1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
73 #include <linux/uaccess.h>
75 #include <trace/events/vmscan.h>
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
94 #define do_swap_account 0
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
103 static const char *const mem_cgroup_lru_names[] = {
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 struct rb_node *rb_rightmost;
126 struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
133 struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
139 * cgroup_event represents events which userspace want to receive.
141 struct mem_cgroup_event {
143 * memcg which the event belongs to.
145 struct mem_cgroup *memcg;
147 * eventfd to signal userspace about the event.
149 struct eventfd_ctx *eventfd;
151 * Each of these stored in a list by the cgroup.
153 struct list_head list;
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
159 int (*register_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd, const char *args);
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
166 void (*unregister_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd);
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
173 wait_queue_head_t *wqh;
174 wait_queue_entry_t wait;
175 struct work_struct remove;
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
181 /* Stuffs for move charges at task migration. */
183 * Types of charges to be moved.
185 #define MOVE_ANON 0x1U
186 #define MOVE_FILE 0x2U
187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 spinlock_t lock; /* for from, to */
192 struct mm_struct *mm;
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
196 unsigned long precharge;
197 unsigned long moved_charge;
198 unsigned long moved_swap;
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
221 /* for encoding cft->private value on file */
230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val) ((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL (0)
237 * Iteration constructs for visiting all cgroups (under a tree). If
238 * loops are exited prematurely (break), mem_cgroup_iter_break() must
239 * be used for reference counting.
241 #define for_each_mem_cgroup_tree(iter, root) \
242 for (iter = mem_cgroup_iter(root, NULL, NULL); \
244 iter = mem_cgroup_iter(root, iter, NULL))
246 #define for_each_mem_cgroup(iter) \
247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
249 iter = mem_cgroup_iter(NULL, iter, NULL))
251 /* Some nice accessors for the vmpressure. */
252 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255 memcg = root_mem_cgroup;
256 return &memcg->vmpressure;
259 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264 #ifdef CONFIG_MEMCG_KMEM
266 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
267 * The main reason for not using cgroup id for this:
268 * this works better in sparse environments, where we have a lot of memcgs,
269 * but only a few kmem-limited. Or also, if we have, for instance, 200
270 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
271 * 200 entry array for that.
273 * The current size of the caches array is stored in memcg_nr_cache_ids. It
274 * will double each time we have to increase it.
276 static DEFINE_IDA(memcg_cache_ida);
277 int memcg_nr_cache_ids;
279 /* Protects memcg_nr_cache_ids */
280 static DECLARE_RWSEM(memcg_cache_ids_sem);
282 void memcg_get_cache_ids(void)
284 down_read(&memcg_cache_ids_sem);
287 void memcg_put_cache_ids(void)
289 up_read(&memcg_cache_ids_sem);
293 * MIN_SIZE is different than 1, because we would like to avoid going through
294 * the alloc/free process all the time. In a small machine, 4 kmem-limited
295 * cgroups is a reasonable guess. In the future, it could be a parameter or
296 * tunable, but that is strictly not necessary.
298 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
299 * this constant directly from cgroup, but it is understandable that this is
300 * better kept as an internal representation in cgroup.c. In any case, the
301 * cgrp_id space is not getting any smaller, and we don't have to necessarily
302 * increase ours as well if it increases.
304 #define MEMCG_CACHES_MIN_SIZE 4
305 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
308 * A lot of the calls to the cache allocation functions are expected to be
309 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
310 * conditional to this static branch, we'll have to allow modules that does
311 * kmem_cache_alloc and the such to see this symbol as well
313 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
314 EXPORT_SYMBOL(memcg_kmem_enabled_key);
316 struct workqueue_struct *memcg_kmem_cache_wq;
318 static int memcg_shrinker_map_size;
319 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
321 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
323 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
326 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
327 int size, int old_size)
329 struct memcg_shrinker_map *new, *old;
332 lockdep_assert_held(&memcg_shrinker_map_mutex);
335 old = rcu_dereference_protected(
336 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
337 /* Not yet online memcg */
341 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
345 /* Set all old bits, clear all new bits */
346 memset(new->map, (int)0xff, old_size);
347 memset((void *)new->map + old_size, 0, size - old_size);
349 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
350 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
356 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
358 struct mem_cgroup_per_node *pn;
359 struct memcg_shrinker_map *map;
362 if (mem_cgroup_is_root(memcg))
366 pn = mem_cgroup_nodeinfo(memcg, nid);
367 map = rcu_dereference_protected(pn->shrinker_map, true);
370 rcu_assign_pointer(pn->shrinker_map, NULL);
374 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
376 struct memcg_shrinker_map *map;
377 int nid, size, ret = 0;
379 if (mem_cgroup_is_root(memcg))
382 mutex_lock(&memcg_shrinker_map_mutex);
383 size = memcg_shrinker_map_size;
385 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
387 memcg_free_shrinker_maps(memcg);
391 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
393 mutex_unlock(&memcg_shrinker_map_mutex);
398 int memcg_expand_shrinker_maps(int new_id)
400 int size, old_size, ret = 0;
401 struct mem_cgroup *memcg;
403 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
404 old_size = memcg_shrinker_map_size;
405 if (size <= old_size)
408 mutex_lock(&memcg_shrinker_map_mutex);
409 if (!root_mem_cgroup)
412 for_each_mem_cgroup(memcg) {
413 if (mem_cgroup_is_root(memcg))
415 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
421 memcg_shrinker_map_size = size;
422 mutex_unlock(&memcg_shrinker_map_mutex);
426 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
428 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
429 struct memcg_shrinker_map *map;
432 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
433 /* Pairs with smp mb in shrink_slab() */
434 smp_mb__before_atomic();
435 set_bit(shrinker_id, map->map);
440 #else /* CONFIG_MEMCG_KMEM */
441 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
445 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
446 #endif /* CONFIG_MEMCG_KMEM */
449 * mem_cgroup_css_from_page - css of the memcg associated with a page
450 * @page: page of interest
452 * If memcg is bound to the default hierarchy, css of the memcg associated
453 * with @page is returned. The returned css remains associated with @page
454 * until it is released.
456 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
459 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
461 struct mem_cgroup *memcg;
463 memcg = page->mem_cgroup;
465 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
466 memcg = root_mem_cgroup;
472 * page_cgroup_ino - return inode number of the memcg a page is charged to
475 * Look up the closest online ancestor of the memory cgroup @page is charged to
476 * and return its inode number or 0 if @page is not charged to any cgroup. It
477 * is safe to call this function without holding a reference to @page.
479 * Note, this function is inherently racy, because there is nothing to prevent
480 * the cgroup inode from getting torn down and potentially reallocated a moment
481 * after page_cgroup_ino() returns, so it only should be used by callers that
482 * do not care (such as procfs interfaces).
484 ino_t page_cgroup_ino(struct page *page)
486 struct mem_cgroup *memcg;
487 unsigned long ino = 0;
490 memcg = READ_ONCE(page->mem_cgroup);
491 while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 memcg = parent_mem_cgroup(memcg);
494 ino = cgroup_ino(memcg->css.cgroup);
499 static struct mem_cgroup_per_node *
500 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
502 int nid = page_to_nid(page);
504 return memcg->nodeinfo[nid];
507 static struct mem_cgroup_tree_per_node *
508 soft_limit_tree_node(int nid)
510 return soft_limit_tree.rb_tree_per_node[nid];
513 static struct mem_cgroup_tree_per_node *
514 soft_limit_tree_from_page(struct page *page)
516 int nid = page_to_nid(page);
518 return soft_limit_tree.rb_tree_per_node[nid];
521 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 struct mem_cgroup_tree_per_node *mctz,
523 unsigned long new_usage_in_excess)
525 struct rb_node **p = &mctz->rb_root.rb_node;
526 struct rb_node *parent = NULL;
527 struct mem_cgroup_per_node *mz_node;
528 bool rightmost = true;
533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess)
538 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
540 if (mz->usage_in_excess < mz_node->usage_in_excess) {
546 * We can't avoid mem cgroups that are over their soft
547 * limit by the same amount
549 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
554 mctz->rb_rightmost = &mz->tree_node;
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
561 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 struct mem_cgroup_tree_per_node *mctz)
567 if (&mz->tree_node == mctz->rb_rightmost)
568 mctz->rb_rightmost = rb_prev(&mz->tree_node);
570 rb_erase(&mz->tree_node, &mctz->rb_root);
574 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 struct mem_cgroup_tree_per_node *mctz)
579 spin_lock_irqsave(&mctz->lock, flags);
580 __mem_cgroup_remove_exceeded(mz, mctz);
581 spin_unlock_irqrestore(&mctz->lock, flags);
584 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
586 unsigned long nr_pages = page_counter_read(&memcg->memory);
587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
588 unsigned long excess = 0;
590 if (nr_pages > soft_limit)
591 excess = nr_pages - soft_limit;
596 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
598 unsigned long excess;
599 struct mem_cgroup_per_node *mz;
600 struct mem_cgroup_tree_per_node *mctz;
602 mctz = soft_limit_tree_from_page(page);
606 * Necessary to update all ancestors when hierarchy is used.
607 * because their event counter is not touched.
609 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
610 mz = mem_cgroup_page_nodeinfo(memcg, page);
611 excess = soft_limit_excess(memcg);
613 * We have to update the tree if mz is on RB-tree or
614 * mem is over its softlimit.
616 if (excess || mz->on_tree) {
619 spin_lock_irqsave(&mctz->lock, flags);
620 /* if on-tree, remove it */
622 __mem_cgroup_remove_exceeded(mz, mctz);
624 * Insert again. mz->usage_in_excess will be updated.
625 * If excess is 0, no tree ops.
627 __mem_cgroup_insert_exceeded(mz, mctz, excess);
628 spin_unlock_irqrestore(&mctz->lock, flags);
633 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
635 struct mem_cgroup_tree_per_node *mctz;
636 struct mem_cgroup_per_node *mz;
640 mz = mem_cgroup_nodeinfo(memcg, nid);
641 mctz = soft_limit_tree_node(nid);
643 mem_cgroup_remove_exceeded(mz, mctz);
647 static struct mem_cgroup_per_node *
648 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
650 struct mem_cgroup_per_node *mz;
654 if (!mctz->rb_rightmost)
655 goto done; /* Nothing to reclaim from */
657 mz = rb_entry(mctz->rb_rightmost,
658 struct mem_cgroup_per_node, tree_node);
660 * Remove the node now but someone else can add it back,
661 * we will to add it back at the end of reclaim to its correct
662 * position in the tree.
664 __mem_cgroup_remove_exceeded(mz, mctz);
665 if (!soft_limit_excess(mz->memcg) ||
666 !css_tryget_online(&mz->memcg->css))
672 static struct mem_cgroup_per_node *
673 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
675 struct mem_cgroup_per_node *mz;
677 spin_lock_irq(&mctz->lock);
678 mz = __mem_cgroup_largest_soft_limit_node(mctz);
679 spin_unlock_irq(&mctz->lock);
683 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
686 return atomic_long_read(&memcg->events[event]);
689 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
691 bool compound, int nr_pages)
694 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
695 * counted as CACHE even if it's on ANON LRU.
698 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
700 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
701 if (PageSwapBacked(page))
702 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
706 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
707 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
710 /* pagein of a big page is an event. So, ignore page size */
712 __count_memcg_events(memcg, PGPGIN, 1);
714 __count_memcg_events(memcg, PGPGOUT, 1);
715 nr_pages = -nr_pages; /* for event */
718 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
721 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
722 int nid, unsigned int lru_mask)
724 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
725 unsigned long nr = 0;
728 VM_BUG_ON((unsigned)nid >= nr_node_ids);
731 if (!(BIT(lru) & lru_mask))
733 nr += mem_cgroup_get_lru_size(lruvec, lru);
738 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
739 unsigned int lru_mask)
741 unsigned long nr = 0;
744 for_each_node_state(nid, N_MEMORY)
745 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
749 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
750 enum mem_cgroup_events_target target)
752 unsigned long val, next;
754 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
755 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
756 /* from time_after() in jiffies.h */
757 if ((long)(next - val) < 0) {
759 case MEM_CGROUP_TARGET_THRESH:
760 next = val + THRESHOLDS_EVENTS_TARGET;
762 case MEM_CGROUP_TARGET_SOFTLIMIT:
763 next = val + SOFTLIMIT_EVENTS_TARGET;
765 case MEM_CGROUP_TARGET_NUMAINFO:
766 next = val + NUMAINFO_EVENTS_TARGET;
771 __this_cpu_write(memcg->stat_cpu->targets[target], next);
778 * Check events in order.
781 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
783 /* threshold event is triggered in finer grain than soft limit */
784 if (unlikely(mem_cgroup_event_ratelimit(memcg,
785 MEM_CGROUP_TARGET_THRESH))) {
787 bool do_numainfo __maybe_unused;
789 do_softlimit = mem_cgroup_event_ratelimit(memcg,
790 MEM_CGROUP_TARGET_SOFTLIMIT);
792 do_numainfo = mem_cgroup_event_ratelimit(memcg,
793 MEM_CGROUP_TARGET_NUMAINFO);
795 mem_cgroup_threshold(memcg);
796 if (unlikely(do_softlimit))
797 mem_cgroup_update_tree(memcg, page);
799 if (unlikely(do_numainfo))
800 atomic_inc(&memcg->numainfo_events);
805 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
808 * mm_update_next_owner() may clear mm->owner to NULL
809 * if it races with swapoff, page migration, etc.
810 * So this can be called with p == NULL.
815 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
817 EXPORT_SYMBOL(mem_cgroup_from_task);
820 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
821 * @mm: mm from which memcg should be extracted. It can be NULL.
823 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
824 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
827 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
829 struct mem_cgroup *memcg;
831 if (mem_cgroup_disabled())
837 * Page cache insertions can happen withou an
838 * actual mm context, e.g. during disk probing
839 * on boot, loopback IO, acct() writes etc.
842 memcg = root_mem_cgroup;
844 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
845 if (unlikely(!memcg))
846 memcg = root_mem_cgroup;
848 } while (!css_tryget_online(&memcg->css));
852 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
855 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
856 * @page: page from which memcg should be extracted.
858 * Obtain a reference on page->memcg and returns it if successful. Otherwise
859 * root_mem_cgroup is returned.
861 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
863 struct mem_cgroup *memcg = page->mem_cgroup;
865 if (mem_cgroup_disabled())
869 if (!memcg || !css_tryget_online(&memcg->css))
870 memcg = root_mem_cgroup;
874 EXPORT_SYMBOL(get_mem_cgroup_from_page);
877 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
879 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
881 if (unlikely(current->active_memcg)) {
882 struct mem_cgroup *memcg = root_mem_cgroup;
885 if (css_tryget_online(¤t->active_memcg->css))
886 memcg = current->active_memcg;
890 return get_mem_cgroup_from_mm(current->mm);
894 * mem_cgroup_iter - iterate over memory cgroup hierarchy
895 * @root: hierarchy root
896 * @prev: previously returned memcg, NULL on first invocation
897 * @reclaim: cookie for shared reclaim walks, NULL for full walks
899 * Returns references to children of the hierarchy below @root, or
900 * @root itself, or %NULL after a full round-trip.
902 * Caller must pass the return value in @prev on subsequent
903 * invocations for reference counting, or use mem_cgroup_iter_break()
904 * to cancel a hierarchy walk before the round-trip is complete.
906 * Reclaimers can specify a node and a priority level in @reclaim to
907 * divide up the memcgs in the hierarchy among all concurrent
908 * reclaimers operating on the same node and priority.
910 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
911 struct mem_cgroup *prev,
912 struct mem_cgroup_reclaim_cookie *reclaim)
914 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
915 struct cgroup_subsys_state *css = NULL;
916 struct mem_cgroup *memcg = NULL;
917 struct mem_cgroup *pos = NULL;
919 if (mem_cgroup_disabled())
923 root = root_mem_cgroup;
925 if (prev && !reclaim)
928 if (!root->use_hierarchy && root != root_mem_cgroup) {
937 struct mem_cgroup_per_node *mz;
939 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
940 iter = &mz->iter[reclaim->priority];
942 if (prev && reclaim->generation != iter->generation)
946 pos = READ_ONCE(iter->position);
947 if (!pos || css_tryget(&pos->css))
950 * css reference reached zero, so iter->position will
951 * be cleared by ->css_released. However, we should not
952 * rely on this happening soon, because ->css_released
953 * is called from a work queue, and by busy-waiting we
954 * might block it. So we clear iter->position right
957 (void)cmpxchg(&iter->position, pos, NULL);
965 css = css_next_descendant_pre(css, &root->css);
968 * Reclaimers share the hierarchy walk, and a
969 * new one might jump in right at the end of
970 * the hierarchy - make sure they see at least
971 * one group and restart from the beginning.
979 * Verify the css and acquire a reference. The root
980 * is provided by the caller, so we know it's alive
981 * and kicking, and don't take an extra reference.
983 memcg = mem_cgroup_from_css(css);
985 if (css == &root->css)
996 * The position could have already been updated by a competing
997 * thread, so check that the value hasn't changed since we read
998 * it to avoid reclaiming from the same cgroup twice.
1000 (void)cmpxchg(&iter->position, pos, memcg);
1008 reclaim->generation = iter->generation;
1014 if (prev && prev != root)
1015 css_put(&prev->css);
1021 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1022 * @root: hierarchy root
1023 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1025 void mem_cgroup_iter_break(struct mem_cgroup *root,
1026 struct mem_cgroup *prev)
1029 root = root_mem_cgroup;
1030 if (prev && prev != root)
1031 css_put(&prev->css);
1034 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1036 struct mem_cgroup *memcg = dead_memcg;
1037 struct mem_cgroup_reclaim_iter *iter;
1038 struct mem_cgroup_per_node *mz;
1042 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1043 for_each_node(nid) {
1044 mz = mem_cgroup_nodeinfo(memcg, nid);
1045 for (i = 0; i <= DEF_PRIORITY; i++) {
1046 iter = &mz->iter[i];
1047 cmpxchg(&iter->position,
1055 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1056 * @memcg: hierarchy root
1057 * @fn: function to call for each task
1058 * @arg: argument passed to @fn
1060 * This function iterates over tasks attached to @memcg or to any of its
1061 * descendants and calls @fn for each task. If @fn returns a non-zero
1062 * value, the function breaks the iteration loop and returns the value.
1063 * Otherwise, it will iterate over all tasks and return 0.
1065 * This function must not be called for the root memory cgroup.
1067 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1068 int (*fn)(struct task_struct *, void *), void *arg)
1070 struct mem_cgroup *iter;
1073 BUG_ON(memcg == root_mem_cgroup);
1075 for_each_mem_cgroup_tree(iter, memcg) {
1076 struct css_task_iter it;
1077 struct task_struct *task;
1079 css_task_iter_start(&iter->css, 0, &it);
1080 while (!ret && (task = css_task_iter_next(&it)))
1081 ret = fn(task, arg);
1082 css_task_iter_end(&it);
1084 mem_cgroup_iter_break(memcg, iter);
1092 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1094 * @pgdat: pgdat of the page
1096 * This function is only safe when following the LRU page isolation
1097 * and putback protocol: the LRU lock must be held, and the page must
1098 * either be PageLRU() or the caller must have isolated/allocated it.
1100 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1102 struct mem_cgroup_per_node *mz;
1103 struct mem_cgroup *memcg;
1104 struct lruvec *lruvec;
1106 if (mem_cgroup_disabled()) {
1107 lruvec = &pgdat->lruvec;
1111 memcg = page->mem_cgroup;
1113 * Swapcache readahead pages are added to the LRU - and
1114 * possibly migrated - before they are charged.
1117 memcg = root_mem_cgroup;
1119 mz = mem_cgroup_page_nodeinfo(memcg, page);
1120 lruvec = &mz->lruvec;
1123 * Since a node can be onlined after the mem_cgroup was created,
1124 * we have to be prepared to initialize lruvec->zone here;
1125 * and if offlined then reonlined, we need to reinitialize it.
1127 if (unlikely(lruvec->pgdat != pgdat))
1128 lruvec->pgdat = pgdat;
1133 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1134 * @lruvec: mem_cgroup per zone lru vector
1135 * @lru: index of lru list the page is sitting on
1136 * @zid: zone id of the accounted pages
1137 * @nr_pages: positive when adding or negative when removing
1139 * This function must be called under lru_lock, just before a page is added
1140 * to or just after a page is removed from an lru list (that ordering being
1141 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1143 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1144 int zid, int nr_pages)
1146 struct mem_cgroup_per_node *mz;
1147 unsigned long *lru_size;
1150 if (mem_cgroup_disabled())
1153 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1154 lru_size = &mz->lru_zone_size[zid][lru];
1157 *lru_size += nr_pages;
1160 if (WARN_ONCE(size < 0,
1161 "%s(%p, %d, %d): lru_size %ld\n",
1162 __func__, lruvec, lru, nr_pages, size)) {
1168 *lru_size += nr_pages;
1171 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1173 struct mem_cgroup *task_memcg;
1174 struct task_struct *p;
1177 p = find_lock_task_mm(task);
1179 task_memcg = get_mem_cgroup_from_mm(p->mm);
1183 * All threads may have already detached their mm's, but the oom
1184 * killer still needs to detect if they have already been oom
1185 * killed to prevent needlessly killing additional tasks.
1188 task_memcg = mem_cgroup_from_task(task);
1189 css_get(&task_memcg->css);
1192 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1193 css_put(&task_memcg->css);
1198 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1199 * @memcg: the memory cgroup
1201 * Returns the maximum amount of memory @mem can be charged with, in
1204 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1206 unsigned long margin = 0;
1207 unsigned long count;
1208 unsigned long limit;
1210 count = page_counter_read(&memcg->memory);
1211 limit = READ_ONCE(memcg->memory.max);
1213 margin = limit - count;
1215 if (do_memsw_account()) {
1216 count = page_counter_read(&memcg->memsw);
1217 limit = READ_ONCE(memcg->memsw.max);
1219 margin = min(margin, limit - count);
1228 * A routine for checking "mem" is under move_account() or not.
1230 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1231 * moving cgroups. This is for waiting at high-memory pressure
1234 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1236 struct mem_cgroup *from;
1237 struct mem_cgroup *to;
1240 * Unlike task_move routines, we access mc.to, mc.from not under
1241 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1243 spin_lock(&mc.lock);
1249 ret = mem_cgroup_is_descendant(from, memcg) ||
1250 mem_cgroup_is_descendant(to, memcg);
1252 spin_unlock(&mc.lock);
1256 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1258 if (mc.moving_task && current != mc.moving_task) {
1259 if (mem_cgroup_under_move(memcg)) {
1261 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1262 /* moving charge context might have finished. */
1265 finish_wait(&mc.waitq, &wait);
1272 static const unsigned int memcg1_stats[] = {
1283 static const char *const memcg1_stat_names[] = {
1294 #define K(x) ((x) << (PAGE_SHIFT-10))
1296 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1297 * @memcg: The memory cgroup that went over limit
1298 * @p: Task that is going to be killed
1300 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1303 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1305 struct mem_cgroup *iter;
1311 pr_info("Task in ");
1312 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1313 pr_cont(" killed as a result of limit of ");
1315 pr_info("Memory limit reached of cgroup ");
1318 pr_cont_cgroup_path(memcg->css.cgroup);
1323 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1324 K((u64)page_counter_read(&memcg->memory)),
1325 K((u64)memcg->memory.max), memcg->memory.failcnt);
1326 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1327 K((u64)page_counter_read(&memcg->memsw)),
1328 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1329 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1330 K((u64)page_counter_read(&memcg->kmem)),
1331 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1333 for_each_mem_cgroup_tree(iter, memcg) {
1334 pr_info("Memory cgroup stats for ");
1335 pr_cont_cgroup_path(iter->css.cgroup);
1338 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1339 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1341 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1342 K(memcg_page_state(iter, memcg1_stats[i])));
1345 for (i = 0; i < NR_LRU_LISTS; i++)
1346 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1347 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1354 * Return the memory (and swap, if configured) limit for a memcg.
1356 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1360 max = memcg->memory.max;
1361 if (mem_cgroup_swappiness(memcg)) {
1362 unsigned long memsw_max;
1363 unsigned long swap_max;
1365 memsw_max = memcg->memsw.max;
1366 swap_max = memcg->swap.max;
1367 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1368 max = min(max + swap_max, memsw_max);
1373 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1376 struct oom_control oc = {
1380 .gfp_mask = gfp_mask,
1385 mutex_lock(&oom_lock);
1386 ret = out_of_memory(&oc);
1387 mutex_unlock(&oom_lock);
1391 #if MAX_NUMNODES > 1
1394 * test_mem_cgroup_node_reclaimable
1395 * @memcg: the target memcg
1396 * @nid: the node ID to be checked.
1397 * @noswap : specify true here if the user wants flle only information.
1399 * This function returns whether the specified memcg contains any
1400 * reclaimable pages on a node. Returns true if there are any reclaimable
1401 * pages in the node.
1403 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1404 int nid, bool noswap)
1406 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1408 if (noswap || !total_swap_pages)
1410 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1417 * Always updating the nodemask is not very good - even if we have an empty
1418 * list or the wrong list here, we can start from some node and traverse all
1419 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1422 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1426 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1427 * pagein/pageout changes since the last update.
1429 if (!atomic_read(&memcg->numainfo_events))
1431 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1434 /* make a nodemask where this memcg uses memory from */
1435 memcg->scan_nodes = node_states[N_MEMORY];
1437 for_each_node_mask(nid, node_states[N_MEMORY]) {
1439 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1440 node_clear(nid, memcg->scan_nodes);
1443 atomic_set(&memcg->numainfo_events, 0);
1444 atomic_set(&memcg->numainfo_updating, 0);
1448 * Selecting a node where we start reclaim from. Because what we need is just
1449 * reducing usage counter, start from anywhere is O,K. Considering
1450 * memory reclaim from current node, there are pros. and cons.
1452 * Freeing memory from current node means freeing memory from a node which
1453 * we'll use or we've used. So, it may make LRU bad. And if several threads
1454 * hit limits, it will see a contention on a node. But freeing from remote
1455 * node means more costs for memory reclaim because of memory latency.
1457 * Now, we use round-robin. Better algorithm is welcomed.
1459 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1463 mem_cgroup_may_update_nodemask(memcg);
1464 node = memcg->last_scanned_node;
1466 node = next_node_in(node, memcg->scan_nodes);
1468 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1469 * last time it really checked all the LRUs due to rate limiting.
1470 * Fallback to the current node in that case for simplicity.
1472 if (unlikely(node == MAX_NUMNODES))
1473 node = numa_node_id();
1475 memcg->last_scanned_node = node;
1479 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1485 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1488 unsigned long *total_scanned)
1490 struct mem_cgroup *victim = NULL;
1493 unsigned long excess;
1494 unsigned long nr_scanned;
1495 struct mem_cgroup_reclaim_cookie reclaim = {
1500 excess = soft_limit_excess(root_memcg);
1503 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1508 * If we have not been able to reclaim
1509 * anything, it might because there are
1510 * no reclaimable pages under this hierarchy
1515 * We want to do more targeted reclaim.
1516 * excess >> 2 is not to excessive so as to
1517 * reclaim too much, nor too less that we keep
1518 * coming back to reclaim from this cgroup
1520 if (total >= (excess >> 2) ||
1521 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1526 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1527 pgdat, &nr_scanned);
1528 *total_scanned += nr_scanned;
1529 if (!soft_limit_excess(root_memcg))
1532 mem_cgroup_iter_break(root_memcg, victim);
1536 #ifdef CONFIG_LOCKDEP
1537 static struct lockdep_map memcg_oom_lock_dep_map = {
1538 .name = "memcg_oom_lock",
1542 static DEFINE_SPINLOCK(memcg_oom_lock);
1545 * Check OOM-Killer is already running under our hierarchy.
1546 * If someone is running, return false.
1548 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1550 struct mem_cgroup *iter, *failed = NULL;
1552 spin_lock(&memcg_oom_lock);
1554 for_each_mem_cgroup_tree(iter, memcg) {
1555 if (iter->oom_lock) {
1557 * this subtree of our hierarchy is already locked
1558 * so we cannot give a lock.
1561 mem_cgroup_iter_break(memcg, iter);
1564 iter->oom_lock = true;
1569 * OK, we failed to lock the whole subtree so we have
1570 * to clean up what we set up to the failing subtree
1572 for_each_mem_cgroup_tree(iter, memcg) {
1573 if (iter == failed) {
1574 mem_cgroup_iter_break(memcg, iter);
1577 iter->oom_lock = false;
1580 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1582 spin_unlock(&memcg_oom_lock);
1587 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1589 struct mem_cgroup *iter;
1591 spin_lock(&memcg_oom_lock);
1592 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1593 for_each_mem_cgroup_tree(iter, memcg)
1594 iter->oom_lock = false;
1595 spin_unlock(&memcg_oom_lock);
1598 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1600 struct mem_cgroup *iter;
1602 spin_lock(&memcg_oom_lock);
1603 for_each_mem_cgroup_tree(iter, memcg)
1605 spin_unlock(&memcg_oom_lock);
1608 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1610 struct mem_cgroup *iter;
1613 * When a new child is created while the hierarchy is under oom,
1614 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1616 spin_lock(&memcg_oom_lock);
1617 for_each_mem_cgroup_tree(iter, memcg)
1618 if (iter->under_oom > 0)
1620 spin_unlock(&memcg_oom_lock);
1623 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1625 struct oom_wait_info {
1626 struct mem_cgroup *memcg;
1627 wait_queue_entry_t wait;
1630 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1631 unsigned mode, int sync, void *arg)
1633 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1634 struct mem_cgroup *oom_wait_memcg;
1635 struct oom_wait_info *oom_wait_info;
1637 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1638 oom_wait_memcg = oom_wait_info->memcg;
1640 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1641 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1643 return autoremove_wake_function(wait, mode, sync, arg);
1646 static void memcg_oom_recover(struct mem_cgroup *memcg)
1649 * For the following lockless ->under_oom test, the only required
1650 * guarantee is that it must see the state asserted by an OOM when
1651 * this function is called as a result of userland actions
1652 * triggered by the notification of the OOM. This is trivially
1653 * achieved by invoking mem_cgroup_mark_under_oom() before
1654 * triggering notification.
1656 if (memcg && memcg->under_oom)
1657 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1667 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1669 if (order > PAGE_ALLOC_COSTLY_ORDER)
1673 * We are in the middle of the charge context here, so we
1674 * don't want to block when potentially sitting on a callstack
1675 * that holds all kinds of filesystem and mm locks.
1677 * cgroup1 allows disabling the OOM killer and waiting for outside
1678 * handling until the charge can succeed; remember the context and put
1679 * the task to sleep at the end of the page fault when all locks are
1682 * On the other hand, in-kernel OOM killer allows for an async victim
1683 * memory reclaim (oom_reaper) and that means that we are not solely
1684 * relying on the oom victim to make a forward progress and we can
1685 * invoke the oom killer here.
1687 * Please note that mem_cgroup_out_of_memory might fail to find a
1688 * victim and then we have to bail out from the charge path.
1690 if (memcg->oom_kill_disable) {
1691 if (!current->in_user_fault)
1693 css_get(&memcg->css);
1694 current->memcg_in_oom = memcg;
1695 current->memcg_oom_gfp_mask = mask;
1696 current->memcg_oom_order = order;
1701 if (mem_cgroup_out_of_memory(memcg, mask, order))
1708 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1709 * @handle: actually kill/wait or just clean up the OOM state
1711 * This has to be called at the end of a page fault if the memcg OOM
1712 * handler was enabled.
1714 * Memcg supports userspace OOM handling where failed allocations must
1715 * sleep on a waitqueue until the userspace task resolves the
1716 * situation. Sleeping directly in the charge context with all kinds
1717 * of locks held is not a good idea, instead we remember an OOM state
1718 * in the task and mem_cgroup_oom_synchronize() has to be called at
1719 * the end of the page fault to complete the OOM handling.
1721 * Returns %true if an ongoing memcg OOM situation was detected and
1722 * completed, %false otherwise.
1724 bool mem_cgroup_oom_synchronize(bool handle)
1726 struct mem_cgroup *memcg = current->memcg_in_oom;
1727 struct oom_wait_info owait;
1730 /* OOM is global, do not handle */
1737 owait.memcg = memcg;
1738 owait.wait.flags = 0;
1739 owait.wait.func = memcg_oom_wake_function;
1740 owait.wait.private = current;
1741 INIT_LIST_HEAD(&owait.wait.entry);
1743 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1744 mem_cgroup_mark_under_oom(memcg);
1746 locked = mem_cgroup_oom_trylock(memcg);
1749 mem_cgroup_oom_notify(memcg);
1751 if (locked && !memcg->oom_kill_disable) {
1752 mem_cgroup_unmark_under_oom(memcg);
1753 finish_wait(&memcg_oom_waitq, &owait.wait);
1754 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1755 current->memcg_oom_order);
1758 mem_cgroup_unmark_under_oom(memcg);
1759 finish_wait(&memcg_oom_waitq, &owait.wait);
1763 mem_cgroup_oom_unlock(memcg);
1765 * There is no guarantee that an OOM-lock contender
1766 * sees the wakeups triggered by the OOM kill
1767 * uncharges. Wake any sleepers explicitely.
1769 memcg_oom_recover(memcg);
1772 current->memcg_in_oom = NULL;
1773 css_put(&memcg->css);
1778 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1779 * @victim: task to be killed by the OOM killer
1780 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1782 * Returns a pointer to a memory cgroup, which has to be cleaned up
1783 * by killing all belonging OOM-killable tasks.
1785 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1787 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1788 struct mem_cgroup *oom_domain)
1790 struct mem_cgroup *oom_group = NULL;
1791 struct mem_cgroup *memcg;
1793 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1797 oom_domain = root_mem_cgroup;
1801 memcg = mem_cgroup_from_task(victim);
1802 if (memcg == root_mem_cgroup)
1806 * Traverse the memory cgroup hierarchy from the victim task's
1807 * cgroup up to the OOMing cgroup (or root) to find the
1808 * highest-level memory cgroup with oom.group set.
1810 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1811 if (memcg->oom_group)
1814 if (memcg == oom_domain)
1819 css_get(&oom_group->css);
1826 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1828 pr_info("Tasks in ");
1829 pr_cont_cgroup_path(memcg->css.cgroup);
1830 pr_cont(" are going to be killed due to memory.oom.group set\n");
1834 * lock_page_memcg - lock a page->mem_cgroup binding
1837 * This function protects unlocked LRU pages from being moved to
1840 * It ensures lifetime of the returned memcg. Caller is responsible
1841 * for the lifetime of the page; __unlock_page_memcg() is available
1842 * when @page might get freed inside the locked section.
1844 struct mem_cgroup *lock_page_memcg(struct page *page)
1846 struct mem_cgroup *memcg;
1847 unsigned long flags;
1850 * The RCU lock is held throughout the transaction. The fast
1851 * path can get away without acquiring the memcg->move_lock
1852 * because page moving starts with an RCU grace period.
1854 * The RCU lock also protects the memcg from being freed when
1855 * the page state that is going to change is the only thing
1856 * preventing the page itself from being freed. E.g. writeback
1857 * doesn't hold a page reference and relies on PG_writeback to
1858 * keep off truncation, migration and so forth.
1862 if (mem_cgroup_disabled())
1865 memcg = page->mem_cgroup;
1866 if (unlikely(!memcg))
1869 if (atomic_read(&memcg->moving_account) <= 0)
1872 spin_lock_irqsave(&memcg->move_lock, flags);
1873 if (memcg != page->mem_cgroup) {
1874 spin_unlock_irqrestore(&memcg->move_lock, flags);
1879 * When charge migration first begins, we can have locked and
1880 * unlocked page stat updates happening concurrently. Track
1881 * the task who has the lock for unlock_page_memcg().
1883 memcg->move_lock_task = current;
1884 memcg->move_lock_flags = flags;
1888 EXPORT_SYMBOL(lock_page_memcg);
1891 * __unlock_page_memcg - unlock and unpin a memcg
1894 * Unlock and unpin a memcg returned by lock_page_memcg().
1896 void __unlock_page_memcg(struct mem_cgroup *memcg)
1898 if (memcg && memcg->move_lock_task == current) {
1899 unsigned long flags = memcg->move_lock_flags;
1901 memcg->move_lock_task = NULL;
1902 memcg->move_lock_flags = 0;
1904 spin_unlock_irqrestore(&memcg->move_lock, flags);
1911 * unlock_page_memcg - unlock a page->mem_cgroup binding
1914 void unlock_page_memcg(struct page *page)
1916 __unlock_page_memcg(page->mem_cgroup);
1918 EXPORT_SYMBOL(unlock_page_memcg);
1920 struct memcg_stock_pcp {
1921 struct mem_cgroup *cached; /* this never be root cgroup */
1922 unsigned int nr_pages;
1923 struct work_struct work;
1924 unsigned long flags;
1925 #define FLUSHING_CACHED_CHARGE 0
1927 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1928 static DEFINE_MUTEX(percpu_charge_mutex);
1931 * consume_stock: Try to consume stocked charge on this cpu.
1932 * @memcg: memcg to consume from.
1933 * @nr_pages: how many pages to charge.
1935 * The charges will only happen if @memcg matches the current cpu's memcg
1936 * stock, and at least @nr_pages are available in that stock. Failure to
1937 * service an allocation will refill the stock.
1939 * returns true if successful, false otherwise.
1941 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1943 struct memcg_stock_pcp *stock;
1944 unsigned long flags;
1947 if (nr_pages > MEMCG_CHARGE_BATCH)
1950 local_irq_save(flags);
1952 stock = this_cpu_ptr(&memcg_stock);
1953 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1954 stock->nr_pages -= nr_pages;
1958 local_irq_restore(flags);
1964 * Returns stocks cached in percpu and reset cached information.
1966 static void drain_stock(struct memcg_stock_pcp *stock)
1968 struct mem_cgroup *old = stock->cached;
1970 if (stock->nr_pages) {
1971 page_counter_uncharge(&old->memory, stock->nr_pages);
1972 if (do_memsw_account())
1973 page_counter_uncharge(&old->memsw, stock->nr_pages);
1974 css_put_many(&old->css, stock->nr_pages);
1975 stock->nr_pages = 0;
1977 stock->cached = NULL;
1980 static void drain_local_stock(struct work_struct *dummy)
1982 struct memcg_stock_pcp *stock;
1983 unsigned long flags;
1986 * The only protection from memory hotplug vs. drain_stock races is
1987 * that we always operate on local CPU stock here with IRQ disabled
1989 local_irq_save(flags);
1991 stock = this_cpu_ptr(&memcg_stock);
1993 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1995 local_irq_restore(flags);
1999 * Cache charges(val) to local per_cpu area.
2000 * This will be consumed by consume_stock() function, later.
2002 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2004 struct memcg_stock_pcp *stock;
2005 unsigned long flags;
2007 local_irq_save(flags);
2009 stock = this_cpu_ptr(&memcg_stock);
2010 if (stock->cached != memcg) { /* reset if necessary */
2012 stock->cached = memcg;
2014 stock->nr_pages += nr_pages;
2016 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2019 local_irq_restore(flags);
2023 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2024 * of the hierarchy under it.
2026 static void drain_all_stock(struct mem_cgroup *root_memcg)
2030 /* If someone's already draining, avoid adding running more workers. */
2031 if (!mutex_trylock(&percpu_charge_mutex))
2034 * Notify other cpus that system-wide "drain" is running
2035 * We do not care about races with the cpu hotplug because cpu down
2036 * as well as workers from this path always operate on the local
2037 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2040 for_each_online_cpu(cpu) {
2041 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2042 struct mem_cgroup *memcg;
2044 memcg = stock->cached;
2045 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2047 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2048 css_put(&memcg->css);
2051 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2053 drain_local_stock(&stock->work);
2055 schedule_work_on(cpu, &stock->work);
2057 css_put(&memcg->css);
2060 mutex_unlock(&percpu_charge_mutex);
2063 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2065 struct memcg_stock_pcp *stock;
2066 struct mem_cgroup *memcg;
2068 stock = &per_cpu(memcg_stock, cpu);
2071 for_each_mem_cgroup(memcg) {
2074 for (i = 0; i < MEMCG_NR_STAT; i++) {
2078 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2080 atomic_long_add(x, &memcg->stat[i]);
2082 if (i >= NR_VM_NODE_STAT_ITEMS)
2085 for_each_node(nid) {
2086 struct mem_cgroup_per_node *pn;
2088 pn = mem_cgroup_nodeinfo(memcg, nid);
2089 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2091 atomic_long_add(x, &pn->lruvec_stat[i]);
2095 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2098 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2100 atomic_long_add(x, &memcg->events[i]);
2107 static void reclaim_high(struct mem_cgroup *memcg,
2108 unsigned int nr_pages,
2112 if (page_counter_read(&memcg->memory) <= memcg->high)
2114 memcg_memory_event(memcg, MEMCG_HIGH);
2115 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2116 } while ((memcg = parent_mem_cgroup(memcg)));
2119 static void high_work_func(struct work_struct *work)
2121 struct mem_cgroup *memcg;
2123 memcg = container_of(work, struct mem_cgroup, high_work);
2124 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2128 * Scheduled by try_charge() to be executed from the userland return path
2129 * and reclaims memory over the high limit.
2131 void mem_cgroup_handle_over_high(void)
2133 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2134 struct mem_cgroup *memcg;
2136 if (likely(!nr_pages))
2139 memcg = get_mem_cgroup_from_mm(current->mm);
2140 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2141 css_put(&memcg->css);
2142 current->memcg_nr_pages_over_high = 0;
2145 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2146 unsigned int nr_pages)
2148 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2149 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2150 struct mem_cgroup *mem_over_limit;
2151 struct page_counter *counter;
2152 unsigned long nr_reclaimed;
2153 bool may_swap = true;
2154 bool drained = false;
2156 enum oom_status oom_status;
2158 if (mem_cgroup_is_root(memcg))
2161 if (consume_stock(memcg, nr_pages))
2164 if (!do_memsw_account() ||
2165 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2166 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2168 if (do_memsw_account())
2169 page_counter_uncharge(&memcg->memsw, batch);
2170 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2172 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2176 if (batch > nr_pages) {
2182 * Unlike in global OOM situations, memcg is not in a physical
2183 * memory shortage. Allow dying and OOM-killed tasks to
2184 * bypass the last charges so that they can exit quickly and
2185 * free their memory.
2187 if (unlikely(tsk_is_oom_victim(current) ||
2188 fatal_signal_pending(current) ||
2189 current->flags & PF_EXITING))
2193 * Prevent unbounded recursion when reclaim operations need to
2194 * allocate memory. This might exceed the limits temporarily,
2195 * but we prefer facilitating memory reclaim and getting back
2196 * under the limit over triggering OOM kills in these cases.
2198 if (unlikely(current->flags & PF_MEMALLOC))
2201 if (unlikely(task_in_memcg_oom(current)))
2204 if (!gfpflags_allow_blocking(gfp_mask))
2207 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2209 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2210 gfp_mask, may_swap);
2212 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2216 drain_all_stock(mem_over_limit);
2221 if (gfp_mask & __GFP_NORETRY)
2224 * Even though the limit is exceeded at this point, reclaim
2225 * may have been able to free some pages. Retry the charge
2226 * before killing the task.
2228 * Only for regular pages, though: huge pages are rather
2229 * unlikely to succeed so close to the limit, and we fall back
2230 * to regular pages anyway in case of failure.
2232 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2235 * At task move, charge accounts can be doubly counted. So, it's
2236 * better to wait until the end of task_move if something is going on.
2238 if (mem_cgroup_wait_acct_move(mem_over_limit))
2244 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2247 if (gfp_mask & __GFP_NOFAIL)
2250 if (fatal_signal_pending(current))
2253 memcg_memory_event(mem_over_limit, MEMCG_OOM);
2256 * keep retrying as long as the memcg oom killer is able to make
2257 * a forward progress or bypass the charge if the oom killer
2258 * couldn't make any progress.
2260 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2261 get_order(nr_pages * PAGE_SIZE));
2262 switch (oom_status) {
2264 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2273 if (!(gfp_mask & __GFP_NOFAIL))
2277 * The allocation either can't fail or will lead to more memory
2278 * being freed very soon. Allow memory usage go over the limit
2279 * temporarily by force charging it.
2281 page_counter_charge(&memcg->memory, nr_pages);
2282 if (do_memsw_account())
2283 page_counter_charge(&memcg->memsw, nr_pages);
2284 css_get_many(&memcg->css, nr_pages);
2289 css_get_many(&memcg->css, batch);
2290 if (batch > nr_pages)
2291 refill_stock(memcg, batch - nr_pages);
2294 * If the hierarchy is above the normal consumption range, schedule
2295 * reclaim on returning to userland. We can perform reclaim here
2296 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2297 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2298 * not recorded as it most likely matches current's and won't
2299 * change in the meantime. As high limit is checked again before
2300 * reclaim, the cost of mismatch is negligible.
2303 if (page_counter_read(&memcg->memory) > memcg->high) {
2304 /* Don't bother a random interrupted task */
2305 if (in_interrupt()) {
2306 schedule_work(&memcg->high_work);
2309 current->memcg_nr_pages_over_high += batch;
2310 set_notify_resume(current);
2313 } while ((memcg = parent_mem_cgroup(memcg)));
2318 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2320 if (mem_cgroup_is_root(memcg))
2323 page_counter_uncharge(&memcg->memory, nr_pages);
2324 if (do_memsw_account())
2325 page_counter_uncharge(&memcg->memsw, nr_pages);
2327 css_put_many(&memcg->css, nr_pages);
2330 static void lock_page_lru(struct page *page, int *isolated)
2332 struct zone *zone = page_zone(page);
2334 spin_lock_irq(zone_lru_lock(zone));
2335 if (PageLRU(page)) {
2336 struct lruvec *lruvec;
2338 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2340 del_page_from_lru_list(page, lruvec, page_lru(page));
2346 static void unlock_page_lru(struct page *page, int isolated)
2348 struct zone *zone = page_zone(page);
2351 struct lruvec *lruvec;
2353 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2354 VM_BUG_ON_PAGE(PageLRU(page), page);
2356 add_page_to_lru_list(page, lruvec, page_lru(page));
2358 spin_unlock_irq(zone_lru_lock(zone));
2361 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2366 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2369 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2370 * may already be on some other mem_cgroup's LRU. Take care of it.
2373 lock_page_lru(page, &isolated);
2376 * Nobody should be changing or seriously looking at
2377 * page->mem_cgroup at this point:
2379 * - the page is uncharged
2381 * - the page is off-LRU
2383 * - an anonymous fault has exclusive page access, except for
2384 * a locked page table
2386 * - a page cache insertion, a swapin fault, or a migration
2387 * have the page locked
2389 page->mem_cgroup = memcg;
2392 unlock_page_lru(page, isolated);
2395 #ifdef CONFIG_MEMCG_KMEM
2396 static int memcg_alloc_cache_id(void)
2401 id = ida_simple_get(&memcg_cache_ida,
2402 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2406 if (id < memcg_nr_cache_ids)
2410 * There's no space for the new id in memcg_caches arrays,
2411 * so we have to grow them.
2413 down_write(&memcg_cache_ids_sem);
2415 size = 2 * (id + 1);
2416 if (size < MEMCG_CACHES_MIN_SIZE)
2417 size = MEMCG_CACHES_MIN_SIZE;
2418 else if (size > MEMCG_CACHES_MAX_SIZE)
2419 size = MEMCG_CACHES_MAX_SIZE;
2421 err = memcg_update_all_caches(size);
2423 err = memcg_update_all_list_lrus(size);
2425 memcg_nr_cache_ids = size;
2427 up_write(&memcg_cache_ids_sem);
2430 ida_simple_remove(&memcg_cache_ida, id);
2436 static void memcg_free_cache_id(int id)
2438 ida_simple_remove(&memcg_cache_ida, id);
2441 struct memcg_kmem_cache_create_work {
2442 struct mem_cgroup *memcg;
2443 struct kmem_cache *cachep;
2444 struct work_struct work;
2447 static void memcg_kmem_cache_create_func(struct work_struct *w)
2449 struct memcg_kmem_cache_create_work *cw =
2450 container_of(w, struct memcg_kmem_cache_create_work, work);
2451 struct mem_cgroup *memcg = cw->memcg;
2452 struct kmem_cache *cachep = cw->cachep;
2454 memcg_create_kmem_cache(memcg, cachep);
2456 css_put(&memcg->css);
2461 * Enqueue the creation of a per-memcg kmem_cache.
2463 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2464 struct kmem_cache *cachep)
2466 struct memcg_kmem_cache_create_work *cw;
2468 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2472 css_get(&memcg->css);
2475 cw->cachep = cachep;
2476 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2478 queue_work(memcg_kmem_cache_wq, &cw->work);
2481 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2482 struct kmem_cache *cachep)
2485 * We need to stop accounting when we kmalloc, because if the
2486 * corresponding kmalloc cache is not yet created, the first allocation
2487 * in __memcg_schedule_kmem_cache_create will recurse.
2489 * However, it is better to enclose the whole function. Depending on
2490 * the debugging options enabled, INIT_WORK(), for instance, can
2491 * trigger an allocation. This too, will make us recurse. Because at
2492 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2493 * the safest choice is to do it like this, wrapping the whole function.
2495 current->memcg_kmem_skip_account = 1;
2496 __memcg_schedule_kmem_cache_create(memcg, cachep);
2497 current->memcg_kmem_skip_account = 0;
2500 static inline bool memcg_kmem_bypass(void)
2502 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2508 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2509 * @cachep: the original global kmem cache
2511 * Return the kmem_cache we're supposed to use for a slab allocation.
2512 * We try to use the current memcg's version of the cache.
2514 * If the cache does not exist yet, if we are the first user of it, we
2515 * create it asynchronously in a workqueue and let the current allocation
2516 * go through with the original cache.
2518 * This function takes a reference to the cache it returns to assure it
2519 * won't get destroyed while we are working with it. Once the caller is
2520 * done with it, memcg_kmem_put_cache() must be called to release the
2523 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2525 struct mem_cgroup *memcg;
2526 struct kmem_cache *memcg_cachep;
2529 VM_BUG_ON(!is_root_cache(cachep));
2531 if (memcg_kmem_bypass())
2534 if (current->memcg_kmem_skip_account)
2537 memcg = get_mem_cgroup_from_current();
2538 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2542 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2543 if (likely(memcg_cachep))
2544 return memcg_cachep;
2547 * If we are in a safe context (can wait, and not in interrupt
2548 * context), we could be be predictable and return right away.
2549 * This would guarantee that the allocation being performed
2550 * already belongs in the new cache.
2552 * However, there are some clashes that can arrive from locking.
2553 * For instance, because we acquire the slab_mutex while doing
2554 * memcg_create_kmem_cache, this means no further allocation
2555 * could happen with the slab_mutex held. So it's better to
2558 memcg_schedule_kmem_cache_create(memcg, cachep);
2560 css_put(&memcg->css);
2565 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2566 * @cachep: the cache returned by memcg_kmem_get_cache
2568 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2570 if (!is_root_cache(cachep))
2571 css_put(&cachep->memcg_params.memcg->css);
2575 * memcg_kmem_charge_memcg: charge a kmem page
2576 * @page: page to charge
2577 * @gfp: reclaim mode
2578 * @order: allocation order
2579 * @memcg: memory cgroup to charge
2581 * Returns 0 on success, an error code on failure.
2583 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2584 struct mem_cgroup *memcg)
2586 unsigned int nr_pages = 1 << order;
2587 struct page_counter *counter;
2590 ret = try_charge(memcg, gfp, nr_pages);
2594 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2595 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2596 cancel_charge(memcg, nr_pages);
2600 page->mem_cgroup = memcg;
2606 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2607 * @page: page to charge
2608 * @gfp: reclaim mode
2609 * @order: allocation order
2611 * Returns 0 on success, an error code on failure.
2613 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2615 struct mem_cgroup *memcg;
2618 if (memcg_kmem_bypass())
2621 memcg = get_mem_cgroup_from_current();
2622 if (!mem_cgroup_is_root(memcg)) {
2623 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2625 __SetPageKmemcg(page);
2627 css_put(&memcg->css);
2631 * memcg_kmem_uncharge: uncharge a kmem page
2632 * @page: page to uncharge
2633 * @order: allocation order
2635 void memcg_kmem_uncharge(struct page *page, int order)
2637 struct mem_cgroup *memcg = page->mem_cgroup;
2638 unsigned int nr_pages = 1 << order;
2643 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2645 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2646 page_counter_uncharge(&memcg->kmem, nr_pages);
2648 page_counter_uncharge(&memcg->memory, nr_pages);
2649 if (do_memsw_account())
2650 page_counter_uncharge(&memcg->memsw, nr_pages);
2652 page->mem_cgroup = NULL;
2654 /* slab pages do not have PageKmemcg flag set */
2655 if (PageKmemcg(page))
2656 __ClearPageKmemcg(page);
2658 css_put_many(&memcg->css, nr_pages);
2660 #endif /* CONFIG_MEMCG_KMEM */
2662 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2665 * Because tail pages are not marked as "used", set it. We're under
2666 * zone_lru_lock and migration entries setup in all page mappings.
2668 void mem_cgroup_split_huge_fixup(struct page *head)
2672 if (mem_cgroup_disabled())
2675 for (i = 1; i < HPAGE_PMD_NR; i++)
2676 head[i].mem_cgroup = head->mem_cgroup;
2678 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2680 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2682 #ifdef CONFIG_MEMCG_SWAP
2684 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2685 * @entry: swap entry to be moved
2686 * @from: mem_cgroup which the entry is moved from
2687 * @to: mem_cgroup which the entry is moved to
2689 * It succeeds only when the swap_cgroup's record for this entry is the same
2690 * as the mem_cgroup's id of @from.
2692 * Returns 0 on success, -EINVAL on failure.
2694 * The caller must have charged to @to, IOW, called page_counter_charge() about
2695 * both res and memsw, and called css_get().
2697 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2698 struct mem_cgroup *from, struct mem_cgroup *to)
2700 unsigned short old_id, new_id;
2702 old_id = mem_cgroup_id(from);
2703 new_id = mem_cgroup_id(to);
2705 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2706 mod_memcg_state(from, MEMCG_SWAP, -1);
2707 mod_memcg_state(to, MEMCG_SWAP, 1);
2713 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2714 struct mem_cgroup *from, struct mem_cgroup *to)
2720 static DEFINE_MUTEX(memcg_max_mutex);
2722 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2723 unsigned long max, bool memsw)
2725 bool enlarge = false;
2726 bool drained = false;
2728 bool limits_invariant;
2729 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2732 if (signal_pending(current)) {
2737 mutex_lock(&memcg_max_mutex);
2739 * Make sure that the new limit (memsw or memory limit) doesn't
2740 * break our basic invariant rule memory.max <= memsw.max.
2742 limits_invariant = memsw ? max >= memcg->memory.max :
2743 max <= memcg->memsw.max;
2744 if (!limits_invariant) {
2745 mutex_unlock(&memcg_max_mutex);
2749 if (max > counter->max)
2751 ret = page_counter_set_max(counter, max);
2752 mutex_unlock(&memcg_max_mutex);
2758 drain_all_stock(memcg);
2763 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2764 GFP_KERNEL, !memsw)) {
2770 if (!ret && enlarge)
2771 memcg_oom_recover(memcg);
2776 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2778 unsigned long *total_scanned)
2780 unsigned long nr_reclaimed = 0;
2781 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2782 unsigned long reclaimed;
2784 struct mem_cgroup_tree_per_node *mctz;
2785 unsigned long excess;
2786 unsigned long nr_scanned;
2791 mctz = soft_limit_tree_node(pgdat->node_id);
2794 * Do not even bother to check the largest node if the root
2795 * is empty. Do it lockless to prevent lock bouncing. Races
2796 * are acceptable as soft limit is best effort anyway.
2798 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2802 * This loop can run a while, specially if mem_cgroup's continuously
2803 * keep exceeding their soft limit and putting the system under
2810 mz = mem_cgroup_largest_soft_limit_node(mctz);
2815 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2816 gfp_mask, &nr_scanned);
2817 nr_reclaimed += reclaimed;
2818 *total_scanned += nr_scanned;
2819 spin_lock_irq(&mctz->lock);
2820 __mem_cgroup_remove_exceeded(mz, mctz);
2823 * If we failed to reclaim anything from this memory cgroup
2824 * it is time to move on to the next cgroup
2828 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2830 excess = soft_limit_excess(mz->memcg);
2832 * One school of thought says that we should not add
2833 * back the node to the tree if reclaim returns 0.
2834 * But our reclaim could return 0, simply because due
2835 * to priority we are exposing a smaller subset of
2836 * memory to reclaim from. Consider this as a longer
2839 /* If excess == 0, no tree ops */
2840 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2841 spin_unlock_irq(&mctz->lock);
2842 css_put(&mz->memcg->css);
2845 * Could not reclaim anything and there are no more
2846 * mem cgroups to try or we seem to be looping without
2847 * reclaiming anything.
2849 if (!nr_reclaimed &&
2851 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2853 } while (!nr_reclaimed);
2855 css_put(&next_mz->memcg->css);
2856 return nr_reclaimed;
2860 * Test whether @memcg has children, dead or alive. Note that this
2861 * function doesn't care whether @memcg has use_hierarchy enabled and
2862 * returns %true if there are child csses according to the cgroup
2863 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2865 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2870 ret = css_next_child(NULL, &memcg->css);
2876 * Reclaims as many pages from the given memcg as possible.
2878 * Caller is responsible for holding css reference for memcg.
2880 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2882 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2884 /* we call try-to-free pages for make this cgroup empty */
2885 lru_add_drain_all();
2887 drain_all_stock(memcg);
2889 /* try to free all pages in this cgroup */
2890 while (nr_retries && page_counter_read(&memcg->memory)) {
2893 if (signal_pending(current))
2896 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2900 /* maybe some writeback is necessary */
2901 congestion_wait(BLK_RW_ASYNC, HZ/10);
2909 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2910 char *buf, size_t nbytes,
2913 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2915 if (mem_cgroup_is_root(memcg))
2917 return mem_cgroup_force_empty(memcg) ?: nbytes;
2920 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2923 return mem_cgroup_from_css(css)->use_hierarchy;
2926 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2927 struct cftype *cft, u64 val)
2930 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2931 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2933 if (memcg->use_hierarchy == val)
2937 * If parent's use_hierarchy is set, we can't make any modifications
2938 * in the child subtrees. If it is unset, then the change can
2939 * occur, provided the current cgroup has no children.
2941 * For the root cgroup, parent_mem is NULL, we allow value to be
2942 * set if there are no children.
2944 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2945 (val == 1 || val == 0)) {
2946 if (!memcg_has_children(memcg))
2947 memcg->use_hierarchy = val;
2956 struct accumulated_stats {
2957 unsigned long stat[MEMCG_NR_STAT];
2958 unsigned long events[NR_VM_EVENT_ITEMS];
2959 unsigned long lru_pages[NR_LRU_LISTS];
2960 const unsigned int *stats_array;
2961 const unsigned int *events_array;
2966 static void accumulate_memcg_tree(struct mem_cgroup *memcg,
2967 struct accumulated_stats *acc)
2969 struct mem_cgroup *mi;
2972 for_each_mem_cgroup_tree(mi, memcg) {
2973 for (i = 0; i < acc->stats_size; i++)
2974 acc->stat[i] += memcg_page_state(mi,
2975 acc->stats_array ? acc->stats_array[i] : i);
2977 for (i = 0; i < acc->events_size; i++)
2978 acc->events[i] += memcg_sum_events(mi,
2979 acc->events_array ? acc->events_array[i] : i);
2981 for (i = 0; i < NR_LRU_LISTS; i++)
2982 acc->lru_pages[i] +=
2983 mem_cgroup_nr_lru_pages(mi, BIT(i));
2987 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2989 unsigned long val = 0;
2991 if (mem_cgroup_is_root(memcg)) {
2992 struct mem_cgroup *iter;
2994 for_each_mem_cgroup_tree(iter, memcg) {
2995 val += memcg_page_state(iter, MEMCG_CACHE);
2996 val += memcg_page_state(iter, MEMCG_RSS);
2998 val += memcg_page_state(iter, MEMCG_SWAP);
3002 val = page_counter_read(&memcg->memory);
3004 val = page_counter_read(&memcg->memsw);
3017 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3020 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3021 struct page_counter *counter;
3023 switch (MEMFILE_TYPE(cft->private)) {
3025 counter = &memcg->memory;
3028 counter = &memcg->memsw;
3031 counter = &memcg->kmem;
3034 counter = &memcg->tcpmem;
3040 switch (MEMFILE_ATTR(cft->private)) {
3042 if (counter == &memcg->memory)
3043 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3044 if (counter == &memcg->memsw)
3045 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3046 return (u64)page_counter_read(counter) * PAGE_SIZE;
3048 return (u64)counter->max * PAGE_SIZE;
3050 return (u64)counter->watermark * PAGE_SIZE;
3052 return counter->failcnt;
3053 case RES_SOFT_LIMIT:
3054 return (u64)memcg->soft_limit * PAGE_SIZE;
3060 #ifdef CONFIG_MEMCG_KMEM
3061 static int memcg_online_kmem(struct mem_cgroup *memcg)
3065 if (cgroup_memory_nokmem)
3068 BUG_ON(memcg->kmemcg_id >= 0);
3069 BUG_ON(memcg->kmem_state);
3071 memcg_id = memcg_alloc_cache_id();
3075 static_branch_inc(&memcg_kmem_enabled_key);
3077 * A memory cgroup is considered kmem-online as soon as it gets
3078 * kmemcg_id. Setting the id after enabling static branching will
3079 * guarantee no one starts accounting before all call sites are
3082 memcg->kmemcg_id = memcg_id;
3083 memcg->kmem_state = KMEM_ONLINE;
3084 INIT_LIST_HEAD(&memcg->kmem_caches);
3089 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3091 struct cgroup_subsys_state *css;
3092 struct mem_cgroup *parent, *child;
3095 if (memcg->kmem_state != KMEM_ONLINE)
3098 * Clear the online state before clearing memcg_caches array
3099 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3100 * guarantees that no cache will be created for this cgroup
3101 * after we are done (see memcg_create_kmem_cache()).
3103 memcg->kmem_state = KMEM_ALLOCATED;
3105 memcg_deactivate_kmem_caches(memcg);
3107 kmemcg_id = memcg->kmemcg_id;
3108 BUG_ON(kmemcg_id < 0);
3110 parent = parent_mem_cgroup(memcg);
3112 parent = root_mem_cgroup;
3115 * Change kmemcg_id of this cgroup and all its descendants to the
3116 * parent's id, and then move all entries from this cgroup's list_lrus
3117 * to ones of the parent. After we have finished, all list_lrus
3118 * corresponding to this cgroup are guaranteed to remain empty. The
3119 * ordering is imposed by list_lru_node->lock taken by
3120 * memcg_drain_all_list_lrus().
3122 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3123 css_for_each_descendant_pre(css, &memcg->css) {
3124 child = mem_cgroup_from_css(css);
3125 BUG_ON(child->kmemcg_id != kmemcg_id);
3126 child->kmemcg_id = parent->kmemcg_id;
3127 if (!memcg->use_hierarchy)
3132 memcg_drain_all_list_lrus(kmemcg_id, parent);
3134 memcg_free_cache_id(kmemcg_id);
3137 static void memcg_free_kmem(struct mem_cgroup *memcg)
3139 /* css_alloc() failed, offlining didn't happen */
3140 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3141 memcg_offline_kmem(memcg);
3143 if (memcg->kmem_state == KMEM_ALLOCATED) {
3144 memcg_destroy_kmem_caches(memcg);
3145 static_branch_dec(&memcg_kmem_enabled_key);
3146 WARN_ON(page_counter_read(&memcg->kmem));
3150 static int memcg_online_kmem(struct mem_cgroup *memcg)
3154 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3157 static void memcg_free_kmem(struct mem_cgroup *memcg)
3160 #endif /* CONFIG_MEMCG_KMEM */
3162 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3167 mutex_lock(&memcg_max_mutex);
3168 ret = page_counter_set_max(&memcg->kmem, max);
3169 mutex_unlock(&memcg_max_mutex);
3173 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3177 mutex_lock(&memcg_max_mutex);
3179 ret = page_counter_set_max(&memcg->tcpmem, max);
3183 if (!memcg->tcpmem_active) {
3185 * The active flag needs to be written after the static_key
3186 * update. This is what guarantees that the socket activation
3187 * function is the last one to run. See mem_cgroup_sk_alloc()
3188 * for details, and note that we don't mark any socket as
3189 * belonging to this memcg until that flag is up.
3191 * We need to do this, because static_keys will span multiple
3192 * sites, but we can't control their order. If we mark a socket
3193 * as accounted, but the accounting functions are not patched in
3194 * yet, we'll lose accounting.
3196 * We never race with the readers in mem_cgroup_sk_alloc(),
3197 * because when this value change, the code to process it is not
3200 static_branch_inc(&memcg_sockets_enabled_key);
3201 memcg->tcpmem_active = true;
3204 mutex_unlock(&memcg_max_mutex);
3209 * The user of this function is...
3212 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3213 char *buf, size_t nbytes, loff_t off)
3215 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3216 unsigned long nr_pages;
3219 buf = strstrip(buf);
3220 ret = page_counter_memparse(buf, "-1", &nr_pages);
3224 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3226 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3230 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3232 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3235 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3238 ret = memcg_update_kmem_max(memcg, nr_pages);
3241 ret = memcg_update_tcp_max(memcg, nr_pages);
3245 case RES_SOFT_LIMIT:
3246 memcg->soft_limit = nr_pages;
3250 return ret ?: nbytes;
3253 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3254 size_t nbytes, loff_t off)
3256 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3257 struct page_counter *counter;
3259 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3261 counter = &memcg->memory;
3264 counter = &memcg->memsw;
3267 counter = &memcg->kmem;
3270 counter = &memcg->tcpmem;
3276 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3278 page_counter_reset_watermark(counter);
3281 counter->failcnt = 0;
3290 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3293 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3297 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3298 struct cftype *cft, u64 val)
3300 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3302 if (val & ~MOVE_MASK)
3306 * No kind of locking is needed in here, because ->can_attach() will
3307 * check this value once in the beginning of the process, and then carry
3308 * on with stale data. This means that changes to this value will only
3309 * affect task migrations starting after the change.
3311 memcg->move_charge_at_immigrate = val;
3315 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3316 struct cftype *cft, u64 val)
3323 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3327 unsigned int lru_mask;
3330 static const struct numa_stat stats[] = {
3331 { "total", LRU_ALL },
3332 { "file", LRU_ALL_FILE },
3333 { "anon", LRU_ALL_ANON },
3334 { "unevictable", BIT(LRU_UNEVICTABLE) },
3336 const struct numa_stat *stat;
3339 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3341 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3342 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3343 seq_printf(m, "%s=%lu", stat->name, nr);
3344 for_each_node_state(nid, N_MEMORY) {
3345 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3347 seq_printf(m, " N%d=%lu", nid, nr);
3352 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3353 struct mem_cgroup *iter;
3356 for_each_mem_cgroup_tree(iter, memcg)
3357 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3358 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3359 for_each_node_state(nid, N_MEMORY) {
3361 for_each_mem_cgroup_tree(iter, memcg)
3362 nr += mem_cgroup_node_nr_lru_pages(
3363 iter, nid, stat->lru_mask);
3364 seq_printf(m, " N%d=%lu", nid, nr);
3371 #endif /* CONFIG_NUMA */
3373 /* Universal VM events cgroup1 shows, original sort order */
3374 static const unsigned int memcg1_events[] = {
3381 static const char *const memcg1_event_names[] = {
3388 static int memcg_stat_show(struct seq_file *m, void *v)
3390 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3391 unsigned long memory, memsw;
3392 struct mem_cgroup *mi;
3394 struct accumulated_stats acc;
3396 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3397 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3399 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3400 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3402 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3403 memcg_page_state(memcg, memcg1_stats[i]) *
3407 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3408 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3409 memcg_sum_events(memcg, memcg1_events[i]));
3411 for (i = 0; i < NR_LRU_LISTS; i++)
3412 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3413 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3415 /* Hierarchical information */
3416 memory = memsw = PAGE_COUNTER_MAX;
3417 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3418 memory = min(memory, mi->memory.max);
3419 memsw = min(memsw, mi->memsw.max);
3421 seq_printf(m, "hierarchical_memory_limit %llu\n",
3422 (u64)memory * PAGE_SIZE);
3423 if (do_memsw_account())
3424 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3425 (u64)memsw * PAGE_SIZE);
3427 memset(&acc, 0, sizeof(acc));
3428 acc.stats_size = ARRAY_SIZE(memcg1_stats);
3429 acc.stats_array = memcg1_stats;
3430 acc.events_size = ARRAY_SIZE(memcg1_events);
3431 acc.events_array = memcg1_events;
3432 accumulate_memcg_tree(memcg, &acc);
3434 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3435 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3437 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3438 (u64)acc.stat[i] * PAGE_SIZE);
3441 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3442 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3443 (u64)acc.events[i]);
3445 for (i = 0; i < NR_LRU_LISTS; i++)
3446 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3447 (u64)acc.lru_pages[i] * PAGE_SIZE);
3449 #ifdef CONFIG_DEBUG_VM
3452 struct mem_cgroup_per_node *mz;
3453 struct zone_reclaim_stat *rstat;
3454 unsigned long recent_rotated[2] = {0, 0};
3455 unsigned long recent_scanned[2] = {0, 0};
3457 for_each_online_pgdat(pgdat) {
3458 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3459 rstat = &mz->lruvec.reclaim_stat;
3461 recent_rotated[0] += rstat->recent_rotated[0];
3462 recent_rotated[1] += rstat->recent_rotated[1];
3463 recent_scanned[0] += rstat->recent_scanned[0];
3464 recent_scanned[1] += rstat->recent_scanned[1];
3466 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3467 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3468 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3469 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3476 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3479 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3481 return mem_cgroup_swappiness(memcg);
3484 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3485 struct cftype *cft, u64 val)
3487 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3493 memcg->swappiness = val;
3495 vm_swappiness = val;
3500 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3502 struct mem_cgroup_threshold_ary *t;
3503 unsigned long usage;
3508 t = rcu_dereference(memcg->thresholds.primary);
3510 t = rcu_dereference(memcg->memsw_thresholds.primary);
3515 usage = mem_cgroup_usage(memcg, swap);
3518 * current_threshold points to threshold just below or equal to usage.
3519 * If it's not true, a threshold was crossed after last
3520 * call of __mem_cgroup_threshold().
3522 i = t->current_threshold;
3525 * Iterate backward over array of thresholds starting from
3526 * current_threshold and check if a threshold is crossed.
3527 * If none of thresholds below usage is crossed, we read
3528 * only one element of the array here.
3530 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3531 eventfd_signal(t->entries[i].eventfd, 1);
3533 /* i = current_threshold + 1 */
3537 * Iterate forward over array of thresholds starting from
3538 * current_threshold+1 and check if a threshold is crossed.
3539 * If none of thresholds above usage is crossed, we read
3540 * only one element of the array here.
3542 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3543 eventfd_signal(t->entries[i].eventfd, 1);
3545 /* Update current_threshold */
3546 t->current_threshold = i - 1;
3551 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3554 __mem_cgroup_threshold(memcg, false);
3555 if (do_memsw_account())
3556 __mem_cgroup_threshold(memcg, true);
3558 memcg = parent_mem_cgroup(memcg);
3562 static int compare_thresholds(const void *a, const void *b)
3564 const struct mem_cgroup_threshold *_a = a;
3565 const struct mem_cgroup_threshold *_b = b;
3567 if (_a->threshold > _b->threshold)
3570 if (_a->threshold < _b->threshold)
3576 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3578 struct mem_cgroup_eventfd_list *ev;
3580 spin_lock(&memcg_oom_lock);
3582 list_for_each_entry(ev, &memcg->oom_notify, list)
3583 eventfd_signal(ev->eventfd, 1);
3585 spin_unlock(&memcg_oom_lock);
3589 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3591 struct mem_cgroup *iter;
3593 for_each_mem_cgroup_tree(iter, memcg)
3594 mem_cgroup_oom_notify_cb(iter);
3597 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3598 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3600 struct mem_cgroup_thresholds *thresholds;
3601 struct mem_cgroup_threshold_ary *new;
3602 unsigned long threshold;
3603 unsigned long usage;
3606 ret = page_counter_memparse(args, "-1", &threshold);
3610 mutex_lock(&memcg->thresholds_lock);
3613 thresholds = &memcg->thresholds;
3614 usage = mem_cgroup_usage(memcg, false);
3615 } else if (type == _MEMSWAP) {
3616 thresholds = &memcg->memsw_thresholds;
3617 usage = mem_cgroup_usage(memcg, true);
3621 /* Check if a threshold crossed before adding a new one */
3622 if (thresholds->primary)
3623 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3625 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3627 /* Allocate memory for new array of thresholds */
3628 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3636 /* Copy thresholds (if any) to new array */
3637 if (thresholds->primary) {
3638 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3639 sizeof(struct mem_cgroup_threshold));
3642 /* Add new threshold */
3643 new->entries[size - 1].eventfd = eventfd;
3644 new->entries[size - 1].threshold = threshold;
3646 /* Sort thresholds. Registering of new threshold isn't time-critical */
3647 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3648 compare_thresholds, NULL);
3650 /* Find current threshold */
3651 new->current_threshold = -1;
3652 for (i = 0; i < size; i++) {
3653 if (new->entries[i].threshold <= usage) {
3655 * new->current_threshold will not be used until
3656 * rcu_assign_pointer(), so it's safe to increment
3659 ++new->current_threshold;
3664 /* Free old spare buffer and save old primary buffer as spare */
3665 kfree(thresholds->spare);
3666 thresholds->spare = thresholds->primary;
3668 rcu_assign_pointer(thresholds->primary, new);
3670 /* To be sure that nobody uses thresholds */
3674 mutex_unlock(&memcg->thresholds_lock);
3679 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3680 struct eventfd_ctx *eventfd, const char *args)
3682 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3685 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3686 struct eventfd_ctx *eventfd, const char *args)
3688 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3691 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3692 struct eventfd_ctx *eventfd, enum res_type type)
3694 struct mem_cgroup_thresholds *thresholds;
3695 struct mem_cgroup_threshold_ary *new;
3696 unsigned long usage;
3699 mutex_lock(&memcg->thresholds_lock);
3702 thresholds = &memcg->thresholds;
3703 usage = mem_cgroup_usage(memcg, false);
3704 } else if (type == _MEMSWAP) {
3705 thresholds = &memcg->memsw_thresholds;
3706 usage = mem_cgroup_usage(memcg, true);
3710 if (!thresholds->primary)
3713 /* Check if a threshold crossed before removing */
3714 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3716 /* Calculate new number of threshold */
3718 for (i = 0; i < thresholds->primary->size; i++) {
3719 if (thresholds->primary->entries[i].eventfd != eventfd)
3723 new = thresholds->spare;
3725 /* Set thresholds array to NULL if we don't have thresholds */
3734 /* Copy thresholds and find current threshold */
3735 new->current_threshold = -1;
3736 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3737 if (thresholds->primary->entries[i].eventfd == eventfd)
3740 new->entries[j] = thresholds->primary->entries[i];
3741 if (new->entries[j].threshold <= usage) {
3743 * new->current_threshold will not be used
3744 * until rcu_assign_pointer(), so it's safe to increment
3747 ++new->current_threshold;
3753 /* Swap primary and spare array */
3754 thresholds->spare = thresholds->primary;
3756 rcu_assign_pointer(thresholds->primary, new);
3758 /* To be sure that nobody uses thresholds */
3761 /* If all events are unregistered, free the spare array */
3763 kfree(thresholds->spare);
3764 thresholds->spare = NULL;
3767 mutex_unlock(&memcg->thresholds_lock);
3770 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3771 struct eventfd_ctx *eventfd)
3773 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3776 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3777 struct eventfd_ctx *eventfd)
3779 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3782 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3783 struct eventfd_ctx *eventfd, const char *args)
3785 struct mem_cgroup_eventfd_list *event;
3787 event = kmalloc(sizeof(*event), GFP_KERNEL);
3791 spin_lock(&memcg_oom_lock);
3793 event->eventfd = eventfd;
3794 list_add(&event->list, &memcg->oom_notify);
3796 /* already in OOM ? */
3797 if (memcg->under_oom)
3798 eventfd_signal(eventfd, 1);
3799 spin_unlock(&memcg_oom_lock);
3804 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3805 struct eventfd_ctx *eventfd)
3807 struct mem_cgroup_eventfd_list *ev, *tmp;
3809 spin_lock(&memcg_oom_lock);
3811 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3812 if (ev->eventfd == eventfd) {
3813 list_del(&ev->list);
3818 spin_unlock(&memcg_oom_lock);
3821 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3823 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3825 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3826 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3827 seq_printf(sf, "oom_kill %lu\n",
3828 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3832 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3833 struct cftype *cft, u64 val)
3835 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3837 /* cannot set to root cgroup and only 0 and 1 are allowed */
3838 if (!css->parent || !((val == 0) || (val == 1)))
3841 memcg->oom_kill_disable = val;
3843 memcg_oom_recover(memcg);
3848 #ifdef CONFIG_CGROUP_WRITEBACK
3850 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3852 return wb_domain_init(&memcg->cgwb_domain, gfp);
3855 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3857 wb_domain_exit(&memcg->cgwb_domain);
3860 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3862 wb_domain_size_changed(&memcg->cgwb_domain);
3865 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3867 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3869 if (!memcg->css.parent)
3872 return &memcg->cgwb_domain;
3876 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3877 * @wb: bdi_writeback in question
3878 * @pfilepages: out parameter for number of file pages
3879 * @pheadroom: out parameter for number of allocatable pages according to memcg
3880 * @pdirty: out parameter for number of dirty pages
3881 * @pwriteback: out parameter for number of pages under writeback
3883 * Determine the numbers of file, headroom, dirty, and writeback pages in
3884 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3885 * is a bit more involved.
3887 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3888 * headroom is calculated as the lowest headroom of itself and the
3889 * ancestors. Note that this doesn't consider the actual amount of
3890 * available memory in the system. The caller should further cap
3891 * *@pheadroom accordingly.
3893 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3894 unsigned long *pheadroom, unsigned long *pdirty,
3895 unsigned long *pwriteback)
3897 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3898 struct mem_cgroup *parent;
3900 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3902 /* this should eventually include NR_UNSTABLE_NFS */
3903 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3904 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3905 (1 << LRU_ACTIVE_FILE));
3906 *pheadroom = PAGE_COUNTER_MAX;
3908 while ((parent = parent_mem_cgroup(memcg))) {
3909 unsigned long ceiling = min(memcg->memory.max, memcg->high);
3910 unsigned long used = page_counter_read(&memcg->memory);
3912 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3917 #else /* CONFIG_CGROUP_WRITEBACK */
3919 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3924 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3928 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3932 #endif /* CONFIG_CGROUP_WRITEBACK */
3935 * DO NOT USE IN NEW FILES.
3937 * "cgroup.event_control" implementation.
3939 * This is way over-engineered. It tries to support fully configurable
3940 * events for each user. Such level of flexibility is completely
3941 * unnecessary especially in the light of the planned unified hierarchy.
3943 * Please deprecate this and replace with something simpler if at all
3948 * Unregister event and free resources.
3950 * Gets called from workqueue.
3952 static void memcg_event_remove(struct work_struct *work)
3954 struct mem_cgroup_event *event =
3955 container_of(work, struct mem_cgroup_event, remove);
3956 struct mem_cgroup *memcg = event->memcg;
3958 remove_wait_queue(event->wqh, &event->wait);
3960 event->unregister_event(memcg, event->eventfd);
3962 /* Notify userspace the event is going away. */
3963 eventfd_signal(event->eventfd, 1);
3965 eventfd_ctx_put(event->eventfd);
3967 css_put(&memcg->css);
3971 * Gets called on EPOLLHUP on eventfd when user closes it.
3973 * Called with wqh->lock held and interrupts disabled.
3975 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3976 int sync, void *key)
3978 struct mem_cgroup_event *event =
3979 container_of(wait, struct mem_cgroup_event, wait);
3980 struct mem_cgroup *memcg = event->memcg;
3981 __poll_t flags = key_to_poll(key);
3983 if (flags & EPOLLHUP) {
3985 * If the event has been detached at cgroup removal, we
3986 * can simply return knowing the other side will cleanup
3989 * We can't race against event freeing since the other
3990 * side will require wqh->lock via remove_wait_queue(),
3993 spin_lock(&memcg->event_list_lock);
3994 if (!list_empty(&event->list)) {
3995 list_del_init(&event->list);
3997 * We are in atomic context, but cgroup_event_remove()
3998 * may sleep, so we have to call it in workqueue.
4000 schedule_work(&event->remove);
4002 spin_unlock(&memcg->event_list_lock);
4008 static void memcg_event_ptable_queue_proc(struct file *file,
4009 wait_queue_head_t *wqh, poll_table *pt)
4011 struct mem_cgroup_event *event =
4012 container_of(pt, struct mem_cgroup_event, pt);
4015 add_wait_queue(wqh, &event->wait);
4019 * DO NOT USE IN NEW FILES.
4021 * Parse input and register new cgroup event handler.
4023 * Input must be in format '<event_fd> <control_fd> <args>'.
4024 * Interpretation of args is defined by control file implementation.
4026 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4027 char *buf, size_t nbytes, loff_t off)
4029 struct cgroup_subsys_state *css = of_css(of);
4030 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4031 struct mem_cgroup_event *event;
4032 struct cgroup_subsys_state *cfile_css;
4033 unsigned int efd, cfd;
4040 buf = strstrip(buf);
4042 efd = simple_strtoul(buf, &endp, 10);
4047 cfd = simple_strtoul(buf, &endp, 10);
4048 if ((*endp != ' ') && (*endp != '\0'))
4052 event = kzalloc(sizeof(*event), GFP_KERNEL);
4056 event->memcg = memcg;
4057 INIT_LIST_HEAD(&event->list);
4058 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4059 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4060 INIT_WORK(&event->remove, memcg_event_remove);
4068 event->eventfd = eventfd_ctx_fileget(efile.file);
4069 if (IS_ERR(event->eventfd)) {
4070 ret = PTR_ERR(event->eventfd);
4077 goto out_put_eventfd;
4080 /* the process need read permission on control file */
4081 /* AV: shouldn't we check that it's been opened for read instead? */
4082 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4087 * Determine the event callbacks and set them in @event. This used
4088 * to be done via struct cftype but cgroup core no longer knows
4089 * about these events. The following is crude but the whole thing
4090 * is for compatibility anyway.
4092 * DO NOT ADD NEW FILES.
4094 name = cfile.file->f_path.dentry->d_name.name;
4096 if (!strcmp(name, "memory.usage_in_bytes")) {
4097 event->register_event = mem_cgroup_usage_register_event;
4098 event->unregister_event = mem_cgroup_usage_unregister_event;
4099 } else if (!strcmp(name, "memory.oom_control")) {
4100 event->register_event = mem_cgroup_oom_register_event;
4101 event->unregister_event = mem_cgroup_oom_unregister_event;
4102 } else if (!strcmp(name, "memory.pressure_level")) {
4103 event->register_event = vmpressure_register_event;
4104 event->unregister_event = vmpressure_unregister_event;
4105 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4106 event->register_event = memsw_cgroup_usage_register_event;
4107 event->unregister_event = memsw_cgroup_usage_unregister_event;
4114 * Verify @cfile should belong to @css. Also, remaining events are
4115 * automatically removed on cgroup destruction but the removal is
4116 * asynchronous, so take an extra ref on @css.
4118 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4119 &memory_cgrp_subsys);
4121 if (IS_ERR(cfile_css))
4123 if (cfile_css != css) {
4128 ret = event->register_event(memcg, event->eventfd, buf);
4132 vfs_poll(efile.file, &event->pt);
4134 spin_lock(&memcg->event_list_lock);
4135 list_add(&event->list, &memcg->event_list);
4136 spin_unlock(&memcg->event_list_lock);
4148 eventfd_ctx_put(event->eventfd);
4157 static struct cftype mem_cgroup_legacy_files[] = {
4159 .name = "usage_in_bytes",
4160 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4161 .read_u64 = mem_cgroup_read_u64,
4164 .name = "max_usage_in_bytes",
4165 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4166 .write = mem_cgroup_reset,
4167 .read_u64 = mem_cgroup_read_u64,
4170 .name = "limit_in_bytes",
4171 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4172 .write = mem_cgroup_write,
4173 .read_u64 = mem_cgroup_read_u64,
4176 .name = "soft_limit_in_bytes",
4177 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4178 .write = mem_cgroup_write,
4179 .read_u64 = mem_cgroup_read_u64,
4183 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4184 .write = mem_cgroup_reset,
4185 .read_u64 = mem_cgroup_read_u64,
4189 .seq_show = memcg_stat_show,
4192 .name = "force_empty",
4193 .write = mem_cgroup_force_empty_write,
4196 .name = "use_hierarchy",
4197 .write_u64 = mem_cgroup_hierarchy_write,
4198 .read_u64 = mem_cgroup_hierarchy_read,
4201 .name = "cgroup.event_control", /* XXX: for compat */
4202 .write = memcg_write_event_control,
4203 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4206 .name = "swappiness",
4207 .read_u64 = mem_cgroup_swappiness_read,
4208 .write_u64 = mem_cgroup_swappiness_write,
4211 .name = "move_charge_at_immigrate",
4212 .read_u64 = mem_cgroup_move_charge_read,
4213 .write_u64 = mem_cgroup_move_charge_write,
4216 .name = "oom_control",
4217 .seq_show = mem_cgroup_oom_control_read,
4218 .write_u64 = mem_cgroup_oom_control_write,
4219 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4222 .name = "pressure_level",
4226 .name = "numa_stat",
4227 .seq_show = memcg_numa_stat_show,
4231 .name = "kmem.limit_in_bytes",
4232 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4233 .write = mem_cgroup_write,
4234 .read_u64 = mem_cgroup_read_u64,
4237 .name = "kmem.usage_in_bytes",
4238 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4239 .read_u64 = mem_cgroup_read_u64,
4242 .name = "kmem.failcnt",
4243 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4244 .write = mem_cgroup_reset,
4245 .read_u64 = mem_cgroup_read_u64,
4248 .name = "kmem.max_usage_in_bytes",
4249 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4250 .write = mem_cgroup_reset,
4251 .read_u64 = mem_cgroup_read_u64,
4253 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4255 .name = "kmem.slabinfo",
4256 .seq_start = memcg_slab_start,
4257 .seq_next = memcg_slab_next,