_task(rq, p);
1031 p->sched_class->set_cpus_allowed(p, new_mask);
1034 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1036 set_curr_task(rq, p);
1040 * Change a given task's CPU affinity. Migrate the thread to a
1041 * proper CPU and schedule it away if the CPU it's executing on
1042 * is removed from the allowed bitmask.
1044 * NOTE: the caller must have a valid reference to the task, the
1045 * task must not exit() & deallocate itself prematurely. The
1046 * call is not atomic; no spinlocks may be held.
1048 static int __set_cpus_allowed_ptr(struct task_struct *p,
1049 const struct cpumask *new_mask, bool check)
1051 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1052 unsigned int dest_cpu;
1057 rq = task_rq_lock(p, &rf);
1058 update_rq_clock(rq);
1060 if (p->flags & PF_KTHREAD) {
1062 * Kernel threads are allowed on online && !active CPUs
1064 cpu_valid_mask = cpu_online_mask;
1068 * Must re-check here, to close a race against __kthread_bind(),
1069 * sched_setaffinity() is not guaranteed to observe the flag.
1071 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1076 if (cpumask_equal(&p->cpus_allowed, new_mask))
1079 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1084 do_set_cpus_allowed(p, new_mask);
1086 if (p->flags & PF_KTHREAD) {
1088 * For kernel threads that do indeed end up on online &&
1089 * !active we want to ensure they are strict per-CPU threads.
1091 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1092 !cpumask_intersects(new_mask, cpu_active_mask) &&
1093 p->nr_cpus_allowed != 1);
1096 /* Can the task run on the task's current CPU? If so, we're done */
1097 if (cpumask_test_cpu(task_cpu(p), new_mask))
1100 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1101 if (task_running(rq, p) || p->state == TASK_WAKING) {
1102 struct migration_arg arg = { p, dest_cpu };
1103 /* Need help from migration thread: drop lock and wait. */
1104 task_rq_unlock(rq, p, &rf);
1105 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1106 tlb_migrate_finish(p->mm);
1108 } else if (task_on_rq_queued(p)) {
1110 * OK, since we're going to drop the lock immediately
1111 * afterwards anyway.
1113 rq = move_queued_task(rq, &rf, p, dest_cpu);
1116 task_rq_unlock(rq, p, &rf);
1121 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1123 return __set_cpus_allowed_ptr(p, new_mask, false);
1125 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1127 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1129 #ifdef CONFIG_SCHED_DEBUG
1131 * We should never call set_task_cpu() on a blocked task,
1132 * ttwu() will sort out the placement.
1134 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1138 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1139 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1140 * time relying on p->on_rq.
1142 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1143 p->sched_class == &fair_sched_class &&
1144 (p->on_rq && !task_on_rq_migrating(p)));
1146 #ifdef CONFIG_LOCKDEP
1148 * The caller should hold either p->pi_lock or rq->lock, when changing
1149 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1151 * sched_move_task() holds both and thus holding either pins the cgroup,
1154 * Furthermore, all task_rq users should acquire both locks, see
1157 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1158 lockdep_is_held(&task_rq(p)->lock)));
1161 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1163 WARN_ON_ONCE(!cpu_online(new_cpu));
1166 trace_sched_migrate_task(p, new_cpu);
1168 if (task_cpu(p) != new_cpu) {
1169 if (p->sched_class->migrate_task_rq)
1170 p->sched_class->migrate_task_rq(p);
1171 p->se.nr_migrations++;
1173 perf_event_task_migrate(p);
1176 __set_task_cpu(p, new_cpu);
1179 #ifdef CONFIG_NUMA_BALANCING
1180 static void __migrate_swap_task(struct task_struct *p, int cpu)
1182 if (task_on_rq_queued(p)) {
1183 struct rq *src_rq, *dst_rq;
1184 struct rq_flags srf, drf;
1186 src_rq = task_rq(p);
1187 dst_rq = cpu_rq(cpu);
1189 rq_pin_lock(src_rq, &srf);
1190 rq_pin_lock(dst_rq, &drf);
1192 p->on_rq = TASK_ON_RQ_MIGRATING;
1193 deactivate_task(src_rq, p, 0);
1194 set_task_cpu(p, cpu);
1195 activate_task(dst_rq, p, 0);
1196 p->on_rq = TASK_ON_RQ_QUEUED;
1197 check_preempt_curr(dst_rq, p, 0);
1199 rq_unpin_lock(dst_rq, &drf);
1200 rq_unpin_lock(src_rq, &srf);
1204 * Task isn't running anymore; make it appear like we migrated
1205 * it before it went to sleep. This means on wakeup we make the
1206 * previous CPU our target instead of where it really is.
1212 struct migration_swap_arg {
1213 struct task_struct *src_task, *dst_task;
1214 int src_cpu, dst_cpu;
1217 static int migrate_swap_stop(void *data)
1219 struct migration_swap_arg *arg = data;
1220 struct rq *src_rq, *dst_rq;
1223 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1226 src_rq = cpu_rq(arg->src_cpu);
1227 dst_rq = cpu_rq(arg->dst_cpu);
1229 double_raw_lock(&arg->src_task->pi_lock,
1230 &arg->dst_task->pi_lock);
1231 double_rq_lock(src_rq, dst_rq);
1233 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1236 if (task_cpu(arg->src_task) != arg->src_cpu)
1239 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1242 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1245 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1246 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1251 double_rq_unlock(src_rq, dst_rq);
1252 raw_spin_unlock(&arg->dst_task->pi_lock);
1253 raw_spin_unlock(&arg->src_task->pi_lock);
1259 * Cross migrate two tasks
1261 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1262 int target_cpu, int curr_cpu)
1264 struct migration_swap_arg arg;
1267 arg = (struct migration_swap_arg){
1269 .src_cpu = curr_cpu,
1271 .dst_cpu = target_cpu,
1274 if (arg.src_cpu == arg.dst_cpu)
1278 * These three tests are all lockless; this is OK since all of them
1279 * will be re-checked with proper locks held further down the line.
1281 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1284 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1287 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1290 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1291 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1296 #endif /* CONFIG_NUMA_BALANCING */
1299 * wait_task_inactive - wait for a thread to unschedule.
1301 * If @match_state is nonzero, it's the @p->state value just checked and
1302 * not expected to change. If it changes, i.e. @p might have woken up,
1303 * then return zero. When we succeed in waiting for @p to be off its CPU,
1304 * we return a positive number (its total switch count). If a second call
1305 * a short while later returns the same number, the caller can be sure that
1306 * @p has remained unscheduled the whole time.
1308 * The caller must ensure that the task *will* unschedule sometime soon,
1309 * else this function might spin for a *long* time. This function can't
1310 * be called with interrupts off, or it may introduce deadlock with
1311 * smp_call_function() if an IPI is sent by the same process we are
1312 * waiting to become inactive.
1314 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1316 int running, queued;
1323 * We do the initial early heuristics without holding
1324 * any task-queue locks at all. We'll only try to get
1325 * the runqueue lock when things look like they will
1331 * If the task is actively running on another CPU
1332 * still, just relax and busy-wait without holding
1335 * NOTE! Since we don't hold any locks, it's not
1336 * even sure that "rq" stays as the right runqueue!
1337 * But we don't care, since "task_running()" will
1338 * return false if the runqueue has changed and p
1339 * is actually now running somewhere else!
1341 while (task_running(rq, p)) {
1342 if (match_state && unlikely(p->state != match_state))
1348 * Ok, time to look more closely! We need the rq
1349 * lock now, to be *sure*. If we're wrong, we'll
1350 * just go back and repeat.
1352 rq = task_rq_lock(p, &rf);
1353 trace_sched_wait_task(p);
1354 running = task_running(rq, p);
1355 queued = task_on_rq_queued(p);
1357 if (!match_state || p->state == match_state)
1358 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1359 task_rq_unlock(rq, p, &rf);
1362 * If it changed from the expected state, bail out now.
1364 if (unlikely(!ncsw))
1368 * Was it really running after all now that we
1369 * checked with the proper locks actually held?
1371 * Oops. Go back and try again..
1373 if (unlikely(running)) {
1379 * It's not enough that it's not actively running,
1380 * it must be off the runqueue _entirely_, and not
1383 * So if it was still runnable (but just not actively
1384 * running right now), it's preempted, and we should
1385 * yield - it could be a while.
1387 if (unlikely(queued)) {
1388 ktime_t to = NSEC_PER_SEC / HZ;
1390 set_current_state(TASK_UNINTERRUPTIBLE);
1391 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1396 * Ahh, all good. It wasn't running, and it wasn't
1397 * runnable, which means that it will never become
1398 * running in the future either. We're all done!
1407 * kick_process - kick a running thread to enter/exit the kernel
1408 * @p: the to-be-kicked thread
1410 * Cause a process which is running on another CPU to enter
1411 * kernel-mode, without any delay. (to get signals handled.)
1413 * NOTE: this function doesn't have to take the runqueue lock,
1414 * because all it wants to ensure is that the remote task enters
1415 * the kernel. If the IPI races and the task has been migrated
1416 * to another CPU then no harm is done and the purpose has been
1419 void kick_process(struct task_struct *p)
1425 if ((cpu != smp_processor_id()) && task_curr(p))
1426 smp_send_reschedule(cpu);
1429 EXPORT_SYMBOL_GPL(kick_process);
1432 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1434 * A few notes on cpu_active vs cpu_online:
1436 * - cpu_active must be a subset of cpu_online
1438 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1439 * see __set_cpus_allowed_ptr(). At this point the newly online
1440 * CPU isn't yet part of the sched domains, and balancing will not
1443 * - on CPU-down we clear cpu_active() to mask the sched domains and
1444 * avoid the load balancer to place new tasks on the to be removed
1445 * CPU. Existing tasks will remain running there and will be taken
1448 * This means that fallback selection must not select !active CPUs.
1449 * And can assume that any active CPU must be online. Conversely
1450 * select_task_rq() below may allow selection of !active CPUs in order
1451 * to satisfy the above rules.
1453 static int select_fallback_rq(int cpu, struct task_struct *p)
1455 int nid = cpu_to_node(cpu);
1456 const struct cpumask *nodemask = NULL;
1457 enum { cpuset, possible, fail } state = cpuset;
1461 * If the node that the CPU is on has been offlined, cpu_to_node()
1462 * will return -1. There is no CPU on the node, and we should
1463 * select the CPU on the other node.
1466 nodemask = cpumask_of_node(nid);
1468 /* Look for allowed, online CPU in same node. */
1469 for_each_cpu(dest_cpu, nodemask) {
1470 if (!cpu_active(dest_cpu))
1472 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1478 /* Any allowed, online CPU? */
1479 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1480 if (!is_cpu_allowed(p, dest_cpu))
1486 /* No more Mr. Nice Guy. */
1489 if (IS_ENABLED(CONFIG_CPUSETS)) {
1490 cpuset_cpus_allowed_fallback(p);
1496 do_set_cpus_allowed(p, cpu_possible_mask);
1507 if (state != cpuset) {
1509 * Don't tell them about moving exiting tasks or
1510 * kernel threads (both mm NULL), since they never
1513 if (p->mm && printk_ratelimit()) {
1514 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1515 task_pid_nr(p), p->comm, cpu);
1523 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1526 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1528 lockdep_assert_held(&p->pi_lock);
1530 if (p->nr_cpus_allowed > 1)
1531 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1533 cpu = cpumask_any(&p->cpus_allowed);
1536 * In order not to call set_task_cpu() on a blocking task we need
1537 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1540 * Since this is common to all placement strategies, this lives here.
1542 * [ this allows ->select_task() to simply return task_cpu(p) and
1543 * not worry about this generic constraint ]
1545 if (unlikely(!is_cpu_allowed(p, cpu)))
1546 cpu = select_fallback_rq(task_cpu(p), p);
1551 static void update_avg(u64 *avg, u64 sample)
1553 s64 diff = sample - *avg;
1557 void sched_set_stop_task(int cpu, struct task_struct *stop)
1559 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1560 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1564 * Make it appear like a SCHED_FIFO task, its something
1565 * userspace knows about and won't get confused about.
1567 * Also, it will make PI more or less work without too
1568 * much confusion -- but then, stop work should not
1569 * rely on PI working anyway.
1571 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
1573 stop->sched_class = &stop_sched_class;
1576 cpu_rq(cpu)->stop = stop;
1580 * Reset it back to a normal scheduling class so that
1581 * it can die in pieces.
1583 old_stop->sched_class = &rt_sched_class;
1589 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1590 const struct cpumask *new_mask, bool check)
1592 return set_cpus_allowed_ptr(p, new_mask);
1595 #endif /* CONFIG_SMP */
1598 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1602 if (!schedstat_enabled())
1608 if (cpu == rq->cpu) {
1609 __schedstat_inc(rq->ttwu_local);
1610 __schedstat_inc(p->se.statistics.nr_wakeups_local);
1612 struct sched_domain *sd;
1614 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
1616 for_each_domain(rq->cpu, sd) {
1617 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1618 __schedstat_inc(sd->ttwu_wake_remote);
1625 if (wake_flags & WF_MIGRATED)
1626 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1627 #endif /* CONFIG_SMP */
1629 __schedstat_inc(rq->ttwu_count);
1630 __schedstat_inc(p->se.statistics.nr_wakeups);
1632 if (wake_flags & WF_SYNC)
1633 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
1636 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1638 activate_task(rq, p, en_flags);
1639 p->on_rq = TASK_ON_RQ_QUEUED;
1641 /* If a worker is waking up, notify the workqueue: */
1642 if (p->flags & PF_WQ_WORKER)
1643 wq_worker_waking_up(p, cpu_of(rq));
1647 * Mark the task runnable and perform wakeup-preemption.
1649 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1650 struct rq_flags *rf)
1652 check_preempt_curr(rq, p, wake_flags);
1653 p->state = TASK_RUNNING;
1654 trace_sched_wakeup(p);
1657 if (p->sched_class->task_woken) {
1659 * Our task @p is fully woken up and running; so its safe to
1660 * drop the rq->lock, hereafter rq is only used for statistics.
1662 rq_unpin_lock(rq, rf);
1663 p->sched_class->task_woken(rq, p);
1664 rq_repin_lock(rq, rf);
1667 if (rq->idle_stamp) {
1668 u64 delta = rq_clock(rq) - rq->idle_stamp;
1669 u64 max = 2*rq->max_idle_balance_cost;
1671 update_avg(&rq->avg_idle, delta);
1673 if (rq->avg_idle > max)
1682 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1683 struct rq_flags *rf)
1685 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1687 lockdep_assert_held(&rq->lock);
1690 if (p->sched_contributes_to_load)
1691 rq->nr_uninterruptible--;
1693 if (wake_flags & WF_MIGRATED)
1694 en_flags |= ENQUEUE_MIGRATED;
1697 ttwu_activate(rq, p, en_flags);
1698 ttwu_do_wakeup(rq, p, wake_flags, rf);
1702 * Called in case the task @p isn't fully descheduled from its runqueue,
1703 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1704 * since all we need to do is flip p->state to TASK_RUNNING, since
1705 * the task is still ->on_rq.
1707 static int ttwu_remote(struct task_struct *p, int wake_flags)
1713 rq = __task_rq_lock(p, &rf);
1714 if (task_on_rq_queued(p)) {
1715 /* check_preempt_curr() may use rq clock */
1716 update_rq_clock(rq);
1717 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1720 __task_rq_unlock(rq, &rf);
1726 void sched_ttwu_pending(void)
1728 struct rq *rq = this_rq();
1729 struct llist_node *llist = llist_del_all(&rq->wake_list);
1730 struct task_struct *p, *t;
1736 rq_lock_irqsave(rq, &rf);
1737 update_rq_clock(rq);
1739 llist_for_each_entry_safe(p, t, llist, wake_entry)
1740 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1742 rq_unlock_irqrestore(rq, &rf);
1745 void scheduler_ipi(void)
1748 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1749 * TIF_NEED_RESCHED remotely (for the first time) will also send
1752 preempt_fold_need_resched();
1754 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1758 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1759 * traditionally all their work was done from the interrupt return
1760 * path. Now that we actually do some work, we need to make sure
1763 * Some archs already do call them, luckily irq_enter/exit nest
1766 * Arguably we should visit all archs and update all handlers,
1767 * however a fair share of IPIs are still resched only so this would
1768 * somewhat pessimize the simple resched case.
1771 sched_ttwu_pending();
1774 * Check if someone kicked us for doing the nohz idle load balance.
1776 if (unlikely(got_nohz_idle_kick())) {
1777 this_rq()->idle_balance = 1;
1778 raise_softirq_irqoff(SCHED_SOFTIRQ);
1783 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1785 struct rq *rq = cpu_rq(cpu);
1787 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1789 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1790 if (!set_nr_if_polling(rq->idle))
1791 smp_send_reschedule(cpu);
1793 trace_sched_wake_idle_without_ipi(cpu);
1797 void wake_up_if_idle(int cpu)
1799 struct rq *rq = cpu_rq(cpu);
1804 if (!is_idle_task(rcu_dereference(rq->curr)))
1807 if (set_nr_if_polling(rq->idle)) {
1808 trace_sched_wake_idle_without_ipi(cpu);
1810 rq_lock_irqsave(rq, &rf);
1811 if (is_idle_task(rq->curr))
1812 smp_send_reschedule(cpu);
1813 /* Else CPU is not idle, do nothing here: */
1814 rq_unlock_irqrestore(rq, &rf);
1821 bool cpus_share_cache(int this_cpu, int that_cpu)
1823 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1825 #endif /* CONFIG_SMP */
1827 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1829 struct rq *rq = cpu_rq(cpu);
1832 #if defined(CONFIG_SMP)
1833 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1834 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1835 ttwu_queue_remote(p, cpu, wake_flags);
1841 update_rq_clock(rq);
1842 ttwu_do_activate(rq, p, wake_flags, &rf);
1847 * Notes on Program-Order guarantees on SMP systems.
1851 * The basic program-order guarantee on SMP systems is that when a task [t]
1852 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1853 * execution on its new CPU [c1].
1855 * For migration (of runnable tasks) this is provided by the following means:
1857 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1858 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1859 * rq(c1)->lock (if not at the same time, then in that order).
1860 * C) LOCK of the rq(c1)->lock scheduling in task
1862 * Release/acquire chaining guarantees that B happens after A and C after B.
1863 * Note: the CPU doing B need not be c0 or c1
1872 * UNLOCK rq(0)->lock
1874 * LOCK rq(0)->lock // orders against CPU0
1876 * UNLOCK rq(0)->lock
1880 * UNLOCK rq(1)->lock
1882 * LOCK rq(1)->lock // orders against CPU2
1885 * UNLOCK rq(1)->lock
1888 * BLOCKING -- aka. SLEEP + WAKEUP
1890 * For blocking we (obviously) need to provide the same guarantee as for
1891 * migration. However the means are completely different as there is no lock
1892 * chain to provide order. Instead we do:
1894 * 1) smp_store_release(X->on_cpu, 0)
1895 * 2) smp_cond_load_acquire(!X->on_cpu)
1899 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1901 * LOCK rq(0)->lock LOCK X->pi_lock
1904 * smp_store_release(X->on_cpu, 0);
1906 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1912 * X->state = RUNNING
1913 * UNLOCK rq(2)->lock
1915 * LOCK rq(2)->lock // orders against CPU1
1918 * UNLOCK rq(2)->lock
1921 * UNLOCK rq(0)->lock
1924 * However, for wakeups there is a second guarantee we must provide, namely we
1925 * must ensure that CONDITION=1 done by the caller can not be reordered with
1926 * accesses to the task state; see try_to_wake_up() and set_current_state().
1930 * try_to_wake_up - wake up a thread
1931 * @p: the thread to be awakened
1932 * @state: the mask of task states that can be woken
1933 * @wake_flags: wake modifier flags (WF_*)
1935 * If (@state & @p->state) @p->state = TASK_RUNNING.
1937 * If the task was not queued/runnable, also place it back on a runqueue.
1939 * Atomic against schedule() which would dequeue a task, also see
1940 * set_current_state().
1942 * This function executes a full memory barrier before accessing the task
1943 * state; see set_current_state().
1945 * Return: %true if @p->state changes (an actual wakeup was done),
1949 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1951 unsigned long flags;
1952 int cpu, success = 0;
1955 * If we are going to wake up a thread waiting for CONDITION we
1956 * need to ensure that CONDITION=1 done by the caller can not be
1957 * reordered with p->state check below. This pairs with mb() in
1958 * set_current_state() the waiting thread does.
1960 raw_spin_lock_irqsave(&p->pi_lock, flags);
1961 smp_mb__after_spinlock();
1962 if (!(p->state & state))
1965 trace_sched_waking(p);
1967 /* We're going to change ->state: */
1972 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1973 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1974 * in smp_cond_load_acquire() below.
1976 * sched_ttwu_pending() try_to_wake_up()
1977 * STORE p->on_rq = 1 LOAD p->state
1980 * __schedule() (switch to task 'p')
1981 * LOCK rq->lock smp_rmb();
1982 * smp_mb__after_spinlock();
1986 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
1988 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
1989 * __schedule(). See the comment for smp_mb__after_spinlock().
1992 if (p->on_rq && ttwu_remote(p, wake_flags))
1997 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1998 * possible to, falsely, observe p->on_cpu == 0.
2000 * One must be running (->on_cpu == 1) in order to remove oneself
2001 * from the runqueue.
2003 * __schedule() (switch to task 'p') try_to_wake_up()
2004 * STORE p->on_cpu = 1 LOAD p->on_rq
2007 * __schedule() (put 'p' to sleep)
2008 * LOCK rq->lock smp_rmb();
2009 * smp_mb__after_spinlock();
2010 * STORE p->on_rq = 0 LOAD p->on_cpu
2012 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2013 * __schedule(). See the comment for smp_mb__after_spinlock().
2018 * If the owning (remote) CPU is still in the middle of schedule() with
2019 * this task as prev, wait until its done referencing the task.
2021 * Pairs with the smp_store_release() in finish_task().
2023 * This ensures that tasks getting woken will be fully ordered against
2024 * their previous state and preserve Program Order.
2026 smp_cond_load_acquire(&p->on_cpu, !VAL);
2028 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2029 p->state = TASK_WAKING;
2032 delayacct_blkio_end(p);
2033 atomic_dec(&task_rq(p)->nr_iowait);
2036 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2037 if (task_cpu(p) != cpu) {
2038 wake_flags |= WF_MIGRATED;
2039 set_task_cpu(p, cpu);
2042 #else /* CONFIG_SMP */
2045 delayacct_blkio_end(p);
2046 atomic_dec(&task_rq(p)->nr_iowait);
2049 #endif /* CONFIG_SMP */
2051 ttwu_queue(p, cpu, wake_flags);
2053 ttwu_stat(p, cpu, wake_flags);
2055 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2061 * try_to_wake_up_local - try to wake up a local task with rq lock held
2062 * @p: the thread to be awakened
2063 * @rf: request-queue flags for pinning
2065 * Put @p on the run-queue if it's not already there. The caller must
2066 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2069 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2071 struct rq *rq = task_rq(p);
2073 if (WARN_ON_ONCE(rq != this_rq()) ||
2074 WARN_ON_ONCE(p == current))
2077 lockdep_assert_held(&rq->lock);
2079 if (!raw_spin_trylock(&p->pi_lock)) {
2081 * This is OK, because current is on_cpu, which avoids it being
2082 * picked for load-balance and preemption/IRQs are still
2083 * disabled avoiding further scheduler activity on it and we've
2084 * not yet picked a replacement task.
2087 raw_spin_lock(&p->pi_lock);
2091 if (!(p->state & TASK_NORMAL))
2094 trace_sched_waking(p);
2096 if (!task_on_rq_queued(p)) {
2098 delayacct_blkio_end(p);
2099 atomic_dec(&rq->nr_iowait);
2101 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2104 ttwu_do_wakeup(rq, p, 0, rf);
2105 ttwu_stat(p, smp_processor_id(), 0);
2107 raw_spin_unlock(&p->pi_lock);
2111 * wake_up_process - Wake up a specific process
2112 * @p: The process to be woken up.
2114 * Attempt to wake up the nominated process and move it to the set of runnable
2117 * Return: 1 if the process was woken up, 0 if it was already running.
2119 * This function executes a full memory barrier before accessing the task state.
2121 int wake_up_process(struct task_struct *p)
2123 return try_to_wake_up(p, TASK_NORMAL, 0);
2125 EXPORT_SYMBOL(wake_up_process);
2127 int wake_up_state(struct task_struct *p, unsigned int state)
2129 return try_to_wake_up(p, state, 0);
2133 * Perform scheduler related setup for a newly forked process p.
2134 * p is forked by current.
2136 * __sched_fork() is basic setup used by init_idle() too:
2138 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2143 p->se.exec_start = 0;
2144 p->se.sum_exec_runtime = 0;
2145 p->se.prev_sum_exec_runtime = 0;
2146 p->se.nr_migrations = 0;
2148 INIT_LIST_HEAD(&p->se.group_node);
2150 #ifdef CONFIG_FAIR_GROUP_SCHED
2151 p->se.cfs_rq = NULL;
2154 #ifdef CONFIG_SCHEDSTATS
2155 /* Even if schedstat is disabled, there should not be garbage */
2156 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2159 RB_CLEAR_NODE(&p->dl.rb_node);
2160 init_dl_task_timer(&p->dl);
2161 init_dl_inactive_task_timer(&p->dl);
2162 __dl_clear_params(p);
2164 INIT_LIST_HEAD(&p->rt.run_list);
2166 p->rt.time_slice = sched_rr_timeslice;
2170 #ifdef CONFIG_PREEMPT_NOTIFIERS
2171 INIT_HLIST_HEAD(&p->preempt_notifiers);
2174 init_numa_balancing(clone_flags, p);
2177 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2179 #ifdef CONFIG_NUMA_BALANCING
2181 void set_numabalancing_state(bool enabled)
2184 static_branch_enable(&sched_numa_balancing);
2186 static_branch_disable(&sched_numa_balancing);
2189 #ifdef CONFIG_PROC_SYSCTL
2190 int sysctl_numa_balancing(struct ctl_table *table, int write,
2191 void __user *buffer, size_t *lenp, loff_t *ppos)
2195 int state = static_branch_likely(&sched_numa_balancing);
2197 if (write && !capable(CAP_SYS_ADMIN))
2202 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2206 set_numabalancing_state(state);
2212 #ifdef CONFIG_SCHEDSTATS
2214 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2215 static bool __initdata __sched_schedstats = false;
2217 static void set_schedstats(bool enabled)
2220 static_branch_enable(&sched_schedstats);
2222 static_branch_disable(&sched_schedstats);
2225 void force_schedstat_enabled(void)
2227 if (!schedstat_enabled()) {
2228 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2229 static_branch_enable(&sched_schedstats);
2233 static int __init setup_schedstats(char *str)
2240 * This code is called before jump labels have been set up, so we can't
2241 * change the static branch directly just yet. Instead set a temporary
2242 * variable so init_schedstats() can do it later.
2244 if (!strcmp(str, "enable")) {
2245 __sched_schedstats = true;
2247 } else if (!strcmp(str, "disable")) {
2248 __sched_schedstats = false;
2253 pr_warn("Unable to parse schedstats=\n");
2257 __setup("schedstats=", setup_schedstats);
2259 static void __init init_schedstats(void)
2261 set_schedstats(__sched_schedstats);
2264 #ifdef CONFIG_PROC_SYSCTL
2265 int sysctl_schedstats(struct ctl_table *table, int write,
2266 void __user *buffer, size_t *lenp, loff_t *ppos)
2270 int state = static_branch_likely(&sched_schedstats);
2272 if (write && !capable(CAP_SYS_ADMIN))
2277 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2281 set_schedstats(state);
2284 #endif /* CONFIG_PROC_SYSCTL */
2285 #else /* !CONFIG_SCHEDSTATS */
2286 static inline void init_schedstats(void) {}
2287 #endif /* CONFIG_SCHEDSTATS */
2290 * fork()/clone()-time setup:
2292 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2294 unsigned long flags;
2296 __sched_fork(clone_flags, p);
2298 * We mark the process as NEW here. This guarantees that
2299 * nobody will actually run it, and a signal or other external
2300 * event cannot wake it up and insert it on the runqueue either.
2302 p->state = TASK_NEW;
2305 * Make sure we do not leak PI boosting priority to the child.
2307 p->prio = current->normal_prio;
2310 * Revert to default priority/policy on fork if requested.
2312 if (unlikely(p->sched_reset_on_fork)) {
2313 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2314 p->policy = SCHED_NORMAL;
2315 p->static_prio = NICE_TO_PRIO(0);
2317 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2318 p->static_prio = NICE_TO_PRIO(0);
2320 p->prio = p->normal_prio = __normal_prio(p);
2321 set_load_weight(p, false);
2324 * We don't need the reset flag anymore after the fork. It has
2325 * fulfilled its duty:
2327 p->sched_reset_on_fork = 0;
2330 if (dl_prio(p->prio))
2332 else if (rt_prio(p->prio))
2333 p->sched_class = &rt_sched_class;
2335 p->sched_class = &fair_sched_class;
2337 init_entity_runnable_average(&p->se);
2340 * The child is not yet in the pid-hash so no cgroup attach races,
2341 * and the cgroup is pinned to this child due to cgroup_fork()
2342 * is ran before sched_fork().
2344 * Silence PROVE_RCU.
2346 raw_spin_lock_irqsave(&p->pi_lock, flags);
2348 * We're setting the CPU for the first time, we don't migrate,
2349 * so use __set_task_cpu().
2351 __set_task_cpu(p, smp_processor_id());
2352 if (p->sched_class->task_fork)
2353 p->sched_class->task_fork(p);
2354 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2356 #ifdef CONFIG_SCHED_INFO
2357 if (likely(sched_info_on()))
2358 memset(&p->sched_info, 0, sizeof(p->sched_info));
2360 #if defined(CONFIG_SMP)
2363 init_task_preempt_count(p);
2365 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2366 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2371 unsigned long to_ratio(u64 period, u64 runtime)
2373 if (runtime == RUNTIME_INF)
2377 * Doing this here saves a lot of checks in all
2378 * the calling paths, and returning zero seems
2379 * safe for them anyway.
2384 return div64_u64(runtime << BW_SHIFT, period);
2388 * wake_up_new_task - wake up a newly created task for the first time.
2390 * This function will do some initial scheduler statistics housekeeping
2391 * that must be done for every newly created context, then puts the task
2392 * on the runqueue and wakes it.
2394 void wake_up_new_task(struct task_struct *p)
2399 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2400 p->state = TASK_RUNNING;
2403 * Fork balancing, do it here and not earlier because:
2404 * - cpus_allowed can change in the fork path
2405 * - any previously selected CPU might disappear through hotplug
2407 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2408 * as we're not fully set-up yet.
2410 p->recent_used_cpu = task_cpu(p);
2411 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2413 rq = __task_rq_lock(p, &rf);
2414 update_rq_clock(rq);
2415 post_init_entity_util_avg(&p->se);
2417 activate_task(rq, p, ENQUEUE_NOCLOCK);
2418 p->on_rq = TASK_ON_RQ_QUEUED;
2419 trace_sched_wakeup_new(p);
2420 check_preempt_curr(rq, p, WF_FORK);
2422 if (p->sched_class->task_woken) {
2424 * Nothing relies on rq->lock after this, so its fine to
2427 rq_unpin_lock(rq, &rf);
2428 p->sched_class->task_woken(rq, p);
2429 rq_repin_lock(rq, &rf);
2432 task_rq_unlock(rq, p, &rf);
2435 #ifdef CONFIG_PREEMPT_NOTIFIERS
2437 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2439 void preempt_notifier_inc(void)
2441 static_branch_inc(&preempt_notifier_key);
2443 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2445 void preempt_notifier_dec(void)
2447 static_branch_dec(&preempt_notifier_key);
2449 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2452 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2453 * @notifier: notifier struct to register
2455 void preempt_notifier_register(struct preempt_notifier *notifier)
2457 if (!static_branch_unlikely(&preempt_notifier_key))
2458 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2460 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2462 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2465 * preempt_notifier_unregister - no longer interested in preemption notifications
2466 * @notifier: notifier struct to unregister
2468 * This is *not* safe to call from within a preemption notifier.
2470 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2472 hlist_del(¬ifier->link);
2474 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2476 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2478 struct preempt_notifier *notifier;
2480 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2481 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2484 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2486 if (static_branch_unlikely(&preempt_notifier_key))
2487 __fire_sched_in_preempt_notifiers(curr);
2491 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2492 struct task_struct *next)
2494 struct preempt_notifier *notifier;
2496 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2497 notifier->ops->sched_out(notifier, next);
2500 static __always_inline void
2501 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2502 struct task_struct *next)
2504 if (static_branch_unlikely(&preempt_notifier_key))
2505 __fire_sched_out_preempt_notifiers(curr, next);
2508 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2510 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2515 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2516 struct task_struct *next)
2520 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2522 static inline void prepare_task(struct task_struct *next)
2526 * Claim the task as running, we do this before switching to it
2527 * such that any running task will have this set.
2533 static inline void finish_task(struct task_struct *prev)
2537 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2538 * We must ensure this doesn't happen until the switch is completely
2541 * In particular, the load of prev->state in finish_task_switch() must
2542 * happen before this.
2544 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2546 smp_store_release(&prev->on_cpu, 0);
2551 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2554 * Since the runqueue lock will be released by the next
2555 * task (which is an invalid locking op but in the case
2556 * of the scheduler it's an obvious special-case), so we
2557 * do an early lockdep release here:
2559 rq_unpin_lock(rq, rf);
2560 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2561 #ifdef CONFIG_DEBUG_SPINLOCK
2562 /* this is a valid case when another task releases the spinlock */
2563 rq->lock.owner = next;
2567 static inline void finish_lock_switch(struct rq *rq)
2570 * If we are tracking spinlock dependencies then we have to
2571 * fix up the runqueue lock - which gets 'carried over' from
2572 * prev into current:
2574 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2575 raw_spin_unlock_irq(&rq->lock);
2579 * NOP if the arch has not defined these:
2582 #ifndef prepare_arch_switch
2583 # define prepare_arch_switch(next) do { } while (0)
2586 #ifndef finish_arch_post_lock_switch
2587 # define finish_arch_post_lock_switch() do { } while (0)
2591 * prepare_task_switch - prepare to switch tasks
2592 * @rq: the runqueue preparing to switch
2593 * @prev: the current task that is being switched out
2594 * @next: the task we are going to switch to.
2596 * This is called with the rq lock held and interrupts off. It must
2597 * be paired with a subsequent finish_task_switch after the context
2600 * prepare_task_switch sets up locking and calls architecture specific
2604 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2605 struct task_struct *next)
2607 kcov_prepare_switch(prev);
2608 sched_info_switch(rq, prev, next);
2609 perf_event_task_sched_out(prev, next);
2611 fire_sched_out_preempt_notifiers(prev, next);
2613 prepare_arch_switch(next);
2617 * finish_task_switch - clean up after a task-switch
2618 * @prev: the thread we just switched away from.
2620 * finish_task_switch must be called after the context switch, paired
2621 * with a prepare_task_switch call before the context switch.
2622 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2623 * and do any other architecture-specific cleanup actions.
2625 * Note that we may have delayed dropping an mm in context_switch(). If
2626 * so, we finish that here outside of the runqueue lock. (Doing it
2627 * with the lock held can cause deadlocks; see schedule() for
2630 * The context switch have flipped the stack from under us and restored the
2631 * local variables which were saved when this task called schedule() in the
2632 * past. prev == current is still correct but we need to recalculate this_rq
2633 * because prev may have moved to another CPU.
2635 static struct rq *finish_task_switch(struct task_struct *prev)
2636 __releases(rq->lock)
2638 struct rq *rq = this_rq();
2639 struct mm_struct *mm = rq->prev_mm;
2643 * The previous task will have left us with a preempt_count of 2
2644 * because it left us after:
2647 * preempt_disable(); // 1
2649 * raw_spin_lock_irq(&rq->lock) // 2
2651 * Also, see FORK_PREEMPT_COUNT.
2653 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2654 "corrupted preempt_count: %s/%d/0x%x\n",
2655 current->comm, current->pid, preempt_count()))
2656 preempt_count_set(FORK_PREEMPT_COUNT);
2661 * A task struct has one reference for the use as "current".
2662 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2663 * schedule one last time. The schedule call will never return, and
2664 * the scheduled task must drop that reference.
2666 * We must observe prev->state before clearing prev->on_cpu (in
2667 * finish_task), otherwise a concurrent wakeup can get prev
2668 * running on another CPU and we could rave with its RUNNING -> DEAD
2669 * transition, resulting in a double drop.
2671 prev_state = prev->state;
2672 vtime_task_switch(prev);
2673 perf_event_task_sched_in(prev, current);
2675 finish_lock_switch(rq);
2676 finish_arch_post_lock_switch();
2677 kcov_finish_switch(current);
2679 fire_sched_in_preempt_notifiers(current);
2681 * When switching through a kernel thread, the loop in
2682 * membarrier_{private,global}_expedited() may have observed that
2683 * kernel thread and not issued an IPI. It is therefore possible to
2684 * schedule between user->kernel->user threads without passing though
2685 * switch_mm(). Membarrier requires a barrier after storing to
2686 * rq->curr, before returning to userspace, so provide them here:
2688 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2689 * provided by mmdrop(),
2690 * - a sync_core for SYNC_CORE.
2693 membarrier_mm_sync_core_before_usermode(mm);
2696 if (unlikely(prev_state == TASK_DEAD)) {
2697 if (prev->sched_class->task_dead)
2698 prev->sched_class->task_dead(prev);
2701 * Remove function-return probe instances associated with this
2702 * task and put them back on the free list.
2704 kprobe_flush_task(prev);
2706 /* Task is done with its stack. */
2707 put_task_stack(prev);
2709 put_task_struct(prev);
2712 tick_nohz_task_switch();
2718 /* rq->lock is NOT held, but preemption is disabled */
2719 static void __balance_callback(struct rq *rq)
2721 struct callback_head *head, *next;
2722 void (*func)(struct rq *rq);
2723 unsigned long flags;
2725 raw_spin_lock_irqsave(&rq->lock, flags);
2726 head = rq->balance_callback;
2727 rq->balance_callback = NULL;
2729 func = (void (*)(struct rq *))head->func;
2736 raw_spin_unlock_irqrestore(&rq->lock, flags);
2739 static inline void balance_callback(struct rq *rq)
2741 if (unlikely(rq->balance_callback))
2742 __balance_callback(rq);
2747 static inline void balance_callback(struct rq *rq)
2754 * schedule_tail - first thing a freshly forked thread must call.
2755 * @prev: the thread we just switched away from.
2757 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2758 __releases(rq->lock)
2763 * New tasks start with FORK_PREEMPT_COUNT, see there and
2764 * finish_task_switch() for details.
2766 * finish_task_switch() will drop rq->lock() and lower preempt_count
2767 * and the preempt_enable() will end up enabling preemption (on
2768 * PREEMPT_COUNT kernels).
2771 rq = finish_task_switch(prev);
2772 balance_callback(rq);
2775 if (current->set_child_tid)
2776 put_user(task_pid_vnr(current), current->set_child_tid);
2780 * context_switch - switch to the new MM and the new thread's register state.
2782 static __always_inline struct rq *
2783 context_switch(struct rq *rq, struct task_struct *prev,
2784 struct task_struct *next, struct rq_flags *rf)
2786 struct mm_struct *mm, *oldmm;
2788 prepare_task_switch(rq, prev, next);
2791 oldmm = prev->active_mm;
2793 * For paravirt, this is coupled with an exit in switch_to to
2794 * combine the page table reload and the switch backend into
2797 arch_start_context_switch(prev);
2800 * If mm is non-NULL, we pass through switch_mm(). If mm is
2801 * NULL, we will pass through mmdrop() in finish_task_switch().
2802 * Both of these contain the full memory barrier required by
2803 * membarrier after storing to rq->curr, before returning to
2807 next->active_mm = oldmm;
2809 enter_lazy_tlb(oldmm, next);
2811 switch_mm_irqs_off(oldmm, mm, next);
2814 prev->active_mm = NULL;
2815 rq->prev_mm = oldmm;
2818 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2820 prepare_lock_switch(rq, next, rf);
2822 /* Here we just switch the register state and the stack. */
2823 switch_to(prev, next, prev);
2826 return finish_task_switch(prev);
2830 * nr_running and nr_context_switches:
2832 * externally visible scheduler statistics: current number of runnable
2833 * threads, total number of context switches performed since bootup.
2835 unsigned long nr_running(void)
2837 unsigned long i, sum = 0;
2839 for_each_online_cpu(i)
2840 sum += cpu_rq(i)->nr_running;
2846 * Check if only the current task is running on the CPU.
2848 * Caution: this function does not check that the caller has disabled
2849 * preemption, thus the result might have a time-of-check-to-time-of-use
2850 * race. The caller is responsible to use it correctly, for example:
2852 * - from a non-preemptable section (of course)
2854 * - from a thread that is bound to a single CPU
2856 * - in a loop with very short iterations (e.g. a polling loop)
2858 bool single_task_running(void)
2860 return raw_rq()->nr_running == 1;
2862 EXPORT_SYMBOL(single_task_running);
2864 unsigned long long nr_context_switches(void)
2867 unsigned long long sum = 0;
2869 for_each_possible_cpu(i)
2870 sum += cpu_rq(i)->nr_switches;
2876 * IO-wait accounting, and how its mostly bollocks (on SMP).
2878 * The idea behind IO-wait account is to account the idle time that we could
2879 * have spend running if it were not for IO. That is, if we were to improve the
2880 * storage performance, we'd have a proportional reduction in IO-wait time.
2882 * This all works nicely on UP, where, when a task blocks on IO, we account
2883 * idle time as IO-wait, because if the storage were faster, it could've been
2884 * running and we'd not be idle.
2886 * This has been extended to SMP, by doing the same for each CPU. This however
2889 * Imagine for instance the case where two tasks block on one CPU, only the one
2890 * CPU will have IO-wait accounted, while the other has regular idle. Even
2891 * though, if the storage were faster, both could've ran at the same time,
2892 * utilising both CPUs.
2894 * This means, that when looking globally, the current IO-wait accounting on
2895 * SMP is a lower bound, by reason of under accounting.
2897 * Worse, since the numbers are provided per CPU, they are sometimes
2898 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2899 * associated with any one particular CPU, it can wake to another CPU than it
2900 * blocked on. This means the per CPU IO-wait number is meaningless.
2902 * Task CPU affinities can make all that even more 'interesting'.
2905 unsigned long nr_iowait(void)
2907 unsigned long i, sum = 0;
2909 for_each_possible_cpu(i)
2910 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2916 * Consumers of these two interfaces, like for example the cpufreq menu
2917 * governor are using nonsensical data. Boosting frequency for a CPU that has
2918 * IO-wait which might not even end up running the task when it does become
2922 unsigned long nr_iowait_cpu(int cpu)
2924 struct rq *this = cpu_rq(cpu);
2925 return atomic_read(&this->nr_iowait);
2928 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2930 struct rq *rq = this_rq();
2931 *nr_waiters = atomic_read(&rq->nr_iowait);
2932 *load = rq->load.weight;
2938 * sched_exec - execve() is a valuable balancing opportunity, because at
2939 * this point the task has the smallest effective memory and cache footprint.
2941 void sched_exec(void)
2943 struct task_struct *p = current;
2944 unsigned long flags;
2947 raw_spin_lock_irqsave(&p->pi_lock, flags);
2948 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2949 if (dest_cpu == smp_processor_id())
2952 if (likely(cpu_active(dest_cpu))) {
2953 struct migration_arg arg = { p, dest_cpu };
2955 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2956 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2960 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2965 DEFINE_PER_CPU(struct kernel_stat, kstat);
2966 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2968 EXPORT_PER_CPU_SYMBOL(kstat);
2969 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2972 * The function fair_sched_class.update_curr accesses the struct curr
2973 * and its field curr->exec_start; when called from task_sched_runtime(),
2974 * we observe a high rate of cache misses in practice.
2975 * Prefetching this data results in improved performance.
2977 static inline void prefetch_curr_exec_start(struct task_struct *p)
2979 #ifdef CONFIG_FAIR_GROUP_SCHED
2980 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2982 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2985 prefetch(&curr->exec_start);
2989 * Return accounted runtime for the task.
2990 * In case the task is currently running, return the runtime plus current's
2991 * pending runtime that have not been accounted yet.
2993 unsigned long long task_sched_runtime(struct task_struct *p)
2999 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3001 * 64-bit doesn't need locks to atomically read a 64-bit value.
3002 * So we have a optimization chance when the task's delta_exec is 0.
3003 * Reading ->on_cpu is racy, but this is ok.
3005 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3006 * If we race with it entering CPU, unaccounted time is 0. This is
3007 * indistinguishable from the read occurring a few cycles earlier.
3008 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3009 * been accounted, so we're correct here as well.
3011 if (!p->on_cpu || !task_on_rq_queued(p))
3012 return p->se.sum_exec_runtime;
3015 rq = task_rq_lock(p, &rf);
3017 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3018 * project cycles that may never be accounted to this
3019 * thread, breaking clock_gettime().
3021 if (task_current(rq, p) && task_on_rq_queued(p)) {
3022 prefetch_curr_exec_start(p);
3023 update_rq_clock(rq);
3024 p->sched_class->update_curr(rq);
3026 ns = p->se.sum_exec_runtime;
3027 task_rq_unlock(rq, p, &rf);
3033 * This function gets called by the timer code, with HZ frequency.
3034 * We call it with interrupts disabled.
3036 void scheduler_tick(void)
3038 int cpu = smp_processor_id();
3039 struct rq *rq = cpu_rq(cpu);
3040 struct task_struct *curr = rq->curr;
3047 update_rq_clock(rq);
3048 curr->sched_class->task_tick(rq, curr, 0);
3049 cpu_load_update_active(rq);
3050 calc_global_load_tick(rq);
3054 perf_event_task_tick();
3057 rq->idle_balance = idle_cpu(cpu);
3058 trigger_load_balance(rq);
3062 #ifdef CONFIG_NO_HZ_FULL
3066 struct delayed_work work;
3069 static struct tick_work __percpu *tick_work_cpu;
3071 static void sched_tick_remote(struct work_struct *work)
3073 struct delayed_work *dwork = to_delayed_work(work);
3074 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3075 int cpu = twork->cpu;
3076 struct rq *rq = cpu_rq(cpu);
3077 struct task_struct *curr;
3082 * Handle the tick only if it appears the remote CPU is running in full
3083 * dynticks mode. The check is racy by nature, but missing a tick or
3084 * having one too much is no big deal because the scheduler tick updates
3085 * statistics and checks timeslices in a time-independent way, regardless
3086 * of when exactly it is running.
3088 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3091 rq_lock_irq(rq, &rf);
3093 if (is_idle_task(curr))
3096 update_rq_clock(rq);
3097 delta = rq_clock_task(rq) - curr->se.exec_start;
3100 * Make sure the next tick runs within a reasonable
3103 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3104 curr->sched_class->task_tick(rq, curr, 0);
3107 rq_unlock_irq(rq, &rf);
3111 * Run the remote tick once per second (1Hz). This arbitrary
3112 * frequency is large enough to avoid overload but short enough
3113 * to keep scheduler internal stats reasonably up to date.
3115 queue_delayed_work(system_unbound_wq, dwork, HZ);
3118 static void sched_tick_start(int cpu)
3120 struct tick_work *twork;
3122 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3125 WARN_ON_ONCE(!tick_work_cpu);
3127 twork = per_cpu_ptr(tick_work_cpu, cpu);
3129 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3130 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3133 #ifdef CONFIG_HOTPLUG_CPU
3134 static void sched_tick_stop(int cpu)
3136 struct tick_work *twork;
3138 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3141 WARN_ON_ONCE(!tick_work_cpu);
3143 twork = per_cpu_ptr(tick_work_cpu, cpu);
3144 cancel_delayed_work_sync(&twork->work);
3146 #endif /* CONFIG_HOTPLUG_CPU */
3148 int __init sched_tick_offload_init(void)
3150 tick_work_cpu = alloc_percpu(struct tick_work);
3151 BUG_ON(!tick_work_cpu);
3156 #else /* !CONFIG_NO_HZ_FULL */
3157 static inline void sched_tick_start(int cpu) { }
3158 static inline void sched_tick_stop(int cpu) { }
3161 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3162 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3164 * If the value passed in is equal to the current preempt count
3165 * then we just disabled preemption. Start timing the latency.
3167 static inline void preempt_latency_start(int val)
3169 if (preempt_count() == val) {
3170 unsigned long ip = get_lock_parent_ip();
3171 #ifdef CONFIG_DEBUG_PREEMPT
3172 current->preempt_disable_ip = ip;
3174 trace_preempt_off(CALLER_ADDR0, ip);
3178 void preempt_count_add(int val)
3180 #ifdef CONFIG_DEBUG_PREEMPT
3184 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3187 __preempt_count_add(val);
3188 #ifdef CONFIG_DEBUG_PREEMPT
3190 * Spinlock count overflowing soon?
3192 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3195 preempt_latency_start(val);
3197 EXPORT_SYMBOL(preempt_count_add);
3198 NOKPROBE_SYMBOL(preempt_count_add);
3201 * If the value passed in equals to the current preempt count
3202 * then we just enabled preemption. Stop timing the latency.
3204 static inline void preempt_latency_stop(int val)
3206 if (preempt_count() == val)
3207 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3210 void preempt_count_sub(int val)
3212 #ifdef CONFIG_DEBUG_PREEMPT
3216 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3219 * Is the spinlock portion underflowing?
3221 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3222 !(preempt_count() & PREEMPT_MASK)))
3226 preempt_latency_stop(val);
3227 __preempt_count_sub(val);
3229 EXPORT_SYMBOL(preempt_count_sub);
3230 NOKPROBE_SYMBOL(preempt_count_sub);
3233 static inline void preempt_latency_start(int val) { }
3234 static inline void preempt_latency_stop(int val) { }
3237 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3239 #ifdef CONFIG_DEBUG_PREEMPT
3240 return p->preempt_disable_ip;
3247 * Print scheduling while atomic bug:
3249 static noinline void __schedule_bug(struct task_struct *prev)
3251 /* Save this before calling printk(), since that will clobber it */
3252 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3254 if (oops_in_progress)
3257 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3258 prev->comm, prev->pid, preempt_count());
3260 debug_show_held_locks(prev);
3262 if (irqs_disabled())
3263 print_irqtrace_events(prev);
3264 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3265 && in_atomic_preempt_off()) {
3266 pr_err("Preemption disabled at:");
3267 print_ip_sym(preempt_disable_ip);
3271 panic("scheduling while atomic\n");
3274 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3278 * Various schedule()-time debugging checks and statistics:
3280 static inline void schedule_debug(struct task_struct *prev)
3282 #ifdef CONFIG_SCHED_STACK_END_CHECK
3283 if (task_stack_end_corrupted(prev))
3284 panic("corrupted stack end detected inside scheduler\n");
3287 if (unlikely(in_atomic_preempt_off())) {
3288 __schedule_bug(prev);
3289 preempt_count_set(PREEMPT_DISABLED);
3293 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3295 schedstat_inc(this_rq()->sched_count);
3299 * Pick up the highest-prio task:
3301 static inline struct task_struct *
3302 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3304 const struct sched_class *class;
3305 struct task_struct *p;
3308 * Optimization: we know that if all tasks are in the fair class we can
3309 * call that function directly, but only if the @prev task wasn't of a
3310 * higher scheduling class, because otherwise those loose the
3311 * opportunity to pull in more work from other CPUs.
3313 if (likely((prev->sched_class == &idle_sched_class ||
3314 prev->sched_class == &fair_sched_class) &&
3315 rq->nr_running == rq->cfs.h_nr_running)) {
3317 p = fair_sched_class.pick_next_task(rq, prev, rf);
3318 if (unlikely(p == RETRY_TASK))
3321 /* Assumes fair_sched_class->next == idle_sched_class */
3323 p = idle_sched_class.pick_next_task(rq, prev, rf);
3329 for_each_class(class) {
3330 p = class->pick_next_task(rq, prev, rf);
3332 if (unlikely(p == RETRY_TASK))
3338 /* The idle class should always have a runnable task: */
3343 * __schedule() is the main scheduler function.
3345 * The main means of driving the scheduler and thus entering this function are:
3347 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3349 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3350 * paths. For example, see arch/x86/entry_64.S.
3352 * To drive preemption between tasks, the scheduler sets the flag in timer
3353 * interrupt handler scheduler_tick().
3355 * 3. Wakeups don't really cause entry into schedule(). They add a
3356 * task to the run-queue and that's it.
3358 * Now, if the new task added to the run-queue preempts the current
3359 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3360 * called on the nearest possible occasion:
3362 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3364 * - in syscall or exception context, at the next outmost
3365 * preempt_enable(). (this might be as soon as the wake_up()'s
3368 * - in IRQ context, return from interrupt-handler to
3369 * preemptible context
3371 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3374 * - cond_resched() call
3375 * - explicit schedule() call
3376 * - return from syscall or exception to user-space
3377 * - return from interrupt-handler to user-space
3379 * WARNING: must be called with preemption disabled!
3381 static void __sched notrace __schedule(bool preempt)
3383 struct task_struct *prev, *next;
3384 unsigned long *switch_count;
3389 cpu = smp_processor_id();
3393 schedule_debug(prev);
3395 if (sched_feat(HRTICK))
3398 local_irq_disable();
3399 rcu_note_context_switch(preempt);
3402 * Make sure that signal_pending_state()->signal_pending() below
3403 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3404 * done by the caller to avoid the race with signal_wake_up().
3406 * The membarrier system call requires a full memory barrier
3407 * after coming from user-space, before storing to rq->curr.
3410 smp_mb__after_spinlock();
3412 /* Promote REQ to ACT */
3413 rq->clock_update_flags <<= 1;
3414 update_rq_clock(rq);
3416 switch_count = &prev->nivcsw;
3417 if (!preempt && prev->state) {
3418 if (unlikely(signal_pending_state(prev->state, prev))) {
3419 prev->state = TASK_RUNNING;
3421 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3424 if (prev->in_iowait) {
3425 atomic_inc(&rq->nr_iowait);
3426 delayacct_blkio_start();
3430 * If a worker went to sleep, notify and ask workqueue
3431 * whether it wants to wake up a task to maintain
3434 if (prev->flags & PF_WQ_WORKER) {
3435 struct task_struct *to_wakeup;
3437 to_wakeup = wq_worker_sleeping(prev);
3439 try_to_wake_up_local(to_wakeup, &rf);
3442 switch_count = &prev->nvcsw;
3445 next = pick_next_task(rq, prev, &rf);
3446 clear_tsk_need_resched(prev);
3447 clear_preempt_need_resched();
3449 if (likely(prev != next)) {
3453 * The membarrier system call requires each architecture
3454 * to have a full memory barrier after updating
3455 * rq->curr, before returning to user-space.
3457 * Here are the schemes providing that barrier on the
3458 * various architectures:
3459 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3460 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3461 * - finish_lock_switch() for weakly-ordered
3462 * architectures where spin_unlock is a full barrier,
3463 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3464 * is a RELEASE barrier),
3468 trace_sched_switch(preempt, prev, next);
3470 /* Also unlocks the rq: */
3471 rq = context_switch(rq, prev, next, &rf);
3473 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3474 rq_unlock_irq(rq, &rf);
3477 balance_callback(rq);
3480 void __noreturn do_task_dead(void)
3482 /* Causes final put_task_struct in finish_task_switch(): */
3483 set_special_state(TASK_DEAD);
3485 /* Tell freezer to ignore us: */
3486 current->flags |= PF_NOFREEZE;
3491 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3496 static inline void sched_submit_work(struct task_struct *tsk)
3498 if (!tsk->state || tsk_is_pi_blocked(tsk))
3501 * If we are going to sleep and we have plugged IO queued,
3502 * make sure to submit it to avoid deadlocks.
3504 if (blk_needs_flush_plug(tsk))
3505 blk_schedule_flush_plug(tsk);
3508 asmlinkage __visible void __sched schedule(void)
3510 struct task_struct *tsk = current;
3512 sched_submit_work(tsk);
3516 sched_preempt_enable_no_resched();
3517 } while (need_resched());
3519 EXPORT_SYMBOL(schedule);
3522 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3523 * state (have scheduled out non-voluntarily) by making sure that all
3524 * tasks have either left the run queue or have gone into user space.
3525 * As idle tasks do not do either, they must not ever be preempted
3526 * (schedule out non-voluntarily).
3528 * schedule_idle() is similar to schedule_preempt_disable() except that it
3529 * never enables preemption because it does not call sched_submit_work().
3531 void __sched schedule_idle(void)
3534 * As this skips calling sched_submit_work(), which the idle task does
3535 * regardless because that function is a nop when the task is in a
3536 * TASK_RUNNING state, make sure this isn't used someplace that the
3537 * current task can be in any other state. Note, idle is always in the
3538 * TASK_RUNNING state.
3540 WARN_ON_ONCE(current->state);
3543 } while (need_resched());
3546 #ifdef CONFIG_CONTEXT_TRACKING
3547 asmlinkage __visible void __sched schedule_user(void)
3550 * If we come here after a random call to set_need_resched(),
3551 * or we have been woken up remotely but the IPI has not yet arrived,
3552 * we haven't yet exited the RCU idle mode. Do it here manually until
3553 * we find a better solution.
3555 * NB: There are buggy callers of this function. Ideally we
3556 * should warn if prev_state != CONTEXT_USER, but that will trigger
3557 * too frequently to make sense yet.
3559 enum ctx_state prev_state = exception_enter();
3561 exception_exit(prev_state);
3566 * schedule_preempt_disabled - called with preemption disabled
3568 * Returns with preemption disabled. Note: preempt_count must be 1
3570 void __sched schedule_preempt_disabled(void)
3572 sched_preempt_enable_no_resched();
3577 static void __sched notrace preempt_schedule_common(void)
3581 * Because the function tracer can trace preempt_count_sub()
3582 * and it also uses preempt_enable/disable_notrace(), if
3583 * NEED_RESCHED is set, the preempt_enable_notrace() called
3584 * by the function tracer will call this function again and
3585 * cause infinite recursion.
3587 * Preemption must be disabled here before the function
3588 * tracer can trace. Break up preempt_disable() into two
3589 * calls. One to disable preemption without fear of being
3590 * traced. The other to still record the preemption latency,
3591 * which can also be traced by the function tracer.
3593 preempt_disable_notrace();
3594 preempt_latency_start(1);
3596 preempt_latency_stop(1);
3597 preempt_enable_no_resched_notrace();
3600 * Check again in case we missed a preemption opportunity
3601 * between schedule and now.
3603 } while (need_resched());
3606 #ifdef CONFIG_PREEMPT
3608 * this is the entry point to schedule() from in-kernel preemption
3609 * off of preempt_enable. Kernel preemptions off return from interrupt
3610 * occur there and call schedule directly.
3612 asmlinkage __visible void __sched notrace preempt_schedule(void)
3615 * If there is a non-zero preempt_count or interrupts are disabled,
3616 * we do not want to preempt the current task. Just return..
3618 if (likely(!preemptible()))
3621 preempt_schedule_common();
3623 NOKPROBE_SYMBOL(preempt_schedule);
3624 EXPORT_SYMBOL(preempt_schedule);
3627 * preempt_schedule_notrace - preempt_schedule called by tracing
3629 * The tracing infrastructure uses preempt_enable_notrace to prevent
3630 * recursion and tracing preempt enabling caused by the tracing
3631 * infrastructure itself. But as tracing can happen in areas coming
3632 * from userspace or just about to enter userspace, a preempt enable
3633 * can occur before user_exit() is called. This will cause the scheduler
3634 * to be called when the system is still in usermode.
3636 * To prevent this, the preempt_enable_notrace will use this function
3637 * instead of preempt_schedule() to exit user context if needed before
3638 * calling the scheduler.
3640 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3642 enum ctx_state prev_ctx;