2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/errno.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/export.h>
29 #include <linux/radix-tree.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/kmemleak.h>
33 #include <linux/notifier.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h> /* in_interrupt() */
41 /* Number of nodes in fully populated tree of given height */
42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
45 * Radix tree node cache.
47 static struct kmem_cache *radix_tree_node_cachep;
50 * The radix tree is variable-height, so an insert operation not only has
51 * to build the branch to its corresponding item, it also has to build the
52 * branch to existing items if the size has to be increased (by
55 * The worst case is a zero height tree with just a single item at index 0,
56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
63 * Per-cpu pool of preloaded nodes
65 struct radix_tree_preload {
67 /* nodes->private_data points to next preallocated node */
68 struct radix_tree_node *nodes;
70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
72 static inline void *node_to_entry(void *ptr)
74 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
77 #define RADIX_TREE_RETRY node_to_entry(NULL)
79 #ifdef CONFIG_RADIX_TREE_MULTIORDER
80 /* Sibling slots point directly to another slot in the same node */
81 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
84 return (parent->slots <= ptr) &&
85 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
88 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
94 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
97 return slot - parent->slots;
100 static unsigned int radix_tree_descend(struct radix_tree_node *parent,
101 struct radix_tree_node **nodep, unsigned long index)
103 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
104 void **entry = rcu_dereference_raw(parent->slots[offset]);
106 #ifdef CONFIG_RADIX_TREE_MULTIORDER
107 if (radix_tree_is_internal_node(entry)) {
108 if (is_sibling_entry(parent, entry)) {
109 void **sibentry = (void **) entry_to_node(entry);
110 offset = get_slot_offset(parent, sibentry);
111 entry = rcu_dereference_raw(*sibentry);
116 *nodep = (void *)entry;
120 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
122 return root->gfp_mask & __GFP_BITS_MASK;
125 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
128 __set_bit(offset, node->tags[tag]);
131 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
134 __clear_bit(offset, node->tags[tag]);
137 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
140 return test_bit(offset, node->tags[tag]);
143 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
145 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
148 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
150 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
153 static inline void root_tag_clear_all(struct radix_tree_root *root)
155 root->gfp_mask &= __GFP_BITS_MASK;
158 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
160 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
163 static inline unsigned root_tags_get(struct radix_tree_root *root)
165 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
169 * Returns 1 if any slot in the node has this tag set.
170 * Otherwise returns 0.
172 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
175 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
176 if (node->tags[tag][idx])
183 * radix_tree_find_next_bit - find the next set bit in a memory region
185 * @addr: The address to base the search on
186 * @size: The bitmap size in bits
187 * @offset: The bitnumber to start searching at
189 * Unrollable variant of find_next_bit() for constant size arrays.
190 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
191 * Returns next bit offset, or size if nothing found.
193 static __always_inline unsigned long
194 radix_tree_find_next_bit(const unsigned long *addr,
195 unsigned long size, unsigned long offset)
197 if (!__builtin_constant_p(size))
198 return find_next_bit(addr, size, offset);
203 addr += offset / BITS_PER_LONG;
204 tmp = *addr >> (offset % BITS_PER_LONG);
206 return __ffs(tmp) + offset;
207 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
208 while (offset < size) {
211 return __ffs(tmp) + offset;
212 offset += BITS_PER_LONG;
219 static void dump_node(struct radix_tree_node *node, unsigned long index)
223 pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d exceptional %d parent %p\n",
225 node->tags[0][0], node->tags[1][0], node->tags[2][0],
226 node->shift, node->count, node->exceptional, node->parent);
228 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
229 unsigned long first = index | (i << node->shift);
230 unsigned long last = first | ((1UL << node->shift) - 1);
231 void *entry = node->slots[i];
234 if (is_sibling_entry(node, entry)) {
235 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
237 *(void **)entry_to_node(entry),
239 } else if (!radix_tree_is_internal_node(entry)) {
240 pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
241 entry, i, first, last);
243 dump_node(entry_to_node(entry), first);
249 static void radix_tree_dump(struct radix_tree_root *root)
251 pr_debug("radix root: %p rnode %p tags %x\n",
253 root->gfp_mask >> __GFP_BITS_SHIFT);
254 if (!radix_tree_is_internal_node(root->rnode))
256 dump_node(entry_to_node(root->rnode), 0);
261 * This assumes that the caller has performed appropriate preallocation, and
262 * that the caller has pinned this thread of control to the current CPU.
264 static struct radix_tree_node *
265 radix_tree_node_alloc(struct radix_tree_root *root)
267 struct radix_tree_node *ret = NULL;
268 gfp_t gfp_mask = root_gfp_mask(root);
271 * Preload code isn't irq safe and it doesn't make sense to use
272 * preloading during an interrupt anyway as all the allocations have
273 * to be atomic. So just do normal allocation when in interrupt.
275 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
276 struct radix_tree_preload *rtp;
279 * Even if the caller has preloaded, try to allocate from the
280 * cache first for the new node to get accounted to the memory
283 ret = kmem_cache_alloc(radix_tree_node_cachep,
284 gfp_mask | __GFP_NOWARN);
289 * Provided the caller has preloaded here, we will always
290 * succeed in getting a node here (and never reach
293 rtp = this_cpu_ptr(&radix_tree_preloads);
296 rtp->nodes = ret->private_data;
297 ret->private_data = NULL;
301 * Update the allocation stack trace as this is more useful
304 kmemleak_update_trace(ret);
307 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
309 BUG_ON(radix_tree_is_internal_node(ret));
313 static void radix_tree_node_rcu_free(struct rcu_head *head)
315 struct radix_tree_node *node =
316 container_of(head, struct radix_tree_node, rcu_head);
320 * must only free zeroed nodes into the slab. radix_tree_shrink
321 * can leave us with a non-NULL entry in the first slot, so clear
322 * that here to make sure.
324 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
325 tag_clear(node, i, 0);
327 node->slots[0] = NULL;
328 INIT_LIST_HEAD(&node->private_list);
330 kmem_cache_free(radix_tree_node_cachep, node);
334 radix_tree_node_free(struct radix_tree_node *node)
336 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
340 * Load up this CPU's radix_tree_node buffer with sufficient objects to
341 * ensure that the addition of a single element in the tree cannot fail. On
342 * success, return zero, with preemption disabled. On error, return -ENOMEM
343 * with preemption not disabled.
345 * To make use of this facility, the radix tree must be initialised without
346 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
348 static int __radix_tree_preload(gfp_t gfp_mask, int nr)
350 struct radix_tree_preload *rtp;
351 struct radix_tree_node *node;
355 * Nodes preloaded by one cgroup can be be used by another cgroup, so
356 * they should never be accounted to any particular memory cgroup.
358 gfp_mask &= ~__GFP_ACCOUNT;
361 rtp = this_cpu_ptr(&radix_tree_preloads);
362 while (rtp->nr < nr) {
364 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
368 rtp = this_cpu_ptr(&radix_tree_preloads);
370 node->private_data = rtp->nodes;
374 kmem_cache_free(radix_tree_node_cachep, node);
383 * Load up this CPU's radix_tree_node buffer with sufficient objects to
384 * ensure that the addition of a single element in the tree cannot fail. On
385 * success, return zero, with preemption disabled. On error, return -ENOMEM
386 * with preemption not disabled.
388 * To make use of this facility, the radix tree must be initialised without
389 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
391 int radix_tree_preload(gfp_t gfp_mask)
393 /* Warn on non-sensical use... */
394 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
395 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
397 EXPORT_SYMBOL(radix_tree_preload);
400 * The same as above function, except we don't guarantee preloading happens.
401 * We do it, if we decide it helps. On success, return zero with preemption
402 * disabled. On error, return -ENOMEM with preemption not disabled.
404 int radix_tree_maybe_preload(gfp_t gfp_mask)
406 if (gfpflags_allow_blocking(gfp_mask))
407 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
408 /* Preloading doesn't help anything with this gfp mask, skip it */
412 EXPORT_SYMBOL(radix_tree_maybe_preload);
415 * The same as function above, but preload number of nodes required to insert
416 * (1 << order) continuous naturally-aligned elements.
418 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
420 unsigned long nr_subtrees;
421 int nr_nodes, subtree_height;
423 /* Preloading doesn't help anything with this gfp mask, skip it */
424 if (!gfpflags_allow_blocking(gfp_mask)) {
430 * Calculate number and height of fully populated subtrees it takes to
431 * store (1 << order) elements.
433 nr_subtrees = 1 << order;
434 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
436 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
439 * The worst case is zero height tree with a single item at index 0 and
440 * then inserting items starting at ULONG_MAX - (1 << order).
442 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
445 nr_nodes = RADIX_TREE_MAX_PATH;
447 /* Plus branch to fully populated subtrees. */
448 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
450 /* Root node is shared. */
453 /* Plus nodes required to build subtrees. */
454 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
456 return __radix_tree_preload(gfp_mask, nr_nodes);
460 * The maximum index which can be stored in a radix tree
462 static inline unsigned long shift_maxindex(unsigned int shift)
464 return (RADIX_TREE_MAP_SIZE << shift) - 1;
467 static inline unsigned long node_maxindex(struct radix_tree_node *node)
469 return shift_maxindex(node->shift);
472 static unsigned radix_tree_load_root(struct radix_tree_root *root,
473 struct radix_tree_node **nodep, unsigned long *maxindex)
475 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
479 if (likely(radix_tree_is_internal_node(node))) {
480 node = entry_to_node(node);
481 *maxindex = node_maxindex(node);
482 return node->shift + RADIX_TREE_MAP_SHIFT;
490 * Extend a radix tree so it can store key @index.
492 static int radix_tree_extend(struct radix_tree_root *root,
493 unsigned long index, unsigned int shift)
495 struct radix_tree_node *slot;
496 unsigned int maxshift;
499 /* Figure out what the shift should be. */
501 while (index > shift_maxindex(maxshift))
502 maxshift += RADIX_TREE_MAP_SHIFT;
509 struct radix_tree_node *node = radix_tree_node_alloc(root);
514 /* Propagate the aggregated tag info into the new root */
515 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
516 if (root_tag_get(root, tag))
517 tag_set(node, tag, 0);
520 BUG_ON(shift > BITS_PER_LONG);
525 if (radix_tree_is_internal_node(slot)) {
526 entry_to_node(slot)->parent = node;
528 /* Moving an exceptional root->rnode to a node */
529 if (radix_tree_exceptional_entry(slot))
530 node->exceptional = 1;
532 node->slots[0] = slot;
533 slot = node_to_entry(node);
534 rcu_assign_pointer(root->rnode, slot);
535 shift += RADIX_TREE_MAP_SHIFT;
536 } while (shift <= maxshift);
538 return maxshift + RADIX_TREE_MAP_SHIFT;
542 * radix_tree_shrink - shrink radix tree to minimum height
543 * @root radix tree root
545 static inline void radix_tree_shrink(struct radix_tree_root *root,
546 radix_tree_update_node_t update_node,
550 struct radix_tree_node *node = root->rnode;
551 struct radix_tree_node *child;
553 if (!radix_tree_is_internal_node(node))
555 node = entry_to_node(node);
558 * The candidate node has more than one child, or its child
559 * is not at the leftmost slot, or the child is a multiorder
560 * entry, we cannot shrink.
562 if (node->count != 1)
564 child = node->slots[0];
567 if (!radix_tree_is_internal_node(child) && node->shift)
570 if (radix_tree_is_internal_node(child))
571 entry_to_node(child)->parent = NULL;
574 * We don't need rcu_assign_pointer(), since we are simply
575 * moving the node from one part of the tree to another: if it
576 * was safe to dereference the old pointer to it
577 * (node->slots[0]), it will be safe to dereference the new
578 * one (root->rnode) as far as dependent read barriers go.
583 * We have a dilemma here. The node's slot[0] must not be
584 * NULLed in case there are concurrent lookups expecting to
585 * find the item. However if this was a bottom-level node,
586 * then it may be subject to the slot pointer being visible
587 * to callers dereferencing it. If item corresponding to
588 * slot[0] is subsequently deleted, these callers would expect
589 * their slot to become empty sooner or later.
591 * For example, lockless pagecache will look up a slot, deref
592 * the page pointer, and if the page has 0 refcount it means it
593 * was concurrently deleted from pagecache so try the deref
594 * again. Fortunately there is already a requirement for logic
595 * to retry the entire slot lookup -- the indirect pointer
596 * problem (replacing direct root node with an indirect pointer
597 * also results in a stale slot). So tag the slot as indirect
598 * to force callers to retry.
601 if (!radix_tree_is_internal_node(child)) {
602 node->slots[0] = RADIX_TREE_RETRY;
604 update_node(node, private);
607 radix_tree_node_free(node);
611 static void delete_node(struct radix_tree_root *root,
612 struct radix_tree_node *node,
613 radix_tree_update_node_t update_node, void *private)
616 struct radix_tree_node *parent;
619 if (node == entry_to_node(root->rnode))
620 radix_tree_shrink(root, update_node, private);
624 parent = node->parent;
626 parent->slots[node->offset] = NULL;
629 root_tag_clear_all(root);
633 radix_tree_node_free(node);
640 * __radix_tree_create - create a slot in a radix tree
641 * @root: radix tree root
643 * @order: index occupies 2^order aligned slots
644 * @nodep: returns node
645 * @slotp: returns slot
647 * Create, if necessary, and return the node and slot for an item
648 * at position @index in the radix tree @root.
650 * Until there is more than one item in the tree, no nodes are
651 * allocated and @root->rnode is used as a direct slot instead of
652 * pointing to a node, in which case *@nodep will be NULL.
654 * Returns -ENOMEM, or 0 for success.
656 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
657 unsigned order, struct radix_tree_node **nodep,
660 struct radix_tree_node *node = NULL, *child;
661 void **slot = (void **)&root->rnode;
662 unsigned long maxindex;
663 unsigned int shift, offset = 0;
664 unsigned long max = index | ((1UL << order) - 1);
666 shift = radix_tree_load_root(root, &child, &maxindex);
668 /* Make sure the tree is high enough. */
669 if (max > maxindex) {
670 int error = radix_tree_extend(root, max, shift);
676 shift += RADIX_TREE_MAP_SHIFT;
679 while (shift > order) {
680 shift -= RADIX_TREE_MAP_SHIFT;
682 /* Have to add a child node. */
683 child = radix_tree_node_alloc(root);
686 child->shift = shift;
687 child->offset = offset;
688 child->parent = node;
689 rcu_assign_pointer(*slot, node_to_entry(child));
692 } else if (!radix_tree_is_internal_node(child))
695 /* Go a level down */
696 node = entry_to_node(child);
697 offset = radix_tree_descend(node, &child, index);
698 slot = &node->slots[offset];
701 #ifdef CONFIG_RADIX_TREE_MULTIORDER
702 /* Insert pointers to the canonical entry */
704 unsigned i, n = 1 << (order - shift);
705 offset = offset & ~(n - 1);
706 slot = &node->slots[offset];
707 child = node_to_entry(slot);
708 for (i = 0; i < n; i++) {
713 for (i = 1; i < n; i++) {
714 rcu_assign_pointer(slot[i], child);
728 * __radix_tree_insert - insert into a radix tree
729 * @root: radix tree root
731 * @order: key covers the 2^order indices around index
732 * @item: item to insert
734 * Insert an item into the radix tree at position @index.
736 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
737 unsigned order, void *item)
739 struct radix_tree_node *node;
743 BUG_ON(radix_tree_is_internal_node(item));
745 error = __radix_tree_create(root, index, order, &node, &slot);
750 rcu_assign_pointer(*slot, item);
753 unsigned offset = get_slot_offset(node, slot);
755 if (radix_tree_exceptional_entry(item))
757 BUG_ON(tag_get(node, 0, offset));
758 BUG_ON(tag_get(node, 1, offset));
759 BUG_ON(tag_get(node, 2, offset));
761 BUG_ON(root_tags_get(root));
766 EXPORT_SYMBOL(__radix_tree_insert);
769 * __radix_tree_lookup - lookup an item in a radix tree
770 * @root: radix tree root
772 * @nodep: returns node
773 * @slotp: returns slot
775 * Lookup and return the item at position @index in the radix
778 * Until there is more than one item in the tree, no nodes are
779 * allocated and @root->rnode is used as a direct slot instead of
780 * pointing to a node, in which case *@nodep will be NULL.
782 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
783 struct radix_tree_node **nodep, void ***slotp)
785 struct radix_tree_node *node, *parent;
786 unsigned long maxindex;
791 slot = (void **)&root->rnode;
792 radix_tree_load_root(root, &node, &maxindex);
793 if (index > maxindex)
796 while (radix_tree_is_internal_node(node)) {
799 if (node == RADIX_TREE_RETRY)
801 parent = entry_to_node(node);
802 offset = radix_tree_descend(parent, &node, index);
803 slot = parent->slots + offset;
814 * radix_tree_lookup_slot - lookup a slot in a radix tree
815 * @root: radix tree root
818 * Returns: the slot corresponding to the position @index in the
819 * radix tree @root. This is useful for update-if-exists operations.
821 * This function can be called under rcu_read_lock iff the slot is not
822 * modified by radix_tree_replace_slot, otherwise it must be called
823 * exclusive from other writers. Any dereference of the slot must be done
824 * using radix_tree_deref_slot.
826 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
830 if (!__radix_tree_lookup(root, index, NULL, &slot))
834 EXPORT_SYMBOL(radix_tree_lookup_slot);
837 * radix_tree_lookup - perform lookup operation on a radix tree
838 * @root: radix tree root
841 * Lookup the item at the position @index in the radix tree @root.
843 * This function can be called under rcu_read_lock, however the caller
844 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
845 * them safely). No RCU barriers are required to access or modify the
846 * returned item, however.
848 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
850 return __radix_tree_lookup(root, index, NULL, NULL);
852 EXPORT_SYMBOL(radix_tree_lookup);
854 static void replace_slot(struct radix_tree_root *root,
855 struct radix_tree_node *node,
856 void **slot, void *item,
857 bool warn_typeswitch)
859 void *old = rcu_dereference_raw(*slot);
860 int count, exceptional;
862 WARN_ON_ONCE(radix_tree_is_internal_node(item));
864 count = !!item - !!old;
865 exceptional = !!radix_tree_exceptional_entry(item) -
866 !!radix_tree_exceptional_entry(old);
868 WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
871 node->count += count;
872 node->exceptional += exceptional;
875 rcu_assign_pointer(*slot, item);
879 * __radix_tree_replace - replace item in a slot
880 * @root: radix tree root
881 * @node: pointer to tree node
882 * @slot: pointer to slot in @node
883 * @item: new item to store in the slot.
884 * @update_node: callback for changing leaf nodes
885 * @private: private data to pass to @update_node
887 * For use with __radix_tree_lookup(). Caller must hold tree write locked
888 * across slot lookup and replacement.
890 void __radix_tree_replace(struct radix_tree_root *root,
891 struct radix_tree_node *node,
892 void **slot, void *item,
893 radix_tree_update_node_t update_node, void *private)
896 * This function supports replacing exceptional entries and
897 * deleting entries, but that needs accounting against the
898 * node unless the slot is root->rnode.
900 replace_slot(root, node, slot, item,
901 !node && slot != (void **)&root->rnode);
907 update_node(node, private);
909 delete_node(root, node, update_node, private);
913 * radix_tree_replace_slot - replace item in a slot
914 * @root: radix tree root
915 * @slot: pointer to slot
916 * @item: new item to store in the slot.
918 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
919 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
920 * across slot lookup and replacement.
922 * NOTE: This cannot be used to switch between non-entries (empty slots),
923 * regular entries, and exceptional entries, as that requires accounting
924 * inside the radix tree node. When switching from one type of entry or
925 * deleting, use __radix_tree_lookup() and __radix_tree_replace().
927 void radix_tree_replace_slot(struct radix_tree_root *root,
928 void **slot, void *item)
930 replace_slot(root, NULL, slot, item, true);
934 * radix_tree_tag_set - set a tag on a radix tree node
935 * @root: radix tree root
939 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
940 * corresponding to @index in the radix tree. From
941 * the root all the way down to the leaf node.
943 * Returns the address of the tagged item. Setting a tag on a not-present
946 void *radix_tree_tag_set(struct radix_tree_root *root,
947 unsigned long index, unsigned int tag)
949 struct radix_tree_node *node, *parent;
950 unsigned long maxindex;
952 radix_tree_load_root(root, &node, &maxindex);
953 BUG_ON(index > maxindex);
955 while (radix_tree_is_internal_node(node)) {
958 parent = entry_to_node(node);
959 offset = radix_tree_descend(parent, &node, index);
962 if (!tag_get(parent, tag, offset))
963 tag_set(parent, tag, offset);
966 /* set the root's tag bit */
967 if (!root_tag_get(root, tag))
968 root_tag_set(root, tag);
972 EXPORT_SYMBOL(radix_tree_tag_set);
974 static void node_tag_clear(struct radix_tree_root *root,
975 struct radix_tree_node *node,
976 unsigned int tag, unsigned int offset)
979 if (!tag_get(node, tag, offset))
981 tag_clear(node, tag, offset);
982 if (any_tag_set(node, tag))
985 offset = node->offset;
989 /* clear the root's tag bit */
990 if (root_tag_get(root, tag))
991 root_tag_clear(root, tag);
994 static void node_tag_set(struct radix_tree_root *root,
995 struct radix_tree_node *node,
996 unsigned int tag, unsigned int offset)
999 if (tag_get(node, tag, offset))
1001 tag_set(node, tag, offset);
1002 offset = node->offset;
1003 node = node->parent;
1006 if (!root_tag_get(root, tag))
1007 root_tag_set(root, tag);
1011 * radix_tree_tag_clear - clear a tag on a radix tree node
1012 * @root: radix tree root
1016 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1017 * corresponding to @index in the radix tree. If this causes
1018 * the leaf node to have no tags set then clear the tag in the
1019 * next-to-leaf node, etc.
1021 * Returns the address of the tagged item on success, else NULL. ie:
1022 * has the same return value and semantics as radix_tree_lookup().
1024 void *radix_tree_tag_clear(struct radix_tree_root *root,
1025 unsigned long index, unsigned int tag)
1027 struct radix_tree_node *node, *parent;
1028 unsigned long maxindex;
1029 int uninitialized_var(offset);
1031 radix_tree_load_root(root, &node, &maxindex);
1032 if (index > maxindex)
1037 while (radix_tree_is_internal_node(node)) {
1038 parent = entry_to_node(node);
1039 offset = radix_tree_descend(parent, &node, index);
1043 node_tag_clear(root, parent, tag, offset);
1047 EXPORT_SYMBOL(radix_tree_tag_clear);
1050 * radix_tree_tag_get - get a tag on a radix tree node
1051 * @root: radix tree root
1053 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1057 * 0: tag not present or not set
1060 * Note that the return value of this function may not be relied on, even if
1061 * the RCU lock is held, unless tag modification and node deletion are excluded
1064 int radix_tree_tag_get(struct radix_tree_root *root,
1065 unsigned long index, unsigned int tag)
1067 struct radix_tree_node *node, *parent;
1068 unsigned long maxindex;
1070 if (!root_tag_get(root, tag))
1073 radix_tree_load_root(root, &node, &maxindex);
1074 if (index > maxindex)
1079 while (radix_tree_is_internal_node(node)) {
1082 parent = entry_to_node(node);
1083 offset = radix_tree_descend(parent, &node, index);
1087 if (!tag_get(parent, tag, offset))
1089 if (node == RADIX_TREE_RETRY)
1095 EXPORT_SYMBOL(radix_tree_tag_get);
1097 static inline void __set_iter_shift(struct radix_tree_iter *iter,
1100 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1101 iter->shift = shift;
1106 * radix_tree_next_chunk - find next chunk of slots for iteration
1108 * @root: radix tree root
1109 * @iter: iterator state
1110 * @flags: RADIX_TREE_ITER_* flags and tag index
1111 * Returns: pointer to chunk first slot, or NULL if iteration is over
1113 void **radix_tree_next_chunk(struct radix_tree_root *root,
1114 struct radix_tree_iter *iter, unsigned flags)
1116 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1117 struct radix_tree_node *node, *child;
1118 unsigned long index, offset, maxindex;
1120 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1124 * Catch next_index overflow after ~0UL. iter->index never overflows
1125 * during iterating; it can be zero only at the beginning.
1126 * And we cannot overflow iter->next_index in a single step,
1127 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1129 * This condition also used by radix_tree_next_slot() to stop
1130 * contiguous iterating, and forbid switching to the next chunk.
1132 index = iter->next_index;
1133 if (!index && iter->index)
1137 radix_tree_load_root(root, &child, &maxindex);
1138 if (index > maxindex)
1143 if (!radix_tree_is_internal_node(child)) {
1144 /* Single-slot tree */
1145 iter->index = index;
1146 iter->next_index = maxindex + 1;
1148 __set_iter_shift(iter, 0);
1149 return (void **)&root->rnode;
1153 node = entry_to_node(child);
1154 offset = radix_tree_descend(node, &child, index);
1156 if ((flags & RADIX_TREE_ITER_TAGGED) ?
1157 !tag_get(node, tag, offset) : !child) {
1159 if (flags & RADIX_TREE_ITER_CONTIG)
1162 if (flags & RADIX_TREE_ITER_TAGGED)
1163 offset = radix_tree_find_next_bit(
1165 RADIX_TREE_MAP_SIZE,
1168 while (++offset < RADIX_TREE_MAP_SIZE) {
1169 void *slot = node->slots[offset];
1170 if (is_sibling_entry(node, slot))
1175 index &= ~node_maxindex(node);
1176 index += offset << node->shift;
1177 /* Overflow after ~0UL */
1180 if (offset == RADIX_TREE_MAP_SIZE)
1182 child = rcu_dereference_raw(node->slots[offset]);
1185 if ((child == NULL) || (child == RADIX_TREE_RETRY))
1187 } while (radix_tree_is_internal_node(child));
1189 /* Update the iterator state */
1190 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1191 iter->next_index = (index | node_maxindex(node)) + 1;
1192 __set_iter_shift(iter, node->shift);
1194 /* Construct iter->tags bit-mask from node->tags[tag] array */
1195 if (flags & RADIX_TREE_ITER_TAGGED) {
1196 unsigned tag_long, tag_bit;
1198 tag_long = offset / BITS_PER_LONG;
1199 tag_bit = offset % BITS_PER_LONG;
1200 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1201 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1202 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1203 /* Pick tags from next element */
1205 iter->tags |= node->tags[tag][tag_long + 1] <<
1206 (BITS_PER_LONG - tag_bit);
1207 /* Clip chunk size, here only BITS_PER_LONG tags */
1208 iter->next_index = index + BITS_PER_LONG;
1212 return node->slots + offset;
1214 EXPORT_SYMBOL(radix_tree_next_chunk);
1217 * radix_tree_range_tag_if_tagged - for each item in given range set given
1218 * tag if item has another tag set
1219 * @root: radix tree root
1220 * @first_indexp: pointer to a starting index of a range to scan
1221 * @last_index: last index of a range to scan
1222 * @nr_to_tag: maximum number items to tag
1223 * @iftag: tag index to test
1224 * @settag: tag index to set if tested tag is set
1226 * This function scans range of radix tree from first_index to last_index
1227 * (inclusive). For each item in the range if iftag is set, the function sets
1228 * also settag. The function stops either after tagging nr_to_tag items or
1229 * after reaching last_index.
1231 * The tags must be set from the leaf level only and propagated back up the
1232 * path to the root. We must do this so that we resolve the full path before
1233 * setting any tags on intermediate nodes. If we set tags as we descend, then
1234 * we can get to the leaf node and find that the index that has the iftag
1235 * set is outside the range we are scanning. This reults in dangling tags and
1236 * can lead to problems with later tag operations (e.g. livelocks on lookups).
1238 * The function returns the number of leaves where the tag was set and sets
1239 * *first_indexp to the first unscanned index.
1240 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1241 * be prepared to handle that.
1243 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1244 unsigned long *first_indexp, unsigned long last_index,
1245 unsigned long nr_to_tag,
1246 unsigned int iftag, unsigned int settag)
1248 struct radix_tree_node *node, *child;
1249 unsigned long maxindex;
1250 unsigned long tagged = 0;
1251 unsigned long index = *first_indexp;
1253 radix_tree_load_root(root, &child, &maxindex);
1254 last_index = min(last_index, maxindex);
1255 if (index > last_index)
1259 if (!root_tag_get(root, iftag)) {
1260 *first_indexp = last_index + 1;
1263 if (!radix_tree_is_internal_node(child)) {
1264 *first_indexp = last_index + 1;
1265 root_tag_set(root, settag);
1269 node = entry_to_node(child);
1272 unsigned offset = radix_tree_descend(node, &child, index);
1275 if (!tag_get(node, iftag, offset))
1277 /* Sibling slots never have tags set on them */
1278 if (radix_tree_is_internal_node(child)) {
1279 node = entry_to_node(child);
1284 node_tag_set(root, node, settag, offset);
1286 /* Go to next entry in node */
1287 index = ((index >> node->shift) + 1) << node->shift;
1288 /* Overflow can happen when last_index is ~0UL... */
1289 if (index > last_index || !index)
1291 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1292 while (offset == 0) {
1294 * We've fully scanned this node. Go up. Because
1295 * last_index is guaranteed to be in the tree, what
1296 * we do below cannot wander astray.
1298 node = node->parent;
1299 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1301 if (is_sibling_entry(node, node->slots[offset]))
1303 if (tagged >= nr_to_tag)
1307 *first_indexp = index;
1311 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1314 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1315 * @root: radix tree root
1316 * @results: where the results of the lookup are placed
1317 * @first_index: start the lookup from this key
1318 * @max_items: place up to this many items at *results
1320 * Performs an index-ascending scan of the tree for present items. Places
1321 * them at *@results and returns the number of items which were placed at
1324 * The implementation is naive.
1326 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1327 * rcu_read_lock. In this case, rather than the returned results being
1328 * an atomic snapshot of the tree at a single point in time, the
1329 * semantics of an RCU protected gang lookup are as though multiple
1330 * radix_tree_lookups have been issued in individual locks, and results
1331 * stored in 'results'.
1334 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1335 unsigned long first_index, unsigned int max_items)
1337 struct radix_tree_iter iter;
1339 unsigned int ret = 0;
1341 if (unlikely(!max_items))
1344 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1345 results[ret] = rcu_dereference_raw(*slot);
1348 if (radix_tree_is_internal_node(results[ret])) {
1349 slot = radix_tree_iter_retry(&iter);
1352 if (++ret == max_items)
1358 EXPORT_SYMBOL(radix_tree_gang_lookup);
1361 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1362 * @root: radix tree root
1363 * @results: where the results of the lookup are placed
1364 * @indices: where their indices should be placed (but usually NULL)
1365 * @first_index: start the lookup from this key
1366 * @max_items: place up to this many items at *results
1368 * Performs an index-ascending scan of the tree for present items. Places
1369 * their slots at *@results and returns the number of items which were
1370 * placed at *@results.
1372 * The implementation is naive.
1374 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1375 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1376 * protection, radix_tree_deref_slot may fail requiring a retry.
1379 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1380 void ***results, unsigned long *indices,
1381 unsigned long first_index, unsigned int max_items)
1383 struct radix_tree_iter iter;
1385 unsigned int ret = 0;
1387 if (unlikely(!max_items))
1390 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1391 results[ret] = slot;
1393 indices[ret] = iter.index;
1394 if (++ret == max_items)
1400 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1403 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1405 * @root: radix tree root
1406 * @results: where the results of the lookup are placed
1407 * @first_index: start the lookup from this key
1408 * @max_items: place up to this many items at *results
1409 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1411 * Performs an index-ascending scan of the tree for present items which
1412 * have the tag indexed by @tag set. Places the items at *@results and
1413 * returns the number of items which were placed at *@results.
1416 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1417 unsigned long first_index, unsigned int max_items,
1420 struct radix_tree_iter iter;
1422 unsigned int ret = 0;
1424 if (unlikely(!max_items))
1427 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1428 results[ret] = rcu_dereference_raw(*slot);
1431 if (radix_tree_is_internal_node(results[ret])) {
1432 slot = radix_tree_iter_retry(&iter);
1435 if (++ret == max_items)
1441 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1444 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1445 * radix tree based on a tag
1446 * @root: radix tree root
1447 * @results: where the results of the lookup are placed
1448 * @first_index: start the lookup from this key
1449 * @max_items: place up to this many items at *results
1450 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1452 * Performs an index-ascending scan of the tree for present items which
1453 * have the tag indexed by @tag set. Places the slots at *@results and
1454 * returns the number of slots which were placed at *@results.
1457 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1458 unsigned long first_index, unsigned int max_items,
1461 struct radix_tree_iter iter;
1463 unsigned int ret = 0;
1465 if (unlikely(!max_items))
1468 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1469 results[ret] = slot;
1470 if (++ret == max_items)
1476 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1478 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1479 #include <linux/sched.h> /* for cond_resched() */
1481 struct locate_info {
1482 unsigned long found_index;
1487 * This linear search is at present only useful to shmem_unuse_inode().
1489 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1490 unsigned long index, struct locate_info *info)
1495 unsigned int shift = slot->shift;
1497 for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1498 i < RADIX_TREE_MAP_SIZE;
1499 i++, index += (1UL << shift)) {
1500 struct radix_tree_node *node =
1501 rcu_dereference_raw(slot->slots[i]);
1502 if (node == RADIX_TREE_RETRY)
1504 if (!radix_tree_is_internal_node(node)) {
1506 info->found_index = index;
1512 node = entry_to_node(node);
1513 if (is_sibling_entry(slot, node))
1518 } while (i < RADIX_TREE_MAP_SIZE);
1521 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1527 * radix_tree_locate_item - search through radix tree for item
1528 * @root: radix tree root
1529 * @item: item to be found
1531 * Returns index where item was found, or -1 if not found.
1532 * Caller must hold no lock (since this time-consuming function needs
1533 * to be preemptible), and must check afterwards if item is still there.
1535 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1537 struct radix_tree_node *node;
1538 unsigned long max_index;
1539 unsigned long cur_index = 0;
1540 struct locate_info info = {
1547 node = rcu_dereference_raw(root->rnode);
1548 if (!radix_tree_is_internal_node(node)) {
1551 info.found_index = 0;
1555 node = entry_to_node(node);
1557 max_index = node_maxindex(node);
1558 if (cur_index > max_index) {
1563 cur_index = __locate(node, item, cur_index, &info);
1566 } while (!info.stop && cur_index <= max_index);
1568 return info.found_index;
1571 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1575 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1578 * __radix_tree_delete_node - try to free node after clearing a slot
1579 * @root: radix tree root
1580 * @node: node containing @index
1582 * After clearing the slot at @index in @node from radix tree
1583 * rooted at @root, call this function to attempt freeing the
1584 * node and shrinking the tree.
1586 void __radix_tree_delete_node(struct radix_tree_root *root,
1587 struct radix_tree_node *node)
1589 delete_node(root, node, NULL, NULL);
1592 static inline void delete_sibling_entries(struct radix_tree_node *node,
1593 void *ptr, unsigned offset)
1595 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1597 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1598 if (node->slots[offset + i] != ptr)
1600 node->slots[offset + i] = NULL;
1607 * radix_tree_delete_item - delete an item from a radix tree
1608 * @root: radix tree root
1610 * @item: expected item
1612 * Remove @item at @index from the radix tree rooted at @root.
1614 * Returns the address of the deleted item, or NULL if it was not present
1615 * or the entry at the given @index was not @item.
1617 void *radix_tree_delete_item(struct radix_tree_root *root,
1618 unsigned long index, void *item)
1620 struct radix_tree_node *node;
1621 unsigned int offset;
1626 entry = __radix_tree_lookup(root, index, &node, &slot);
1630 if (item && entry != item)
1634 root_tag_clear_all(root);
1639 offset = get_slot_offset(node, slot);
1641 /* Clear all tags associated with the item to be deleted. */
1642 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1643 node_tag_clear(root, node, tag, offset);
1645 delete_sibling_entries(node, node_to_entry(slot), offset);
1646 __radix_tree_replace(root, node, slot, NULL, NULL, NULL);
1650 EXPORT_SYMBOL(radix_tree_delete_item);
1653 * radix_tree_delete - delete an item from a radix tree
1654 * @root: radix tree root
1657 * Remove the item at @index from the radix tree rooted at @root.
1659 * Returns the address of the deleted item, or NULL if it was not present.
1661 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1663 return radix_tree_delete_item(root, index, NULL);
1665 EXPORT_SYMBOL(radix_tree_delete);
1667 void radix_tree_clear_tags(struct radix_tree_root *root,
1668 struct radix_tree_node *node,
1672 unsigned int tag, offset = get_slot_offset(node, slot);
1673 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1674 node_tag_clear(root, node, tag, offset);
1676 /* Clear root node tags */
1677 root->gfp_mask &= __GFP_BITS_MASK;
1682 * radix_tree_tagged - test whether any items in the tree are tagged
1683 * @root: radix tree root
1686 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1688 return root_tag_get(root, tag);
1690 EXPORT_SYMBOL(radix_tree_tagged);
1693 radix_tree_node_ctor(void *arg)
1695 struct radix_tree_node *node = arg;
1697 memset(node, 0, sizeof(*node));
1698 INIT_LIST_HEAD(&node->private_list);
1701 static __init unsigned long __maxindex(unsigned int height)
1703 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1704 int shift = RADIX_TREE_INDEX_BITS - width;
1708 if (shift >= BITS_PER_LONG)
1710 return ~0UL >> shift;
1713 static __init void radix_tree_init_maxnodes(void)
1715 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1718 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1719 height_to_maxindex[i] = __maxindex(i);
1720 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1721 for (j = i; j > 0; j--)
1722 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1726 static int radix_tree_cpu_dead(unsigned int cpu)
1728 struct radix_tree_preload *rtp;
1729 struct radix_tree_node *node;
1731 /* Free per-cpu pool of preloaded nodes */
1732 rtp = &per_cpu(radix_tree_preloads, cpu);
1735 rtp->nodes = node->private_data;
1736 kmem_cache_free(radix_tree_node_cachep, node);
1742 void __init radix_tree_init(void)
1745 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1746 sizeof(struct radix_tree_node), 0,
1747 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1748 radix_tree_node_ctor);
1749 radix_tree_init_maxnodes();
1750 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1751 NULL, radix_tree_cpu_dead);