4 * Core kernel scheduler code and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
10 #include <linux/nospec.h>
12 #include <linux/kcov.h>
14 #include <asm/switch_to.h>
17 #include "../workqueue_internal.h"
18 #include "../smpboot.h"
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/sched.h>
25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
27 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
29 * Debugging: various feature bits
31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32 * sysctl_sched_features, defined in sched.h, to allow constants propagation
33 * at compile time and compiler optimization based on features default.
35 #define SCHED_FEAT(name, enabled) \
36 (1UL << __SCHED_FEAT_##name) * enabled |
37 const_debug unsigned int sysctl_sched_features =
44 * Number of tasks to iterate in a single balance run.
45 * Limited because this is done with IRQs disabled.
47 const_debug unsigned int sysctl_sched_nr_migrate = 32;
50 * period over which we measure -rt task CPU usage in us.
53 unsigned int sysctl_sched_rt_period = 1000000;
55 __read_mostly int scheduler_running;
58 * part of the period that we allow rt tasks to run in us.
61 int sysctl_sched_rt_runtime = 950000;
64 * __task_rq_lock - lock the rq @p resides on.
66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
71 lockdep_assert_held(&p->pi_lock);
75 raw_spin_lock(&rq->lock);
76 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
80 raw_spin_unlock(&rq->lock);
82 while (unlikely(task_on_rq_migrating(p)))
88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
91 __acquires(p->pi_lock)
97 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
99 raw_spin_lock(&rq->lock);
101 * move_queued_task() task_rq_lock()
104 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
106 * [S] ->cpu = new_cpu [L] task_rq()
110 * If we observe the old CPU in task_rq_lock(), the acquire of
111 * the old rq->lock will fully serialize against the stores.
113 * If we observe the new CPU in task_rq_lock(), the address
114 * dependency headed by '[L] rq = task_rq()' and the acquire
115 * will pair with the WMB to ensure we then also see migrating.
117 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
121 raw_spin_unlock(&rq->lock);
122 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
124 while (unlikely(task_on_rq_migrating(p)))
130 * RQ-clock updating methods:
133 static void update_rq_clock_task(struct rq *rq, s64 delta)
136 * In theory, the compile should just see 0 here, and optimize out the call
137 * to sched_rt_avg_update. But I don't trust it...
139 s64 __maybe_unused steal = 0, irq_delta = 0;
141 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
142 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
145 * Since irq_time is only updated on {soft,}irq_exit, we might run into
146 * this case when a previous update_rq_clock() happened inside a
149 * When this happens, we stop ->clock_task and only update the
150 * prev_irq_time stamp to account for the part that fit, so that a next
151 * update will consume the rest. This ensures ->clock_task is
154 * It does however cause some slight miss-attribution of {soft,}irq
155 * time, a more accurate solution would be to update the irq_time using
156 * the current rq->clock timestamp, except that would require using
159 if (irq_delta > delta)
162 rq->prev_irq_time += irq_delta;
165 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
166 if (static_key_false((¶virt_steal_rq_enabled))) {
167 steal = paravirt_steal_clock(cpu_of(rq));
168 steal -= rq->prev_steal_time_rq;
170 if (unlikely(steal > delta))
173 rq->prev_steal_time_rq += steal;
178 rq->clock_task += delta;
180 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
181 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
182 update_irq_load_avg(rq, irq_delta + steal);
184 update_rq_clock_pelt(rq, delta);
187 void update_rq_clock(struct rq *rq)
191 lockdep_assert_held(&rq->lock);
193 if (rq->clock_update_flags & RQCF_ACT_SKIP)
196 #ifdef CONFIG_SCHED_DEBUG
197 if (sched_feat(WARN_DOUBLE_CLOCK))
198 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
199 rq->clock_update_flags |= RQCF_UPDATED;
202 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
206 update_rq_clock_task(rq, delta);
210 #ifdef CONFIG_SCHED_HRTICK
212 * Use HR-timers to deliver accurate preemption points.
215 static void hrtick_clear(struct rq *rq)
217 if (hrtimer_active(&rq->hrtick_timer))
218 hrtimer_cancel(&rq->hrtick_timer);
222 * High-resolution timer tick.
223 * Runs from hardirq context with interrupts disabled.
225 static enum hrtimer_restart hrtick(struct hrtimer *timer)
227 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
230 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
234 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
237 return HRTIMER_NORESTART;
242 static void __hrtick_restart(struct rq *rq)
244 struct hrtimer *timer = &rq->hrtick_timer;
246 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
250 * called from hardirq (IPI) context
252 static void __hrtick_start(void *arg)
258 __hrtick_restart(rq);
259 rq->hrtick_csd_pending = 0;
264 * Called to set the hrtick timer state.
266 * called with rq->lock held and irqs disabled
268 void hrtick_start(struct rq *rq, u64 delay)
270 struct hrtimer *timer = &rq->hrtick_timer;
275 * Don't schedule slices shorter than 10000ns, that just
276 * doesn't make sense and can cause timer DoS.
278 delta = max_t(s64, delay, 10000LL);
279 time = ktime_add_ns(timer->base->get_time(), delta);
281 hrtimer_set_expires(timer, time);
283 if (rq == this_rq()) {
284 __hrtick_restart(rq);
285 } else if (!rq->hrtick_csd_pending) {
286 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
287 rq->hrtick_csd_pending = 1;
293 * Called to set the hrtick timer state.
295 * called with rq->lock held and irqs disabled
297 void hrtick_start(struct rq *rq, u64 delay)
300 * Don't schedule slices shorter than 10000ns, that just
301 * doesn't make sense. Rely on vruntime for fairness.
303 delay = max_t(u64, delay, 10000LL);
304 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
305 HRTIMER_MODE_REL_PINNED);
307 #endif /* CONFIG_SMP */
309 static void hrtick_rq_init(struct rq *rq)
312 rq->hrtick_csd_pending = 0;
314 rq->hrtick_csd.flags = 0;
315 rq->hrtick_csd.func = __hrtick_start;
316 rq->hrtick_csd.info = rq;
319 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
320 rq->hrtick_timer.function = hrtick;
322 #else /* CONFIG_SCHED_HRTICK */
323 static inline void hrtick_clear(struct rq *rq)
327 static inline void hrtick_rq_init(struct rq *rq)
330 #endif /* CONFIG_SCHED_HRTICK */
333 * cmpxchg based fetch_or, macro so it works for different integer types
335 #define fetch_or(ptr, mask) \
337 typeof(ptr) _ptr = (ptr); \
338 typeof(mask) _mask = (mask); \
339 typeof(*_ptr) _old, _val = *_ptr; \
342 _old = cmpxchg(_ptr, _val, _val | _mask); \
350 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
352 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
353 * this avoids any races wrt polling state changes and thereby avoids
356 static bool set_nr_and_not_polling(struct task_struct *p)
358 struct thread_info *ti = task_thread_info(p);
359 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
363 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
365 * If this returns true, then the idle task promises to call
366 * sched_ttwu_pending() and reschedule soon.
368 static bool set_nr_if_polling(struct task_struct *p)
370 struct thread_info *ti = task_thread_info(p);
371 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
374 if (!(val & _TIF_POLLING_NRFLAG))
376 if (val & _TIF_NEED_RESCHED)
378 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
387 static bool set_nr_and_not_polling(struct task_struct *p)
389 set_tsk_need_resched(p);
394 static bool set_nr_if_polling(struct task_struct *p)
401 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
403 struct wake_q_node *node = &task->wake_q;
406 * Atomically grab the task, if ->wake_q is !nil already it means
407 * its already queued (either by us or someone else) and will get the
408 * wakeup due to that.
410 * In order to ensure that a pending wakeup will observe our pending
411 * state, even in the failed case, an explicit smp_mb() must be used.
413 smp_mb__before_atomic();
414 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
418 * The head is context local, there can be no concurrency.
421 head->lastp = &node->next;
426 * wake_q_add() - queue a wakeup for 'later' waking.
427 * @head: the wake_q_head to add @task to
428 * @task: the task to queue for 'later' wakeup
430 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
431 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
434 * This function must be used as-if it were wake_up_process(); IOW the task
435 * must be ready to be woken at this location.
437 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
439 if (__wake_q_add(head, task))
440 get_task_struct(task);
444 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
445 * @head: the wake_q_head to add @task to
446 * @task: the task to queue for 'later' wakeup
448 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
449 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
452 * This function must be used as-if it were wake_up_process(); IOW the task
453 * must be ready to be woken at this location.
455 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
456 * that already hold reference to @task can call the 'safe' version and trust
457 * wake_q to do the right thing depending whether or not the @task is already
460 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
462 if (!__wake_q_add(head, task))
463 put_task_struct(task);
466 void wake_up_q(struct wake_q_head *head)
468 struct wake_q_node *node = head->first;
470 while (node != WAKE_Q_TAIL) {
471 struct task_struct *task;
473 task = container_of(node, struct task_struct, wake_q);
475 /* Task can safely be re-inserted now: */
477 task->wake_q.next = NULL;
480 * wake_up_process() executes a full barrier, which pairs with
481 * the queueing in wake_q_add() so as not to miss wakeups.
483 wake_up_process(task);
484 put_task_struct(task);
489 * resched_curr - mark rq's current task 'to be rescheduled now'.
491 * On UP this means the setting of the need_resched flag, on SMP it
492 * might also involve a cross-CPU call to trigger the scheduler on
495 void resched_curr(struct rq *rq)
497 struct task_struct *curr = rq->curr;
500 lockdep_assert_held(&rq->lock);
502 if (test_tsk_need_resched(curr))
507 if (cpu == smp_processor_id()) {
508 set_tsk_need_resched(curr);
509 set_preempt_need_resched();
513 if (set_nr_and_not_polling(curr))
514 smp_send_reschedule(cpu);
516 trace_sched_wake_idle_without_ipi(cpu);
519 void resched_cpu(int cpu)
521 struct rq *rq = cpu_rq(cpu);
524 raw_spin_lock_irqsave(&rq->lock, flags);
525 if (cpu_online(cpu) || cpu == smp_processor_id())
527 raw_spin_unlock_irqrestore(&rq->lock, flags);
531 #ifdef CONFIG_NO_HZ_COMMON
533 * In the semi idle case, use the nearest busy CPU for migrating timers
534 * from an idle CPU. This is good for power-savings.
536 * We don't do similar optimization for completely idle system, as
537 * selecting an idle CPU will add more delays to the timers than intended
538 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
540 int get_nohz_timer_target(void)
542 int i, cpu = smp_processor_id();
543 struct sched_domain *sd;
545 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
549 for_each_domain(cpu, sd) {
550 for_each_cpu(i, sched_domain_span(sd)) {
554 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
561 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
562 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
569 * When add_timer_on() enqueues a timer into the timer wheel of an
570 * idle CPU then this timer might expire before the next timer event
571 * which is scheduled to wake up that CPU. In case of a completely
572 * idle system the next event might even be infinite time into the
573 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
574 * leaves the inner idle loop so the newly added timer is taken into
575 * account when the CPU goes back to idle and evaluates the timer
576 * wheel for the next timer event.
578 static void wake_up_idle_cpu(int cpu)
580 struct rq *rq = cpu_rq(cpu);
582 if (cpu == smp_processor_id())
585 if (set_nr_and_not_polling(rq->idle))
586 smp_send_reschedule(cpu);
588 trace_sched_wake_idle_without_ipi(cpu);
591 static bool wake_up_full_nohz_cpu(int cpu)
594 * We just need the target to call irq_exit() and re-evaluate
595 * the next tick. The nohz full kick at least implies that.
596 * If needed we can still optimize that later with an
599 if (cpu_is_offline(cpu))
600 return true; /* Don't try to wake offline CPUs. */
601 if (tick_nohz_full_cpu(cpu)) {
602 if (cpu != smp_processor_id() ||
603 tick_nohz_tick_stopped())
604 tick_nohz_full_kick_cpu(cpu);
612 * Wake up the specified CPU. If the CPU is going offline, it is the
613 * caller's responsibility to deal with the lost wakeup, for example,
614 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
616 void wake_up_nohz_cpu(int cpu)
618 if (!wake_up_full_nohz_cpu(cpu))
619 wake_up_idle_cpu(cpu);
622 static inline bool got_nohz_idle_kick(void)
624 int cpu = smp_processor_id();
626 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
629 if (idle_cpu(cpu) && !need_resched())
633 * We can't run Idle Load Balance on this CPU for this time so we
634 * cancel it and clear NOHZ_BALANCE_KICK
636 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
640 #else /* CONFIG_NO_HZ_COMMON */
642 static inline bool got_nohz_idle_kick(void)
647 #endif /* CONFIG_NO_HZ_COMMON */
649 #ifdef CONFIG_NO_HZ_FULL
650 bool sched_can_stop_tick(struct rq *rq)
654 /* Deadline tasks, even if single, need the tick */
655 if (rq->dl.dl_nr_running)
659 * If there are more than one RR tasks, we need the tick to effect the
660 * actual RR behaviour.
662 if (rq->rt.rr_nr_running) {
663 if (rq->rt.rr_nr_running == 1)
670 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
671 * forced preemption between FIFO tasks.
673 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
678 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
679 * if there's more than one we need the tick for involuntary
682 if (rq->nr_running > 1)
687 #endif /* CONFIG_NO_HZ_FULL */
688 #endif /* CONFIG_SMP */
690 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
691 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
693 * Iterate task_group tree rooted at *from, calling @down when first entering a
694 * node and @up when leaving it for the final time.
696 * Caller must hold rcu_lock or sufficient equivalent.
698 int walk_tg_tree_from(struct task_group *from,
699 tg_visitor down, tg_visitor up, void *data)
701 struct task_group *parent, *child;
707 ret = (*down)(parent, data);
710 list_for_each_entry_rcu(child, &parent->children, siblings) {
717 ret = (*up)(parent, data);
718 if (ret || parent == from)
722 parent = parent->parent;
729 int tg_nop(struct task_group *tg, void *data)
735 static void set_load_weight(struct task_struct *p, bool update_load)
737 int prio = p->static_prio - MAX_RT_PRIO;
738 struct load_weight *load = &p->se.load;
741 * SCHED_IDLE tasks get minimal weight:
743 if (task_has_idle_policy(p)) {
744 load->weight = scale_load(WEIGHT_IDLEPRIO);
745 load->inv_weight = WMULT_IDLEPRIO;
746 p->se.runnable_weight = load->weight;
751 * SCHED_OTHER tasks have to update their load when changing their
754 if (update_load && p->sched_class == &fair_sched_class) {
755 reweight_task(p, prio);
757 load->weight = scale_load(sched_prio_to_weight[prio]);
758 load->inv_weight = sched_prio_to_wmult[prio];
759 p->se.runnable_weight = load->weight;
763 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
765 if (!(flags & ENQUEUE_NOCLOCK))
768 if (!(flags & ENQUEUE_RESTORE)) {
769 sched_info_queued(rq, p);
770 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
773 p->sched_class->enqueue_task(rq, p, flags);
776 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
778 if (!(flags & DEQUEUE_NOCLOCK))
781 if (!(flags & DEQUEUE_SAVE)) {
782 sched_info_dequeued(rq, p);
783 psi_dequeue(p, flags & DEQUEUE_SLEEP);
786 p->sched_class->dequeue_task(rq, p, flags);
789 void activate_task(struct rq *rq, struct task_struct *p, int flags)
791 if (task_contributes_to_load(p))
792 rq->nr_uninterruptible--;
794 enqueue_task(rq, p, flags);
797 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
799 if (task_contributes_to_load(p))
800 rq->nr_uninterruptible++;
802 dequeue_task(rq, p, flags);
806 * __normal_prio - return the priority that is based on the static prio
808 static inline int __normal_prio(struct task_struct *p)
810 return p->static_prio;
814 * Calculate the expected normal priority: i.e. priority
815 * without taking RT-inheritance into account. Might be
816 * boosted by interactivity modifiers. Changes upon fork,
817 * setprio syscalls, and whenever the interactivity
818 * estimator recalculates.
820 static inline int normal_prio(struct task_struct *p)
824 if (task_has_dl_policy(p))
825 prio = MAX_DL_PRIO-1;
826 else if (task_has_rt_policy(p))
827 prio = MAX_RT_PRIO-1 - p->rt_priority;
829 prio = __normal_prio(p);
834 * Calculate the current priority, i.e. the priority
835 * taken into account by the scheduler. This value might
836 * be boosted by RT tasks, or might be boosted by
837 * interactivity modifiers. Will be RT if the task got
838 * RT-boosted. If not then it returns p->normal_prio.
840 static int effective_prio(struct task_struct *p)
842 p->normal_prio = normal_prio(p);
844 * If we are RT tasks or we were boosted to RT priority,
845 * keep the priority unchanged. Otherwise, update priority
846 * to the normal priority:
848 if (!rt_prio(p->prio))
849 return p->normal_prio;
854 * task_curr - is this task currently executing on a CPU?
855 * @p: the task in question.
857 * Return: 1 if the task is currently executing. 0 otherwise.
859 inline int task_curr(const struct task_struct *p)
861 return cpu_curr(task_cpu(p)) == p;
865 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
866 * use the balance_callback list if you want balancing.
868 * this means any call to check_class_changed() must be followed by a call to
869 * balance_callback().
871 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
872 const struct sched_class *prev_class,
875 if (prev_class != p->sched_class) {
876 if (prev_class->switched_from)
877 prev_class->switched_from(rq, p);
879 p->sched_class->switched_to(rq, p);
880 } else if (oldprio != p->prio || dl_task(p))
881 p->sched_class->prio_changed(rq, p, oldprio);
884 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
886 const struct sched_class *class;
888 if (p->sched_class == rq->curr->sched_class) {
889 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
891 for_each_class(class) {
892 if (class == rq->curr->sched_class)
894 if (class == p->sched_class) {
902 * A queue event has occurred, and we're going to schedule. In
903 * this case, we can save a useless back to back clock update.
905 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
906 rq_clock_skip_update(rq);
911 static inline bool is_per_cpu_kthread(struct task_struct *p)
913 if (!(p->flags & PF_KTHREAD))
916 if (p->nr_cpus_allowed != 1)
923 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
924 * __set_cpus_allowed_ptr() and select_fallback_rq().
926 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
928 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
931 if (is_per_cpu_kthread(p))
932 return cpu_online(cpu);
934 return cpu_active(cpu);
938 * This is how migration works:
940 * 1) we invoke migration_cpu_stop() on the target CPU using
942 * 2) stopper starts to run (implicitly forcing the migrated thread
944 * 3) it checks whether the migrated task is still in the wrong runqueue.
945 * 4) if it's in the wrong runqueue then the migration thread removes
946 * it and puts it into the right queue.
947 * 5) stopper completes and stop_one_cpu() returns and the migration
952 * move_queued_task - move a queued task to new rq.
954 * Returns (locked) new rq. Old rq's lock is released.
956 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
957 struct task_struct *p, int new_cpu)
959 lockdep_assert_held(&rq->lock);
961 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
962 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
963 set_task_cpu(p, new_cpu);
966 rq = cpu_rq(new_cpu);
969 BUG_ON(task_cpu(p) != new_cpu);
970 enqueue_task(rq, p, 0);
971 p->on_rq = TASK_ON_RQ_QUEUED;
972 check_preempt_curr(rq, p, 0);
977 struct migration_arg {
978 struct task_struct *task;
983 * Move (not current) task off this CPU, onto the destination CPU. We're doing
984 * this because either it can't run here any more (set_cpus_allowed()
985 * away from this CPU, or CPU going down), or because we're
986 * attempting to rebalance this task on exec (sched_exec).
988 * So we race with normal scheduler movements, but that's OK, as long
989 * as the task is no longer on this CPU.
991 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
992 struct task_struct *p, int dest_cpu)
994 /* Affinity changed (again). */
995 if (!is_cpu_allowed(p, dest_cpu))
999 rq = move_queued_task(rq, rf, p, dest_cpu);
1005 * migration_cpu_stop - this will be executed by a highprio stopper thread
1006 * and performs thread migration by bumping thread off CPU then
1007 * 'pushing' onto another runqueue.
1009 static int migration_cpu_stop(void *data)
1011 struct migration_arg *arg = data;
1012 struct task_struct *p = arg->task;
1013 struct rq *rq = this_rq();
1017 * The original target CPU might have gone down and we might
1018 * be on another CPU but it doesn't matter.
1020 local_irq_disable();
1022 * We need to explicitly wake pending tasks before running
1023 * __migrate_task() such that we will not miss enforcing cpus_allowed
1024 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1026 sched_ttwu_pending();
1028 raw_spin_lock(&p->pi_lock);
1031 * If task_rq(p) != rq, it cannot be migrated here, because we're
1032 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1033 * we're holding p->pi_lock.
1035 if (task_rq(p) == rq) {
1036 if (task_on_rq_queued(p))
1037 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1039 p->wake_cpu = arg->dest_cpu;
1042 raw_spin_unlock(&p->pi_lock);
1049 * sched_class::set_cpus_allowed must do the below, but is not required to
1050 * actually call this function.
1052 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1054 cpumask_copy(&p->cpus_allowed, new_mask);
1055 p->nr_cpus_allowed = cpumask_weight(new_mask);
1058 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1060 struct rq *rq = task_rq(p);
1061 bool queued, running;
1063 lockdep_assert_held(&p->pi_lock);
1065 queued = task_on_rq_queued(p);
1066 running = task_current(rq, p);
1070 * Because __kthread_bind() calls this on blocked tasks without
1073 lockdep_assert_held(&rq->lock);
1074 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1077 put_prev_task(rq, p);
1079 p->sched_class->set_cpus_allowed(p, new_mask);
1082 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1084 set_curr_task(rq, p);
1088 * Change a given task's CPU affinity. Migrate the thread to a
1089 * proper CPU and schedule it away if the CPU it's executing on
1090 * is removed from the allowed bitmask.
1092 * NOTE: the caller must have a valid reference to the task, the
1093 * task must not exit() & deallocate itself prematurely. The
1094 * call is not atomic; no spinlocks may be held.
1096 static int __set_cpus_allowed_ptr(struct task_struct *p,
1097 const struct cpumask *new_mask, bool check)
1099 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1100 unsigned int dest_cpu;
1105 rq = task_rq_lock(p, &rf);
1106 update_rq_clock(rq);
1108 if (p->flags & PF_KTHREAD) {
1110 * Kernel threads are allowed on online && !active CPUs
1112 cpu_valid_mask = cpu_online_mask;
1116 * Must re-check here, to close a race against __kthread_bind(),
1117 * sched_setaffinity() is not guaranteed to observe the flag.
1119 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1124 if (cpumask_equal(&p->cpus_allowed, new_mask))
1127 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1132 do_set_cpus_allowed(p, new_mask);
1134 if (p->flags & PF_KTHREAD) {
1136 * For kernel threads that do indeed end up on online &&
1137 * !active we want to ensure they are strict per-CPU threads.
1139 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1140 !cpumask_intersects(new_mask, cpu_active_mask) &&
1141 p->nr_cpus_allowed != 1);
1144 /* Can the task run on the task's current CPU? If so, we're done */
1145 if (cpumask_test_cpu(task_cpu(p), new_mask))
1148 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1149 if (task_running(rq, p) || p->state == TASK_WAKING) {
1150 struct migration_arg arg = { p, dest_cpu };
1151 /* Need help from migration thread: drop lock and wait. */
1152 task_rq_unlock(rq, p, &rf);
1153 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1154 tlb_migrate_finish(p->mm);
1156 } else if (task_on_rq_queued(p)) {
1158 * OK, since we're going to drop the lock immediately
1159 * afterwards anyway.
1161 rq = move_queued_task(rq, &rf, p, dest_cpu);
1164 task_rq_unlock(rq, p, &rf);
1169 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1171 return __set_cpus_allowed_ptr(p, new_mask, false);
1173 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1175 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1177 #ifdef CONFIG_SCHED_DEBUG
1179 * We should never call set_task_cpu() on a blocked task,
1180 * ttwu() will sort out the placement.
1182 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1186 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1187 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1188 * time relying on p->on_rq.
1190 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1191 p->sched_class == &fair_sched_class &&
1192 (p->on_rq && !task_on_rq_migrating(p)));
1194 #ifdef CONFIG_LOCKDEP
1196 * The caller should hold either p->pi_lock or rq->lock, when changing
1197 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1199 * sched_move_task() holds both and thus holding either pins the cgroup,
1202 * Furthermore, all task_rq users should acquire both locks, see
1205 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1206 lockdep_is_held(&task_rq(p)->lock)));
1209 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1211 WARN_ON_ONCE(!cpu_online(new_cpu));
1214 trace_sched_migrate_task(p, new_cpu);
1216 if (task_cpu(p) != new_cpu) {
1217 if (p->sched_class->migrate_task_rq)
1218 p->sched_class->migrate_task_rq(p, new_cpu);
1219 p->se.nr_migrations++;
1221 perf_event_task_migrate(p);
1224 __set_task_cpu(p, new_cpu);
1227 #ifdef CONFIG_NUMA_BALANCING
1228 static void __migrate_swap_task(struct task_struct *p, int cpu)
1230 if (task_on_rq_queued(p)) {
1231 struct rq *src_rq, *dst_rq;
1232 struct rq_flags srf, drf;
1234 src_rq = task_rq(p);
1235 dst_rq = cpu_rq(cpu);
1237 rq_pin_lock(src_rq, &srf);
1238 rq_pin_lock(dst_rq, &drf);
1240 p->on_rq = TASK_ON_RQ_MIGRATING;
1241 deactivate_task(src_rq, p, 0);
1242 set_task_cpu(p, cpu);
1243 activate_task(dst_rq, p, 0);
1244 p->on_rq = TASK_ON_RQ_QUEUED;
1245 check_preempt_curr(dst_rq, p, 0);
1247 rq_unpin_lock(dst_rq, &drf);
1248 rq_unpin_lock(src_rq, &srf);
1252 * Task isn't running anymore; make it appear like we migrated
1253 * it before it went to sleep. This means on wakeup we make the
1254 * previous CPU our target instead of where it really is.
1260 struct migration_swap_arg {
1261 struct task_struct *src_task, *dst_task;
1262 int src_cpu, dst_cpu;
1265 static int migrate_swap_stop(void *data)
1267 struct migration_swap_arg *arg = data;
1268 struct rq *src_rq, *dst_rq;
1271 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1274 src_rq = cpu_rq(arg->src_cpu);
1275 dst_rq = cpu_rq(arg->dst_cpu);
1277 double_raw_lock(&arg->src_task->pi_lock,
1278 &arg->dst_task->pi_lock);
1279 double_rq_lock(src_rq, dst_rq);
1281 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1284 if (task_cpu(arg->src_task) != arg->src_cpu)
1287 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1290 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1293 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1294 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1299 double_rq_unlock(src_rq, dst_rq);
1300 raw_spin_unlock(&arg->dst_task->pi_lock);
1301 raw_spin_unlock(&arg->src_task->pi_lock);
1307 * Cross migrate two tasks
1309 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1310 int target_cpu, int curr_cpu)
1312 struct migration_swap_arg arg;
1315 arg = (struct migration_swap_arg){
1317 .src_cpu = curr_cpu,
1319 .dst_cpu = target_cpu,
1322 if (arg.src_cpu == arg.dst_cpu)
1326 * These three tests are all lockless; this is OK since all of them
1327 * will be re-checked with proper locks held further down the line.
1329 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1332 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1335 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1338 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1339 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1344 #endif /* CONFIG_NUMA_BALANCING */
1347 * wait_task_inactive - wait for a thread to unschedule.
1349 * If @match_state is nonzero, it's the @p->state value just checked and
1350 * not expected to change. If it changes, i.e. @p might have woken up,
1351 * then return zero. When we succeed in waiting for @p to be off its CPU,
1352 * we return a positive number (its total switch count). If a second call
1353 * a short while later returns the same number, the caller can be sure that
1354 * @p has remained unscheduled the whole time.
1356 * The caller must ensure that the task *will* unschedule sometime soon,
1357 * else this function might spin for a *long* time. This function can't
1358 * be called with interrupts off, or it may introduce deadlock with
1359 * smp_call_function() if an IPI is sent by the same process we are
1360 * waiting to become inactive.
1362 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1364 int running, queued;
1371 * We do the initial early heuristics without holding
1372 * any task-queue locks at all. We'll only try to get
1373 * the runqueue lock when things look like they will
1379 * If the task is actively running on another CPU
1380 * still, just relax and busy-wait without holding
1383 * NOTE! Since we don't hold any locks, it's not
1384 * even sure that "rq" stays as the right runqueue!
1385 * But we don't care, since "task_running()" will
1386 * return false if the runqueue has changed and p
1387 * is actually now running somewhere else!
1389 while (task_running(rq, p)) {
1390 if (match_state && unlikely(p->state != match_state))
1396 * Ok, time to look more closely! We need the rq
1397 * lock now, to be *sure*. If we're wrong, we'll
1398 * just go back and repeat.
1400 rq = task_rq_lock(p, &rf);
1401 trace_sched_wait_task(p);
1402 running = task_running(rq, p);
1403 queued = task_on_rq_queued(p);
1405 if (!match_state || p->state == match_state)
1406 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1407 task_rq_unlock(rq, p, &rf);
1410 * If it changed from the expected state, bail out now.
1412 if (unlikely(!ncsw))
1416 * Was it really running after all now that we
1417 * checked with the proper locks actually held?
1419 * Oops. Go back and try again..
1421 if (unlikely(running)) {
1427 * It's not enough that it's not actively running,
1428 * it must be off the runqueue _entirely_, and not
1431 * So if it was still runnable (but just not actively
1432 * running right now), it's preempted, and we should
1433 * yield - it could be a while.
1435 if (unlikely(queued)) {
1436 ktime_t to = NSEC_PER_SEC / HZ;
1438 set_current_state(TASK_UNINTERRUPTIBLE);
1439 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1444 * Ahh, all good. It wasn't running, and it wasn't
1445 * runnable, which means that it will never become
1446 * running in the future either. We're all done!
1455 * kick_process - kick a running thread to enter/exit the kernel
1456 * @p: the to-be-kicked thread
1458 * Cause a process which is running on another CPU to enter
1459 * kernel-mode, without any delay. (to get signals handled.)
1461 * NOTE: this function doesn't have to take the runqueue lock,
1462 * because all it wants to ensure is that the remote task enters
1463 * the kernel. If the IPI races and the task has been migrated
1464 * to another CPU then no harm is done and the purpose has been
1467 void kick_process(struct task_struct *p)
1473 if ((cpu != smp_processor_id()) && task_curr(p))
1474 smp_send_reschedule(cpu);
1477 EXPORT_SYMBOL_GPL(kick_process);
1480 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1482 * A few notes on cpu_active vs cpu_online:
1484 * - cpu_active must be a subset of cpu_online
1486 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1487 * see __set_cpus_allowed_ptr(). At this point the newly online
1488 * CPU isn't yet part of the sched domains, and balancing will not
1491 * - on CPU-down we clear cpu_active() to mask the sched domains and
1492 * avoid the load balancer to place new tasks on the to be removed
1493 * CPU. Existing tasks will remain running there and will be taken
1496 * This means that fallback selection must not select !active CPUs.
1497 * And can assume that any active CPU must be online. Conversely
1498 * select_task_rq() below may allow selection of !active CPUs in order
1499 * to satisfy the above rules.
1501 static int select_fallback_rq(int cpu, struct task_struct *p)
1503 int nid = cpu_to_node(cpu);
1504 const struct cpumask *nodemask = NULL;
1505 enum { cpuset, possible, fail } state = cpuset;
1509 * If the node that the CPU is on has been offlined, cpu_to_node()
1510 * will return -1. There is no CPU on the node, and we should
1511 * select the CPU on the other node.
1514 nodemask = cpumask_of_node(nid);
1516 /* Look for allowed, online CPU in same node. */
1517 for_each_cpu(dest_cpu, nodemask) {
1518 if (!cpu_active(dest_cpu))
1520 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1526 /* Any allowed, online CPU? */
1527 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1528 if (!is_cpu_allowed(p, dest_cpu))
1534 /* No more Mr. Nice Guy. */
1537 if (IS_ENABLED(CONFIG_CPUSETS)) {
1538 cpuset_cpus_allowed_fallback(p);
1544 do_set_cpus_allowed(p, cpu_possible_mask);
1555 if (state != cpuset) {
1557 * Don't tell them about moving exiting tasks or
1558 * kernel threads (both mm NULL), since they never
1561 if (p->mm && printk_ratelimit()) {
1562 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1563 task_pid_nr(p), p->comm, cpu);
1571 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1574 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1576 lockdep_assert_held(&p->pi_lock);
1578 if (p->nr_cpus_allowed > 1)
1579 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1581 cpu = cpumask_any(&p->cpus_allowed);
1584 * In order not to call set_task_cpu() on a blocking task we need
1585 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1588 * Since this is common to all placement strategies, this lives here.
1590 * [ this allows ->select_task() to simply return task_cpu(p) and
1591 * not worry about this generic constraint ]
1593 if (unlikely(!is_cpu_allowed(p, cpu)))
1594 cpu = select_fallback_rq(task_cpu(p), p);
1599 static void update_avg(u64 *avg, u64 sample)
1601 s64 diff = sample - *avg;
1605 void sched_set_stop_task(int cpu, struct task_struct *stop)
1607 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1608 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1612 * Make it appear like a SCHED_FIFO task, its something
1613 * userspace knows about and won't get confused about.
1615 * Also, it will make PI more or less work without too
1616 * much confusion -- but then, stop work should not
1617 * rely on PI working anyway.
1619 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
1621 stop->sched_class = &stop_sched_class;
1624 cpu_rq(cpu)->stop = stop;
1628 * Reset it back to a normal scheduling class so that
1629 * it can die in pieces.
1631 old_stop->sched_class = &rt_sched_class;
1637 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1638 const struct cpumask *new_mask, bool check)
1640 return set_cpus_allowed_ptr(p, new_mask);
1643 #endif /* CONFIG_SMP */
1646 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1650 if (!schedstat_enabled())
1656 if (cpu == rq->cpu) {
1657 __schedstat_inc(rq->ttwu_local);
1658 __schedstat_inc(p->se.statistics.nr_wakeups_local);
1660 struct sched_domain *sd;
1662 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
1664 for_each_domain(rq->cpu, sd) {
1665 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1666 __schedstat_inc(sd->ttwu_wake_remote);
1673 if (wake_flags & WF_MIGRATED)
1674 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1675 #endif /* CONFIG_SMP */
1677 __schedstat_inc(rq->ttwu_count);
1678 __schedstat_inc(p->se.statistics.nr_wakeups);
1680 if (wake_flags & WF_SYNC)
1681 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
1684 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1686 activate_task(rq, p, en_flags);
1687 p->on_rq = TASK_ON_RQ_QUEUED;
1689 /* If a worker is waking up, notify the workqueue: */
1690 if (p->flags & PF_WQ_WORKER)
1691 wq_worker_waking_up(p, cpu_of(rq));
1695 * Mark the task runnable and perform wakeup-preemption.
1697 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1698 struct rq_flags *rf)
1700 check_preempt_curr(rq, p, wake_flags);
1701 p->state = TASK_RUNNING;
1702 trace_sched_wakeup(p);
1705 if (p->sched_class->task_woken) {
1707 * Our task @p is fully woken up and running; so its safe to
1708 * drop the rq->lock, hereafter rq is only used for statistics.
1710 rq_unpin_lock(rq, rf);
1711 p->sched_class->task_woken(rq, p);
1712 rq_repin_lock(rq, rf);
1715 if (rq->idle_stamp) {
1716 u64 delta = rq_clock(rq) - rq->idle_stamp;
1717 u64 max = 2*rq->max_idle_balance_cost;
1719 update_avg(&rq->avg_idle, delta);
1721 if (rq->avg_idle > max)
1730 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1731 struct rq_flags *rf)
1733 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1735 lockdep_assert_held(&rq->lock);
1738 if (p->sched_contributes_to_load)
1739 rq->nr_uninterruptible--;
1741 if (wake_flags & WF_MIGRATED)
1742 en_flags |= ENQUEUE_MIGRATED;
1745 ttwu_activate(rq, p, en_flags);
1746 ttwu_do_wakeup(rq, p, wake_flags, rf);
1750 * Called in case the task @p isn't fully descheduled from its runqueue,
1751 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1752 * since all we need to do is flip p->state to TASK_RUNNING, since
1753 * the task is still ->on_rq.
1755 static int ttwu_remote(struct task_struct *p, int wake_flags)
1761 rq = __task_rq_lock(p, &rf);
1762 if (task_on_rq_queued(p)) {
1763 /* check_preempt_curr() may use rq clock */
1764 update_rq_clock(rq);
1765 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1768 __task_rq_unlock(rq, &rf);
1774 void sched_ttwu_pending(void)
1776 struct rq *rq = this_rq();
1777 struct llist_node *llist = llist_del_all(&rq->wake_list);
1778 struct task_struct *p, *t;
1784 rq_lock_irqsave(rq, &rf);
1785 update_rq_clock(rq);
1787 llist_for_each_entry_safe(p, t, llist, wake_entry)
1788 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1790 rq_unlock_irqrestore(rq, &rf);
1793 void scheduler_ipi(void)
1796 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1797 * TIF_NEED_RESCHED remotely (for the first time) will also send
1800 preempt_fold_need_resched();
1802 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1806 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1807 * traditionally all their work was done from the interrupt return
1808 * path. Now that we actually do some work, we need to make sure
1811 * Some archs already do call them, luckily irq_enter/exit nest
1814 * Arguably we should visit all archs and update all handlers,
1815 * however a fair share of IPIs are still resched only so this would
1816 * somewhat pessimize the simple resched case.
1819 sched_ttwu_pending();
1822 * Check if someone kicked us for doing the nohz idle load balance.
1824 if (unlikely(got_nohz_idle_kick())) {
1825 this_rq()->idle_balance = 1;
1826 raise_softirq_irqoff(SCHED_SOFTIRQ);
1831 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1833 struct rq *rq = cpu_rq(cpu);
1835 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1837 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1838 if (!set_nr_if_polling(rq->idle))
1839 smp_send_reschedule(cpu);
1841 trace_sched_wake_idle_without_ipi(cpu);
1845 void wake_up_if_idle(int cpu)
1847 struct rq *rq = cpu_rq(cpu);
1852 if (!is_idle_task(rcu_dereference(rq->curr)))
1855 if (set_nr_if_polling(rq->idle)) {
1856 trace_sched_wake_idle_without_ipi(cpu);
1858 rq_lock_irqsave(rq, &rf);
1859 if (is_idle_task(rq->curr))
1860 smp_send_reschedule(cpu);
1861 /* Else CPU is not idle, do nothing here: */
1862 rq_unlock_irqrestore(rq, &rf);
1869 bool cpus_share_cache(int this_cpu, int that_cpu)
1871 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1873 #endif /* CONFIG_SMP */
1875 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1877 struct rq *rq = cpu_rq(cpu);
1880 #if defined(CONFIG_SMP)
1881 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1882 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1883 ttwu_queue_remote(p, cpu, wake_flags);
1889 update_rq_clock(rq);
1890 ttwu_do_activate(rq, p, wake_flags, &rf);
1895 * Notes on Program-Order guarantees on SMP systems.
1899 * The basic program-order guarantee on SMP systems is that when a task [t]
1900 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1901 * execution on its new CPU [c1].
1903 * For migration (of runnable tasks) this is provided by the following means:
1905 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1906 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1907 * rq(c1)->lock (if not at the same time, then in that order).
1908 * C) LOCK of the rq(c1)->lock scheduling in task
1910 * Release/acquire chaining guarantees that B happens after A and C after B.
1911 * Note: the CPU doing B need not be c0 or c1
1920 * UNLOCK rq(0)->lock
1922 * LOCK rq(0)->lock // orders against CPU0
1924 * UNLOCK rq(0)->lock
1928 * UNLOCK rq(1)->lock
1930 * LOCK rq(1)->lock // orders against CPU2
1933 * UNLOCK rq(1)->lock
1936 * BLOCKING -- aka. SLEEP + WAKEUP
1938 * For blocking we (obviously) need to provide the same guarantee as for
1939 * migration. However the means are completely different as there is no lock
1940 * chain to provide order. Instead we do:
1942 * 1) smp_store_release(X->on_cpu, 0)
1943 * 2) smp_cond_load_acquire(!X->on_cpu)
1947 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1949 * LOCK rq(0)->lock LOCK X->pi_lock
1952 * smp_store_release(X->on_cpu, 0);
1954 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1960 * X->state = RUNNING
1961 * UNLOCK rq(2)->lock
1963 * LOCK rq(2)->lock // orders against CPU1
1966 * UNLOCK rq(2)->lock
1969 * UNLOCK rq(0)->lock
1972 * However, for wakeups there is a second guarantee we must provide, namely we
1973 * must ensure that CONDITION=1 done by the caller can not be reordered with
1974 * accesses to the task state; see try_to_wake_up() and set_current_state().
1978 * try_to_wake_up - wake up a thread
1979 * @p: the thread to be awakened
1980 * @state: the mask of task states that can be woken
1981 * @wake_flags: wake modifier flags (WF_*)
1983 * If (@state & @p->state) @p->state = TASK_RUNNING.
1985 * If the task was not queued/runnable, also place it back on a runqueue.
1987 * Atomic against schedule() which would dequeue a task, also see
1988 * set_current_state().
1990 * This function executes a full memory barrier before accessing the task
1991 * state; see set_current_state().
1993 * Return: %true if @p->state changes (an actual wakeup was done),
1997 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1999 unsigned long flags;
2000 int cpu, success = 0;
2003 * If we are going to wake up a thread waiting for CONDITION we
2004 * need to ensure that CONDITION=1 done by the caller can not be
2005 * reordered with p->state check below. This pairs with mb() in
2006 * set_current_state() the waiting thread does.
2008 raw_spin_lock_irqsave(&p->pi_lock, flags);
2009 smp_mb__after_spinlock();
2010 if (!(p->state & state))
2013 trace_sched_waking(p);
2015 /* We're going to change ->state: */
2020 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2021 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2022 * in smp_cond_load_acquire() below.
2024 * sched_ttwu_pending() try_to_wake_up()
2025 * STORE p->on_rq = 1 LOAD p->state
2028 * __schedule() (switch to task 'p')
2029 * LOCK rq->lock smp_rmb();
2030 * smp_mb__after_spinlock();
2034 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2036 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2037 * __schedule(). See the comment for smp_mb__after_spinlock().
2040 if (p->on_rq && ttwu_remote(p, wake_flags))
2045 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2046 * possible to, falsely, observe p->on_cpu == 0.
2048 * One must be running (->on_cpu == 1) in order to remove oneself
2049 * from the runqueue.
2051 * __schedule() (switch to task 'p') try_to_wake_up()
2052 * STORE p->on_cpu = 1 LOAD p->on_rq
2055 * __schedule() (put 'p' to sleep)
2056 * LOCK rq->lock smp_rmb();
2057 * smp_mb__after_spinlock();
2058 * STORE p->on_rq = 0 LOAD p->on_cpu
2060 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2061 * __schedule(). See the comment for smp_mb__after_spinlock().
2066 * If the owning (remote) CPU is still in the middle of schedule() with
2067 * this task as prev, wait until its done referencing the task.
2069 * Pairs with the smp_store_release() in finish_task().
2071 * This ensures that tasks getting woken will be fully ordered against
2072 * their previous state and preserve Program Order.
2074 smp_cond_load_acquire(&p->on_cpu, !VAL);
2076 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2077 p->state = TASK_WAKING;
2080 delayacct_blkio_end(p);
2081 atomic_dec(&task_rq(p)->nr_iowait);
2084 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2085 if (task_cpu(p) != cpu) {
2086 wake_flags |= WF_MIGRATED;
2087 psi_ttwu_dequeue(p);
2088 set_task_cpu(p, cpu);
2091 #else /* CONFIG_SMP */
2094 delayacct_blkio_end(p);
2095 atomic_dec(&task_rq(p)->nr_iowait);
2098 #endif /* CONFIG_SMP */
2100 ttwu_queue(p, cpu, wake_flags);
2102 ttwu_stat(p, cpu, wake_flags);
2104 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2110 * try_to_wake_up_local - try to wake up a local task with rq lock held
2111 * @p: the thread to be awakened
2112 * @rf: request-queue flags for pinning
2114 * Put @p on the run-queue if it's not already there. The caller must
2115 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2118 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2120 struct rq *rq = task_rq(p);
2122 if (WARN_ON_ONCE(rq != this_rq()) ||
2123 WARN_ON_ONCE(p == current))
2126 lockdep_assert_held(&rq->lock);
2128 if (!raw_spin_trylock(&p->pi_lock)) {
2130 * This is OK, because current is on_cpu, which avoids it being
2131 * picked for load-balance and preemption/IRQs are still
2132 * disabled avoiding further scheduler activity on it and we've
2133 * not yet picked a replacement task.
2136 raw_spin_lock(&p->pi_lock);
2140 if (!(p->state & TASK_NORMAL))
2143 trace_sched_waking(p);
2145 if (!task_on_rq_queued(p)) {
2147 delayacct_blkio_end(p);
2148 atomic_dec(&rq->nr_iowait);
2150 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2153 ttwu_do_wakeup(rq, p, 0, rf);
2154 ttwu_stat(p, smp_processor_id(), 0);
2156 raw_spin_unlock(&p->pi_lock);
2160 * wake_up_process - Wake up a specific process
2161 * @p: The process to be woken up.
2163 * Attempt to wake up the nominated process and move it to the set of runnable
2166 * Return: 1 if the process was woken up, 0 if it was already running.
2168 * This function executes a full memory barrier before accessing the task state.
2170 int wake_up_process(struct task_struct *p)
2172 return try_to_wake_up(p, TASK_NORMAL, 0);
2174 EXPORT_SYMBOL(wake_up_process);
2176 int wake_up_state(struct task_struct *p, unsigned int state)
2178 return try_to_wake_up(p, state, 0);
2182 * Perform scheduler related setup for a newly forked process p.
2183 * p is forked by current.
2185 * __sched_fork() is basic setup used by init_idle() too:
2187 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2192 p->se.exec_start = 0;
2193 p->se.sum_exec_runtime = 0;
2194 p->se.prev_sum_exec_runtime = 0;
2195 p->se.nr_migrations = 0;
2197 INIT_LIST_HEAD(&p->se.group_node);
2199 #ifdef CONFIG_FAIR_GROUP_SCHED
2200 p->se.cfs_rq = NULL;
2203 #ifdef CONFIG_SCHEDSTATS
2204 /* Even if schedstat is disabled, there should not be garbage */
2205 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2208 RB_CLEAR_NODE(&p->dl.rb_node);
2209 init_dl_task_timer(&p->dl);
2210 init_dl_inactive_task_timer(&p->dl);
2211 __dl_clear_params(p);
2213 INIT_LIST_HEAD(&p->rt.run_list);
2215 p->rt.time_slice = sched_rr_timeslice;
2219 #ifdef CONFIG_PREEMPT_NOTIFIERS
2220 INIT_HLIST_HEAD(&p->preempt_notifiers);
2223 #ifdef CONFIG_COMPACTION
2224 p->capture_control = NULL;
2226 init_numa_balancing(clone_flags, p);
2229 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2231 #ifdef CONFIG_NUMA_BALANCING
2233 void set_numabalancing_state(bool enabled)
2236 static_branch_enable(&sched_numa_balancing);
2238 static_branch_disable(&sched_numa_balancing);
2241 #ifdef CONFIG_PROC_SYSCTL
2242 int sysctl_numa_balancing(struct ctl_table *table, int write,
2243 void __user *buffer, size_t *lenp, loff_t *ppos)
2247 int state = static_branch_likely(&sched_numa_balancing);
2249 if (write && !capable(CAP_SYS_ADMIN))
2254 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2258 set_numabalancing_state(state);
2264 #ifdef CONFIG_SCHEDSTATS
2266 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2267 static bool __initdata __sched_schedstats = false;
2269 static void set_schedstats(bool enabled)
2272 static_branch_enable(&sched_schedstats);
2274 static_branch_disable(&sched_schedstats);
2277 void force_schedstat_enabled(void)
2279 if (!schedstat_enabled()) {
2280 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2281 static_branch_enable(&sched_schedstats);
2285 static int __init setup_schedstats(char *str)
2292 * This code is called before jump labels have been set up, so we can't
2293 * change the static branch directly just yet. Instead set a temporary
2294 * variable so init_schedstats() can do it later.
2296 if (!strcmp(str, "enable")) {
2297 __sched_schedstats = true;
2299 } else if (!strcmp(str, "disable")) {
2300 __sched_schedstats = false;
2305 pr_warn("Unable to parse schedstats=\n");
2309 __setup("schedstats=", setup_schedstats);
2311 static void __init init_schedstats(void)
2313 set_schedstats(__sched_schedstats);
2316 #ifdef CONFIG_PROC_SYSCTL
2317 int sysctl_schedstats(struct ctl_table *table, int write,
2318 void __user *buffer, size_t *lenp, loff_t *ppos)
2322 int state = static_branch_likely(&sched_schedstats);
2324 if (write && !capable(CAP_SYS_ADMIN))
2329 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2333 set_schedstats(state);
2336 #endif /* CONFIG_PROC_SYSCTL */
2337 #else /* !CONFIG_SCHEDSTATS */
2338 static inline void init_schedstats(void) {}
2339 #endif /* CONFIG_SCHEDSTATS */
2342 * fork()/clone()-time setup:
2344 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2346 unsigned long flags;
2348 __sched_fork(clone_flags, p);
2350 * We mark the process as NEW here. This guarantees that
2351 * nobody will actually run it, and a signal or other external
2352 * event cannot wake it up and insert it on the runqueue either.
2354 p->state = TASK_NEW;
2357 * Make sure we do not leak PI boosting priority to the child.
2359 p->prio = current->normal_prio;
2362 * Revert to default priority/policy on fork if requested.
2364 if (unlikely(p->sched_reset_on_fork)) {
2365 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2366 p->policy = SCHED_NORMAL;
2367 p->static_prio = NICE_TO_PRIO(0);
2369 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2370 p->static_prio = NICE_TO_PRIO(0);
2372 p->prio = p->normal_prio = __normal_prio(p);
2373 set_load_weight(p, false);
2376 * We don't need the reset flag anymore after the fork. It has
2377 * fulfilled its duty:
2379 p->sched_reset_on_fork = 0;
2382 if (dl_prio(p->prio))
2384 else if (rt_prio(p->prio))
2385 p->sched_class = &rt_sched_class;
2387 p->sched_class = &fair_sched_class;
2389 init_entity_runnable_average(&p->se);
2392 * The child is not yet in the pid-hash so no cgroup attach races,
2393 * and the cgroup is pinned to this child due to cgroup_fork()
2394 * is ran before sched_fork().
2396 * Silence PROVE_RCU.
2398 raw_spin_lock_irqsave(&p->pi_lock, flags);
2400 * We're setting the CPU for the first time, we don't migrate,
2401 * so use __set_task_cpu().
2403 __set_task_cpu(p, smp_processor_id());
2404 if (p->sched_class->task_fork)
2405 p->sched_class->task_fork(p);
2406 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2408 #ifdef CONFIG_SCHED_INFO
2409 if (likely(sched_info_on()))
2410 memset(&p->sched_info, 0, sizeof(p->sched_info));
2412 #if defined(CONFIG_SMP)
2415 init_task_preempt_count(p);
2417 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2418 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2423 unsigned long to_ratio(u64 period, u64 runtime)
2425 if (runtime == RUNTIME_INF)
2429 * Doing this here saves a lot of checks in all
2430 * the calling paths, and returning zero seems
2431 * safe for them anyway.
2436 return div64_u64(runtime << BW_SHIFT, period);
2440 * wake_up_new_task - wake up a newly created task for the first time.
2442 * This function will do some initial scheduler statistics housekeeping
2443 * that must be done for every newly created context, then puts the task
2444 * on the runqueue and wakes it.
2446 void wake_up_new_task(struct task_struct *p)
2451 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2452 p->state = TASK_RUNNING;
2455 * Fork balancing, do it here and not earlier because:
2456 * - cpus_allowed can change in the fork path
2457 * - any previously selected CPU might disappear through hotplug
2459 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2460 * as we're not fully set-up yet.
2462 p->recent_used_cpu = task_cpu(p);
2463 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2465 rq = __task_rq_lock(p, &rf);
2466 update_rq_clock(rq);
2467 post_init_entity_util_avg(p);
2469 activate_task(rq, p, ENQUEUE_NOCLOCK);
2470 p->on_rq = TASK_ON_RQ_QUEUED;
2471 trace_sched_wakeup_new(p);
2472 check_preempt_curr(rq, p, WF_FORK);
2474 if (p->sched_class->task_woken) {
2476 * Nothing relies on rq->lock after this, so its fine to
2479 rq_unpin_lock(rq, &rf);
2480 p->sched_class->task_woken(rq, p);
2481 rq_repin_lock(rq, &rf);
2484 task_rq_unlock(rq, p, &rf);
2487 #ifdef CONFIG_PREEMPT_NOTIFIERS
2489 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2491 void preempt_notifier_inc(void)
2493 static_branch_inc(&preempt_notifier_key);
2495 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2497 void preempt_notifier_dec(void)
2499 static_branch_dec(&preempt_notifier_key);
2501 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2504 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2505 * @notifier: notifier struct to register
2507 void preempt_notifier_register(struct preempt_notifier *notifier)
2509 if (!static_branch_unlikely(&preempt_notifier_key))
2510 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2512 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2514 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2517 * preempt_notifier_unregister - no longer interested in preemption notifications
2518 * @notifier: notifier struct to unregister
2520 * This is *not* safe to call from within a preemption notifier.
2522 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2524 hlist_del(¬ifier->link);
2526 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2528 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2530 struct preempt_notifier *notifier;
2532 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2533 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2536 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2538 if (static_branch_unlikely(&preempt_notifier_key))
2539 __fire_sched_in_preempt_notifiers(curr);
2543 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2544 struct task_struct *next)
2546 struct preempt_notifier *notifier;
2548 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2549 notifier->ops->sched_out(notifier, next);
2552 static __always_inline void
2553 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2554 struct task_struct *next)
2556 if (static_branch_unlikely(&preempt_notifier_key))
2557 __fire_sched_out_preempt_notifiers(curr, next);
2560 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2562 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2567 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2568 struct task_struct *next)
2572 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2574 static inline void prepare_task(struct task_struct *next)
2578 * Claim the task as running, we do this before switching to it
2579 * such that any running task will have this set.
2585 static inline void finish_task(struct task_struct *prev)
2589 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2590 * We must ensure this doesn't happen until the switch is completely
2593 * In particular, the load of prev->state in finish_task_switch() must
2594 * happen before this.
2596 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2598 smp_store_release(&prev->on_cpu, 0);
2603 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2606 * Since the runqueue lock will be released by the next
2607 * task (which is an invalid locking op but in the case
2608 * of the scheduler it's an obvious special-case), so we
2609 * do an early lockdep release here:
2611 rq_unpin_lock(rq, rf);
2612 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2613 #ifdef CONFIG_DEBUG_SPINLOCK
2614 /* this is a valid case when another task releases the spinlock */
2615 rq->lock.owner = next;
2619 static inline void finish_lock_switch(struct rq *rq)
2622 * If we are tracking spinlock dependencies then we have to
2623 * fix up the runqueue lock - which gets 'carried over' from
2624 * prev into current:
2626 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2627 raw_spin_unlock_irq(&rq->lock);
2631 * NOP if the arch has not defined these:
2634 #ifndef prepare_arch_switch
2635 # define prepare_arch_switch(next) do { } while (0)
2638 #ifndef finish_arch_post_lock_switch
2639 # define finish_arch_post_lock_switch() do { } while (0)
2643 * prepare_task_switch - prepare to switch tasks
2644 * @rq: the runqueue preparing to switch
2645 * @prev: the current task that is being switched out
2646 * @next: the task we are going to switch to.
2648 * This is called with the rq lock held and interrupts off. It must
2649 * be paired with a subsequent finish_task_switch after the context
2652 * prepare_task_switch sets up locking and calls architecture specific
2656 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2657 struct task_struct *next)
2659 kcov_prepare_switch(prev);
2660 sched_info_switch(rq, prev, next);
2661 perf_event_task_sched_out(prev, next);
2663 fire_sched_out_preempt_notifiers(prev, next);
2665 prepare_arch_switch(next);
2669 * finish_task_switch - clean up after a task-switch
2670 * @prev: the thread we just switched away from.
2672 * finish_task_switch must be called after the context switch, paired
2673 * with a prepare_task_switch call before the context switch.
2674 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2675 * and do any other architecture-specific cleanup actions.
2677 * Note that we may have delayed dropping an mm in context_switch(). If
2678 * so, we finish that here outside of the runqueue lock. (Doing it
2679 * with the lock held can cause deadlocks; see schedule() for
2682 * The context switch have flipped the stack from under us and restored the
2683 * local variables which were saved when this task called schedule() in the
2684 * past. prev == current is still correct but we need to recalculate this_rq
2685 * because prev may have moved to another CPU.
2687 static struct rq *finish_task_switch(struct task_struct *prev)
2688 __releases(rq->lock)
2690 struct rq *rq = this_rq();
2691 struct mm_struct *mm = rq->prev_mm;
2695 * The previous task will have left us with a preempt_count of 2
2696 * because it left us after:
2699 * preempt_disable(); // 1
2701 * raw_spin_lock_irq(&rq->lock) // 2
2703 * Also, see FORK_PREEMPT_COUNT.
2705 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2706 "corrupted preempt_count: %s/%d/0x%x\n",
2707 current->comm, current->pid, preempt_count()))
2708 preempt_count_set(FORK_PREEMPT_COUNT);
2713 * A task struct has one reference for the use as "current".
2714 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2715 * schedule one last time. The schedule call will never return, and
2716 * the scheduled task must drop that reference.
2718 * We must observe prev->state before clearing prev->on_cpu (in
2719 * finish_task), otherwise a concurrent wakeup can get prev
2720 * running on another CPU and we could rave with its RUNNING -> DEAD
2721 * transition, resulting in a double drop.
2723 prev_state = prev->state;
2724 vtime_task_switch(prev);
2725 perf_event_task_sched_in(prev, current);
2727 finish_lock_switch(rq);
2728 finish_arch_post_lock_switch();
2729 kcov_finish_switch(current);
2731 fire_sched_in_preempt_notifiers(current);
2733 * When switching through a kernel thread, the loop in
2734 * membarrier_{private,global}_expedited() may have observed that
2735 * kernel thread and not issued an IPI. It is therefore possible to
2736 * schedule between user->kernel->user threads without passing though
2737 * switch_mm(). Membarrier requires a barrier after storing to
2738 * rq->curr, before returning to userspace, so provide them here:
2740 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2741 * provided by mmdrop(),
2742 * - a sync_core for SYNC_CORE.
2745 membarrier_mm_sync_core_before_usermode(mm);
2748 if (unlikely(prev_state == TASK_DEAD)) {
2749 if (prev->sched_class->task_dead)
2750 prev->sched_class->task_dead(prev);
2753 * Remove function-return probe instances associated with this
2754 * task and put them back on the free list.
2756 kprobe_flush_task(prev);
2758 /* Task is done with its stack. */
2759 put_task_stack(prev);
2761 put_task_struct(prev);
2764 tick_nohz_task_switch();
2770 /* rq->lock is NOT held, but preemption is disabled */
2771 static void __balance_callback(struct rq *rq)
2773 struct callback_head *head, *next;
2774 void (*func)(struct rq *rq);
2775 unsigned long flags;
2777 raw_spin_lock_irqsave(&rq->lock, flags);
2778 head = rq->balance_callback;
2779 rq->balance_callback = NULL;
2781 func = (void (*)(struct rq *))head->func;
2788 raw_spin_unlock_irqrestore(&rq->lock, flags);
2791 static inline void balance_callback(struct rq *rq)
2793 if (unlikely(rq->balance_callback))
2794 __balance_callback(rq);
2799 static inline void balance_callback(struct rq *rq)
2806 * schedule_tail - first thing a freshly forked thread must call.
2807 * @prev: the thread we just switched away from.
2809 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2810 __releases(rq->lock)
2815 * New tasks start with FORK_PREEMPT_COUNT, see there and
2816 * finish_task_switch() for details.
2818 * finish_task_switch() will drop rq->lock() and lower preempt_count
2819 * and the preempt_enable() will end up enabling preemption (on
2820 * PREEMPT_COUNT kernels).
2823 rq = finish_task_switch(prev);
2824 balance_callback(rq);
2827 if (current->set_child_tid)
2828 put_user(task_pid_vnr(current), current->set_child_tid);
2830 calculate_sigpending();
2834 * context_switch - switch to the new MM and the new thread's register state.
2836 static __always_inline struct rq *
2837 context_switch(struct rq *rq, struct task_struct *prev,
2838 struct task_struct *next, struct rq_flags *rf)
2840 struct mm_struct *mm, *oldmm;
2842 prepare_task_switch(rq, prev, next);
2845 oldmm = prev->active_mm;
2847 * For paravirt, this is coupled with an exit in switch_to to
2848 * combine the page table reload and the switch backend into
2851 arch_start_context_switch(prev);
2854 * If mm is non-NULL, we pass through switch_mm(). If mm is
2855 * NULL, we will pass through mmdrop() in finish_task_switch().
2856 * Both of these contain the full memory barrier required by
2857 * membarrier after storing to rq->curr, before returning to
2861 next->active_mm = oldmm;
2863 enter_lazy_tlb(oldmm, next);
2865 switch_mm_irqs_off(oldmm, mm, next);
2868 prev->active_mm = NULL;
2869 rq->prev_mm = oldmm;
2872 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2874 prepare_lock_switch(rq, next, rf);
2876 /* Here we just switch the register state and the stack. */
2877 switch_to(prev, next, prev);
2880 return finish_task_switch(prev);
2884 * nr_running and nr_context_switches:
2886 * externally visible scheduler statistics: current number of runnable
2887 * threads, total number of context switches performed since bootup.
2889 unsigned long nr_running(void)
2891 unsigned long i, sum = 0;
2893 for_each_online_cpu(i)
2894 sum += cpu_rq(i)->nr_running;
2900 * Check if only the current task is running on the CPU.
2902 * Caution: this function does not check that the caller has disabled
2903 * preemption, thus the result might have a time-of-check-to-time-of-use
2904 * race. The caller is responsible to use it correctly, for example:
2906 * - from a non-preemptible section (of course)
2908 * - from a thread that is bound to a single CPU
2910 * - in a loop with very short iterations (e.g. a polling loop)
2912 bool single_task_running(void)
2914 return raw_rq()->nr_running == 1;
2916 EXPORT_SYMBOL(single_task_running);
2918 unsigned long long nr_context_switches(void)
2921 unsigned long long sum = 0;
2923 for_each_possible_cpu(i)
2924 sum += cpu_rq(i)->nr_switches;
2930 * Consumers of these two interfaces, like for example the cpuidle menu
2931 * governor, are using nonsensical data. Preferring shallow idle state selection
2932 * for a CPU that has IO-wait which might not even end up running the task when
2933 * it does become runnable.
2936 unsigned long nr_iowait_cpu(int cpu)
2938 return atomic_read(&cpu_rq(cpu)->nr_iowait);
2942 * IO-wait accounting, and how its mostly bollocks (on SMP).
2944 * The idea behind IO-wait account is to account the idle time that we could
2945 * have spend running if it were not for IO. That is, if we were to improve the
2946 * storage performance, we'd have a proportional reduction in IO-wait time.
2948 * This all works nicely on UP, where, when a task blocks on IO, we account
2949 * idle time as IO-wait, because if the storage were faster, it could've been
2950 * running and we'd not be idle.
2952 * This has been extended to SMP, by doing the same for each CPU. This however
2955 * Imagine for instance the case where two tasks block on one CPU, only the one
2956 * CPU will have IO-wait accounted, while the other has regular idle. Even
2957 * though, if the storage were faster, both could've ran at the same time,
2958 * utilising both CPUs.
2960 * This means, that when looking globally, the current IO-wait accounting on
2961 * SMP is a lower bound, by reason of under accounting.
2963 * Worse, since the numbers are provided per CPU, they are sometimes
2964 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2965 * associated with any one particular CPU, it can wake to another CPU than it
2966 * blocked on. This means the per CPU IO-wait number is meaningless.
2968 * Task CPU affinities can make all that even more 'interesting'.
2971 unsigned long nr_iowait(void)
2973 unsigned long i, sum = 0;
2975 for_each_possible_cpu(i)
2976 sum += nr_iowait_cpu(i);
2984 * sched_exec - execve() is a valuable balancing opportunity, because at
2985 * this point the task has the smallest effective memory and cache footprint.
2987 void sched_exec(void)
2989 struct task_struct *p = current;
2990 unsigned long flags;
2993 raw_spin_lock_irqsave(&p->pi_lock, flags);
2994 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2995 if (dest_cpu == smp_processor_id())
2998 if (likely(cpu_active(dest_cpu))) {
2999 struct migration_arg arg = { p, dest_cpu };
3001 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3002 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3006 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3011 DEFINE_PER_CPU(struct kernel_stat, kstat);
3012 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3014 EXPORT_PER_CPU_SYMBOL(kstat);
3015 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3018 * The function fair_sched_class.update_curr accesses the struct curr
3019 * and its field curr->exec_start; when called from task_sched_runtime(),
3020 * we observe a high rate of cache misses in practice.
3021 * Prefetching this data results in improved performance.
3023 static inline void prefetch_curr_exec_start(struct task_struct *p)
3025 #ifdef CONFIG_FAIR_GROUP_SCHED
3026 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3028 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3031 prefetch(&curr->exec_start);
3035 * Return accounted runtime for the task.
3036 * In case the task is currently running, return the runtime plus current's
3037 * pending runtime that have not been accounted yet.
3039 unsigned long long task_sched_runtime(struct task_struct *p)
3045 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3047 * 64-bit doesn't need locks to atomically read a 64-bit value.
3048 * So we have a optimization chance when the task's delta_exec is 0.
3049 * Reading ->on_cpu is racy, but this is ok.
3051 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3052 * If we race with it entering CPU, unaccounted time is 0. This is
3053 * indistinguishable from the read occurring a few cycles earlier.
3054 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3055 * been accounted, so we're correct here as well.
3057 if (!p->on_cpu || !task_on_rq_queued(p))
3058 return p->se.sum_exec_runtime;
3061 rq = task_rq_lock(p, &rf);
3063 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3064 * project cycles that may never be accounted to this
3065 * thread, breaking clock_gettime().
3067 if (task_current(rq, p) && task_on_rq_queued(p)) {
3068 prefetch_curr_exec_start(p);
3069 update_rq_clock(rq);
3070 p->sched_class->update_curr(rq);
3072 ns = p->se.sum_exec_runtime;
3073 task_rq_unlock(rq, p, &rf);
3079 * This function gets called by the timer code, with HZ frequency.
3080 * We call it with interrupts disabled.
3082 void scheduler_tick(void)
3084 int cpu = smp_processor_id();
3085 struct rq *rq = cpu_rq(cpu);
3086 struct task_struct *curr = rq->curr;
3093 update_rq_clock(rq);
3094 curr->sched_class->task_tick(rq, curr, 0);
3095 cpu_load_update_active(rq);
3096 calc_global_load_tick(rq);
3101 perf_event_task_tick();
3104 rq->idle_balance = idle_cpu(cpu);
3105 trigger_load_balance(rq);
3109 #ifdef CONFIG_NO_HZ_FULL
3113 struct delayed_work work;
3116 static struct tick_work __percpu *tick_work_cpu;
3118 static void sched_tick_remote(struct work_struct *work)
3120 struct delayed_work *dwork = to_delayed_work(work);
3121 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3122 int cpu = twork->cpu;
3123 struct rq *rq = cpu_rq(cpu);
3124 struct task_struct *curr;
3129 * Handle the tick only if it appears the remote CPU is running in full
3130 * dynticks mode. The check is racy by nature, but missing a tick or
3131 * having one too much is no big deal because the scheduler tick updates
3132 * statistics and checks timeslices in a time-independent way, regardless
3133 * of when exactly it is running.
3135 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3138 rq_lock_irq(rq, &rf);
3140 if (is_idle_task(curr))
3143 update_rq_clock(rq);
3144 delta = rq_clock_task(rq) - curr->se.exec_start;
3147 * Make sure the next tick runs within a reasonable
3150 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3151 curr->sched_class->task_tick(rq, curr, 0);
3154 rq_unlock_irq(rq, &rf);
3158 * Run the remote tick once per second (1Hz). This arbitrary
3159 * frequency is large enough to avoid overload but short enough
3160 * to keep scheduler internal stats reasonably up to date.
3162 queue_delayed_work(system_unbound_wq, dwork, HZ);
3165 static void sched_tick_start(int cpu)
3167 struct tick_work *twork;
3169 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3172 WARN_ON_ONCE(!tick_work_cpu);
3174 twork = per_cpu_ptr(tick_work_cpu, cpu);
3176 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3177 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3180 #ifdef CONFIG_HOTPLUG_CPU
3181 static void sched_tick_stop(int cpu)
3183 struct tick_work *twork;
3185 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3188 WARN_ON_ONCE(!tick_work_cpu);
3190 twork = per_cpu_ptr(tick_work_cpu, cpu);
3191 cancel_delayed_work_sync(&twork->work);
3193 #endif /* CONFIG_HOTPLUG_CPU */
3195 int __init sched_tick_offload_init(void)
3197 tick_work_cpu = alloc_percpu(struct tick_work);
3198 BUG_ON(!tick_work_cpu);
3203 #else /* !CONFIG_NO_HZ_FULL */
3204 static inline void sched_tick_start(int cpu) { }
3205 static inline void sched_tick_stop(int cpu) { }
3208 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3209 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3211 * If the value passed in is equal to the current preempt count
3212 * then we just disabled preemption. Start timing the latency.
3214 static inline void preempt_latency_start(int val)
3216 if (preempt_count() == val) {
3217 unsigned long ip = get_lock_parent_ip();
3218 #ifdef CONFIG_DEBUG_PREEMPT
3219 current->preempt_disable_ip = ip;
3221 trace_preempt_off(CALLER_ADDR0, ip);
3225 void preempt_count_add(int val)
3227 #ifdef CONFIG_DEBUG_PREEMPT
3231 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3234 __preempt_count_add(val);
3235 #ifdef CONFIG_DEBUG_PREEMPT
3237 * Spinlock count overflowing soon?
3239 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3242 preempt_latency_start(val);
3244 EXPORT_SYMBOL(preempt_count_add);
3245 NOKPROBE_SYMBOL(preempt_count_add);
3248 * If the value passed in equals to the current preempt count
3249 * then we just enabled preemption. Stop timing the latency.
3251 static inline void preempt_latency_stop(int val)
3253 if (preempt_count() == val)
3254 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3257 void preempt_count_sub(int val)
3259 #ifdef CONFIG_DEBUG_PREEMPT
3263 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3266 * Is the spinlock portion underflowing?
3268 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3269 !(preempt_count() & PREEMPT_MASK)))
3273 preempt_latency_stop(val);
3274 __preempt_count_sub(val);
3276 EXPORT_SYMBOL(preempt_count_sub);
3277 NOKPROBE_SYMBOL(preempt_count_sub);
3280 static inline void preempt_latency_start(int val) { }
3281 static inline void preempt_latency_stop(int val) { }
3284 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3286 #ifdef CONFIG_DEBUG_PREEMPT
3287 return p->preempt_disable_ip;
3294 * Print scheduling while atomic bug:
3296 static noinline void __schedule_bug(struct task_struct *prev)
3298 /* Save this before calling printk(), since that will clobber it */
3299 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3301 if (oops_in_progress)
3304 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3305 prev->comm, prev->pid, preempt_count());
3307 debug_show_held_locks(prev);
3309 if (irqs_disabled())
3310 print_irqtrace_events(prev);
3311 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3312 && in_atomic_preempt_off()) {
3313 pr_err("Preemption disabled at:");
3314 print_ip_sym(preempt_disable_ip);
3318 panic("scheduling while atomic\n");
3321 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3325 * Various schedule()-time debugging checks and statistics:
3327 static inline void schedule_debug(struct task_struct *prev)
3329 #ifdef CONFIG_SCHED_STACK_END_CHECK
3330 if (task_stack_end_corrupted(prev))
3331 panic("corrupted stack end detected inside scheduler\n");
3334 if (unlikely(in_atomic_preempt_off())) {
3335 __schedule_bug(prev);
3336 preempt_count_set(PREEMPT_DISABLED);
3340 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3342 schedstat_inc(this_rq()->sched_count);
3346 * Pick up the highest-prio task:
3348 static inline struct task_struct *
3349 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3351 const struct sched_class *class;
3352 struct task_struct *p;
3355 * Optimization: we know that if all tasks are in the fair class we can
3356 * call that function directly, but only if the @prev task wasn't of a
3357 * higher scheduling class, because otherwise those loose the
3358 * opportunity to pull in more work from other CPUs.
3360 if (likely((prev->sched_class == &idle_sched_class ||
3361 prev->sched_class == &fair_sched_class) &&
3362 rq->nr_running == rq->cfs.h_nr_running)) {
3364 p = fair_sched_class.pick_next_task(rq, prev, rf);
3365 if (unlikely(p == RETRY_TASK))
3368 /* Assumes fair_sched_class->next == idle_sched_class */
3370 p = idle_sched_class.pick_next_task(rq, prev, rf);
3376 for_each_class(class) {
3377 p = class->pick_next_task(rq, prev, rf);
3379 if (unlikely(p == RETRY_TASK))
3385 /* The idle class should always have a runnable task: */
3390 * __schedule() is the main scheduler function.
3392 * The main means of driving the scheduler and thus entering this function are:
3394 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3396 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3397 * paths. For example, see arch/x86/entry_64.S.
3399 * To drive preemption between tasks, the scheduler sets the flag in timer
3400 * interrupt handler scheduler_tick().
3402 * 3. Wakeups don't really cause entry into schedule(). They add a
3403 * task to the run-queue and that's it.
3405 * Now, if the new task added to the run-queue preempts the current
3406 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3407 * called on the nearest possible occasion:
3409 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3411 * - in syscall or exception context, at the next outmost
3412 * preempt_enable(). (this might be as soon as the wake_up()'s
3415 * - in IRQ context, return from interrupt-handler to
3416 * preemptible context
3418 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3421 * - cond_resched() call
3422 * - explicit schedule() call
3423 * - return from syscall or exception to user-space
3424 * - return from interrupt-handler to user-space
3426 * WARNING: must be called with preemption disabled!
3428 static void __sched notrace __schedule(bool preempt)
3430 struct task_struct *prev, *next;
3431 unsigned long *switch_count;
3436 cpu = smp_processor_id();
3440 schedule_debug(prev);
3442 if (sched_feat(HRTICK))
3445 local_irq_disable();
3446 rcu_note_context_switch(preempt);
3449 * Make sure that signal_pending_state()->signal_pending() below
3450 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3451 * done by the caller to avoid the race with signal_wake_up().
3453 * The membarrier system call requires a full memory barrier
3454 * after coming from user-space, before storing to rq->curr.
3457 smp_mb__after_spinlock();
3459 /* Promote REQ to ACT */
3460 rq->clock_update_flags <<= 1;
3461 update_rq_clock(rq);
3463 switch_count = &prev->nivcsw;
3464 if (!preempt && prev->state) {
3465 if (signal_pending_state(prev->state, prev)) {
3466 prev->state = TASK_RUNNING;
3468 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3471 if (prev->in_iowait) {
3472 atomic_inc(&rq->nr_iowait);
3473 delayacct_blkio_start();
3477 * If a worker went to sleep, notify and ask workqueue
3478 * whether it wants to wake up a task to maintain
3481 if (prev->flags & PF_WQ_WORKER) {
3482 struct task_struct *to_wakeup;
3484 to_wakeup = wq_worker_sleeping(prev);
3486 try_to_wake_up_local(to_wakeup, &rf);
3489 switch_count = &prev->nvcsw;
3492 next = pick_next_task(rq, prev, &rf);
3493 clear_tsk_need_resched(prev);
3494 clear_preempt_need_resched();
3496 if (likely(prev != next)) {
3500 * The membarrier system call requires each architecture
3501 * to have a full memory barrier after updating
3502 * rq->curr, before returning to user-space.
3504 * Here are the schemes providing that barrier on the
3505 * various architectures:
3506 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3507 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3508 * - finish_lock_switch() for weakly-ordered
3509 * architectures where spin_unlock is a full barrier,
3510 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3511 * is a RELEASE barrier),
3515 trace_sched_switch(preempt, prev, next);
3517 /* Also unlocks the rq: */
3518 rq = context_switch(rq, prev, next, &rf);
3520 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3521 rq_unlock_irq(rq, &rf);
3524 balance_callback(rq);
3527 void __noreturn do_task_dead(void)
3529 /* Causes final put_task_struct in finish_task_switch(): */
3530 set_special_state(TASK_DEAD);
3532 /* Tell freezer to ignore us: */
3533 current->flags |= PF_NOFREEZE;
3538 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3543 static inline void sched_submit_work(struct task_struct *tsk)
3545 if (!tsk->state || tsk_is_pi_blocked(tsk))
3548 * If we are going to sleep and we have plugged IO queued,
3549 * make sure to submit it to avoid deadlocks.
3551 if (blk_needs_flush_plug(tsk))
3552 blk_schedule_flush_plug(tsk);
3555 asmlinkage __visible void __sched schedule(void)
3557 struct task_struct *tsk = current;
3559 sched_submit_work(tsk);
3563 sched_preempt_enable_no_resched();
3564 } while (need_resched());
3566 EXPORT_SYMBOL(schedule);
3569 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3570 * state (have scheduled out non-voluntarily) by making sure that all
3571 * tasks have either left the run queue or have gone into user space.
3572 * As idle tasks do not do either, they must not ever be preempted
3573 * (schedule out non-voluntarily).
3575 * schedule_idle() is similar to schedule_preempt_disable() except that it
3576 * never enables preemption because it does not call sched_submit_work().
3578 void __sched schedule_idle(void)
3581 * As this skips calling sched_submit_work(), which the idle task does
3582 * regardless because that function is a nop when the task is in a
3583 * TASK_RUNNING state, make sure this isn't used someplace that the
3584 * current task can be in any other state. Note, idle is always in the
3585 * TASK_RUNNING state.
3587 WARN_ON_ONCE(current->state);
3590 } while (need_resched());
3593 #ifdef CONFIG_CONTEXT_TRACKING
3594 asmlinkage __visible void __sched schedule_user(void)
3597 * If we come here after a random call to set_need_resched(),
3598 * or we have been woken up remotely but the IPI has not yet arrived,
3599 * we haven't yet exited the RCU idle mode. Do it here manually until
3600 * we find a better solution.
3602 * NB: There are buggy callers of this function. Ideally we
3603 * should warn if prev_state != CONTEXT_USER, but that will trigger
3604 * too frequently to make sense yet.
3606 enum ctx_state prev_state = exception_enter();
3608 exception_exit(prev_state);
3613 * schedule_preempt_disabled - called with preemption disabled
3615 * Returns with preemption disabled. Note: preempt_count must be 1
3617 void __sched schedule_preempt_disabled(void)
3619 sched_preempt_enable_no_resched();
3624 static void __sched notrace preempt_schedule_common(void)
3628 * Because the function tracer can trace preempt_count_sub()
3629 * and it also uses preempt_enable/disable_notrace(), if
3630 * NEED_RESCHED is set, the preempt_enable_notrace() called
3631 * by the function tracer will call this function again and
3632 * cause infinite recursion.
3634 * Preemption must be disabled here before the function
3635 * tracer can trace. Break up preempt_disable() into two
3636 * calls. One to disable preemption without fear of being
3637 * traced. The other to still record the preemption latency,
3638 * which can also be traced by the function tracer.
3640 preempt_disable_notrace();
3641 preempt_latency_start(1);