4 * Core kernel scheduler code and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
10 #include <linux/kthread.h>
11 #include <linux/nospec.h>
13 #include <asm/switch_to.h>
16 #include "../workqueue_internal.h"
17 #include "../smpboot.h"
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/sched.h>
22 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
24 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
26 * Debugging: various feature bits
28 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
29 * sysctl_sched_features, defined in sched.h, to allow constants propagation
30 * at compile time and compiler optimization based on features default.
32 #define SCHED_FEAT(name, enabled) \
33 (1UL << __SCHED_FEAT_##name) * enabled |
34 const_debug unsigned int sysctl_sched_features =
41 * Number of tasks to iterate in a single balance run.
42 * Limited because this is done with IRQs disabled.
44 const_debug unsigned int sysctl_sched_nr_migrate = 32;
47 * period over which we average the RT time consumption, measured
52 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
55 * period over which we measure -rt task CPU usage in us.
58 unsigned int sysctl_sched_rt_period = 1000000;
60 __read_mostly int scheduler_running;
63 * part of the period that we allow rt tasks to run in us.
66 int sysctl_sched_rt_runtime = 950000;
69 * __task_rq_lock - lock the rq @p resides on.
71 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
76 lockdep_assert_held(&p->pi_lock);
80 raw_spin_lock(&rq->lock);
81 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
85 raw_spin_unlock(&rq->lock);
87 while (unlikely(task_on_rq_migrating(p)))
93 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
95 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
96 __acquires(p->pi_lock)
102 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
104 raw_spin_lock(&rq->lock);
106 * move_queued_task() task_rq_lock()
109 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
110 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
111 * [S] ->cpu = new_cpu [L] task_rq()
115 * If we observe the old CPU in task_rq_lock, the acquire of
116 * the old rq->lock will fully serialize against the stores.
118 * If we observe the new CPU in task_rq_lock, the acquire will
119 * pair with the WMB to ensure we must then also see migrating.
121 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
125 raw_spin_unlock(&rq->lock);
126 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
128 while (unlikely(task_on_rq_migrating(p)))
134 * RQ-clock updating methods:
137 static void update_rq_clock_task(struct rq *rq, s64 delta)
140 * In theory, the compile should just see 0 here, and optimize out the call
141 * to sched_rt_avg_update. But I don't trust it...
143 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
144 s64 steal = 0, irq_delta = 0;
146 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
147 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
150 * Since irq_time is only updated on {soft,}irq_exit, we might run into
151 * this case when a previous update_rq_clock() happened inside a
154 * When this happens, we stop ->clock_task and only update the
155 * prev_irq_time stamp to account for the part that fit, so that a next
156 * update will consume the rest. This ensures ->clock_task is
159 * It does however cause some slight miss-attribution of {soft,}irq
160 * time, a more accurate solution would be to update the irq_time using
161 * the current rq->clock timestamp, except that would require using
164 if (irq_delta > delta)
167 rq->prev_irq_time += irq_delta;
170 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
171 if (static_key_false((¶virt_steal_rq_enabled))) {
172 steal = paravirt_steal_clock(cpu_of(rq));
173 steal -= rq->prev_steal_time_rq;
175 if (unlikely(steal > delta))
178 rq->prev_steal_time_rq += steal;
183 rq->clock_task += delta;
185 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
186 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
187 sched_rt_avg_update(rq, irq_delta + steal);
191 void update_rq_clock(struct rq *rq)
195 lockdep_assert_held(&rq->lock);
197 if (rq->clock_update_flags & RQCF_ACT_SKIP)
200 #ifdef CONFIG_SCHED_DEBUG
201 if (sched_feat(WARN_DOUBLE_CLOCK))
202 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
203 rq->clock_update_flags |= RQCF_UPDATED;
206 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
210 update_rq_clock_task(rq, delta);
214 #ifdef CONFIG_SCHED_HRTICK
216 * Use HR-timers to deliver accurate preemption points.
219 static void hrtick_clear(struct rq *rq)
221 if (hrtimer_active(&rq->hrtick_timer))
222 hrtimer_cancel(&rq->hrtick_timer);
226 * High-resolution timer tick.
227 * Runs from hardirq context with interrupts disabled.
229 static enum hrtimer_restart hrtick(struct hrtimer *timer)
231 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
234 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
238 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
241 return HRTIMER_NORESTART;
246 static void __hrtick_restart(struct rq *rq)
248 struct hrtimer *timer = &rq->hrtick_timer;
250 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
254 * called from hardirq (IPI) context
256 static void __hrtick_start(void *arg)
262 __hrtick_restart(rq);
263 rq->hrtick_csd_pending = 0;
268 * Called to set the hrtick timer state.
270 * called with rq->lock held and irqs disabled
272 void hrtick_start(struct rq *rq, u64 delay)
274 struct hrtimer *timer = &rq->hrtick_timer;
279 * Don't schedule slices shorter than 10000ns, that just
280 * doesn't make sense and can cause timer DoS.
282 delta = max_t(s64, delay, 10000LL);
283 time = ktime_add_ns(timer->base->get_time(), delta);
285 hrtimer_set_expires(timer, time);
287 if (rq == this_rq()) {
288 __hrtick_restart(rq);
289 } else if (!rq->hrtick_csd_pending) {
290 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
291 rq->hrtick_csd_pending = 1;
297 * Called to set the hrtick timer state.
299 * called with rq->lock held and irqs disabled
301 void hrtick_start(struct rq *rq, u64 delay)
304 * Don't schedule slices shorter than 10000ns, that just
305 * doesn't make sense. Rely on vruntime for fairness.
307 delay = max_t(u64, delay, 10000LL);
308 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
309 HRTIMER_MODE_REL_PINNED);
311 #endif /* CONFIG_SMP */
313 static void hrtick_rq_init(struct rq *rq)
316 rq->hrtick_csd_pending = 0;
318 rq->hrtick_csd.flags = 0;
319 rq->hrtick_csd.func = __hrtick_start;
320 rq->hrtick_csd.info = rq;
323 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
324 rq->hrtick_timer.function = hrtick;
326 #else /* CONFIG_SCHED_HRTICK */
327 static inline void hrtick_clear(struct rq *rq)
331 static inline void hrtick_rq_init(struct rq *rq)
334 #endif /* CONFIG_SCHED_HRTICK */
337 * cmpxchg based fetch_or, macro so it works for different integer types
339 #define fetch_or(ptr, mask) \
341 typeof(ptr) _ptr = (ptr); \
342 typeof(mask) _mask = (mask); \
343 typeof(*_ptr) _old, _val = *_ptr; \
346 _old = cmpxchg(_ptr, _val, _val | _mask); \
354 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
356 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
357 * this avoids any races wrt polling state changes and thereby avoids
360 static bool set_nr_and_not_polling(struct task_struct *p)
362 struct thread_info *ti = task_thread_info(p);
363 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
367 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
369 * If this returns true, then the idle task promises to call
370 * sched_ttwu_pending() and reschedule soon.
372 static bool set_nr_if_polling(struct task_struct *p)
374 struct thread_info *ti = task_thread_info(p);
375 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
378 if (!(val & _TIF_POLLING_NRFLAG))
380 if (val & _TIF_NEED_RESCHED)
382 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
391 static bool set_nr_and_not_polling(struct task_struct *p)
393 set_tsk_need_resched(p);
398 static bool set_nr_if_polling(struct task_struct *p)
405 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
407 struct wake_q_node *node = &task->wake_q;
410 * Atomically grab the task, if ->wake_q is !nil already it means
411 * its already queued (either by us or someone else) and will get the
412 * wakeup due to that.
414 * This cmpxchg() implies a full barrier, which pairs with the write
415 * barrier implied by the wakeup in wake_up_q().
417 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
420 get_task_struct(task);
423 * The head is context local, there can be no concurrency.
426 head->lastp = &node->next;
429 void wake_up_q(struct wake_q_head *head)
431 struct wake_q_node *node = head->first;
433 while (node != WAKE_Q_TAIL) {
434 struct task_struct *task;
436 task = container_of(node, struct task_struct, wake_q);
438 /* Task can safely be re-inserted now: */
440 task->wake_q.next = NULL;
443 * wake_up_process() implies a wmb() to pair with the queueing
444 * in wake_q_add() so as not to miss wakeups.
446 wake_up_process(task);
447 put_task_struct(task);
452 * resched_curr - mark rq's current task 'to be rescheduled now'.
454 * On UP this means the setting of the need_resched flag, on SMP it
455 * might also involve a cross-CPU call to trigger the scheduler on
458 void resched_curr(struct rq *rq)
460 struct task_struct *curr = rq->curr;
463 lockdep_assert_held(&rq->lock);
465 if (test_tsk_need_resched(curr))
470 if (cpu == smp_processor_id()) {
471 set_tsk_need_resched(curr);
472 set_preempt_need_resched();
476 if (set_nr_and_not_polling(curr))
477 smp_send_reschedule(cpu);
479 trace_sched_wake_idle_without_ipi(cpu);
482 void resched_cpu(int cpu)
484 struct rq *rq = cpu_rq(cpu);
487 raw_spin_lock_irqsave(&rq->lock, flags);
488 if (cpu_online(cpu) || cpu == smp_processor_id())
490 raw_spin_unlock_irqrestore(&rq->lock, flags);
494 #ifdef CONFIG_NO_HZ_COMMON
496 * In the semi idle case, use the nearest busy CPU for migrating timers
497 * from an idle CPU. This is good for power-savings.
499 * We don't do similar optimization for completely idle system, as
500 * selecting an idle CPU will add more delays to the timers than intended
501 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
503 int get_nohz_timer_target(void)
505 int i, cpu = smp_processor_id();
506 struct sched_domain *sd;
508 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
512 for_each_domain(cpu, sd) {
513 for_each_cpu(i, sched_domain_span(sd)) {
517 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
524 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
525 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
532 * When add_timer_on() enqueues a timer into the timer wheel of an
533 * idle CPU then this timer might expire before the next timer event
534 * which is scheduled to wake up that CPU. In case of a completely
535 * idle system the next event might even be infinite time into the
536 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
537 * leaves the inner idle loop so the newly added timer is taken into
538 * account when the CPU goes back to idle and evaluates the timer
539 * wheel for the next timer event.
541 static void wake_up_idle_cpu(int cpu)
543 struct rq *rq = cpu_rq(cpu);
545 if (cpu == smp_processor_id())
548 if (set_nr_and_not_polling(rq->idle))
549 smp_send_reschedule(cpu);
551 trace_sched_wake_idle_without_ipi(cpu);
554 static bool wake_up_full_nohz_cpu(int cpu)
557 * We just need the target to call irq_exit() and re-evaluate
558 * the next tick. The nohz full kick at least implies that.
559 * If needed we can still optimize that later with an
562 if (cpu_is_offline(cpu))
563 return true; /* Don't try to wake offline CPUs. */
564 if (tick_nohz_full_cpu(cpu)) {
565 if (cpu != smp_processor_id() ||
566 tick_nohz_tick_stopped())
567 tick_nohz_full_kick_cpu(cpu);
575 * Wake up the specified CPU. If the CPU is going offline, it is the
576 * caller's responsibility to deal with the lost wakeup, for example,
577 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
579 void wake_up_nohz_cpu(int cpu)
581 if (!wake_up_full_nohz_cpu(cpu))
582 wake_up_idle_cpu(cpu);
585 static inline bool got_nohz_idle_kick(void)
587 int cpu = smp_processor_id();
589 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
592 if (idle_cpu(cpu) && !need_resched())
596 * We can't run Idle Load Balance on this CPU for this time so we
597 * cancel it and clear NOHZ_BALANCE_KICK
599 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
603 #else /* CONFIG_NO_HZ_COMMON */
605 static inline bool got_nohz_idle_kick(void)
610 #endif /* CONFIG_NO_HZ_COMMON */
612 #ifdef CONFIG_NO_HZ_FULL
613 bool sched_can_stop_tick(struct rq *rq)
617 /* Deadline tasks, even if single, need the tick */
618 if (rq->dl.dl_nr_running)
622 * If there are more than one RR tasks, we need the tick to effect the
623 * actual RR behaviour.
625 if (rq->rt.rr_nr_running) {
626 if (rq->rt.rr_nr_running == 1)
633 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
634 * forced preemption between FIFO tasks.
636 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
641 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
642 * if there's more than one we need the tick for involuntary
645 if (rq->nr_running > 1)
650 #endif /* CONFIG_NO_HZ_FULL */
652 void sched_avg_update(struct rq *rq)
654 s64 period = sched_avg_period();
656 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
658 * Inline assembly required to prevent the compiler
659 * optimising this loop into a divmod call.
660 * See __iter_div_u64_rem() for another example of this.
662 asm("" : "+rm" (rq->age_stamp));
663 rq->age_stamp += period;
668 #endif /* CONFIG_SMP */
670 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
671 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
673 * Iterate task_group tree rooted at *from, calling @down when first entering a
674 * node and @up when leaving it for the final time.
676 * Caller must hold rcu_lock or sufficient equivalent.
678 int walk_tg_tree_from(struct task_group *from,
679 tg_visitor down, tg_visitor up, void *data)
681 struct task_group *parent, *child;
687 ret = (*down)(parent, data);
690 list_for_each_entry_rcu(child, &parent->children, siblings) {
697 ret = (*up)(parent, data);
698 if (ret || parent == from)
702 parent = parent->parent;
709 int tg_nop(struct task_group *tg, void *data)
715 static void set_load_weight(struct task_struct *p, bool update_load)
717 int prio = p->static_prio - MAX_RT_PRIO;
718 struct load_weight *load = &p->se.load;
721 * SCHED_IDLE tasks get minimal weight:
723 if (idle_policy(p->policy)) {
724 load->weight = scale_load(WEIGHT_IDLEPRIO);
725 load->inv_weight = WMULT_IDLEPRIO;
730 * SCHED_OTHER tasks have to update their load when changing their
733 if (update_load && p->sched_class == &fair_sched_class) {
734 reweight_task(p, prio);
736 load->weight = scale_load(sched_prio_to_weight[prio]);
737 load->inv_weight = sched_prio_to_wmult[prio];
741 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
743 if (!(flags & ENQUEUE_NOCLOCK))
746 if (!(flags & ENQUEUE_RESTORE))
747 sched_info_queued(rq, p);
749 p->sched_class->enqueue_task(rq, p, flags);
752 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
754 if (!(flags & DEQUEUE_NOCLOCK))
757 if (!(flags & DEQUEUE_SAVE))
758 sched_info_dequeued(rq, p);
760 p->sched_class->dequeue_task(rq, p, flags);
763 void activate_task(struct rq *rq, struct task_struct *p, int flags)
765 if (task_contributes_to_load(p))
766 rq->nr_uninterruptible--;
768 enqueue_task(rq, p, flags);
771 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible++;
776 dequeue_task(rq, p, flags);
780 * __normal_prio - return the priority that is based on the static prio
782 static inline int __normal_prio(struct task_struct *p)
784 return p->static_prio;
788 * Calculate the expected normal priority: i.e. priority
789 * without taking RT-inheritance into account. Might be
790 * boosted by interactivity modifiers. Changes upon fork,
791 * setprio syscalls, and whenever the interactivity
792 * estimator recalculates.
794 static inline int normal_prio(struct task_struct *p)
798 if (task_has_dl_policy(p))
799 prio = MAX_DL_PRIO-1;
800 else if (task_has_rt_policy(p))
801 prio = MAX_RT_PRIO-1 - p->rt_priority;
803 prio = __normal_prio(p);
808 * Calculate the current priority, i.e. the priority
809 * taken into account by the scheduler. This value might
810 * be boosted by RT tasks, or might be boosted by
811 * interactivity modifiers. Will be RT if the task got
812 * RT-boosted. If not then it returns p->normal_prio.
814 static int effective_prio(struct task_struct *p)
816 p->normal_prio = normal_prio(p);
818 * If we are RT tasks or we were boosted to RT priority,
819 * keep the priority unchanged. Otherwise, update priority
820 * to the normal priority:
822 if (!rt_prio(p->prio))
823 return p->normal_prio;
828 * task_curr - is this task currently executing on a CPU?
829 * @p: the task in question.
831 * Return: 1 if the task is currently executing. 0 otherwise.
833 inline int task_curr(const struct task_struct *p)
835 return cpu_curr(task_cpu(p)) == p;
839 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
840 * use the balance_callback list if you want balancing.
842 * this means any call to check_class_changed() must be followed by a call to
843 * balance_callback().
845 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
846 const struct sched_class *prev_class,
849 if (prev_class != p->sched_class) {
850 if (prev_class->switched_from)
851 prev_class->switched_from(rq, p);
853 p->sched_class->switched_to(rq, p);
854 } else if (oldprio != p->prio || dl_task(p))
855 p->sched_class->prio_changed(rq, p, oldprio);
858 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
860 const struct sched_class *class;
862 if (p->sched_class == rq->curr->sched_class) {
863 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
865 for_each_class(class) {
866 if (class == rq->curr->sched_class)
868 if (class == p->sched_class) {
876 * A queue event has occurred, and we're going to schedule. In
877 * this case, we can save a useless back to back clock update.
879 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
880 rq_clock_skip_update(rq);
885 static inline bool is_per_cpu_kthread(struct task_struct *p)
887 if (!(p->flags & PF_KTHREAD))
890 if (p->nr_cpus_allowed != 1)
897 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
898 * __set_cpus_allowed_ptr() and select_fallback_rq().
900 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
902 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
905 if (is_per_cpu_kthread(p))
906 return cpu_online(cpu);
908 return cpu_active(cpu);
912 * This is how migration works:
914 * 1) we invoke migration_cpu_stop() on the target CPU using
916 * 2) stopper starts to run (implicitly forcing the migrated thread
918 * 3) it checks whether the migrated task is still in the wrong runqueue.
919 * 4) if it's in the wrong runqueue then the migration thread removes
920 * it and puts it into the right queue.
921 * 5) stopper completes and stop_one_cpu() returns and the migration
926 * move_queued_task - move a queued task to new rq.
928 * Returns (locked) new rq. Old rq's lock is released.
930 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
931 struct task_struct *p, int new_cpu)
933 lockdep_assert_held(&rq->lock);
935 p->on_rq = TASK_ON_RQ_MIGRATING;
936 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
937 set_task_cpu(p, new_cpu);
940 rq = cpu_rq(new_cpu);
943 BUG_ON(task_cpu(p) != new_cpu);
944 enqueue_task(rq, p, 0);
945 p->on_rq = TASK_ON_RQ_QUEUED;
946 check_preempt_curr(rq, p, 0);
951 struct migration_arg {
952 struct task_struct *task;
957 * Move (not current) task off this CPU, onto the destination CPU. We're doing
958 * this because either it can't run here any more (set_cpus_allowed()
959 * away from this CPU, or CPU going down), or because we're
960 * attempting to rebalance this task on exec (sched_exec).
962 * So we race with normal scheduler movements, but that's OK, as long
963 * as the task is no longer on this CPU.
965 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
966 struct task_struct *p, int dest_cpu)
968 /* Affinity changed (again). */
969 if (!is_cpu_allowed(p, dest_cpu))
973 rq = move_queued_task(rq, rf, p, dest_cpu);
979 * migration_cpu_stop - this will be executed by a highprio stopper thread
980 * and performs thread migration by bumping thread off CPU then
981 * 'pushing' onto another runqueue.
983 static int migration_cpu_stop(void *data)
985 struct migration_arg *arg = data;
986 struct task_struct *p = arg->task;
987 struct rq *rq = this_rq();
991 * The original target CPU might have gone down and we might
992 * be on another CPU but it doesn't matter.
996 * We need to explicitly wake pending tasks before running
997 * __migrate_task() such that we will not miss enforcing cpus_allowed
998 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1000 sched_ttwu_pending();
1002 raw_spin_lock(&p->pi_lock);
1005 * If task_rq(p) != rq, it cannot be migrated here, because we're
1006 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1007 * we're holding p->pi_lock.
1009 if (task_rq(p) == rq) {
1010 if (task_on_rq_queued(p))
1011 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1013 p->wake_cpu = arg->dest_cpu;
1016 raw_spin_unlock(&p->pi_lock);
1023 * sched_class::set_cpus_allowed must do the below, but is not required to
1024 * actually call this function.
1026 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1028 cpumask_copy(&p->cpus_allowed, new_mask);
1029 p->nr_cpus_allowed = cpumask_weight(new_mask);
1032 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1034 struct rq *rq = task_rq(p);
1035 bool queued, running;
1037 lockdep_assert_held(&p->pi_lock);
1039 queued = task_on_rq_queued(p);
1040 running = task_current(rq, p);
1044 * Because __kthread_bind() calls this on blocked tasks without
1047 lockdep_assert_held(&rq->lock);
1048 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1051 put_prev_task(rq, p);
1053 p->sched_class->set_cpus_allowed(p, new_mask);
1056 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1058 set_curr_task(rq, p);
1062 * Change a given task's CPU affinity. Migrate the thread to a
1063 * proper CPU and schedule it away if the CPU it's executing on
1064 * is removed from the allowed bitmask.
1066 * NOTE: the caller must have a valid reference to the task, the
1067 * task must not exit() & deallocate itself prematurely. The
1068 * call is not atomic; no spinlocks may be held.
1070 static int __set_cpus_allowed_ptr(struct task_struct *p,
1071 const struct cpumask *new_mask, bool check)
1073 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1074 unsigned int dest_cpu;
1079 rq = task_rq_lock(p, &rf);
1080 update_rq_clock(rq);
1082 if (p->flags & PF_KTHREAD) {
1084 * Kernel threads are allowed on online && !active CPUs
1086 cpu_valid_mask = cpu_online_mask;
1090 * Must re-check here, to close a race against __kthread_bind(),
1091 * sched_setaffinity() is not guaranteed to observe the flag.
1093 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1098 if (cpumask_equal(&p->cpus_allowed, new_mask))
1101 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1106 do_set_cpus_allowed(p, new_mask);
1108 if (p->flags & PF_KTHREAD) {
1110 * For kernel threads that do indeed end up on online &&
1111 * !active we want to ensure they are strict per-CPU threads.
1113 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1114 !cpumask_intersects(new_mask, cpu_active_mask) &&
1115 p->nr_cpus_allowed != 1);
1118 /* Can the task run on the task's current CPU? If so, we're done */
1119 if (cpumask_test_cpu(task_cpu(p), new_mask))
1122 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1123 if (task_running(rq, p) || p->state == TASK_WAKING) {
1124 struct migration_arg arg = { p, dest_cpu };
1125 /* Need help from migration thread: drop lock and wait. */
1126 task_rq_unlock(rq, p, &rf);
1127 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1128 tlb_migrate_finish(p->mm);
1130 } else if (task_on_rq_queued(p)) {
1132 * OK, since we're going to drop the lock immediately
1133 * afterwards anyway.
1135 rq = move_queued_task(rq, &rf, p, dest_cpu);
1138 task_rq_unlock(rq, p, &rf);
1143 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1145 return __set_cpus_allowed_ptr(p, new_mask, false);
1147 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1149 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1151 #ifdef CONFIG_SCHED_DEBUG
1153 * We should never call set_task_cpu() on a blocked task,
1154 * ttwu() will sort out the placement.
1156 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1160 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1161 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1162 * time relying on p->on_rq.
1164 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1165 p->sched_class == &fair_sched_class &&
1166 (p->on_rq && !task_on_rq_migrating(p)));
1168 #ifdef CONFIG_LOCKDEP
1170 * The caller should hold either p->pi_lock or rq->lock, when changing
1171 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1173 * sched_move_task() holds both and thus holding either pins the cgroup,
1176 * Furthermore, all task_rq users should acquire both locks, see
1179 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1180 lockdep_is_held(&task_rq(p)->lock)));
1183 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1185 WARN_ON_ONCE(!cpu_online(new_cpu));
1188 trace_sched_migrate_task(p, new_cpu);
1190 if (task_cpu(p) != new_cpu) {
1191 if (p->sched_class->migrate_task_rq)
1192 p->sched_class->migrate_task_rq(p);
1193 p->se.nr_migrations++;
1194 perf_event_task_migrate(p);
1197 __set_task_cpu(p, new_cpu);
1200 static void __migrate_swap_task(struct task_struct *p, int cpu)
1202 if (task_on_rq_queued(p)) {
1203 struct rq *src_rq, *dst_rq;
1204 struct rq_flags srf, drf;
1206 src_rq = task_rq(p);
1207 dst_rq = cpu_rq(cpu);
1209 rq_pin_lock(src_rq, &srf);
1210 rq_pin_lock(dst_rq, &drf);
1212 p->on_rq = TASK_ON_RQ_MIGRATING;
1213 deactivate_task(src_rq, p, 0);
1214 set_task_cpu(p, cpu);
1215 activate_task(dst_rq, p, 0);
1216 p->on_rq = TASK_ON_RQ_QUEUED;
1217 check_preempt_curr(dst_rq, p, 0);
1219 rq_unpin_lock(dst_rq, &drf);
1220 rq_unpin_lock(src_rq, &srf);
1224 * Task isn't running anymore; make it appear like we migrated
1225 * it before it went to sleep. This means on wakeup we make the
1226 * previous CPU our target instead of where it really is.
1232 struct migration_swap_arg {
1233 struct task_struct *src_task, *dst_task;
1234 int src_cpu, dst_cpu;
1237 static int migrate_swap_stop(void *data)
1239 struct migration_swap_arg *arg = data;
1240 struct rq *src_rq, *dst_rq;
1243 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1246 src_rq = cpu_rq(arg->src_cpu);
1247 dst_rq = cpu_rq(arg->dst_cpu);
1249 double_raw_lock(&arg->src_task->pi_lock,
1250 &arg->dst_task->pi_lock);
1251 double_rq_lock(src_rq, dst_rq);
1253 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1256 if (task_cpu(arg->src_task) != arg->src_cpu)
1259 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1262 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1265 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1266 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1271 double_rq_unlock(src_rq, dst_rq);
1272 raw_spin_unlock(&arg->dst_task->pi_lock);
1273 raw_spin_unlock(&arg->src_task->pi_lock);
1279 * Cross migrate two tasks
1281 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1283 struct migration_swap_arg arg;
1286 arg = (struct migration_swap_arg){
1288 .src_cpu = task_cpu(cur),
1290 .dst_cpu = task_cpu(p),
1293 if (arg.src_cpu == arg.dst_cpu)
1297 * These three tests are all lockless; this is OK since all of them
1298 * will be re-checked with proper locks held further down the line.
1300 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1303 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1306 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1309 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1310 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1317 * wait_task_inactive - wait for a thread to unschedule.
1319 * If @match_state is nonzero, it's the @p->state value just checked and
1320 * not expected to change. If it changes, i.e. @p might have woken up,
1321 * then return zero. When we succeed in waiting for @p to be off its CPU,
1322 * we return a positive number (its total switch count). If a second call
1323 * a short while later returns the same number, the caller can be sure that
1324 * @p has remained unscheduled the whole time.
1326 * The caller must ensure that the task *will* unschedule sometime soon,
1327 * else this function might spin for a *long* time. This function can't
1328 * be called with interrupts off, or it may introduce deadlock with
1329 * smp_call_function() if an IPI is sent by the same process we are
1330 * waiting to become inactive.
1332 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1334 int running, queued;
1341 * We do the initial early heuristics without holding
1342 * any task-queue locks at all. We'll only try to get
1343 * the runqueue lock when things look like they will
1349 * If the task is actively running on another CPU
1350 * still, just relax and busy-wait without holding
1353 * NOTE! Since we don't hold any locks, it's not
1354 * even sure that "rq" stays as the right runqueue!
1355 * But we don't care, since "task_running()" will
1356 * return false if the runqueue has changed and p
1357 * is actually now running somewhere else!
1359 while (task_running(rq, p)) {
1360 if (match_state && unlikely(p->state != match_state))
1366 * Ok, time to look more closely! We need the rq
1367 * lock now, to be *sure*. If we're wrong, we'll
1368 * just go back and repeat.
1370 rq = task_rq_lock(p, &rf);
1371 trace_sched_wait_task(p);
1372 running = task_running(rq, p);
1373 queued = task_on_rq_queued(p);
1375 if (!match_state || p->state == match_state)
1376 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1377 task_rq_unlock(rq, p, &rf);
1380 * If it changed from the expected state, bail out now.
1382 if (unlikely(!ncsw))
1386 * Was it really running after all now that we
1387 * checked with the proper locks actually held?
1389 * Oops. Go back and try again..
1391 if (unlikely(running)) {
1397 * It's not enough that it's not actively running,
1398 * it must be off the runqueue _entirely_, and not
1401 * So if it was still runnable (but just not actively
1402 * running right now), it's preempted, and we should
1403 * yield - it could be a while.
1405 if (unlikely(queued)) {
1406 ktime_t to = NSEC_PER_SEC / HZ;
1408 set_current_state(TASK_UNINTERRUPTIBLE);
1409 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1414 * Ahh, all good. It wasn't running, and it wasn't
1415 * runnable, which means that it will never become
1416 * running in the future either. We're all done!
1425 * kick_process - kick a running thread to enter/exit the kernel
1426 * @p: the to-be-kicked thread
1428 * Cause a process which is running on another CPU to enter
1429 * kernel-mode, without any delay. (to get signals handled.)
1431 * NOTE: this function doesn't have to take the runqueue lock,
1432 * because all it wants to ensure is that the remote task enters
1433 * the kernel. If the IPI races and the task has been migrated
1434 * to another CPU then no harm is done and the purpose has been
1437 void kick_process(struct task_struct *p)
1443 if ((cpu != smp_processor_id()) && task_curr(p))
1444 smp_send_reschedule(cpu);
1447 EXPORT_SYMBOL_GPL(kick_process);
1450 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1452 * A few notes on cpu_active vs cpu_online:
1454 * - cpu_active must be a subset of cpu_online
1456 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1457 * see __set_cpus_allowed_ptr(). At this point the newly online
1458 * CPU isn't yet part of the sched domains, and balancing will not
1461 * - on CPU-down we clear cpu_active() to mask the sched domains and
1462 * avoid the load balancer to place new tasks on the to be removed
1463 * CPU. Existing tasks will remain running there and will be taken
1466 * This means that fallback selection must not select !active CPUs.
1467 * And can assume that any active CPU must be online. Conversely
1468 * select_task_rq() below may allow selection of !active CPUs in order
1469 * to satisfy the above rules.
1471 static int select_fallback_rq(int cpu, struct task_struct *p)
1473 int nid = cpu_to_node(cpu);
1474 const struct cpumask *nodemask = NULL;
1475 enum { cpuset, possible, fail } state = cpuset;
1479 * If the node that the CPU is on has been offlined, cpu_to_node()
1480 * will return -1. There is no CPU on the node, and we should
1481 * select the CPU on the other node.
1484 nodemask = cpumask_of_node(nid);
1486 /* Look for allowed, online CPU in same node. */
1487 for_each_cpu(dest_cpu, nodemask) {
1488 if (!cpu_active(dest_cpu))
1490 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1496 /* Any allowed, online CPU? */
1497 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1498 if (!is_cpu_allowed(p, dest_cpu))
1504 /* No more Mr. Nice Guy. */
1507 if (IS_ENABLED(CONFIG_CPUSETS)) {
1508 cpuset_cpus_allowed_fallback(p);
1514 do_set_cpus_allowed(p, cpu_possible_mask);
1525 if (state != cpuset) {
1527 * Don't tell them about moving exiting tasks or
1528 * kernel threads (both mm NULL), since they never
1531 if (p->mm && printk_ratelimit()) {
1532 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1533 task_pid_nr(p), p->comm, cpu);
1541 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1544 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1546 lockdep_assert_held(&p->pi_lock);
1548 if (p->nr_cpus_allowed > 1)
1549 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1551 cpu = cpumask_any(&p->cpus_allowed);
1554 * In order not to call set_task_cpu() on a blocking task we need
1555 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1558 * Since this is common to all placement strategies, this lives here.
1560 * [ this allows ->select_task() to simply return task_cpu(p) and
1561 * not worry about this generic constraint ]
1563 if (unlikely(!is_cpu_allowed(p, cpu)))
1564 cpu = select_fallback_rq(task_cpu(p), p);
1569 static void update_avg(u64 *avg, u64 sample)
1571 s64 diff = sample - *avg;
1575 void sched_set_stop_task(int cpu, struct task_struct *stop)
1577 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1578 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1582 * Make it appear like a SCHED_FIFO task, its something
1583 * userspace knows about and won't get confused about.
1585 * Also, it will make PI more or less work without too
1586 * much confusion -- but then, stop work should not
1587 * rely on PI working anyway.
1589 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
1591 stop->sched_class = &stop_sched_class;
1594 cpu_rq(cpu)->stop = stop;
1598 * Reset it back to a normal scheduling class so that
1599 * it can die in pieces.
1601 old_stop->sched_class = &rt_sched_class;
1607 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1608 const struct cpumask *new_mask, bool check)
1610 return set_cpus_allowed_ptr(p, new_mask);
1613 #endif /* CONFIG_SMP */
1616 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1620 if (!schedstat_enabled())
1626 if (cpu == rq->cpu) {
1627 __schedstat_inc(rq->ttwu_local);
1628 __schedstat_inc(p->se.statistics.nr_wakeups_local);
1630 struct sched_domain *sd;
1632 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
1634 for_each_domain(rq->cpu, sd) {
1635 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1636 __schedstat_inc(sd->ttwu_wake_remote);
1643 if (wake_flags & WF_MIGRATED)
1644 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1645 #endif /* CONFIG_SMP */
1647 __schedstat_inc(rq->ttwu_count);
1648 __schedstat_inc(p->se.statistics.nr_wakeups);
1650 if (wake_flags & WF_SYNC)
1651 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
1654 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1656 activate_task(rq, p, en_flags);
1657 p->on_rq = TASK_ON_RQ_QUEUED;
1659 /* If a worker is waking up, notify the workqueue: */
1660 if (p->flags & PF_WQ_WORKER)
1661 wq_worker_waking_up(p, cpu_of(rq));
1665 * Mark the task runnable and perform wakeup-preemption.
1667 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1668 struct rq_flags *rf)
1670 check_preempt_curr(rq, p, wake_flags);
1671 p->state = TASK_RUNNING;
1672 trace_sched_wakeup(p);
1675 if (p->sched_class->task_woken) {
1677 * Our task @p is fully woken up and running; so its safe to
1678 * drop the rq->lock, hereafter rq is only used for statistics.
1680 rq_unpin_lock(rq, rf);
1681 p->sched_class->task_woken(rq, p);
1682 rq_repin_lock(rq, rf);
1685 if (rq->idle_stamp) {
1686 u64 delta = rq_clock(rq) - rq->idle_stamp;
1687 u64 max = 2*rq->max_idle_balance_cost;
1689 update_avg(&rq->avg_idle, delta);
1691 if (rq->avg_idle > max)
1700 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1701 struct rq_flags *rf)
1703 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1705 lockdep_assert_held(&rq->lock);
1708 if (p->sched_contributes_to_load)
1709 rq->nr_uninterruptible--;
1711 if (wake_flags & WF_MIGRATED)
1712 en_flags |= ENQUEUE_MIGRATED;
1715 ttwu_activate(rq, p, en_flags);
1716 ttwu_do_wakeup(rq, p, wake_flags, rf);
1720 * Called in case the task @p isn't fully descheduled from its runqueue,
1721 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1722 * since all we need to do is flip p->state to TASK_RUNNING, since
1723 * the task is still ->on_rq.
1725 static int ttwu_remote(struct task_struct *p, int wake_flags)
1731 rq = __task_rq_lock(p, &rf);
1732 if (task_on_rq_queued(p)) {
1733 /* check_preempt_curr() may use rq clock */
1734 update_rq_clock(rq);
1735 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1738 __task_rq_unlock(rq, &rf);
1744 void sched_ttwu_pending(void)
1746 struct rq *rq = this_rq();
1747 struct llist_node *llist = llist_del_all(&rq->wake_list);
1748 struct task_struct *p, *t;
1754 rq_lock_irqsave(rq, &rf);
1755 update_rq_clock(rq);
1757 llist_for_each_entry_safe(p, t, llist, wake_entry)
1758 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1760 rq_unlock_irqrestore(rq, &rf);
1763 void scheduler_ipi(void)
1766 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1767 * TIF_NEED_RESCHED remotely (for the first time) will also send
1770 preempt_fold_need_resched();
1772 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1776 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1777 * traditionally all their work was done from the interrupt return
1778 * path. Now that we actually do some work, we need to make sure
1781 * Some archs already do call them, luckily irq_enter/exit nest
1784 * Arguably we should visit all archs and update all handlers,
1785 * however a fair share of IPIs are still resched only so this would
1786 * somewhat pessimize the simple resched case.
1789 sched_ttwu_pending();
1792 * Check if someone kicked us for doing the nohz idle load balance.
1794 if (unlikely(got_nohz_idle_kick())) {
1795 this_rq()->idle_balance = 1;
1796 raise_softirq_irqoff(SCHED_SOFTIRQ);
1801 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1803 struct rq *rq = cpu_rq(cpu);
1805 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1807 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1808 if (!set_nr_if_polling(rq->idle))
1809 smp_send_reschedule(cpu);
1811 trace_sched_wake_idle_without_ipi(cpu);
1815 void wake_up_if_idle(int cpu)
1817 struct rq *rq = cpu_rq(cpu);
1822 if (!is_idle_task(rcu_dereference(rq->curr)))
1825 if (set_nr_if_polling(rq->idle)) {
1826 trace_sched_wake_idle_without_ipi(cpu);
1828 rq_lock_irqsave(rq, &rf);
1829 if (is_idle_task(rq->curr))
1830 smp_send_reschedule(cpu);
1831 /* Else CPU is not idle, do nothing here: */
1832 rq_unlock_irqrestore(rq, &rf);
1839 bool cpus_share_cache(int this_cpu, int that_cpu)
1841 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1843 #endif /* CONFIG_SMP */
1845 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1847 struct rq *rq = cpu_rq(cpu);
1850 #if defined(CONFIG_SMP)
1851 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1852 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1853 ttwu_queue_remote(p, cpu, wake_flags);
1859 update_rq_clock(rq);
1860 ttwu_do_activate(rq, p, wake_flags, &rf);
1865 * Notes on Program-Order guarantees on SMP systems.
1869 * The basic program-order guarantee on SMP systems is that when a task [t]
1870 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1871 * execution on its new CPU [c1].
1873 * For migration (of runnable tasks) this is provided by the following means:
1875 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1876 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1877 * rq(c1)->lock (if not at the same time, then in that order).
1878 * C) LOCK of the rq(c1)->lock scheduling in task
1880 * Transitivity guarantees that B happens after A and C after B.
1881 * Note: we only require RCpc transitivity.
1882 * Note: the CPU doing B need not be c0 or c1
1891 * UNLOCK rq(0)->lock
1893 * LOCK rq(0)->lock // orders against CPU0
1895 * UNLOCK rq(0)->lock
1899 * UNLOCK rq(1)->lock
1901 * LOCK rq(1)->lock // orders against CPU2
1904 * UNLOCK rq(1)->lock
1907 * BLOCKING -- aka. SLEEP + WAKEUP
1909 * For blocking we (obviously) need to provide the same guarantee as for
1910 * migration. However the means are completely different as there is no lock
1911 * chain to provide order. Instead we do:
1913 * 1) smp_store_release(X->on_cpu, 0)
1914 * 2) smp_cond_load_acquire(!X->on_cpu)
1918 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1920 * LOCK rq(0)->lock LOCK X->pi_lock
1923 * smp_store_release(X->on_cpu, 0);
1925 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1931 * X->state = RUNNING
1932 * UNLOCK rq(2)->lock
1934 * LOCK rq(2)->lock // orders against CPU1
1937 * UNLOCK rq(2)->lock
1940 * UNLOCK rq(0)->lock
1943 * However; for wakeups there is a second guarantee we must provide, namely we
1944 * must observe the state that lead to our wakeup. That is, not only must our
1945 * task observe its own prior state, it must also observe the stores prior to
1948 * This means that any means of doing remote wakeups must order the CPU doing
1949 * the wakeup against the CPU the task is going to end up running on. This,
1950 * however, is already required for the regular Program-Order guarantee above,
1951 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1956 * try_to_wake_up - wake up a thread
1957 * @p: the thread to be awakened
1958 * @state: the mask of task states that can be woken
1959 * @wake_flags: wake modifier flags (WF_*)
1961 * If (@state & @p->state) @p->state = TASK_RUNNING.
1963 * If the task was not queued/runnable, also place it back on a runqueue.
1965 * Atomic against schedule() which would dequeue a task, also see
1966 * set_current_state().
1968 * Return: %true if @p->state changes (an actual wakeup was done),
1972 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1974 unsigned long flags;
1975 int cpu, success = 0;
1978 * If we are going to wake up a thread waiting for CONDITION we
1979 * need to ensure that CONDITION=1 done by the caller can not be
1980 * reordered with p->state check below. This pairs with mb() in
1981 * set_current_state() the waiting thread does.
1983 raw_spin_lock_irqsave(&p->pi_lock, flags);
1984 smp_mb__after_spinlock();
1985 if (!(p->state & state))
1988 trace_sched_waking(p);
1990 /* We're going to change ->state: */
1995 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1996 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1997 * in smp_cond_load_acquire() below.
1999 * sched_ttwu_pending() try_to_wake_up()
2000 * [S] p->on_rq = 1; [L] P->state
2001 * UNLOCK rq->lock -----.
2005 * LOCK rq->lock -----'
2009 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2011 * Pairs with the UNLOCK+LOCK on rq->lock from the
2012 * last wakeup of our task and the schedule that got our task
2016 if (p->on_rq && ttwu_remote(p, wake_flags))
2021 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2022 * possible to, falsely, observe p->on_cpu == 0.
2024 * One must be running (->on_cpu == 1) in order to remove oneself
2025 * from the runqueue.
2027 * [S] ->on_cpu = 1; [L] ->on_rq
2031 * [S] ->on_rq = 0; [L] ->on_cpu
2033 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2034 * from the consecutive calls to schedule(); the first switching to our
2035 * task, the second putting it to sleep.
2040 * If the owning (remote) CPU is still in the middle of schedule() with
2041 * this task as prev, wait until its done referencing the task.
2043 * Pairs with the smp_store_release() in finish_task().
2045 * This ensures that tasks getting woken will be fully ordered against
2046 * their previous state and preserve Program Order.
2048 smp_cond_load_acquire(&p->on_cpu, !VAL);
2050 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2051 p->state = TASK_WAKING;
2054 delayacct_blkio_end(p);
2055 atomic_dec(&task_rq(p)->nr_iowait);
2058 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2059 if (task_cpu(p) != cpu) {
2060 wake_flags |= WF_MIGRATED;
2061 set_task_cpu(p, cpu);
2064 #else /* CONFIG_SMP */
2067 delayacct_blkio_end(p);
2068 atomic_dec(&task_rq(p)->nr_iowait);
2071 #endif /* CONFIG_SMP */
2073 ttwu_queue(p, cpu, wake_flags);
2075 ttwu_stat(p, cpu, wake_flags);
2077 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2083 * try_to_wake_up_local - try to wake up a local task with rq lock held
2084 * @p: the thread to be awakened
2085 * @rf: request-queue flags for pinning
2087 * Put @p on the run-queue if it's not already there. The caller must
2088 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2091 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2093 struct rq *rq = task_rq(p);
2095 if (WARN_ON_ONCE(rq != this_rq()) ||
2096 WARN_ON_ONCE(p == current))
2099 lockdep_assert_held(&rq->lock);
2101 if (!raw_spin_trylock(&p->pi_lock)) {
2103 * This is OK, because current is on_cpu, which avoids it being
2104 * picked for load-balance and preemption/IRQs are still
2105 * disabled avoiding further scheduler activity on it and we've
2106 * not yet picked a replacement task.
2109 raw_spin_lock(&p->pi_lock);
2113 if (!(p->state & TASK_NORMAL))
2116 trace_sched_waking(p);
2118 if (!task_on_rq_queued(p)) {
2120 delayacct_blkio_end(p);
2121 atomic_dec(&rq->nr_iowait);
2123 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2126 ttwu_do_wakeup(rq, p, 0, rf);
2127 ttwu_stat(p, smp_processor_id(), 0);
2129 raw_spin_unlock(&p->pi_lock);
2133 * wake_up_process - Wake up a specific process
2134 * @p: The process to be woken up.
2136 * Attempt to wake up the nominated process and move it to the set of runnable
2139 * Return: 1 if the process was woken up, 0 if it was already running.
2141 * It may be assumed that this function implies a write memory barrier before
2142 * changing the task state if and only if any tasks are woken up.
2144 int wake_up_process(struct task_struct *p)
2146 return try_to_wake_up(p, TASK_NORMAL, 0);
2148 EXPORT_SYMBOL(wake_up_process);
2150 int wake_up_state(struct task_struct *p, unsigned int state)
2152 return try_to_wake_up(p, state, 0);
2156 * Perform scheduler related setup for a newly forked process p.
2157 * p is forked by current.
2159 * __sched_fork() is basic setup used by init_idle() too:
2161 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2166 p->se.exec_start = 0;
2167 p->se.sum_exec_runtime = 0;
2168 p->se.prev_sum_exec_runtime = 0;
2169 p->se.nr_migrations = 0;
2171 INIT_LIST_HEAD(&p->se.group_node);
2173 #ifdef CONFIG_FAIR_GROUP_SCHED
2174 p->se.cfs_rq = NULL;
2177 #ifdef CONFIG_SCHEDSTATS
2178 /* Even if schedstat is disabled, there should not be garbage */
2179 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2182 RB_CLEAR_NODE(&p->dl.rb_node);
2183 init_dl_task_timer(&p->dl);
2184 init_dl_inactive_task_timer(&p->dl);
2185 __dl_clear_params(p);
2187 INIT_LIST_HEAD(&p->rt.run_list);
2189 p->rt.time_slice = sched_rr_timeslice;
2193 #ifdef CONFIG_PREEMPT_NOTIFIERS
2194 INIT_HLIST_HEAD(&p->preempt_notifiers);
2197 #ifdef CONFIG_NUMA_BALANCING
2198 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2199 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2200 p->mm->numa_scan_seq = 0;
2203 if (clone_flags & CLONE_VM)
2204 p->numa_preferred_nid = current->numa_preferred_nid;
2206 p->numa_preferred_nid = -1;
2208 p->node_stamp = 0ULL;
2209 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2210 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2211 p->numa_work.next = &p->numa_work;
2212 p->numa_faults = NULL;
2213 p->last_task_numa_placement = 0;
2214 p->last_sum_exec_runtime = 0;
2216 p->numa_group = NULL;
2217 #endif /* CONFIG_NUMA_BALANCING */
2220 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2222 #ifdef CONFIG_NUMA_BALANCING
2224 void set_numabalancing_state(bool enabled)
2227 static_branch_enable(&sched_numa_balancing);
2229 static_branch_disable(&sched_numa_balancing);
2232 #ifdef CONFIG_PROC_SYSCTL
2233 int sysctl_numa_balancing(struct ctl_table *table, int write,
2234 void __user *buffer, size_t *lenp, loff_t *ppos)
2238 int state = static_branch_likely(&sched_numa_balancing);
2240 if (write && !capable(CAP_SYS_ADMIN))
2245 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2249 set_numabalancing_state(state);
2255 #ifdef CONFIG_SCHEDSTATS
2257 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2258 static bool __initdata __sched_schedstats = false;
2260 static void set_schedstats(bool enabled)
2263 static_branch_enable(&sched_schedstats);
2265 static_branch_disable(&sched_schedstats);
2268 void force_schedstat_enabled(void)
2270 if (!schedstat_enabled()) {
2271 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2272 static_branch_enable(&sched_schedstats);
2276 static int __init setup_schedstats(char *str)
2283 * This code is called before jump labels have been set up, so we can't
2284 * change the static branch directly just yet. Instead set a temporary
2285 * variable so init_schedstats() can do it later.
2287 if (!strcmp(str, "enable")) {
2288 __sched_schedstats = true;
2290 } else if (!strcmp(str, "disable")) {
2291 __sched_schedstats = false;
2296 pr_warn("Unable to parse schedstats=\n");
2300 __setup("schedstats=", setup_schedstats);
2302 static void __init init_schedstats(void)
2304 set_schedstats(__sched_schedstats);
2307 #ifdef CONFIG_PROC_SYSCTL
2308 int sysctl_schedstats(struct ctl_table *table, int write,
2309 void __user *buffer, size_t *lenp, loff_t *ppos)
2313 int state = static_branch_likely(&sched_schedstats);
2315 if (write && !capable(CAP_SYS_ADMIN))
2320 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2324 set_schedstats(state);
2327 #endif /* CONFIG_PROC_SYSCTL */
2328 #else /* !CONFIG_SCHEDSTATS */
2329 static inline void init_schedstats(void) {}
2330 #endif /* CONFIG_SCHEDSTATS */
2333 * fork()/clone()-time setup:
2335 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2337 unsigned long flags;
2338 int cpu = get_cpu();
2340 __sched_fork(clone_flags, p);
2342 * We mark the process as NEW here. This guarantees that
2343 * nobody will actually run it, and a signal or other external
2344 * event cannot wake it up and insert it on the runqueue either.
2346 p->state = TASK_NEW;
2349 * Make sure we do not leak PI boosting priority to the child.
2351 p->prio = current->normal_prio;
2354 * Revert to default priority/policy on fork if requested.
2356 if (unlikely(p->sched_reset_on_fork)) {
2357 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2358 p->policy = SCHED_NORMAL;
2359 p->static_prio = NICE_TO_PRIO(0);
2361 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2362 p->static_prio = NICE_TO_PRIO(0);
2364 p->prio = p->normal_prio = __normal_prio(p);
2365 set_load_weight(p, false);
2368 * We don't need the reset flag anymore after the fork. It has
2369 * fulfilled its duty:
2371 p->sched_reset_on_fork = 0;
2374 if (dl_prio(p->prio)) {
2377 } else if (rt_prio(p->prio)) {
2378 p->sched_class = &rt_sched_class;
2380 p->sched_class = &fair_sched_class;
2383 init_entity_runnable_average(&p->se);
2386 * The child is not yet in the pid-hash so no cgroup attach races,
2387 * and the cgroup is pinned to this child due to cgroup_fork()
2388 * is ran before sched_fork().
2390 * Silence PROVE_RCU.
2392 raw_spin_lock_irqsave(&p->pi_lock, flags);
2394 * We're setting the CPU for the first time, we don't migrate,
2395 * so use __set_task_cpu().
2397 __set_task_cpu(p, cpu);
2398 if (p->sched_class->task_fork)
2399 p->sched_class->task_fork(p);
2400 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2402 #ifdef CONFIG_SCHED_INFO
2403 if (likely(sched_info_on()))
2404 memset(&p->sched_info, 0, sizeof(p->sched_info));
2406 #if defined(CONFIG_SMP)
2409 init_task_preempt_count(p);
2411 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2412 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2419 unsigned long to_ratio(u64 period, u64 runtime)
2421 if (runtime == RUNTIME_INF)
2425 * Doing this here saves a lot of checks in all
2426 * the calling paths, and returning zero seems
2427 * safe for them anyway.
2432 return div64_u64(runtime << BW_SHIFT, period);
2436 * wake_up_new_task - wake up a newly created task for the first time.
2438 * This function will do some initial scheduler statistics housekeeping
2439 * that must be done for every newly created context, then puts the task
2440 * on the runqueue and wakes it.
2442 void wake_up_new_task(struct task_struct *p)
2447 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2448 p->state = TASK_RUNNING;
2451 * Fork balancing, do it here and not earlier because:
2452 * - cpus_allowed can change in the fork path
2453 * - any previously selected CPU might disappear through hotplug
2455 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2456 * as we're not fully set-up yet.
2458 p->recent_used_cpu = task_cpu(p);
2459 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2461 rq = __task_rq_lock(p, &rf);
2462 update_rq_clock(rq);
2463 post_init_entity_util_avg(&p->se);
2465 activate_task(rq, p, ENQUEUE_NOCLOCK);
2466 p->on_rq = TASK_ON_RQ_QUEUED;
2467 trace_sched_wakeup_new(p);
2468 check_preempt_curr(rq, p, WF_FORK);
2470 if (p->sched_class->task_woken) {
2472 * Nothing relies on rq->lock after this, so its fine to
2475 rq_unpin_lock(rq, &rf);
2476 p->sched_class->task_woken(rq, p);
2477 rq_repin_lock(rq, &rf);
2480 task_rq_unlock(rq, p, &rf);
2483 #ifdef CONFIG_PREEMPT_NOTIFIERS
2485 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2487 void preempt_notifier_inc(void)
2489 static_branch_inc(&preempt_notifier_key);
2491 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2493 void preempt_notifier_dec(void)
2495 static_branch_dec(&preempt_notifier_key);
2497 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2500 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2501 * @notifier: notifier struct to register
2503 void preempt_notifier_register(struct preempt_notifier *notifier)
2505 if (!static_branch_unlikely(&preempt_notifier_key))
2506 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2508 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2510 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2513 * preempt_notifier_unregister - no longer interested in preemption notifications
2514 * @notifier: notifier struct to unregister
2516 * This is *not* safe to call from within a preemption notifier.
2518 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2520 hlist_del(¬ifier->link);
2522 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2524 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2526 struct preempt_notifier *notifier;
2528 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2529 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2532 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2534 if (static_branch_unlikely(&preempt_notifier_key))
2535 __fire_sched_in_preempt_notifiers(curr);
2539 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2540 struct task_struct *next)
2542 struct preempt_notifier *notifier;
2544 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2545 notifier->ops->sched_out(notifier, next);
2548 static __always_inline void
2549 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2550 struct task_struct *next)
2552 if (static_branch_unlikely(&preempt_notifier_key))
2553 __fire_sched_out_preempt_notifiers(curr, next);
2556 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2558 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2563 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2564 struct task_struct *next)
2568 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2570 static inline void prepare_task(struct task_struct *next)
2574 * Claim the task as running, we do this before switching to it
2575 * such that any running task will have this set.
2581 static inline void finish_task(struct task_struct *prev)
2585 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2586 * We must ensure this doesn't happen until the switch is completely
2589 * In particular, the load of prev->state in finish_task_switch() must
2590 * happen before this.
2592 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2594 smp_store_release(&prev->on_cpu, 0);
2599 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2602 * Since the runqueue lock will be released by the next
2603 * task (which is an invalid locking op but in the case
2604 * of the scheduler it's an obvious special-case), so we
2605 * do an early lockdep release here:
2607 rq_unpin_lock(rq, rf);
2608 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2609 #ifdef CONFIG_DEBUG_SPINLOCK
2610 /* this is a valid case when another task releases the spinlock */
2611 rq->lock.owner = next;
2615 static inline void finish_lock_switch(struct rq *rq)
2618 * If we are tracking spinlock dependencies then we have to
2619 * fix up the runqueue lock - which gets 'carried over' from
2620 * prev into current:
2622 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2623 raw_spin_unlock_irq(&rq->lock);
2627 * NOP if the arch has not defined these:
2630 #ifndef prepare_arch_switch
2631 # define prepare_arch_switch(next) do { } while (0)
2634 #ifndef finish_arch_post_lock_switch
2635 # define finish_arch_post_lock_switch() do { } while (0)
2639 * prepare_task_switch - prepare to switch tasks
2640 * @rq: the runqueue preparing to switch
2641 * @prev: the current task that is being switched out
2642 * @next: the task we are going to switch to.
2644 * This is called with the rq lock held and interrupts off. It must
2645 * be paired with a subsequent finish_task_switch after the context
2648 * prepare_task_switch sets up locking and calls architecture specific
2652 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2653 struct task_struct *next)
2655 sched_info_switch(rq, prev, next);
2656 perf_event_task_sched_out(prev, next);
2657 fire_sched_out_preempt_notifiers(prev, next);
2659 prepare_arch_switch(next);
2663 * finish_task_switch - clean up after a task-switch
2664 * @prev: the thread we just switched away from.
2666 * finish_task_switch must be called after the context switch, paired
2667 * with a prepare_task_switch call before the context switch.
2668 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2669 * and do any other architecture-specific cleanup actions.
2671 * Note that we may have delayed dropping an mm in context_switch(). If
2672 * so, we finish that here outside of the runqueue lock. (Doing it
2673 * with the lock held can cause deadlocks; see schedule() for
2676 * The context switch have flipped the stack from under us and restored the
2677 * local variables which were saved when this task called schedule() in the
2678 * past. prev == current is still correct but we need to recalculate this_rq
2679 * because prev may have moved to another CPU.
2681 static struct rq *finish_task_switch(struct task_struct *prev)
2682 __releases(rq->lock)
2684 struct rq *rq = this_rq();
2685 struct mm_struct *mm = rq->prev_mm;
2689 * The previous task will have left us with a preempt_count of 2
2690 * because it left us after:
2693 * preempt_disable(); // 1
2695 * raw_spin_lock_irq(&rq->lock) // 2
2697 * Also, see FORK_PREEMPT_COUNT.
2699 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2700 "corrupted preempt_count: %s/%d/0x%x\n",
2701 current->comm, current->pid, preempt_count()))
2702 preempt_count_set(FORK_PREEMPT_COUNT);
2707 * A task struct has one reference for the use as "current".
2708 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2709 * schedule one last time. The schedule call will never return, and
2710 * the scheduled task must drop that reference.
2712 * We must observe prev->state before clearing prev->on_cpu (in
2713 * finish_task), otherwise a concurrent wakeup can get prev
2714 * running on another CPU and we could rave with its RUNNING -> DEAD
2715 * transition, resulting in a double drop.
2717 prev_state = prev->state;
2718 vtime_task_switch(prev);
2719 perf_event_task_sched_in(prev, current);
2721 finish_lock_switch(rq);
2722 finish_arch_post_lock_switch();
2724 fire_sched_in_preempt_notifiers(current);
2726 * When switching through a kernel thread, the loop in
2727 * membarrier_{private,global}_expedited() may have observed that
2728 * kernel thread and not issued an IPI. It is therefore possible to
2729 * schedule between user->kernel->user threads without passing though
2730 * switch_mm(). Membarrier requires a barrier after storing to
2731 * rq->curr, before returning to userspace, so provide them here:
2733 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2734 * provided by mmdrop(),
2735 * - a sync_core for SYNC_CORE.
2738 membarrier_mm_sync_core_before_usermode(mm);
2741 if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) {
2742 switch (prev_state) {
2744 if (prev->sched_class->task_dead)
2745 prev->sched_class->task_dead(prev);
2748 * Remove function-return probe instances associated with this
2749 * task and put them back on the free list.
2751 kprobe_flush_task(prev);
2753 /* Task is done with its stack. */
2754 put_task_stack(prev);
2756 put_task_struct(prev);
2760 kthread_park_complete(prev);
2765 tick_nohz_task_switch();
2771 /* rq->lock is NOT held, but preemption is disabled */
2772 static void __balance_callback(struct rq *rq)
2774 struct callback_head *head, *next;
2775 void (*func)(struct rq *rq);
2776 unsigned long flags;
2778 raw_spin_lock_irqsave(&rq->lock, flags);
2779 head = rq->balance_callback;
2780 rq->balance_callback = NULL;
2782 func = (void (*)(struct rq *))head->func;
2789 raw_spin_unlock_irqrestore(&rq->lock, flags);
2792 static inline void balance_callback(struct rq *rq)
2794 if (unlikely(rq->balance_callback))
2795 __balance_callback(rq);
2800 static inline void balance_callback(struct rq *rq)
2807 * schedule_tail - first thing a freshly forked thread must call.
2808 * @prev: the thread we just switched away from.
2810 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2811 __releases(rq->lock)
2816 * New tasks start with FORK_PREEMPT_COUNT, see there and
2817 * finish_task_switch() for details.
2819 * finish_task_switch() will drop rq->lock() and lower preempt_count
2820 * and the preempt_enable() will end up enabling preemption (on
2821 * PREEMPT_COUNT kernels).
2824 rq = finish_task_switch(prev);
2825 balance_callback(rq);
2828 if (current->set_child_tid)
2829 put_user(task_pid_vnr(current), current->set_child_tid);
2833 * context_switch - switch to the new MM and the new thread's register state.
2835 static __always_inline struct rq *
2836 context_switch(struct rq *rq, struct task_struct *prev,
2837 struct task_struct *next, struct rq_flags *rf)
2839 struct mm_struct *mm, *oldmm;
2841 prepare_task_switch(rq, prev, next);
2844 oldmm = prev->active_mm;
2846 * For paravirt, this is coupled with an exit in switch_to to
2847 * combine the page table reload and the switch backend into
2850 arch_start_context_switch(prev);
2853 * If mm is non-NULL, we pass through switch_mm(). If mm is
2854 * NULL, we will pass through mmdrop() in finish_task_switch().
2855 * Both of these contain the full memory barrier required by
2856 * membarrier after storing to rq->curr, before returning to
2860 next->active_mm = oldmm;
2862 enter_lazy_tlb(oldmm, next);
2864 switch_mm_irqs_off(oldmm, mm, next);
2867 prev->active_mm = NULL;
2868 rq->prev_mm = oldmm;
2871 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2873 prepare_lock_switch(rq, next, rf);
2875 /* Here we just switch the register state and the stack. */
2876 switch_to(prev, next, prev);
2879 return finish_task_switch(prev);
2883 * nr_running and nr_context_switches:
2885 * externally visible scheduler statistics: current number of runnable
2886 * threads, total number of context switches performed since bootup.
2888 unsigned long nr_running(void)
2890 unsigned long i, sum = 0;
2892 for_each_online_cpu(i)
2893 sum += cpu_rq(i)->nr_running;
2899 * Check if only the current task is running on the CPU.
2901 * Caution: this function does not check that the caller has disabled
2902 * preemption, thus the result might have a time-of-check-to-time-of-use
2903 * race. The caller is responsible to use it correctly, for example:
2905 * - from a non-preemptable section (of course)
2907 * - from a thread that is bound to a single CPU
2909 * - in a loop with very short iterations (e.g. a polling loop)
2911 bool single_task_running(void)
2913 return raw_rq()->nr_running == 1;
2915 EXPORT_SYMBOL(single_task_running);
2917 unsigned long long nr_context_switches(void)
2920 unsigned long long sum = 0;
2922 for_each_possible_cpu(i)
2923 sum += cpu_rq(i)->nr_switches;
2929 * IO-wait accounting, and how its mostly bollocks (on SMP).
2931 * The idea behind IO-wait account is to account the idle time that we could
2932 * have spend running if it were not for IO. That is, if we were to improve the
2933 * storage performance, we'd have a proportional reduction in IO-wait time.
2935 * This all works nicely on UP, where, when a task blocks on IO, we account
2936 * idle time as IO-wait, because if the storage were faster, it could've been
2937 * running and we'd not be idle.
2939 * This has been extended to SMP, by doing the same for each CPU. This however
2942 * Imagine for instance the case where two tasks block on one CPU, only the one
2943 * CPU will have IO-wait accounted, while the other has regular idle. Even
2944 * though, if the storage were faster, both could've ran at the same time,
2945 * utilising both CPUs.
2947 * This means, that when looking globally, the current IO-wait accounting on
2948 * SMP is a lower bound, by reason of under accounting.
2950 * Worse, since the numbers are provided per CPU, they are sometimes
2951 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2952 * associated with any one particular CPU, it can wake to another CPU than it
2953 * blocked on. This means the per CPU IO-wait number is meaningless.
2955 * Task CPU affinities can make all that even more 'interesting'.
2958 unsigned long nr_iowait(void)
2960 unsigned long i, sum = 0;
2962 for_each_possible_cpu(i)
2963 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2969 * Consumers of these two interfaces, like for example the cpufreq menu
2970 * governor are using nonsensical data. Boosting frequency for a CPU that has
2971 * IO-wait which might not even end up running the task when it does become
2975 unsigned long nr_iowait_cpu(int cpu)
2977 struct rq *this = cpu_rq(cpu);
2978 return atomic_read(&this->nr_iowait);
2981 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2983 struct rq *rq = this_rq();
2984 *nr_waiters = atomic_read(&rq->nr_iowait);
2985 *load = rq->load.weight;
2991 * sched_exec - execve() is a valuable balancing opportunity, because at
2992 * this point the task has the smallest effective memory and cache footprint.
2994 void sched_exec(void)
2996 struct task_struct *p = current;
2997 unsigned long flags;
3000 raw_spin_lock_irqsave(&p->pi_lock, flags);
3001 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3002 if (dest_cpu == smp_processor_id())
3005 if (likely(cpu_active(dest_cpu))) {
3006 struct migration_arg arg = { p, dest_cpu };
3008 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3009 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3013 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3018 DEFINE_PER_CPU(struct kernel_stat, kstat);
3019 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3021 EXPORT_PER_CPU_SYMBOL(kstat);
3022 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3025 * The function fair_sched_class.update_curr accesses the struct curr
3026 * and its field curr->exec_start; when called from task_sched_runtime(),
3027 * we observe a high rate of cache misses in practice.
3028 * Prefetching this data results in improved performance.
3030 static inline void prefetch_curr_exec_start(struct task_struct *p)
3032 #ifdef CONFIG_FAIR_GROUP_SCHED
3033 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3035 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3038 prefetch(&curr->exec_start);
3042 * Return accounted runtime for the task.
3043 * In case the task is currently running, return the runtime plus current's
3044 * pending runtime that have not been accounted yet.
3046 unsigned long long task_sched_runtime(struct task_struct *p)
3052 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3054 * 64-bit doesn't need locks to atomically read a 64-bit value.
3055 * So we have a optimization chance when the task's delta_exec is 0.
3056 * Reading ->on_cpu is racy, but this is ok.
3058 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3059 * If we race with it entering CPU, unaccounted time is 0. This is
3060 * indistinguishable from the read occurring a few cycles earlier.
3061 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3062 * been accounted, so we're correct here as well.
3064 if (!p->on_cpu || !task_on_rq_queued(p))
3065 return p->se.sum_exec_runtime;
3068 rq = task_rq_lock(p, &rf);
3070 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3071 * project cycles that may never be accounted to this
3072 * thread, breaking clock_gettime().
3074 if (task_current(rq, p) && task_on_rq_queued(p)) {
3075 prefetch_curr_exec_start(p);
3076 update_rq_clock(rq);
3077 p->sched_class->update_curr(rq);
3079 ns = p->se.sum_exec_runtime;
3080 task_rq_unlock(rq, p, &rf);
3086 * This function gets called by the timer code, with HZ frequency.
3087 * We call it with interrupts disabled.
3089 void scheduler_tick(void)
3091 int cpu = smp_processor_id();
3092 struct rq *rq = cpu_rq(cpu);
3093 struct task_struct *curr = rq->curr;
3100 update_rq_clock(rq);
3101 curr->sched_class->task_tick(rq, curr, 0);
3102 cpu_load_update_active(rq);
3103 calc_global_load_tick(rq);
3107 perf_event_task_tick();
3110 rq->idle_balance = idle_cpu(cpu);
3111 trigger_load_balance(rq);
3115 #ifdef CONFIG_NO_HZ_FULL
3119 struct delayed_work work;
3122 static struct tick_work __percpu *tick_work_cpu;
3124 static void sched_tick_remote(struct work_struct *work)
3126 struct delayed_work *dwork = to_delayed_work(work);
3127 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3128 int cpu = twork->cpu;
3129 struct rq *rq = cpu_rq(cpu);
3133 * Handle the tick only if it appears the remote CPU is running in full
3134 * dynticks mode. The check is racy by nature, but missing a tick or
3135 * having one too much is no big deal because the scheduler tick updates
3136 * statistics and checks timeslices in a time-independent way, regardless
3137 * of when exactly it is running.
3139 if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) {
3140 struct task_struct *curr;
3143 rq_lock_irq(rq, &rf);
3144 update_rq_clock(rq);
3146 delta = rq_clock_task(rq) - curr->se.exec_start;
3149 * Make sure the next tick runs within a reasonable
3152 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3153 curr->sched_class->task_tick(rq, curr, 0);
3154 rq_unlock_irq(rq, &rf);
3158 * Run the remote tick once per second (1Hz). This arbitrary
3159 * frequency is large enough to avoid overload but short enough
3160 * to keep scheduler internal stats reasonably up to date.
3162 queue_delayed_work(system_unbound_wq, dwork, HZ);
3165 static void sched_tick_start(int cpu)
3167 struct tick_work *twork;
3169 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3172 WARN_ON_ONCE(!tick_work_cpu);
3174 twork = per_cpu_ptr(tick_work_cpu, cpu);
3176 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3177 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3180 #ifdef CONFIG_HOTPLUG_CPU
3181 static void sched_tick_stop(int cpu)
3183 struct tick_work *twork;
3185 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3188 WARN_ON_ONCE(!tick_work_cpu);
3190 twork = per_cpu_ptr(tick_work_cpu, cpu);
3191 cancel_delayed_work_sync(&twork->work);
3193 #endif /* CONFIG_HOTPLUG_CPU */
3195 int __init sched_tick_offload_init(void)
3197 tick_work_cpu = alloc_percpu(struct tick_work);
3198 BUG_ON(!tick_work_cpu);
3203 #else /* !CONFIG_NO_HZ_FULL */
3204 static inline void sched_tick_start(int cpu) { }
3205 static inline void sched_tick_stop(int cpu) { }
3208 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3209 defined(CONFIG_PREEMPT_TRACER))
3211 * If the value passed in is equal to the current preempt count
3212 * then we just disabled preemption. Start timing the latency.
3214 static inline void preempt_latency_start(int val)
3216 if (preempt_count() == val) {
3217 unsigned long ip = get_lock_parent_ip();
3218 #ifdef CONFIG_DEBUG_PREEMPT
3219 current->preempt_disable_ip = ip;
3221 trace_preempt_off(CALLER_ADDR0, ip);
3225 void preempt_count_add(int val)
3227 #ifdef CONFIG_DEBUG_PREEMPT
3231 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3234 __preempt_count_add(val);
3235 #ifdef CONFIG_DEBUG_PREEMPT
3237 * Spinlock count overflowing soon?
3239 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3242 preempt_latency_start(val);
3244 EXPORT_SYMBOL(preempt_count_add);
3245 NOKPROBE_SYMBOL(preempt_count_add);
3248 * If the value passed in equals to the current preempt count
3249 * then we just enabled preemption. Stop timing the latency.
3251 static inline void preempt_latency_stop(int val)
3253 if (preempt_count() == val)
3254 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3257 void preempt_count_sub(int val)
3259 #ifdef CONFIG_DEBUG_PREEMPT
3263 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3266 * Is the spinlock portion underflowing?
3268 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3269 !(preempt_count() & PREEMPT_MASK)))
3273 preempt_latency_stop(val);
3274 __preempt_count_sub(val);
3276 EXPORT_SYMBOL(preempt_count_sub);
3277 NOKPROBE_SYMBOL(preempt_count_sub);
3280 static inline void preempt_latency_start(int val) { }
3281 static inline void preempt_latency_stop(int val) { }
3284 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3286 #ifdef CONFIG_DEBUG_PREEMPT
3287 return p->preempt_disable_ip;
3294 * Print scheduling while atomic bug:
3296 static noinline void __schedule_bug(struct task_struct *prev)
3298 /* Save this before calling printk(), since that will clobber it */
3299 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3301 if (oops_in_progress)
3304 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3305 prev->comm, prev->pid, preempt_count());
3307 debug_show_held_locks(prev);
3309 if (irqs_disabled())
3310 print_irqtrace_events(prev);
3311 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3312 && in_atomic_preempt_off()) {
3313 pr_err("Preemption disabled at:");
3314 print_ip_sym(preempt_disable_ip);
3318 panic("scheduling while atomic\n");
3321 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3325 * Various schedule()-time debugging checks and statistics:
3327 static inline void schedule_debug(struct task_struct *prev)
3329 #ifdef CONFIG_SCHED_STACK_END_CHECK
3330 if (task_stack_end_corrupted(prev))
3331 panic("corrupted stack end detected inside scheduler\n");
3334 if (unlikely(in_atomic_preempt_off())) {
3335 __schedule_bug(prev);
3336 preempt_count_set(PREEMPT_DISABLED);
3340 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3342 schedstat_inc(this_rq()->sched_count);
3346 * Pick up the highest-prio task:
3348 static inline struct task_struct *
3349 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3351 const struct sched_class *class;
3352 struct task_struct *p;
3355 * Optimization: we know that if all tasks are in the fair class we can
3356 * call that function directly, but only if the @prev task wasn't of a
3357 * higher scheduling class, because otherwise those loose the
3358 * opportunity to pull in more work from other CPUs.
3360 if (likely((prev->sched_class == &idle_sched_class ||
3361 prev->sched_class == &fair_sched_class) &&
3362 rq->nr_running == rq->cfs.h_nr_running)) {
3364 p = fair_sched_class.pick_next_task(rq, prev, rf);
3365 if (unlikely(p == RETRY_TASK))
3368 /* Assumes fair_sched_class->next == idle_sched_class */
3370 p = idle_sched_class.pick_next_task(rq, prev, rf);
3376 for_each_class(class) {
3377 p = class->pick_next_task(rq, prev, rf);
3379 if (unlikely(p == RETRY_TASK))
3385 /* The idle class should always have a runnable task: */
3390 * __schedule() is the main scheduler function.
3392 * The main means of driving the scheduler and thus entering this function are:
3394 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3396 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3397 * paths. For example, see arch/x86/entry_64.S.
3399 * To drive preemption between tasks, the scheduler sets the flag in timer
3400 * interrupt handler scheduler_tick().
3402 * 3. Wakeups don't really cause entry into schedule(). They add a
3403 * task to the run-queue and that's it.
3405 * Now, if the new task added to the run-queue preempts the current
3406 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3407 * called on the nearest possible occasion:
3409 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3411 * - in syscall or exception context, at the next outmost
3412 * preempt_enable(). (this might be as soon as the wake_up()'s
3415 * - in IRQ context, return from interrupt-handler to
3416 * preemptible context
3418 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3421 * - cond_resched() call
3422 * - explicit schedule() call
3423 * - return from syscall or exception to user-space
3424 * - return from interrupt-handler to user-space
3426 * WARNING: must be called with preemption disabled!
3428 static void __sched notrace __schedule(bool preempt)
3430 struct task_struct *prev, *next;
3431 unsigned long *switch_count;
3436 cpu = smp_processor_id();
3440 schedule_debug(prev);
3442 if (sched_feat(HRTICK))
3445 local_irq_disable();
3446 rcu_note_context_switch(preempt);
3449 * Make sure that signal_pending_state()->signal_pending() below
3450 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3451 * done by the caller to avoid the race with signal_wake_up().
3453 * The membarrier system call requires a full memory barrier
3454 * after coming from user-space, before storing to rq->curr.
3457 smp_mb__after_spinlock();
3459 /* Promote REQ to ACT */
3460 rq->clock_update_flags <<= 1;
3461 update_rq_clock(rq);
3463 switch_count = &prev->nivcsw;
3464 if (!preempt && prev->state) {
3465 if (unlikely(signal_pending_state(prev->state, prev))) {
3466 prev->state = TASK_RUNNING;
3468 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3471 if (prev->in_iowait) {
3472 atomic_inc(&rq->nr_iowait);
3473 delayacct_blkio_start();
3477 * If a worker went to sleep, notify and ask workqueue
3478 * whether it wants to wake up a task to maintain
3481 if (prev->flags & PF_WQ_WORKER) {
3482 struct task_struct *to_wakeup;
3484 to_wakeup = wq_worker_sleeping(prev);
3486 try_to_wake_up_local(to_wakeup, &rf);
3489 switch_count = &prev->nvcsw;
3492 next = pick_next_task(rq, prev, &rf);
3493 clear_tsk_need_resched(prev);
3494 clear_preempt_need_resched();
3496 if (likely(prev != next)) {
3500 * The membarrier system call requires each architecture
3501 * to have a full memory barrier after updating
3502 * rq->curr, before returning to user-space.
3504 * Here are the schemes providing that barrier on the
3505 * various architectures:
3506 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3507 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3508 * - finish_lock_switch() for weakly-ordered
3509 * architectures where spin_unlock is a full barrier,
3510 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3511 * is a RELEASE barrier),
3515 trace_sched_switch(preempt, prev, next);
3517 /* Also unlocks the rq: */
3518 rq = context_switch(rq, prev, next, &rf);
3520 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3521 rq_unlock_irq(rq, &rf);
3524 balance_callback(rq);
3527 void __noreturn do_task_dead(void)
3529 /* Causes final put_task_struct in finish_task_switch(): */
3530 set_special_state(TASK_DEAD);
3532 /* Tell freezer to ignore us: */
3533 current->flags |= PF_NOFREEZE;
3538 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3543 static inline void sched_submit_work(struct task_struct *tsk)
3545 if (!tsk->state || tsk_is_pi_blocked(tsk))
3548 * If we are going to sleep and we have plugged IO queued,
3549 * make sure to submit it to avoid deadlocks.
3551 if (blk_needs_flush_plug(tsk))
3552 blk_schedule_flush_plug(tsk);
3555 asmlinkage __visible void __sched schedule(void)
3557 struct task_struct *tsk = current;
3559 sched_submit_work(tsk);
3563 sched_preempt_enable_no_resched();
3564 } while (need_resched());
3566 EXPORT_SYMBOL(schedule);
3569 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3570 * state (have scheduled out non-voluntarily) by making sure that all
3571 * tasks have either left the run queue or have gone into user space.
3572 * As idle tasks do not do either, they must not ever be preempted
3573 * (schedule out non-voluntarily).
3575 * schedule_idle() is similar to schedule_preempt_disable() except that it
3576 * never enables preemption because it does not call sched_submit_work().
3578 void __sched schedule_idle(void)
3581 * As this skips calling sched_submit_work(), which the idle task does
3582 * regardless because that function is a nop when the task is in a
3583 * TASK_RUNNING state, make sure this isn't used someplace that the
3584 * current task can be in any other state. Note, idle is always in the
3585 * TASK_RUNNING state.
3587 WARN_ON_ONCE(current->state);
3590 } while (need_resched());
3593 #ifdef CONFIG_CONTEXT_TRACKING
3594 asmlinkage __visible void __sched schedule_user(void)
3597 * If we come here after a random call to set_need_resched(),
3598 * or we have been woken up remotely but the IPI has not yet arrived,
3599 * we haven't yet exited the RCU idle mode. Do it here manually until
3600 * we find a better solution.
3602 * NB: There are buggy callers of this function. Ideally we
3603 * should warn if prev_state != CONTEXT_USER, but that will trigger
3604 * too frequently to make sense yet.
3606 enum ctx_state prev_state = exception_enter();
3608 exception_exit(prev_state);
3613 * schedule_preempt_disabled - called with preemption disabled
3615 * Returns with preemption disabled. Note: preempt_count must be 1
3617 void __sched schedule_preempt_disabled(void)
3619 sched_preempt_enable_no_resched();
3624 static void __sched notrace preempt_schedule_common(void)
3628 * Because the function tracer can trace preempt_count_sub()
3629 * and it also uses preempt_enable/disable_notrace(), if
3630 * NEED_RESCHED is set, the preempt_enable_notrace() called
3631 * by the function tracer will call this function again and
3632 * cause infinite recursion.
3634 * Preemption must be disabled here before the function
3635 * tracer can trace. Break up preempt_disable() into two
3636 * calls. One to disable preemption without fear of b