Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[muen/linux.git] / kernel / sched / debug.c
1 /*
2  * kernel/sched/debug.c
3  *
4  * Print the CFS rbtree and other debugging details
5  *
6  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include "sched.h"
13
14 static DEFINE_SPINLOCK(sched_debug_lock);
15
16 /*
17  * This allows printing both to /proc/sched_debug and
18  * to the console
19  */
20 #define SEQ_printf(m, x...)                     \
21  do {                                           \
22         if (m)                                  \
23                 seq_printf(m, x);               \
24         else                                    \
25                 pr_cont(x);                     \
26  } while (0)
27
28 /*
29  * Ease the printing of nsec fields:
30  */
31 static long long nsec_high(unsigned long long nsec)
32 {
33         if ((long long)nsec < 0) {
34                 nsec = -nsec;
35                 do_div(nsec, 1000000);
36                 return -nsec;
37         }
38         do_div(nsec, 1000000);
39
40         return nsec;
41 }
42
43 static unsigned long nsec_low(unsigned long long nsec)
44 {
45         if ((long long)nsec < 0)
46                 nsec = -nsec;
47
48         return do_div(nsec, 1000000);
49 }
50
51 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
52
53 #define SCHED_FEAT(name, enabled)       \
54         #name ,
55
56 static const char * const sched_feat_names[] = {
57 #include "features.h"
58 };
59
60 #undef SCHED_FEAT
61
62 static int sched_feat_show(struct seq_file *m, void *v)
63 {
64         int i;
65
66         for (i = 0; i < __SCHED_FEAT_NR; i++) {
67                 if (!(sysctl_sched_features & (1UL << i)))
68                         seq_puts(m, "NO_");
69                 seq_printf(m, "%s ", sched_feat_names[i]);
70         }
71         seq_puts(m, "\n");
72
73         return 0;
74 }
75
76 #ifdef HAVE_JUMP_LABEL
77
78 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
79 #define jump_label_key__false STATIC_KEY_INIT_FALSE
80
81 #define SCHED_FEAT(name, enabled)       \
82         jump_label_key__##enabled ,
83
84 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
85 #include "features.h"
86 };
87
88 #undef SCHED_FEAT
89
90 static void sched_feat_disable(int i)
91 {
92         static_key_disable(&sched_feat_keys[i]);
93 }
94
95 static void sched_feat_enable(int i)
96 {
97         static_key_enable(&sched_feat_keys[i]);
98 }
99 #else
100 static void sched_feat_disable(int i) { };
101 static void sched_feat_enable(int i) { };
102 #endif /* HAVE_JUMP_LABEL */
103
104 static int sched_feat_set(char *cmp)
105 {
106         int i;
107         int neg = 0;
108
109         if (strncmp(cmp, "NO_", 3) == 0) {
110                 neg = 1;
111                 cmp += 3;
112         }
113
114         for (i = 0; i < __SCHED_FEAT_NR; i++) {
115                 if (strcmp(cmp, sched_feat_names[i]) == 0) {
116                         if (neg) {
117                                 sysctl_sched_features &= ~(1UL << i);
118                                 sched_feat_disable(i);
119                         } else {
120                                 sysctl_sched_features |= (1UL << i);
121                                 sched_feat_enable(i);
122                         }
123                         break;
124                 }
125         }
126
127         return i;
128 }
129
130 static ssize_t
131 sched_feat_write(struct file *filp, const char __user *ubuf,
132                 size_t cnt, loff_t *ppos)
133 {
134         char buf[64];
135         char *cmp;
136         int i;
137         struct inode *inode;
138
139         if (cnt > 63)
140                 cnt = 63;
141
142         if (copy_from_user(&buf, ubuf, cnt))
143                 return -EFAULT;
144
145         buf[cnt] = 0;
146         cmp = strstrip(buf);
147
148         /* Ensure the static_key remains in a consistent state */
149         inode = file_inode(filp);
150         inode_lock(inode);
151         i = sched_feat_set(cmp);
152         inode_unlock(inode);
153         if (i == __SCHED_FEAT_NR)
154                 return -EINVAL;
155
156         *ppos += cnt;
157
158         return cnt;
159 }
160
161 static int sched_feat_open(struct inode *inode, struct file *filp)
162 {
163         return single_open(filp, sched_feat_show, NULL);
164 }
165
166 static const struct file_operations sched_feat_fops = {
167         .open           = sched_feat_open,
168         .write          = sched_feat_write,
169         .read           = seq_read,
170         .llseek         = seq_lseek,
171         .release        = single_release,
172 };
173
174 __read_mostly bool sched_debug_enabled;
175
176 static __init int sched_init_debug(void)
177 {
178         debugfs_create_file("sched_features", 0644, NULL, NULL,
179                         &sched_feat_fops);
180
181         debugfs_create_bool("sched_debug", 0644, NULL,
182                         &sched_debug_enabled);
183
184         return 0;
185 }
186 late_initcall(sched_init_debug);
187
188 #ifdef CONFIG_SMP
189
190 #ifdef CONFIG_SYSCTL
191
192 static struct ctl_table sd_ctl_dir[] = {
193         {
194                 .procname       = "sched_domain",
195                 .mode           = 0555,
196         },
197         {}
198 };
199
200 static struct ctl_table sd_ctl_root[] = {
201         {
202                 .procname       = "kernel",
203                 .mode           = 0555,
204                 .child          = sd_ctl_dir,
205         },
206         {}
207 };
208
209 static struct ctl_table *sd_alloc_ctl_entry(int n)
210 {
211         struct ctl_table *entry =
212                 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
213
214         return entry;
215 }
216
217 static void sd_free_ctl_entry(struct ctl_table **tablep)
218 {
219         struct ctl_table *entry;
220
221         /*
222          * In the intermediate directories, both the child directory and
223          * procname are dynamically allocated and could fail but the mode
224          * will always be set. In the lowest directory the names are
225          * static strings and all have proc handlers.
226          */
227         for (entry = *tablep; entry->mode; entry++) {
228                 if (entry->child)
229                         sd_free_ctl_entry(&entry->child);
230                 if (entry->proc_handler == NULL)
231                         kfree(entry->procname);
232         }
233
234         kfree(*tablep);
235         *tablep = NULL;
236 }
237
238 static int min_load_idx = 0;
239 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
240
241 static void
242 set_table_entry(struct ctl_table *entry,
243                 const char *procname, void *data, int maxlen,
244                 umode_t mode, proc_handler *proc_handler,
245                 bool load_idx)
246 {
247         entry->procname = procname;
248         entry->data = data;
249         entry->maxlen = maxlen;
250         entry->mode = mode;
251         entry->proc_handler = proc_handler;
252
253         if (load_idx) {
254                 entry->extra1 = &min_load_idx;
255                 entry->extra2 = &max_load_idx;
256         }
257 }
258
259 static struct ctl_table *
260 sd_alloc_ctl_domain_table(struct sched_domain *sd)
261 {
262         struct ctl_table *table = sd_alloc_ctl_entry(14);
263
264         if (table == NULL)
265                 return NULL;
266
267         set_table_entry(&table[0] , "min_interval",        &sd->min_interval,        sizeof(long), 0644, proc_doulongvec_minmax, false);
268         set_table_entry(&table[1] , "max_interval",        &sd->max_interval,        sizeof(long), 0644, proc_doulongvec_minmax, false);
269         set_table_entry(&table[2] , "busy_idx",            &sd->busy_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
270         set_table_entry(&table[3] , "idle_idx",            &sd->idle_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
271         set_table_entry(&table[4] , "newidle_idx",         &sd->newidle_idx,         sizeof(int) , 0644, proc_dointvec_minmax,   true );
272         set_table_entry(&table[5] , "wake_idx",            &sd->wake_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
273         set_table_entry(&table[6] , "forkexec_idx",        &sd->forkexec_idx,        sizeof(int) , 0644, proc_dointvec_minmax,   true );
274         set_table_entry(&table[7] , "busy_factor",         &sd->busy_factor,         sizeof(int) , 0644, proc_dointvec_minmax,   false);
275         set_table_entry(&table[8] , "imbalance_pct",       &sd->imbalance_pct,       sizeof(int) , 0644, proc_dointvec_minmax,   false);
276         set_table_entry(&table[9] , "cache_nice_tries",    &sd->cache_nice_tries,    sizeof(int) , 0644, proc_dointvec_minmax,   false);
277         set_table_entry(&table[10], "flags",               &sd->flags,               sizeof(int) , 0644, proc_dointvec_minmax,   false);
278         set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false);
279         set_table_entry(&table[12], "name",                sd->name,            CORENAME_MAX_SIZE, 0444, proc_dostring,          false);
280         /* &table[13] is terminator */
281
282         return table;
283 }
284
285 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
286 {
287         struct ctl_table *entry, *table;
288         struct sched_domain *sd;
289         int domain_num = 0, i;
290         char buf[32];
291
292         for_each_domain(cpu, sd)
293                 domain_num++;
294         entry = table = sd_alloc_ctl_entry(domain_num + 1);
295         if (table == NULL)
296                 return NULL;
297
298         i = 0;
299         for_each_domain(cpu, sd) {
300                 snprintf(buf, 32, "domain%d", i);
301                 entry->procname = kstrdup(buf, GFP_KERNEL);
302                 entry->mode = 0555;
303                 entry->child = sd_alloc_ctl_domain_table(sd);
304                 entry++;
305                 i++;
306         }
307         return table;
308 }
309
310 static cpumask_var_t            sd_sysctl_cpus;
311 static struct ctl_table_header  *sd_sysctl_header;
312
313 void register_sched_domain_sysctl(void)
314 {
315         static struct ctl_table *cpu_entries;
316         static struct ctl_table **cpu_idx;
317         char buf[32];
318         int i;
319
320         if (!cpu_entries) {
321                 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
322                 if (!cpu_entries)
323                         return;
324
325                 WARN_ON(sd_ctl_dir[0].child);
326                 sd_ctl_dir[0].child = cpu_entries;
327         }
328
329         if (!cpu_idx) {
330                 struct ctl_table *e = cpu_entries;
331
332                 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
333                 if (!cpu_idx)
334                         return;
335
336                 /* deal with sparse possible map */
337                 for_each_possible_cpu(i) {
338                         cpu_idx[i] = e;
339                         e++;
340                 }
341         }
342
343         if (!cpumask_available(sd_sysctl_cpus)) {
344                 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
345                         return;
346
347                 /* init to possible to not have holes in @cpu_entries */
348                 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
349         }
350
351         for_each_cpu(i, sd_sysctl_cpus) {
352                 struct ctl_table *e = cpu_idx[i];
353
354                 if (e->child)
355                         sd_free_ctl_entry(&e->child);
356
357                 if (!e->procname) {
358                         snprintf(buf, 32, "cpu%d", i);
359                         e->procname = kstrdup(buf, GFP_KERNEL);
360                 }
361                 e->mode = 0555;
362                 e->child = sd_alloc_ctl_cpu_table(i);
363
364                 __cpumask_clear_cpu(i, sd_sysctl_cpus);
365         }
366
367         WARN_ON(sd_sysctl_header);
368         sd_sysctl_header = register_sysctl_table(sd_ctl_root);
369 }
370
371 void dirty_sched_domain_sysctl(int cpu)
372 {
373         if (cpumask_available(sd_sysctl_cpus))
374                 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
375 }
376
377 /* may be called multiple times per register */
378 void unregister_sched_domain_sysctl(void)
379 {
380         unregister_sysctl_table(sd_sysctl_header);
381         sd_sysctl_header = NULL;
382 }
383 #endif /* CONFIG_SYSCTL */
384 #endif /* CONFIG_SMP */
385
386 #ifdef CONFIG_FAIR_GROUP_SCHED
387 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
388 {
389         struct sched_entity *se = tg->se[cpu];
390
391 #define P(F)            SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)F)
392 #define P_SCHEDSTAT(F)  SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)schedstat_val(F))
393 #define PN(F)           SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
394 #define PN_SCHEDSTAT(F) SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
395
396         if (!se)
397                 return;
398
399         PN(se->exec_start);
400         PN(se->vruntime);
401         PN(se->sum_exec_runtime);
402
403         if (schedstat_enabled()) {
404                 PN_SCHEDSTAT(se->statistics.wait_start);
405                 PN_SCHEDSTAT(se->statistics.sleep_start);
406                 PN_SCHEDSTAT(se->statistics.block_start);
407                 PN_SCHEDSTAT(se->statistics.sleep_max);
408                 PN_SCHEDSTAT(se->statistics.block_max);
409                 PN_SCHEDSTAT(se->statistics.exec_max);
410                 PN_SCHEDSTAT(se->statistics.slice_max);
411                 PN_SCHEDSTAT(se->statistics.wait_max);
412                 PN_SCHEDSTAT(se->statistics.wait_sum);
413                 P_SCHEDSTAT(se->statistics.wait_count);
414         }
415
416         P(se->load.weight);
417         P(se->runnable_weight);
418 #ifdef CONFIG_SMP
419         P(se->avg.load_avg);
420         P(se->avg.util_avg);
421         P(se->avg.runnable_load_avg);
422 #endif
423
424 #undef PN_SCHEDSTAT
425 #undef PN
426 #undef P_SCHEDSTAT
427 #undef P
428 }
429 #endif
430
431 #ifdef CONFIG_CGROUP_SCHED
432 static char group_path[PATH_MAX];
433
434 static char *task_group_path(struct task_group *tg)
435 {
436         if (autogroup_path(tg, group_path, PATH_MAX))
437                 return group_path;
438
439         cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
440
441         return group_path;
442 }
443 #endif
444
445 static void
446 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
447 {
448         if (rq->curr == p)
449                 SEQ_printf(m, ">R");
450         else
451                 SEQ_printf(m, " %c", task_state_to_char(p));
452
453         SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
454                 p->comm, task_pid_nr(p),
455                 SPLIT_NS(p->se.vruntime),
456                 (long long)(p->nvcsw + p->nivcsw),
457                 p->prio);
458
459         SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
460                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
461                 SPLIT_NS(p->se.sum_exec_runtime),
462                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
463
464 #ifdef CONFIG_NUMA_BALANCING
465         SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
466 #endif
467 #ifdef CONFIG_CGROUP_SCHED
468         SEQ_printf(m, " %s", task_group_path(task_group(p)));
469 #endif
470
471         SEQ_printf(m, "\n");
472 }
473
474 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
475 {
476         struct task_struct *g, *p;
477
478         SEQ_printf(m, "\n");
479         SEQ_printf(m, "runnable tasks:\n");
480         SEQ_printf(m, " S           task   PID         tree-key  switches  prio"
481                    "     wait-time             sum-exec        sum-sleep\n");
482         SEQ_printf(m, "-------------------------------------------------------"
483                    "----------------------------------------------------\n");
484
485         rcu_read_lock();
486         for_each_process_thread(g, p) {
487                 if (task_cpu(p) != rq_cpu)
488                         continue;
489
490                 print_task(m, rq, p);
491         }
492         rcu_read_unlock();
493 }
494
495 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
496 {
497         s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
498                 spread, rq0_min_vruntime, spread0;
499         struct rq *rq = cpu_rq(cpu);
500         struct sched_entity *last;
501         unsigned long flags;
502
503 #ifdef CONFIG_FAIR_GROUP_SCHED
504         SEQ_printf(m, "\n");
505         SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
506 #else
507         SEQ_printf(m, "\n");
508         SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
509 #endif
510         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
511                         SPLIT_NS(cfs_rq->exec_clock));
512
513         raw_spin_lock_irqsave(&rq->lock, flags);
514         if (rb_first_cached(&cfs_rq->tasks_timeline))
515                 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
516         last = __pick_last_entity(cfs_rq);
517         if (last)
518                 max_vruntime = last->vruntime;
519         min_vruntime = cfs_rq->min_vruntime;
520         rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
521         raw_spin_unlock_irqrestore(&rq->lock, flags);
522         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
523                         SPLIT_NS(MIN_vruntime));
524         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
525                         SPLIT_NS(min_vruntime));
526         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
527                         SPLIT_NS(max_vruntime));
528         spread = max_vruntime - MIN_vruntime;
529         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
530                         SPLIT_NS(spread));
531         spread0 = min_vruntime - rq0_min_vruntime;
532         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
533                         SPLIT_NS(spread0));
534         SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
535                         cfs_rq->nr_spread_over);
536         SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
537         SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
538 #ifdef CONFIG_SMP
539         SEQ_printf(m, "  .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
540         SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
541                         cfs_rq->avg.load_avg);
542         SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
543                         cfs_rq->avg.runnable_load_avg);
544         SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
545                         cfs_rq->avg.util_avg);
546         SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
547                         cfs_rq->avg.util_est.enqueued);
548         SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
549                         cfs_rq->removed.load_avg);
550         SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
551                         cfs_rq->removed.util_avg);
552         SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_sum",
553                         cfs_rq->removed.runnable_sum);
554 #ifdef CONFIG_FAIR_GROUP_SCHED
555         SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
556                         cfs_rq->tg_load_avg_contrib);
557         SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
558                         atomic_long_read(&cfs_rq->tg->load_avg));
559 #endif
560 #endif
561 #ifdef CONFIG_CFS_BANDWIDTH
562         SEQ_printf(m, "  .%-30s: %d\n", "throttled",
563                         cfs_rq->throttled);
564         SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
565                         cfs_rq->throttle_count);
566 #endif
567
568 #ifdef CONFIG_FAIR_GROUP_SCHED
569         print_cfs_group_stats(m, cpu, cfs_rq->tg);
570 #endif
571 }
572
573 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
574 {
575 #ifdef CONFIG_RT_GROUP_SCHED
576         SEQ_printf(m, "\n");
577         SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
578 #else
579         SEQ_printf(m, "\n");
580         SEQ_printf(m, "rt_rq[%d]:\n", cpu);
581 #endif
582
583 #define P(x) \
584         SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
585 #define PU(x) \
586         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
587 #define PN(x) \
588         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
589
590         PU(rt_nr_running);
591 #ifdef CONFIG_SMP
592         PU(rt_nr_migratory);
593 #endif
594         P(rt_throttled);
595         PN(rt_time);
596         PN(rt_runtime);
597
598 #undef PN
599 #undef PU
600 #undef P
601 }
602
603 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
604 {
605         struct dl_bw *dl_bw;
606
607         SEQ_printf(m, "\n");
608         SEQ_printf(m, "dl_rq[%d]:\n", cpu);
609
610 #define PU(x) \
611         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
612
613         PU(dl_nr_running);
614 #ifdef CONFIG_SMP
615         PU(dl_nr_migratory);
616         dl_bw = &cpu_rq(cpu)->rd->dl_bw;
617 #else
618         dl_bw = &dl_rq->dl_bw;
619 #endif
620         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
621         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
622
623 #undef PU
624 }
625
626 extern __read_mostly int sched_clock_running;
627
628 static void print_cpu(struct seq_file *m, int cpu)
629 {
630         struct rq *rq = cpu_rq(cpu);
631         unsigned long flags;
632
633 #ifdef CONFIG_X86
634         {
635                 unsigned int freq = cpu_khz ? : 1;
636
637                 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
638                            cpu, freq / 1000, (freq % 1000));
639         }
640 #else
641         SEQ_printf(m, "cpu#%d\n", cpu);
642 #endif
643
644 #define P(x)                                                            \
645 do {                                                                    \
646         if (sizeof(rq->x) == 4)                                         \
647                 SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));    \
648         else                                                            \
649                 SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
650 } while (0)
651
652 #define PN(x) \
653         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
654
655         P(nr_running);
656         SEQ_printf(m, "  .%-30s: %lu\n", "load",
657                    rq->load.weight);
658         P(nr_switches);
659         P(nr_load_updates);
660         P(nr_uninterruptible);
661         PN(next_balance);
662         SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
663         PN(clock);
664         PN(clock_task);
665         P(cpu_load[0]);
666         P(cpu_load[1]);
667         P(cpu_load[2]);
668         P(cpu_load[3]);
669         P(cpu_load[4]);
670 #undef P
671 #undef PN
672
673 #ifdef CONFIG_SMP
674 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
675         P64(avg_idle);
676         P64(max_idle_balance_cost);
677 #undef P64
678 #endif
679
680 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
681         if (schedstat_enabled()) {
682                 P(yld_count);
683                 P(sched_count);
684                 P(sched_goidle);
685                 P(ttwu_count);
686                 P(ttwu_local);
687         }
688 #undef P
689
690         spin_lock_irqsave(&sched_debug_lock, flags);
691         print_cfs_stats(m, cpu);
692         print_rt_stats(m, cpu);
693         print_dl_stats(m, cpu);
694
695         print_rq(m, rq, cpu);
696         spin_unlock_irqrestore(&sched_debug_lock, flags);
697         SEQ_printf(m, "\n");
698 }
699
700 static const char *sched_tunable_scaling_names[] = {
701         "none",
702         "logaritmic",
703         "linear"
704 };
705
706 static void sched_debug_header(struct seq_file *m)
707 {
708         u64 ktime, sched_clk, cpu_clk;
709         unsigned long flags;
710
711         local_irq_save(flags);
712         ktime = ktime_to_ns(ktime_get());
713         sched_clk = sched_clock();
714         cpu_clk = local_clock();
715         local_irq_restore(flags);
716
717         SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
718                 init_utsname()->release,
719                 (int)strcspn(init_utsname()->version, " "),
720                 init_utsname()->version);
721
722 #define P(x) \
723         SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
724 #define PN(x) \
725         SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
726         PN(ktime);
727         PN(sched_clk);
728         PN(cpu_clk);
729         P(jiffies);
730 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
731         P(sched_clock_stable());
732 #endif
733 #undef PN
734 #undef P
735
736         SEQ_printf(m, "\n");
737         SEQ_printf(m, "sysctl_sched\n");
738
739 #define P(x) \
740         SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
741 #define PN(x) \
742         SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
743         PN(sysctl_sched_latency);
744         PN(sysctl_sched_min_granularity);
745         PN(sysctl_sched_wakeup_granularity);
746         P(sysctl_sched_child_runs_first);
747         P(sysctl_sched_features);
748 #undef PN
749 #undef P
750
751         SEQ_printf(m, "  .%-40s: %d (%s)\n",
752                 "sysctl_sched_tunable_scaling",
753                 sysctl_sched_tunable_scaling,
754                 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
755         SEQ_printf(m, "\n");
756 }
757
758 static int sched_debug_show(struct seq_file *m, void *v)
759 {
760         int cpu = (unsigned long)(v - 2);
761
762         if (cpu != -1)
763                 print_cpu(m, cpu);
764         else
765                 sched_debug_header(m);
766
767         return 0;
768 }
769
770 void sysrq_sched_debug_show(void)
771 {
772         int cpu;
773
774         sched_debug_header(NULL);
775         for_each_online_cpu(cpu)
776                 print_cpu(NULL, cpu);
777
778 }
779
780 /*
781  * This itererator needs some explanation.
782  * It returns 1 for the header position.
783  * This means 2 is CPU 0.
784  * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
785  * to use cpumask_* to iterate over the CPUs.
786  */
787 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
788 {
789         unsigned long n = *offset;
790
791         if (n == 0)
792                 return (void *) 1;
793
794         n--;
795
796         if (n > 0)
797                 n = cpumask_next(n - 1, cpu_online_mask);
798         else
799                 n = cpumask_first(cpu_online_mask);
800
801         *offset = n + 1;
802
803         if (n < nr_cpu_ids)
804                 return (void *)(unsigned long)(n + 2);
805
806         return NULL;
807 }
808
809 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
810 {
811         (*offset)++;
812         return sched_debug_start(file, offset);
813 }
814
815 static void sched_debug_stop(struct seq_file *file, void *data)
816 {
817 }
818
819 static const struct seq_operations sched_debug_sops = {
820         .start          = sched_debug_start,
821         .next           = sched_debug_next,
822         .stop           = sched_debug_stop,
823         .show           = sched_debug_show,
824 };
825
826 static int sched_debug_release(struct inode *inode, struct file *file)
827 {
828         seq_release(inode, file);
829
830         return 0;
831 }
832
833 static int sched_debug_open(struct inode *inode, struct file *filp)
834 {
835         int ret = 0;
836
837         ret = seq_open(filp, &sched_debug_sops);
838
839         return ret;
840 }
841
842 static const struct file_operations sched_debug_fops = {
843         .open           = sched_debug_open,
844         .read           = seq_read,
845         .llseek         = seq_lseek,
846         .release        = sched_debug_release,
847 };
848
849 static int __init init_sched_debug_procfs(void)
850 {
851         struct proc_dir_entry *pe;
852
853         pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
854         if (!pe)
855                 return -ENOMEM;
856         return 0;
857 }
858
859 __initcall(init_sched_debug_procfs);
860
861 #define __P(F)  SEQ_printf(m, "%-45s:%21Ld\n",       #F, (long long)F)
862 #define   P(F)  SEQ_printf(m, "%-45s:%21Ld\n",       #F, (long long)p->F)
863 #define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
864 #define   PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
865
866
867 #ifdef CONFIG_NUMA_BALANCING
868 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
869                 unsigned long tpf, unsigned long gsf, unsigned long gpf)
870 {
871         SEQ_printf(m, "numa_faults node=%d ", node);
872         SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
873         SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
874 }
875 #endif
876
877
878 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
879 {
880 #ifdef CONFIG_NUMA_BALANCING
881         struct mempolicy *pol;
882
883         if (p->mm)
884                 P(mm->numa_scan_seq);
885
886         task_lock(p);
887         pol = p->mempolicy;
888         if (pol && !(pol->flags & MPOL_F_MORON))
889                 pol = NULL;
890         mpol_get(pol);
891         task_unlock(p);
892
893         P(numa_pages_migrated);
894         P(numa_preferred_nid);
895         P(total_numa_faults);
896         SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
897                         task_node(p), task_numa_group_id(p));
898         show_numa_stats(p, m);
899         mpol_put(pol);
900 #endif
901 }
902
903 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
904                                                   struct seq_file *m)
905 {
906         unsigned long nr_switches;
907
908         SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
909                                                 get_nr_threads(p));
910         SEQ_printf(m,
911                 "---------------------------------------------------------"
912                 "----------\n");
913 #define __P(F) \
914         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
915 #define P(F) \
916         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
917 #define P_SCHEDSTAT(F) \
918         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
919 #define __PN(F) \
920         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
921 #define PN(F) \
922         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
923 #define PN_SCHEDSTAT(F) \
924         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
925
926         PN(se.exec_start);
927         PN(se.vruntime);
928         PN(se.sum_exec_runtime);
929
930         nr_switches = p->nvcsw + p->nivcsw;
931
932         P(se.nr_migrations);
933
934         if (schedstat_enabled()) {
935                 u64 avg_atom, avg_per_cpu;
936
937                 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
938                 PN_SCHEDSTAT(se.statistics.wait_start);
939                 PN_SCHEDSTAT(se.statistics.sleep_start);
940                 PN_SCHEDSTAT(se.statistics.block_start);
941                 PN_SCHEDSTAT(se.statistics.sleep_max);
942                 PN_SCHEDSTAT(se.statistics.block_max);
943                 PN_SCHEDSTAT(se.statistics.exec_max);
944                 PN_SCHEDSTAT(se.statistics.slice_max);
945                 PN_SCHEDSTAT(se.statistics.wait_max);
946                 PN_SCHEDSTAT(se.statistics.wait_sum);
947                 P_SCHEDSTAT(se.statistics.wait_count);
948                 PN_SCHEDSTAT(se.statistics.iowait_sum);
949                 P_SCHEDSTAT(se.statistics.iowait_count);
950                 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
951                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
952                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
953                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
954                 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
955                 P_SCHEDSTAT(se.statistics.nr_wakeups);
956                 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
957                 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
958                 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
959                 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
960                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
961                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
962                 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
963                 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
964
965                 avg_atom = p->se.sum_exec_runtime;
966                 if (nr_switches)
967                         avg_atom = div64_ul(avg_atom, nr_switches);
968                 else
969                         avg_atom = -1LL;
970
971                 avg_per_cpu = p->se.sum_exec_runtime;
972                 if (p->se.nr_migrations) {
973                         avg_per_cpu = div64_u64(avg_per_cpu,
974                                                 p->se.nr_migrations);
975                 } else {
976                         avg_per_cpu = -1LL;
977                 }
978
979                 __PN(avg_atom);
980                 __PN(avg_per_cpu);
981         }
982
983         __P(nr_switches);
984         SEQ_printf(m, "%-45s:%21Ld\n",
985                    "nr_voluntary_switches", (long long)p->nvcsw);
986         SEQ_printf(m, "%-45s:%21Ld\n",
987                    "nr_involuntary_switches", (long long)p->nivcsw);
988
989         P(se.load.weight);
990         P(se.runnable_weight);
991 #ifdef CONFIG_SMP
992         P(se.avg.load_sum);
993         P(se.avg.runnable_load_sum);
994         P(se.avg.util_sum);
995         P(se.avg.load_avg);
996         P(se.avg.runnable_load_avg);
997         P(se.avg.util_avg);
998         P(se.avg.last_update_time);
999         P(se.avg.util_est.ewma);
1000         P(se.avg.util_est.enqueued);
1001 #endif
1002         P(policy);
1003         P(prio);
1004         if (p->policy == SCHED_DEADLINE) {
1005                 P(dl.runtime);
1006                 P(dl.deadline);
1007         }
1008 #undef PN_SCHEDSTAT
1009 #undef PN
1010 #undef __PN
1011 #undef P_SCHEDSTAT
1012 #undef P
1013 #undef __P
1014
1015         {
1016                 unsigned int this_cpu = raw_smp_processor_id();
1017                 u64 t0, t1;
1018
1019                 t0 = cpu_clock(this_cpu);
1020                 t1 = cpu_clock(this_cpu);
1021                 SEQ_printf(m, "%-45s:%21Ld\n",
1022                            "clock-delta", (long long)(t1-t0));
1023         }
1024
1025         sched_show_numa(p, m);
1026 }
1027
1028 void proc_sched_set_task(struct task_struct *p)
1029 {
1030 #ifdef CONFIG_SCHEDSTATS
1031         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1032 #endif
1033 }